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Abstract

Multiple instance learning (MIL) is the standard for learning slide-level representations
from whole slide images (WSIs), typically using a single attention-based aggregator to pool
instance features. However, a single aggregator can struggle to capture the diverse mor-
phological patterns in heterogeneous pathology and cytology data, where different diseases
may demand different pooling behaviours. We propose a mixture-of-aggregators framework
that models complementary aspects of instance distributions in histology and hematologic
cytology. A router with top-2 gating dynamically selects the most relevant aggregators per
slide, and their outputs are fused into a patient-level representation. To avoid collapse to a
single dominant expert, we add a load-balancing loss and Gumbel noise on the router log-
its to promote the use of multiple aggregators. We extensively evaluate our method on 19
different tasks derived from 16 datasets including histology and hematologic cytology. Com-
pared to single-aggregator baselines, our approach improves diagnostic prediction accuracy
by an average of 4.5% over ABMIL and 12.6% over TransMIL across all tasks. Beyond per-
formance, our analysis shows that different aggregators attend to distinct, disease-specific
instance distributions, providing interpretable insights into the diagnostic process.
Keywords: computational pathology, multiple instance learning, cytology

1. Introduction

Pathology whole-slide images (WSIs) are indispensable for cancer diagnosis, but their man-
ual assessment is time-consuming and highly dependent on expert experience. With the
advent of high-throughput slide digitization, Al-based approaches have been introduced to
support tumor detection, grading, morphological and molecular subtyping, and even sur-
vival prediction (Chen et al., 2024; Lu et al., 2023; Bilal et al., 2021; Vorontsov et al., 2024;
Li et al., 2023). These tools can reduce the workload of pathologists while enabling faster
and more standardized diagnostic outputs (Bulten et al., 2021; Dy et al., 2024; Steiner
et al., 2018; Janowczyk et al., 2019). WSIs are extremely large, often reaching gigapixel
resolution, yet typically come with only slide-level labels. To bridge this gap, multiple in-
stance learning (MIL) has become the standard paradigm. In MIL, a WSI is partitioned
into non-overlapping patches, each patch is encoded into a feature representation, and an
aggregator combines these patch-level features into a slide-level embedding for downstream
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tasks (Li et al., 2021; Lu et al., 2021; Campanella et al., 2019; Ilse et al., 2018; Shao et al.,
2021; Ding et al., 2024).

The success of MIL depends critically on both the quality of instance encoding and the
design of the aggregator. Modern pathology foundation models provide strong instance-level
features (Filiot et al., 2024; Bioptimus, 2025; Zimmermann et al., 2024; Chen et al., 2024; Lu
et al., 2024), but aggregation remains challenging (Chen et al., 2024; Ding et al., 2024). Most
current MIL methods focus on identifying a small subset of diagnostically relevant patches,
which is effective when the presence of a single pattern is sufficient for diagnosis. However,
many diseases are defined not only by the presence of specific cell types or structures,
but also by their distribution and relative frequency within the slide. Conventional single-
aggregator approaches are prone to fail to capture these subtler distributional patterns,
leading to a loss of diagnostically important information (Lu et al., 2021; Li et al., 2021;
Shao et al., 2021).

Mixture-of-experts strategies, widely adopted in large language models, show that divid-
ing responsibility across multiple specialized components allows the system to model diverse
tasks and distributions more effectively (Jacobs et al., 1991; Shazeer et al., 2017; Riquelme
et al., 2021). Inspired by this idea, we propose a mixture of aggregators for computational
pathology. Within a single pipeline, multiple aggregators can learn complementary aspects
of slide composition—some focusing on highly discriminative instances, others capturing
broader distributional signals. We hypothesize that such diversity enables the model to
represent distinct disease-specific distributions more faithfully, leading to improved diag-
nostic performance and better alignment with clinical reasoning. The main contributions
of our work are: (i) Instead of a single aggregator, we train multiple aggregators in a
MIL pipeline using a routing strategy that weights each aggregator’s contribution. (ii) Our
pipeline supports diverse aggregator architectures and improves performance. (iii) We show
that each aggregator captures distinct, diagnostically relevant, and complementary instance
distributions.

