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ABSTRACT

A pivotal aim in contemporary Al research is to develop agents proficient in
multi-agent coordination, enabling effective collaboration with both humans and
other systems. Large Language Models (LLMs), with their notable ability to un-
derstand, generate, and interpret language in a human-like manner, stand out as
promising candidates for the development of such agents. In this study, we build
and assess the effectiveness of agents crafted using LLMs in various coordination
scenarios. We introduce the LLM-Coordination (LLM-Co) Framework, specifi-
cally designed to enable LLMs to play coordination games. With the LLM-Co
framework, we conduct our evaluation with three game environments and orga-
nize the evaluation into five aspects: Theory of Mind, Situated Reasoning, Sus-
tained Coordination, Robustness to Partners, and Explicit Assistance. First, the
evaluation of the Theory of Mind and Situated Reasoning reveals the capabili-
ties of LLM to infer the partner’s intention and reason actions accordingly. Then,
the evaluation around Sustained Coordination and Robustness to Partners further
showcases the ability of LLMs to coordinate with an unknown partner in complex
long-horizon tasks, outperforming Reinforcement Learning baselines. Lastly, to
test Explicit Assistance, which refers to the ability of an agent to offer help proac-
tively, we introduce two novel layouts into the Overcooked-Al benchmark, ex-
amining if agents can prioritize helping their partners, sacrificing time that could
have been spent on their tasks. This research underscores the promising capabili-
ties of LLMs in sophisticated coordination environments and reveals the potential
of LLMs in building strong real-world agents for multi-agent coordination.

1 INTRODUCTION

Humans engage in various coordination tasks in their daily lives and work, including mundane ac-
tivities like cooking and more important tasks like search and rescue. In order to assist humans with
tedious or hazardous tasks, it is essential to create agents capable of coordinating with humans or
other autonomous systems. Recently, agents based on Large Language Models have successfully
demonstrated emergent problem-solving and task-completion capabilities in complex environments
Raman et al.| (2022); Wang et al.| (2023); [Wu et al.| (2023). They have shown high-level reasoning
abilities and hints of Theory of Mind abilities Kosinski| (2023)). In this work, we intend to find out
how well Large Language Models can reason to solve tasks that require multi-agent coordination.
Effective coordination requires agents to be able to infer their partner’s next actions (Theory of
Mind), reason about the inferred action in the context of their shared environment (Situated Rea-
soning), take actions and make adjustments to execute the plan over a long duration (Sustained
Coordination) and be able to adjust to unseen partners (Robustness to Partners). Furthermore,
we need agents to be capable of proactively providing Explicit Assistance to their partners during
coordination tasks.

In order to evaluate the multi-agent coordination abilities of LLMs, we adopt three different coor-
dination games. The first game is Collab Escape, where two agents need to coordinate to escape
from an adversary. The second is Collab Capture where two agents chase an adversary through a
maze of rooms. The final game is the Overcooked Carroll et al.|(2019a), which requires two players
to cook and deliver onion soups. To enable Large Language Models to understand and play these
games we introduce the LLM-Coordination framework. The LLM-Co framework provides agents
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with contextual state information and feasible actions and interprets agent outputs for execution in
real time. We will refer to agents using the LLM-Coordination framework as LLM-Co agents.

In the evaluation, we first test the Theory of Mind (ToM) and Situated Reasoning abilities of LLMs,
which are preliminary skills required for coordination. ToM allows models to infer the intentions and
beliefs of others, while Situated Reasoning enables them to anchor these inferences in the contextual
setting of the environment. We design the LLM-ToM-Reasoning Test Set, including independent
scenarios from our multi-agent coordination environments. The LLM-ToM-Reasoning Test Set re-
quires the LLMs to reason about their partner’s intention and the current state of the environment to
provide the optimal next action. We compare four different LLMs (GPT-4, GPT-3.5-turbo, Vicuna-
33B, and Vicuna-13B)|OpenAll (2023)); Ouyang et al.| (2022); |Chiang et al.|(2023). We observe that
GPT-4 overwhelmingly outperforms the other LLMs, getting an almost human-level score.

In order to evaluate sustained coordination abilities in LLM-Co agents, we use GPT-4 as the LLM
of choice as it is the only candidate that provides acceptable ToM and Situated Reasoning skills. We
compare the performance of LLM-Co Agents (w. GPT-4) with Reinforcement Learning (RL) based
baselines, which are the gold standards for AI-Al gameplay. We also experiment with varying the
partners in the Coordination Environment to proxy human agents to test the agent’s Robustness to
Partners. We observe that LLM-Co agents perform better than or equal to the RL baseline in both
AI-AI and Al-human proxy gameplay without any fine-tuning. Additionally, LLM agents have a
further edge over RL methods due to their ability to fully explain the rationale behind their actions
in free text.

Finally, we study whether LLM-Co agents can proactively provide help to their partner (Explicit
Assistance). We extend the existing layouts in the Overcooked-Al environment to involve a gate el-
ement that forces agents to assist their partners in order to complete deliveries. Through experiments
on these new layouts, we discover that LLM-Co agents can determine the right strategy needed to
help out their partners. However, they require a "helper directive,” which uses natural language to
prompt the LLM to be attentive to situations where their partner may need such help. We show that
LLM-Co agents are able to outperform MARL baselines on these new layouts as well.