2. Related work

2.1. Aggregators in multiple instance learning

Early multiple instance learning (MIL) approaches for whole-slide images (WSIs) employed
non-parametric, permutation-invariant pooling functions—such as mean, max, and log-
sum-exp (LSE)—to compress instance features into slide-level representations (Campanella
et al., 2019; Ilse et al., 2020; Keshvarikhojasteh, 2025). While simple and efficient, these
fixed functions have limited capacity to adapt to data.

A major advance beyond static pooling mechanisms was the introduction of Attention-
based Multiple Instance Learning (ABMIL) (Ilse et al., 2018; Sadafi et al., 2020). AB-
MIL learns instance-specific attention weights and computes a weighted average of patch
embeddings, enabling more flexible slide-level predictions and interpretable instance-level
heatmaps. Building on ABMIL, several extensions have been proposed. Clustering-constrained
Attention MIL (CLAM) incorporates instance-level clustering to promote diverse class-
specific prototypes (Lu et al., 2021), while Dual-stream MIL (DSMIL) couples an instance-
discriminative stream with a bag-level stream through contrastive alignment (Li et al.,
2021). More recently, Transformer-based aggregators such as TransMIL apply self-attention
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across patches, explicitly modeling inter-instance relationships and often achieving improved
whole-slide accuracy (Shao et al., 2021).

Despite their architectural differences, these MIL approaches share a common bottleneck
in how they form the final slide-level representation. In most implementations—including
ABMIL, DSMIL, and Transformer-based MIL models—the bag is ultimately reduced to a
pooling operation. This is typically realized either through attention pooling or through a
classification token (CLS) whose final hidden state hglLS) summarizes the entire set. Such
readouts are mathematically equivalent to Pooling by Multi-Head Attention (PMA) with
k =1 in Set Transformers (Lee et al., 2019), and fall under the Deep Sets formulation (Za-
heer et al., 2017). In essence, the model relies on a single learned query vector that attends
over all patches, producing a learned weighted first-order moment of the instance distribu-
tion.

While this mechanism effectively captures average signal, it cannot directly model
higher-order statistics—such as co-occurrence structures, multimodal feature distributions,
or rare-pattern enrichment—which are central to histological heterogeneity and diagnostic
accuracy. As a consequence, the architecture implicitly assumes that a slide can be summa-
rized by a single global prototype. This assumption routinely breaks down in heterogeneous
whole-slide images, where multiple competing morphologies or subclonal populations may
coexist (Zaheer et al., 2017; Lee et al., 2019; Dosovitskiy et al., 2021; Shao et al., 2021).

CLAM partially addresses this issue by using multi-head attention designed to produce
class-specific attention maps, but all heads still share a common backbone, limiting their
representational diversity. Transformer-based MIL methods in principle can capture richer
distributions via self-attention, yet the quadratic complexity of standard attention becomes
prohibitive for thousands of patches. TransMIL mitigates this through hierarchical process-
ing with neighbor-restricted (windowed) attentions and cross-scale fusion, reducing effective
complexity while retaining contextual information. However, its hierarchical design intro-
duces permutation variance and reduces interpretability—limitations that are problematic
for inherently permutation-invariant domains such as cytology.

These observations collectively suggest that effective slide-level analysis requires multi-
ple specialized aggregation mechanisms that can adapt to different morphological patterns
within a slide. This naturally points toward architectures that dynamically select or com-
bine diverse processors rather than relying on a single monolithic pooling mechanism.

2.2. Mixture-of-Experts for specialized modeling

The Mixture-of-Experts (MoE) framework is a well-established paradigm for scaling model
capacity efficiently by employing a set of specialized sub-networks (“experts”) and a learned
router that allocates inputs to the most relevant experts. Each expert has its own weight
space, enabling specialization without forcing the model to optimize a single compromised
solution across partially contradicting objectives (Jacobs et al., 1991; Shazeer et al., 2017).
While MoE has been widely adopted in natural language processing, its application in
computational pathology has been limited, particularly at the critical aggregation stage.
We propose to address the limitation of unimodal aggregation by introducing a Mixture-
of-Experts approach at the slide level, which we denote as Mixture of Aggregators (MoA).
Instead of a single aggregator, several permutation-invariant aggregators are trained in
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Figure 1: (A) Whole-slide images are patchified and encoded into instance-level embed-

dings. A router assigns weights and selects the top-2 aggregators, which process
the embeddings in parallel. Their weighted outputs are fused into a patient-level
latent representation and passed to a classifier for disease prediction. (B) Each
aggregator learns to focus on distinct morphological structures within the slide.