We summarize the key contributions of our work as follows:

* We develop the LLM-Coordination Framework that equips Large Language Models with
tools and contextual information allowing them to play long-horizon games and execute
LLM-generated natural language actions in real-time.

* We present the LLM-ToM-Reasoning test set which consists of scenarios from the three
coordination games explicitly designed to test the Theory of Mind and Situated Reasoning
abilities of Large Language Models.

* Using GPT-4 (which performs best on the LLM-ToM-Reasoning test) as the LLM of
choice, we perform evaluations for assessing sustained coordination. We show that LLM-
Co agents outperform Reinforcement Learning baselines in comprehensive evaluations in
the multi-turn Overcooked-Al environment.

* We introduce two new layouts to the Overcooked-Al environment that require Large Lan-
guage Models to provide Explicit Assistance to their partners. Through quantitative and
qualitative evaluations, we show that LLM-Co Agents understand the common-payoff na-
ture of the game and are able to figure out the right actions and reasoning required to assist
their partners.

2 RELATED WORK

2.1 MULTI-AGENT COORDINATION

In Game Theory, Pure Coordination games are situations where the payoff is commonly shared
between both agents. In such situations, cooperating is the best strategy. Various benchmarks
have been used to evaluate Multi-Agent Coordination abilities over the years Lowe et al.| (2017);
Bard et al.| (2020). In recent years, the Overcooked environment has emerged as a popular testbed
for coordination experiments |Carroll et al.| (2019a); [Wu et al.| (2021). Our research leverages the
Overcooked-Al environment |Carroll et al.|(2019b). The foundational work by |Carroll et al.| (2019al)
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emphasized the significance of incorporating human data for effective collaboration. Subsequent
research has pivoted towards enabling self-play-trained agents to coordinate seamlessly with hu-
mans within this environment. These studies employ various techniques, including self-play with
past agent checkpoints [Strouse et al.| (2021)), centralized population entropy objectives |Zhao et al.
(2023)), open-ended objectives using graph theory [Li et al.[(2023)), policy ensembles with context-
aware mechanisms|Lou et al.| (2023)), and the incorporation of human biases as linear hidden rewards
Yu et al.| (2023)), to enhance the training and diversity of Al agents in different scenarios. Embod-
ied environments usually set up in household environments have also been recently used to study
multi-agent collaboration |Puig et al.| (2021)); Jain et al.| (2020; [2019); |Gan et al.| (2021)).

2.2 PLANNING AND REASONING WITH LARGE LANGUAGE MODELS

Large Language Models (LLMs) have demonstrated remarkable capabilities of reasoning in natural
language |OpenAll (2023)); Ouyang et al.| (2022); |Chiang et al.[|(2023)). These models have achieved
state-of-the-art performance across a spectrum of NLP tasks, showcasing their proficiency at verbal
reasoning. Strategies like Chain of thought promptingWei et al.|(2022), which generates step-by-
step free-text explanations before coming to conclusions have further boosted the reasoning capac-
ities of LLMs. Approaches augmenting an LLM with memory, belief, and tools have shown to be
useful in multi-step problem-solving Park et al.| (2023)); Huang et al.| (2022); |Raman et al.| (2022).
Isolated LLM agents have shown to be capable of life-long learning and task completion in open-
domain survival games, outperforming existing SOTA Reinforcement Learning methods [Wu et al.
(2023); |Wang et al.|(2023). More recently, such LLM agents have been paired with rule-based low-
level planners to execute tasks in embodied environments [Liang et al.| (2022)); [Song et al.| (2022).
Zhang et al.|(2023) demonstrated efficiency increase in collaborative embodied multi-agent setting
and Mandi et al.| (2023) have shown the ability of collaborative manipulator motion planning using
LLMs. Taking the planning and reasoning abilities of LLM a step further, We intend to perform a
systematic evaluation of coordination abilities in Large Language Models in Common Payoff games.

3 EVALUATION ENVIRONMENTS

3.1 CoLLAB CAPTURE
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Figure 1: The CollabCapture game involves two agents, Alice (Blue) and Bob (Green), chasing
a thief across multiple rooms. Some rooms are connected by doors, which can be controlled by
buttons in different rooms.

Collab Capture involves two agents trying to capture an adversary in a maze of interconnected
rooms. The rooms are connected by doors, which can be controlled through access buttons that can
be found in different rooms. The agent’s task is to capture the adversary in the least amount of time
using effective strategies including cornering the adversary, disabling the adversary, or enabling their
partners.
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3.2 COLLABESCAPE

Based on the popular Video Game “Dead-by-Daylight”, Collaborative Escape involves two agents
trying to escape an adversary in a maze of interconnected rooms. They need to fix two generators
located in randomly selected rooms to open an exit portal. The adversary tries to catch the agents,
and the win condition is any one agent escaping. This game requires strategies like luring the
adversary away from the partner, sacrificing for the partner’s safety, and manipulating the movement
of the adversary.