parallel, each free to specialize in distinct morphological or domain regimes (for example,
immune-rich versus tumor-dominant patterns, rare event sensitivity, or co-occurrence struc-
tures). A router produces data-dependent weights (often sparse top-k) that combine the
aggregator summaries for each slide. This preserves a shared feature backbone while adding
specialized capacity exactly where heterogeneity is highest—during the instance-to-slide ag-
gregation. In effect, combining multiple invariant summaries via routing enables the model
to approximate a richer family of set functions than any single aggregator, while keeping the
interface simple (a slide-level vector) and the training recipe close to standard MIL practice
(Zaheer et al., 2017; Lee et al., 2019; Shazeer et al., 2017; Lepikhin et al., 2020).

In essence, MoA is not a mere import of MoE into pathology; rather, it re-designs
the aggregation stage to reflect the complex nature of histological evidence, bridging the
gap between single-aggregator MIL and the heterogeneous reasoning pathologists employ
in practice

3. Methodology
3.1. MoA: Mixture of aggregators in multiple instance learning

Our framework employs multiple aggregators to capture distinct distributions of instances
across different disease types. In our mixture of aggregator experiments, we use two com-
monly adopted aggregator architectures: Attention-based MIL (ABMIL) and a Transformer-
based aggregator. Although many variants of aggregators exist , and in theory one may
appear superior to another, recent studies show that their performance is often data-specific
and strongly influenced by hyperparameter tuning (Shao et al., 2025). In comparison, we
include CLAM, DSMIL and mean pooling (MeanMIL).
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For ABMIL, we use the gated attention pooling mechanism of Ilse et al. (Ilse et al.,
2018), which learns instance-specific attention weights based on nonlinear gating. The bag
representation is then obtained as a weighted sum of the instance embeddings.

As Transformer-based aggregators, we use permutation invariant Transformer proposed
by Wagner et al (Wagner et al., 2023) for cytology tasks. Each instance embedding is
projected into a 512-dimensional latent space, and a learnable [CLS] token is prepended to
the sequence. We use two transformer layers, each consisting of a multi-head self-attention
block (with 8 heads) followed by a feedforward network with hidden dimension 1024. For
pathology tasks, we use TransMIL (Shao et al., 2021) with same dimensional parameters.
[CLS] token is later used as the aggregated representation.

3.2. Architecture

We first use an encoder to extract instance-level features (Figure 1). For pathology images,
we use UNI (Chen et al., 2024), and for hematologic cytology we use DinoBloom-B (Koch
et al., 2024). The extracted features of size (N,D) are passed through a router to compute
aggregator weights. The router consists of a projection layer, feature mean pooling and a
linear layer. A top-2 softmax gating then selects the most relevant aggregators.

In parallel, the features are passed through all aggregators (Figure 1). The repre-
sentations from the top-2 selected aggregators are weighted and summed to produce the
patient-level latent representation, which is subsequently used for classification.

For optimization, we use standard cross-entropy loss (Lcg) for slide-level classification
and add a load-balancing auxiliary loss on the gating network to avoid routing collapse.
This loss, following (Fedus et al., 2021), encourages all aggregators to be used more evenly.
Let A be the number of aggregators and B the effective batch of T" patient-level bags. During
training, we use top-2 routing, i.e., each bag is sent to the two aggregators with the highest
router probabilities. For each aggregator i € {1,..., A} we define

fi= 7 2l € TopK(p(a). 2], Pi= 2 3 mile) (1)

zeB zeB

where p(x) € R4 is the router’s softmax probability vector for patient x, pi(z) its i-th compo-
nent, and TopK(p(x),2) returns the indices of the two aggregators with highest probability.
Thus, f; is the fraction of bags actually routed to aggregator ¢ (hard usage), while P; is the
average router probability mass assigned to aggregator ¢ (soft usage). The load-balancing

loss is
A

Lip=AY fiP, L=Lce+p Lis, (2)
i=1
where Ay, controls the strength of load balancing.

In addition, to mitigate aggregator collapse and promote diverse aggregator utilization,
we perturb the gating logits with independent Gumbel(0,1) noise during training (Shazeer
et al., 2017). To gradually transition from exploration to stable specialization, we anneal
the softmax temperature: higher temperatures produce smoother, more exploratory dis-
tributions across aggregators, while lower temperatures sharpen the distribution and favor
more deterministic routing (Nie et al., 2022).
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4. Experiments

4.1. Dataset and preprocessing

We test our model on 2 modalities (cytology and histology), 13 organs/regions and 19 tasks
including morphological and immune subtyping. All datasets are publicly available. More
details are included in Appendix A.3.

Cytology: AML-Hehr (Hehr et al., 2023) and cAltomorph (Dasdelen et al., 2025) are
blood smear datasets which include single cell white blood cell images.

Pathology: We include fourteen different pathology datasets in our evaluation. These
span multiple organ systems, including breast pathology (BCNB (Xu et al., 2021), BRACS
(Brancati et al., 2022)), renal cancer (CPTAC-CCRCC), head and neck cancer (CPTAC-
HNSC, HANCOCK (Dérrich et al., 2025)), lung cancer (CPTAC-LSCC), pancreatic cancer
(CPTAC-PDA), endometrial cancer (CPTAC-UCEC), cervical cancer (IMP-Cervix (Oliveira
et al., 2024)) and other (CPTAC-ALL). ((Ellis et al., 2013; Zhang et al., 2025))). Tasks in-
clude biomarker prediction (BCNB), immune class and tumor microenvironment prediction
(CPTAC-CCRC/HNSC/PDA/UCEC, HANCOCK), histological grading (CPTAC/LSCC,
HANCOCK, IMP-CERVIX) and tumor site prediction (CPTAC-ALL, HANCOCK).

For all datasets, we fix the test set according to the original publications or the bench-
mark (Zhang et al., 2025; Vaidya et al., 2025) and report model performances on test set.
Within the training split, we perform 5-fold cross-validation.

For cytology datasets, we use the DinoBloom-B hematology feature extractor (Koch
et al., 2024). We patchify pathology datasets, using TRIDENT (Zhang et al., 2025; Vaidya
et al., 2025) pipeline at 20x magnification, patch size of 256 x 256. These patches are then
embedded using the UNI feature extractor (Chen et al., 2024).

4.2. Evaluation metrics

For multi-class tasks, we report balanced accuracy, while for binary tasks, we report the
area under the ROC curve (AUROC).

To analyze instance-level attentions, we extract the attention scores produced by each
aggregator. For ABMIL, we directly use the learned attention weights assigned to individual
instances. For Transformer-based aggregators, we apply the Attention Rollout method
(Abnar and Zuidema, 2020).

Jensen—Shannon divergence (JSD) is utilized to quantify attention distribution differ-
ences of aggregators (Lin, 2002).

4.3. Results
4.3.1. MOA ENHANCES DIAGNOSTIC PREDICTIONS

We evaluate MoA across two modalities (cytology and pathology) and 19 downstream tasks
(Table 1). A single, fixed training recipe—selected via the AML-Hehr ablations—is applied
consistently to all datasets.

For ABMIL experts, MoA-ABMIL matches or exceeds the single-aggregator ABMIL
baseline in almost all settings. Across 19 tasks, MoA-ABMIL underperforms the base-
line only once, while providing consistent positive or neutral gains elsewhere. Improve-
ments are marginal on high-performing binary pathology tasks (e.g., BCNB, CPTAC-
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Table 1: Comparison of aggregators across datasets. A indicates relative improvement com-
pared to single aggregator (%). The reported metric is balanced accuracy for
multi-class, area under the ROC (AUROC) for binary tasks. Bold indicates the
best performing model between single vs. mixture of aggregators for the same ar-
chitecture. Underline highlights the best model across all models.