3.3 OVERCOOKED

Figure 2: All layouts from the overcooked environment we use for our tests. The two agents Alice
(Blue) and Bob (Green) need to collaborate to cook, plate, and deliver onion soups. From Left
to Right: Cramped Room, Asymmetric Advantages, Forced Coordination, Coordination Ring, and
Counter Circuit.

In the Overcooked-Al environment |Carroll et al. (2019a), two agents—Alice (Blue) and Bob
(Green)—collaborate to cook and deliver onion soups. Different environments feature varying num-
bers of onion dispensers (o), plate dispensers (p), cookers (¢), delivery areas (d), and counters (k).
Agents must load three onions into a cooker to start it, which takes 20 time steps to cook. Once
done, an agent transfers the soup to a plate and delivers it.

3.4 OVERCOOKED-ASSIST: DEMONSTRATING EXPLICIT ASSISTANCE IN OVERCOOKED

Time Left: 28
S 0

core:

Gated Delivery Locked

Figure 3: Additional Layouts that require agents to explicitly help their partner complete a delivery.
These new layouts utilize walls and gates to create situations requiring explicit assistance.

The layouts in Overcooked-Al [Carroll et al| (20194) are an excellent test for gauging the ability
of participating agents to sync their actions with their partners. It requires agents to effectively
navigate the layout and time their actions in response to their partners in order to increase efficiency.
However, none of these environments elicit the need for agents to explicitly help out their partner
sacrificing their own time.

We intend to evaluate the LLM agent’s ability to make the choice to actively help its partner but
also see if they can realize when the opportunity to help has arrived and take the right action to
facilitate their partner. If the LLMs cannot make such a choice implicitly, we intend to see the effect
of tuning the directives to bring about such a cooperative intention. To elicit situations that require
one agent to drop their own cooking/delivery and help out their partners, we extend the Overcooked
environment by introducing 2 new facilities (Gates, Walls) and 2 new layouts.
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3.4.1 GATED DELIVERY

Visualized in Figure [3] the Gated Delivery layout requires both agents to help out their partners
during soup delivery. The two gates g0 and gl make the delivery area inaccessible. Gates can be
opened by an agent provided they are not holding anything in their hand. Once opened, a gate
remains open for a very short time enough for an agent to move through it but not enough for an
agent to open it in advance before picking up cooked soup for delivery. This necessitates an agent
not holding cooked soup in their hand to go and open the gate for the delivery agent. The kitchen
counters are replaced by walls to prevent the agents from taking the loophole of placing their soups
temporarily on counters to open the gates. In this environment, both agents are equally placed, and
they need to be acutely aware of their partner’s needs in order to complete even a single delivery.

3.4.2 LOCKED

Visualized in Figure[3] the Locked environment is structurally similar to Soup Passing, except there
is no shared counter to pass soup on. Instead, the agent in the left partition has to understand that
their partner is locked behind a closed gate, holding a soup. In real-life scenarios, one collaborating
partner might find themselves disadvantaged in a similar manner. In order to develop reliable assis-
tive agents, the advantaged agent needs to understand the situation and make the choice to help out
their partner since that provides a better common payoff.

4 LLM-COORDINATION FRAMEWORK
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Figure 4: Visual summary of the LLM-Co framework. Our framework serves as the backbone for
an individual agent, focusing on bringing out its coordination ability. The framework translates
abstract game details into an LLM-compatible format and then utilizes the generated LLM output to
take actions in the game world.

The games mentioned in Section [3] are translated into textual objectives using the LLM-
Coordination Framework. The details of the game along with the rules and the layout of the map are
condensed into a short Game Description (G). Along with the game description, we also provide a
set of Directives (D;) that guide agent behavior. These descriptions are passed as initial prompts to
the Large Language Model.

At each turn, the LLM receives the current state description (D(S)) that is programmatically ob-
tained from the environment, and the player states S. Since LLMs struggle with grid-based rea-
soning and navigation, we provide relative distances from the agent to each location of interest in
the state description. Along with player-specific variables, other salient state variables are also in-
cluded as natural language descriptions. Finally, an agent is provided its partner’s inventory and
relative position to allow it to consider their intentions. The state information provided to the LLM
is equivalent to what a Reinforcement Learning agent would receive in the form of vectors.
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The LLM operates at a medium-level action space which is made up of verb-based actions like
’pick”, “place”, "move” etc. It is provided with a set of feasible actions 1/, to choose from to
enable easier reasoning. The feasible action set is decided on the basis of player inventory and

accessibility of locations.

The LLM utilizes the information (G, D;, S, M) to assess the situation and generates an action m
from the provided set M;. We then use an Action Manager to interpret the action based on the
verb used and the location mentioned. The Action Manager generates low-level actions needed to
execute the medium-level action. In the following experiments, we will refer to LLM Agents that
use the LLM-Coordination Framework as LLM-Co Agents.

5 EXPERIMENTS AND RESULTS

In this section, we describe the experiments and results for the coordination ability of LLMs, with a
focus on five aspects: Theory Of Mind, Situated Reasoning, Sustained Coordination, Robustness to
Partners, and Explicit Assistance.