Dataset (Number of class) | MoA-ABMIL ~ ABMIL A | MoA-TransMIL  TransMIL A | CLAM-SB  DSMIL  MeanMIL
AML-Hehr (5C) 784422  81.5+3.7 -3.8% 81.5+1.0 78.6+2.2  +3.7% | T6.746.0 ALTE27 783421
cAltomorph (8C) 52.8+1.8  50.9+19 +3.7% 60.1+1.1 59.4£1.9  +12% | 55.043.0 420425 60114
BCNB/ER (2€) 91.3£0.2 912404 +0.1% 88.4:£0.5 85.743.3  +3.1% | 90.8£0.7  90.9%05 91.7:0.4
BCNB/HER2 (2C) 84.0+£0.7 840405  0.0% 81.2:+2.2 69.8+3.5 +164% | 83.1+2.2 815413 84.1+1.1
BCNB/PR (2C) 88.3+0.4 882406 +0.1% 84.7+0.7 782435  +83% | 87.1412  86.4+0.4  89.0+0.5
BRACS (7C) 34.6£1.9  344%15  +0.6% 29.3+1.6 26,5415  +10.6% | 32.843.3  27.2425  26.9%1.7
CPTAC-ALL (10C) 96.1£0.3 955502  +0.6% 96.3::0.6 955£1.0  +0.8% | 96.4£0.7  96.5%04  96.8+0.6
CPTAC-CCRCC (3C) 45.4+7.7 435443 4+4.4% 47.2+4.1 45.243.7  +44% | AT74£40 454437 459447
CPTAC-HNSC (3C) 35.145.7  33.0+4.6 +6.4% 31.6+3.6 27.945.8  +13.3% | 35.143.9  30.243.0 345456
CPTAC-LSCC (2C) 69.8+£2.2  67.1%35  +4.0% 63.7£5.2 60.0£9.4  +6.2% | 65.1£2.3 650428  60.243.4
CPTAC-PDA (3C) 39.347.3 351430 +11.9% | 41.3+4.1 329470  +255% | 40.0£6.1 362431  40.1£2.6
CPTAC-UCEC (3C) 43.2+2.8 363456 +19.0% | 44.9+7.3 20.7£7.9  +51.2% | 37.049.4 287478 33.5+10.1
HANCOCK/K-SCC grading (2C) 73.841.3  TLA+58  +3.4% 73.6+2.9 60.8+6.6 +21.1% | 67.6£2.3 547492  70.8+4.9
HANCOCK/NK-SCC grading (2C) 67.0£5.8  62.0+10.8 +8.1% | 61.0+£10.2  48.04£9.7 +27.1% | 62.5£8.2 46.0%155 53.0+12.2
HANCOCK /perineural invasion (2C) 79.8+1.1 76.9+0.7  +3.8% 75.5+3.2 63.9+5.6  +18.1% 75.6+2.9 63.0+£7.8  76.1£0.7
HANCOCK /metastasis (2C) 74.841.3  714£17  +4.8% 64.7+3.6 632455  +24% | 6T.14£6.5 62.6+6.8 T73.3+3.6
HANCOCK /tumor site (4C) 74.143.2 685419  +8.2% 71.8+3.2 66.7+1.0  +7.6% | 71320 604422 711424
HANCOCK /vascular invasion (2C) 55.31+6.8 51.6+7.6  +7.2% 66.8+3.8 59.946.0  +11.5% | 62.1+6.4  52.848.0  55.3+£9.9
IMP-Cervix (3C) 46.6+2.8  45.043.6  +3.6% 57.0+1.9 52.9445  +7.7% | 6LOE46  47.0£6.7  48.9%19
Average | 647 62.5  +4.5% | 64.2 58.1  +12.6% | 63.9 55.7 62.6

ALL; A = 0.1-0.8%), and become more pronounced on harder multi-class cohorts with
lower baselines. For example, MoA-ABMIL improves balanced accuracy on CPTAC-HNSC
(+6.4%), CPTAC-LSCC (4+4.0%), CPTAC-PDA (+11.9%) and CPTAC-UCEC (+19.0%),
and achieves the best overall performance on several HANCOCK grading and invasion tasks.
On average, MoA-ABMIL yields a +4.5% relative improvement over the single-aggregator
ABMIL baseline across all datasets.