5.1 THEORY OF MIND AND SITUATED REASONING

100 100 100

100 | mmm Partner action intent prediction accuracy
I Optimal action reasoning accuracy

Percentage

Vicuna 13B Vicuna 33B ChatGPT GPT 4 Human
LLMs

Figure 5: LLMs performance on the LLM-ToM-Reasoning test set. Partner action intent prediction
accuracy shows the Theory Of Mind ability of LLMs under test and the optimal action reasoning
accuracy infers the Situated Reasoning effect of LLMs under test. GPT-4 achieves the best perfor-
mance among tested LLMs.

LLM-ToM-Reasoning test set With the LLM-Co frameworks, we propose an LLM-ToM-
Reasoning test set, which is a suite of 18 scenarios posed with questions among all three games: Col-
laborative Capture, Collaborative Escape, and Overcooked. The scenarios in pure-text are formed
by the outputs of the State Description and Feasible Action Generator from the LLM-Co frame-
works. The test set only includes scenarios hand-picked to represent pivotal situations that require
the agent under-test to first take their partner’s possible next actions into active consideration, reason
about the current state, and adjust their actions that “’indirectly” lead to the best possible outcome.
The same questions are shared across the test set which asks to analyze the current state, infer the
partner’s potential next action, and predict the optimal next action from the perspective of a player.
We annotate the ground truth answers to the questions in the test set manually and ensure a 100%
human success rate during the cross-validation process.

GPT-4 outperforms the other LLMs in LLM-ToM-Reasoning test set We use the collected
LLM-TOM-Reasoning test set to scrutinize the LLMs in the Theory Of Mind (ToM) and Situated
Reasoning aspects, which respectively refer to the ability to understand the beliefs and intentions of
other entities and the ability to contextualize this understanding within the environmental dynamics
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to formulate appropriate responses. LLMs under-test are required to solve the questions in the LLM-
TOM-Reasoning test set, where the output answers to questions are manually compared against the
ground truth. First, we calculate the accuracy of the LLM predictions concerning their partner’s
actions to indicate the ToM ability. Then, the accuracy of predictions for the next appropriate action
and analysis of the current scenario shows the situated reasoning effectiveness. As the result shown
in FigureE], GPT-4 outperforms the other LLMs, GPT-3.5-turbo, Vicuna-33B, and Vicuna-13B, with
only a marginal difference to human performance, indicating a strong potential in understanding and
implementing continuous coordination tasks.

5.2  SUSTAINED COORDINATION AND ROBUSTNESS TO PARTNERS

Sustained coordination refers to the ability of agents to continuously collaborate and adapt their
actions over extended periods. Robustness to Partners is about an agent’s ability to adjust and adapt
to interacting with new or unseen partners. We use GPT-4 as the LLM of choice to test these
aspects. The choice of LLM is dictated by the fact that only GPT-4 is able to display satisfactory
reasoning that will be required consistently for Sustained Coordination. We evaluate the LLM-Co
agent on 400 timesteps of gameplay in the Overcooked-Al environment. The evaluation metric
used in Overcooked (Carroll et al.| (2019a) is the sparse reward obtained when one whole delivery is
completed by the agents. Each delivery wins the agents 20 points.

We use Self Play with Proximal Policy Optimization (PPO) and Population-Based Training with
PPO as the baselines for comparing AI-AI gameplay. For benchmarking AI-Human Proxy game-
play, we use the method of using a PPO agent trained with a human model (Behavior Cloning
model trained on Human-Human gameplay data) established in |Carroll et al.|(2019a)) and observed
in the follow-up works [L1 et al.| (2023)); |[Zhao et al.| (2023)); [Lou et al.| (2023); [Yu et al.| (2023) ap-
proaching Zero Shot Coordination.

Layouts

Agent Type Cramped Rm. Asymm. Adv.  Coord. Ring  Forced Coord. = Counter Circ.

PPOgp 198.8 +£4.06 167.2+3.63 190.8+4.25 151.9+3.28 122.3 £ 3.80
PBT 216.9+1.31 190.1+£8.64 173.8+18.27 169.5+10.09 140.1+13.86
LLM-Co 220+0 280+0 180+ 0 200+0 160+ 0

Table 1: Comparison of game play between self-play baselines (PPO, and PBT) and LLM-Co
Agents. LLM-Co agents outperform RL methods on 4 out of 5 layouts, demonstrating highly effec-
tive reasoning under sustained coordination.

The LLM-Co agent efficiently completes the Overcooked-Al challenge over a long horizon
We pair two LLM-Co agents together to jointly coordinate and complete the cooking and delivery
task in Overcooked-Al. This is analogous to testing agents trained with self-play methods being
asked to jointly perform the task. We observe through visualizations of the gameplay that LLM-
Co agents make effective use of all resources available to them to complete multiple deliveries
effectively. In fact, without being trained or fine-tuned for the task, LLM-Co agents outperform or
nearly match Self-Play baselines trained using Proximal Policy Optimization Schulman et al.[(2017)
or Population-Based Training Jaderberg et al.| (2017)) which are the gold standard for Multi-Agent
Tasks on. Table |1| shows a numerical summary of the scores obtained by agents. These scores
represent averages obtained from 100 runs across with standard deviation across 5 seeds for MARL
agents. For LLM-Co agents, the score obtained by agents for a fixed game description and directives
remains the same as the agent always chooses to take the same medium-level action for a given state
and history. This outcome is noteworthy because it demonstrates that Language Learning Models
(LLMs), specifically GPT-4 |OpenAll (2023) in this case, can outperform RL agents at cooperative
multi-agent tasks with minimal scaffolding. We observed that LLM Agents are capable of achieving
sustained coordination, adjusting to their partners, and correcting their own actions consistently.

The LLM-Co agent is robust to the choice of partner. It is highly likely that an agent is paired
up with a biased or sub-optimal partner. It is known that self-play agents, when paired with humans,
tend to struggle because their behavior diverges from what they consider to be the optimal strategy
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Layouts

Agents Cramped Rm. Asymm. Adv. Coord. Ring Forced Coord. Counter Circ.

BC 103.5+£3.38 136.5+7.00 59.0£5.38 20.5 +£4.33 38.0+£3.99
PPOpc 156.4 £1.48 72.64+19.44 126.4+3.24  58.9+2.98 69.5 +2.18
LLM-Co 160+ 0 180+£0 160£0 120£0 140 £0
Playing from swapped positions:

BC 110.0£3.39 137.5+8.40 70.0£4.00 31.0 £5.00 44.0 £ 3.02
PPOpc 163.9+1.61 178.8+2.65 129.8+3.59 76.9+2.29 57.6 £ 2.50
LLM-Co 180+£0 140+ 0 160£0 80+0 120£0

Table 2: Comparison of AI-Human Proxy Game play. We compare Behavior Cloning Agents,
PPO_BC Agents with LLM-Co agents utilizing the GPT-4 LLM. The LLM-Co agents are able to out-
perform or match the performance of Reinforcement Learning models, indicating that LLM agents
are robust to the choice of partner agents.

Carroll et al.| (2019a). The LLM-Co agent, on the other hand, does not face this issue. Their
actions are based on verbal reasoning, and they adapt to the current situation rather than adhering to
a determined policy. Consequently, they outperform Self-play-based methods trained with human
data at Al-human proxy gameplay as shown in table[5.2]

The LLM-Co agent generates explainable outputs through free-text Reinforcement Learning
(RL-based) agents lack the ability to provide an underlying rationale for their actions, making it
challenging to understand how their actions contribute to broader objectives. This understanding is
crucial for the development of safer and more reliable agents, as well as for debugging when unex-
pected behaviors occur. The LLM-Co agent addresses this gap by generating medium-level actions
and providing high-level reasoning for such a selection. This allows us to extract comprehensive
insights into the decision-making processes under given conditions by examining the “analysis”
generated by the language model during gameplay. Using insights derived from this explainability,
we report qualitative case studies in Appendix [B]

5.3 EXPLICIT ASSISTANCE

Layouts
Conditions Locked Gated Delivery
Without Helper Directive 160 0
With Helper Directive 240 180

Table 3: Comparison of Gameplay in the Overcooked-Assistance Layouts with and without Helper
Directive. The results indicate that the Large Language Model needs to be prompted to be aware
of situations where their partner might need assistance in order to be effective in the Overcooked-
Assistance layouts.

Finally, we test the ability of the LLM-Co agent to provide explicit assistance to their partners in the
new Overcooked layouts defined in where proactive help is necessary to complete the task.

the LLM-Co agent requires a helping directive to choose to help The LLM-Co agent, provided
with the same prompt and directives as used in Overcooked-Al, struggles to recognize and help their
partner agents in Locked and Gated Delivery environments. However, a simple directive informing
the LLM-Co agent to help their partners when the situation demands” makes them actively look for
opportunities to help their partners. We see that agents tend to help partner agents during the time
they are waiting for their own soup to be cooked by choosing the open gates for the waiting agent.
While this is not the most efficient strategy, which would have been to always help out a waiting
agent, it still points to the agent’s ability to explicitly help out during coordination. Table shows
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scores obtained by agents over 400 time steps. Both Locked and Gated Delivery require agents to
notice a partner in need and consequently benefit from adding a directive to help out their partner.

Layouts
Agents Locked Gated Delivery
PPOgsp 132.83 £7.31 134.88 £5.99
PBT 175.8 = 1.69 178.6 £ 9.76
LLM-Co 220+0 180+0

Table 4: Comparison of Gameplay on Overcooked-Assistance Layouts between RL baselines and
LLM Agents. The RL baselines being able to effectively solve the deliveries indicates that the
environments are solvable through self-play training. The high scores achieved by LLM agents
demonstrate that LLM agents are capable of reasoning for providing explicit assistance to their
partners.

The LLM-Co agent outperforms MARL methods at Overcooked-Co-op layouts Table |5.3
shows the performance of Self Play agents trained using PPO and PBT and compares it with the
abilities of the LLM-Co agent provided with a helper directive. Since a reward is provided to both
agents for delivery in Self Play training, we expected to see them gain the ability to open gates as it
results in a reward after a short delay. In spite of this, the LLM-Co agent has the upper hand in their
ability to deduce the right actions required to facilitate their partners.

6 CONCLUSION

In this study, we evaluate the reasoning abilities of Large Language Models for achieving Multi-
agent coordination. We evaluate LLMS across five aspects necessary for coordination through com-
prehensive evaluations in three different environments. We introduce The LLM-Co Framework for
enabling Large Language Models to play multi-agent coordination games. We also curate the LLM-
ToM-Reasoning dataset to assess the Theory of Mind inference and Situated Reasoning Abilities
of Large Language Models. We show that LLM Agents are capable of Sustained Coordination in
the Overcoked Environment and are Robust to the choice of partner. Finally, we introduce two new
layouts to the Overcooked-Al environment and demonstrate the ability of Large Language Models
to provide explicit assistance to their partners during coordination games.
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A DETAILS FOR USING LLM-C0O FRAMEWORK WITH OVERCOOKED

A.1 GAME AND LAYOUT DESCRIPTION

We use a general game description G that explains the rules and objectives of overcooked. Since
each layout has a different number of locations, like onion dispensers and cookers, we include
a succinct description of each environment L;, which includes how many instances of particular
facilities there are. For environments that include partitions, we mention which partition each of the
agents is situated in and what facilities that agents can access. In addition, we also mentioned the
shape of the environment.

A.2 STATE REPRESENTATION

The State Representation Module programmatically converts the state information into a natural
language description D(.S), which can be processed by a Large Language Model (LLM). The state
S includes variables that fully represent the necessary details of the layout as well as the players.
The information provided in D(S) is equivalent to what would be accessible to a Reinforcement
Learning (RL) agent in the form of state representations. We refer to the Blue agent as Alice and the
Green agent as Bob. The following information is included in D(S):

Objects Held by Each Player The state description D(S) begins by detailing the inventories /,,
and I,,, of Alice and Bob, respectively. Each inventory I,,,(where i € {1, 2}) can contain one of the
following items: {”onion”, ”plate”, "cooked soup”}. This inventory information is translated into
natural language and incorporated into D(S) in the format: “You are holding I,,,. Bob is holding

I,,.” Such information is vital for inferring the likely subsequent actions of the partner agent.

Location of the Agent Controlled by LLM: Given the limitations of Large Language Models
(LLMs) in interpreting grid-based spatial information, we opt to provide processed location data
to the LLM. For each agent P; (where ¢ € {1,2}), and for each location of interest denoted as
loc, we calculate the distance dp, 1oc) as the number of steps required to reach loc from P; using the
shortest available path. The state description D(.S) then includes this processed location information
in the format: “loc is d(p, 1oc) units away.” Here, loc can represent various points of interest such
as onion dispensers, plate dispensers, cookers, delivery areas, kitchen counters, or shared counters.
If a location is either inaccessible or blocked by another agent, this is explicitly stated in D(.S).
For example, if a location is blocked by Bob, it would be stated as “loc is blocked by Bob.” To
distinguish between the location information relevant to each agent, D(S) prefixes the respective
sections with “Your location information:” for the agent controlled by the LLM and “Bob’s location
information:” for the partner agent.

Cooker Information The state description D(.S) also incorporates information about the cooker,
which is central to the gameplay strategy. Specifically, for each cooker i, D(.S) includes the number
of onions n; currently in the pot. Additionally, D(S) provides the operational state of the cooker,
denoted as CookerState;, which can be either "Off” or ’On”. Lastly, the current condition of the soup
in the cooker is represented by SoupState;, which can take one of the following values: "Cooking”,
”Cooked”, or ”Not Started”. Thus, the information for cooker c; is formatted as: “c; has n; onions.
¢; is CookerState;. Soup in ¢; is SoupState,.”

Kitchen Counter Information The state description D(S) includes information about kitchen
counters, which are primarily used for temporary object storage. Specifically, D(.S) identifies the
closest empty kitchen counter keppry and the set Kgjieq of all counters currently holding an object.

Shared Counter Information Shared counters serve as specialized kitchen counters for object
transfer between agents. For each shared counter ¢, D(S) includes the status for s;, as “sg is empty”
or “sy contains onion,” to offer a complete environmental overview. Unlike kitchen counters, where
only the closest empty counter is mentioned, all empty shared counters are mentioned.
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Table 5: Complete high level action set.

High-level Actions

Description

pick up onion from oX.

Pick up an onion from onion dispenser number X.

pick up plate from pX.

Pick up a plate from plate dispenser number X.

put onion in cX.

Place the onion into cooker number X.

put soup on plate from cX.

Serve the soup from cooker number X onto a plate.

deliver soup in dX.

Deliver the soup to delivery location number X.

pick up onion from sX.

Pick up an onion from shared counter number X.

pick up plate from sX.

Pick up a plate from shared counter number X.

place onion on sX.

Place the onion on shared counter number X.

place plate on sX.

Place the plate on shared counter number X.

pick up onion from kX.

Pick up an onion from kitchen counter number X.

pick up plate from kX. Pick up a plate from kitchen counter number X.

place onion on kX. Place the onion on kitchen counter number X.

place plate on kX. Place the plate on kitchen counter number X.

wait. wait for one time-step.

move away. Randomly move away from the current location away from the

other agent.

A.3 FEASIBLE ACTION GENERATION:

Table [5] shows our full high-level action set used for the Overcooked environment. These are di-
rectives that can be selected by the LLM based on the provided state information. The action set
is inspired by the planning objectives used by |Carroll et al.| (2019a)) in their coupled planning game
play. The action set is complete in the sense that an agent can utilize the action set to complete
multiple deliveries in the Overcooked Al environment.

The constrained action set generator verifies the feasibility of performing an action before making
it available to the LLM. This is a rule-based program that reduces the set of available actions. For
example, It is not possible to pick up an onion or a plate if the agent is already holding an onion. In
such a case, we will remove actions like “pick up onion from 00, “pick up plate from p0” from the
set of available actions, which will be provided to the LLM along with the state description at each
turn.

A.4 THE LARGE LANGUAGE MODEL

The LLM takes the game description, environment description, state description, and the feasible
action set as its input, along with a history of the previous actions (5 actions.) It then selects an action
from the set of feasible actions and formats its response as Analysis: (analysis). Action:{action).
The LLM is asked to elucidate the current situation, including the environment state, a guess about
the other player’s intention (ToM), and the explanation behind their next action in the analysis sec-
tion.

A.5 ACTION MANAGER

This module is tasked with converting the high-level actions chosen by the Large Language Model
(LLM) into specific, executable steps. Upon receiving a directive from the LLM, the module uses a
Breadth-First Search algorithm to identify the shortest path to the target. The immediate next step
along this path is then selected as the agent’s action for that moment.

The module maintains control until it fully executes a complex directive, such as “place onion
in c0”. This directive would include both the sequence of movements needed to reach the target
location and the final action to complete the task, like placing the onion. Once this directive is
completed, control returns to the State Representation Module, which then consults the LLM for the
next high-level action.
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The Action Manager also handles stalemate situations where both agents contend for the same spot
or each other’s spots using a combination of querying the LLM for another action and deterministic
move-away action.

This design approach relieves the LLM from the complexities of low-level motion planning, an area
where it typically struggles. It also reduces the number of calls to the LLM, saving both time and
computational resources.

B CASE STUDIES

LLMCo Agents are capable of long-term planning while considering their partner’s intentions.
The Overcooked-Al environment, and cooperative tasks in general, require agents to plan ahead
while considering their partner agents’ intentions. Figure[6|provides a visual summary of the LLM-
Co agent’s rationale behind selecting the action “pick up a plate from p0O” when there are already two
onions in the pot with the partner agent having already picked up the third one. The LLM-Co agent
reasons that their partner is probably going to place their onion in the cooker next and consequently
decides to take the preemptive action of picking up a plate.

Explanation:Since Bob is already holding an onion,
you should pick up a plate for the soup that is about
to be cooked

Action: pick up plate from pO.

Figure 6: The LLM-Co agent (Blue) understands that its partner has already picked up an onion and
will probably end up placing it in the cooker to complete the requirement. So, it chooses to “’pick up
a plate” which would help in the next stage.

LLM-Co Agents enable their partners. Effective coordination requires agents to have an un-
derstanding of how they might be inhibiting their partners. Figure [7] shows the LLM-Co agent’s
reasoning in a situation where two cookers are located in a corner (Coordination Ring environment),
and one of them is cooking the soup while the other is missing some onions. Since the soup is
not cooked, the agent with a plate is just waiting near the cooker to load the soup onto the plate.
However, this time could be used by the other agent to put an onion in the adjoining cooker. In this
situation, the LLM-Co agent is able to realize that it needs to move away to enable its partner.

Explanation:You already have a plate with soup in
your inventory, and cO is still cooking. Bob is holding
an onion and can add it to c1. Your best action is to
deliver the soup you have to maximize deliveries.
Bob's next action should be to add the onion to c1
and start cooking.

Action: move away.

Figure 7: The LLM-Co Agent (Blue) thinks about the partner’s mind states (shown in red) and
makes an informed decision (highlighted in green) to move away to make way for the partner agent)
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LLM-Co Agents are sensitive to their partner’s actions and correct their behaviors based on
the resulting state changes. In the Overcooked-Al environment, each agent gets to perform one
action at every time step. This leads to situations where an agent might end up taking an action that
seems optimal in the situation but is soon realized to be sub-optimal due to their partner’s action. A
situation like this is demonstrated in Figure[8] The Blue agent has picked up an onion but needs a
plate. In such a situation we observe that the agent is able to realize its sub-optimal action selection
and notice that a plate has been made available by the other agent. In this case, the LLM-Co agent
places the object on the nearest available counter, freeing its hands. In the subsequent step, it goes
and picks up a plate to load the soup.

Time Left: 896

Explanation: Both cookers are already full and Score: 0
cooking, and holding onto the onion will prevent you
from performing other actions. Placing the onion on
the nearest counter will free up your hands for the
next task.

Action: place onion on k5.

Figure 8: The LLM-Co Agent (Blue) realizes that the onion it picked up cannot be used and decides
to correct itself by placing it on the kitchen counter to free up its hands.

Time Left: 97

Explanation: Since the soup in cO is still cookingand ¥ .'l'
Bob is already holding a cooked soup but can't
deliver it because dO is inaccessible to him, the best
action would be to open g0 so Bob can deliver his
soup and you can continue cooking.

Action: open g0.

Figure 9:

LLM-Co agents explicitly help out their partners by opening gates Figure [9] shows a visual
summary of the reasoning followed by LLM-Co agents before choosing to open gates. It can be
clearly seen that they realize the imminent rise in efficiency that will result from allowing their
partners to access the delivery areas and recognize that the right way to do this is by opening the
gate for them.
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C PROMPT DETAILS FOR OVERCOOKED

Overcooked Task Description Prompt:

In the game Overcooked, I am Alice, my teammate is Bob.

LAYOUT DESCRIPTION.

We must coordinate to make onion soups with 3 onions each.

Once a soup 1is cooked it needs to be placed on a plate and
delivered. I can only carry one item at a time. My goal is to
maximize the number of deliveries. I want to be efficient and
prepare for the next soup while the current soup is cooking. I'11
provide my action history, current state, teammate’s status, and
my possible actions. Help me select the best action from the
list. Format your response as: Explanation:<Brief explanation
for next action including a prediction of Bob’s next action>.
Action: <action>. Only select one action. Do not say anything
else. Got it?

Overcooked Coordination Task Description Prompt:

In the game Overcooked, I am Alice, my teammate is Bob.
LAYOUT_DESCRIPTION.

We must coordinate to make onion soups with 3 onions each.

Once a soup 1is cooked it needs to be placed on a plate and
delivered. I can only carry one item at a time. My goal is to
maximize the number of deliveries. I want to be efficient and
prepare for the next soup while the current soup is cooking. I'1l1
provide my action history, current state, teammate’s status, and
my possible actions. I want to prefer helping the other player
with their cooking and delivery if the situation arises. Help

me select the best action from the list. Format your response

as: Explanation:<Brief explanation for next action including a
prediction of Bob’s next action>. Action: <action>. Only select
one action. Do not say anything else. Got it?
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Layout Prompts (Overcooked):

Cramped Room

The environment is rectangular with 2 onions dispensers (o0,

ol), cooker (c0), plate dispenser (p0) and delivery area (dO).
Additionally there are kitchen counters (kO to k8) which can be
used to temporarily store onions and plates while you do something
else. Objects on counters can be picked up later and should be
considered as they may be closer than items in dispensers.

Asymmetric Advantages

There are two partitions in the current environment. Bob is in
the left partition with access to onion dispenser (00), delivery
area (d0), plate dispenser (p0) and kitchen counters (k0, k1,

k2, k3, k4, k11, k12, kle6, k18, k20, k21, k22, k23). Alice is

in the right partition and has access to onion dispenser (ol),
delivery area (dl), plate dispenser (pl) and kitchen counters (k6,

k7, k8, k9, k10, k14, k15, k17, k19, k25, k26, k27, k28). Both
have access to both cookers (c0, cl). Kitchen counters (k0 to
k28) can be used to temporarily store onions and plates while you
do something else. Objects on counters can be picked up later

and should be considered as they may be closer than items in
dispensers.

Forced Coordination

The environment is split into two partitions, one with each
player. In the right partition, Alice has access to cookers (cO,
cl), delivery area (d0) and kitchen counters (k6, k8, kl1l2). 1In
the left partition, Bob has access to onion dispensers (o0, ol),
plate dispenser (p0O) and kitchen counters (kl, k10). Kitchen
counters can be used to temporarily store onions and plates
while you do something else. Both players have access to shared
counters (s0, sl, s2) which can be used to transfer onions and
plates depending on the situation. Note that the objects on

the shared counters can be accessed by both players. Objects on
counters can be picked up later and should be considered as they
may be closer than items in dispensers.

Coordination Ring

The environment is narrow and circular, with onion dispensers
(00, o0l), plate dispenser (p0), cookers (c0, cl), and a delivery
area (dO0). Additionally there are kitchen counters (kO to k10)
which can be used to temporarily store onions and plates while
you do something else. Objects on counters can be picked up
later and should be considered as they may be closer than items
in dispensers.

Counter Circuit

The environment is circular with two onion dispensers (00, ol),
plate dispenser (p0), cookers (c0, cl) and delivery area (dO).
There are also the shared counters (s0, sl, s2, s3) which can be
used to pass objects from one player to the other. Additionally
there are kitchen counters (k0O to k15) which can be used to
temporarily store onions and plates while you do something

else. Objects on counters can be picked up later and should be
considered as they may be closer than items in dispensers.
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Layout Prompts (Overcooked Assistance):

Gated Delivery

The environment is rectangular with 2 onions dispensers (o0, ol),
cooker (c0) and plate dispenser (p0). The delivery area (d0) 1is
inaccessible behind closed gates and can be accessed by opening
one of the gates (g0, gl). A gate can only be opened by a player
if they are not carrying an object. Once the gate is opened it
will only stay open for a brief time and then close on its own.

Locked

The environment is divided into 2 partitions. Alice is in

the left partition with access to onion dispenser 00, plate
dispenser pl, cooker c0, and delivery area d0. Bob is in the
right partition with access to onion dispenser ol, plate dispenser
p0, and cooker cl. The two partitions are connected by gate g0
which can be opened if a player is holding nothing. Opening the
gate will allow players to move freely between partitions. The
gate will close after enough time automatically.
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