For mixture of Transformer experts, the effect is even stronger. MoA-TransMIL strictly
dominates the single TransMIL baseline on every dataset, with an average relative gain of
+12.6% (Table 1). Improvements are modest on already saturated tasks (e.g., CPTAC-
ALL: +0.8%), but become substantial on more challenging settings: BRACS (410.6%),
BCNB/HER2 (+16.4%), BONB/PR (+8.3%), CPTAC-PDA (+25.5%), and especially CP-
TAC-UCEC (451.2%). Similar trends are observed across the HANCOCK, where MoA-
TransMIL delivers large gains for K-SCC grading (+21.1%), NK-SCC grading (+27.1%),
perineural invasion (+18.1%), vascular invasion (+11.5%). In cytology, MoA-TransMIL also
improves over the baseline for AML-Hehr (+4.5%) and cAltomorph (41.2%), confirming
that the benefits of mixture-of-aggregators transfer to both smear and tissue-based tasks.

Compared to alternative MIL baselines, MoA is competitive or superior on most datasets.
Although the simplest, MeanMIL attains the best performance on 4/19 tasks (BCNB
and CPTC-ALL), while CLAM-SB slightly outperforms other models on CPTAC-CCRCC
and IMP-Cervix. Nevertheless, either MoA-ABMIL or MoA-TransMIL is the best or
tied-best model on the majority of tasks (13/19). These results indicate that mixing
aggregators—regardless of the choice of backbone—yields a robust improvement over both
single-aggregator variants and established MIL baselines.
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Figure 2: (A) Confusion matrices for AML-Hehr dataset. (B) MoA improves class specific
F1 scores. (C) Aggregator weight distributions across patients reveal class-specific
specialization. (D) Attentions given by aggregators differ for patients and quan-
tified by Jensen—Shannon divergence (JSD).

The additional benefit MoA on cytology and histology tasks are shown in Figure 2 with
confusion matrices. Beyond overall performance, our method enhances class-level sensitivity
and reduces confusion between malignant and non-malignant categories in the AML-Hehr
dataset (Figure 2A). Our method consistently improve performance of all classes in HAN-
COCK dataset (Figure 2B). Importantly, the aggregator weight distributions reveal distinct
specializations (Figure 2C). In the primary tumor-site identification task, Aggregator 3 pre-
dominantly contributes to oropharynx cases, while Aggregator 4 is more active in other
tumor regions. Jensen—Shannon divergence analysis shows that the aggregators attain dif-
ferent attention distributions over patches (Figure 2C, D), with a mean of 0.42 + 0.10.

4.3.2. AGGREGATORS CAPTURE DISTINCT ATTENTION PATTERNS

To further assess aggregator specialization and determine whether they capture different
distributions within a bag, we conducted a patient-wise analysis and computed instance-level
attentions (single-cell images) from each aggregator (Figure 3). We focus on the AML-Hehr
hematologic cytology dataset because single-cell contributions to disease are easier to assess
and several AML subtypes exhibit pathognomonic morphologic findings. We present three
representative patients from different AML subtypes. The upper panel shows the attention
distributions generated by the aggregators along with their respective contribution weights.

Patient YST carries a PML::RARA fusion, also known as acute promyelocytic leukemia
(APL), a distinct subtype of myeloid leukemia that requires rapid diagnosis and treatment.
The hallmark of APL is the presence of promyelocytes. In patient YST, the dominant
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Figure 3: Different aggregators capture complementary diagnostic patterns. For the AML-
Hehr dataset, we show patient-level attention analyses for (A) AML with PML-
RARA, (B) AML with NPM1, and (C) AML with CBFB-MYH11. Top panels
display single-cell attention distributions for the top-2 contributing aggregators
and their mixture weights (red: dominant, blue: secondary, purple: mixture).
Bottom panels compare their attentions, illustrating how each focuses on distinct
cell subsets. This complementarity enables the model to capture subtype-specific
morphological patterns. Attention scores are reported in 10~3 units.

aggregator (Aggregator 2) assigns high attention to several promyelocytes, while the second
aggregator highlights additional promyelocytes initially overlooked by the first (Figure 3A).

In patient PAM, the aggregators complement each other, with both capturing myeloblasts,
which are essential for AML diagnosis (Figure 3B).

Patient ZRJ harbors a CBFB::MYHI11 fusion, a genetic abnormality associated with
AML characterized by monocytic and granulocytic differentiation. In this case, the first ag-
gregator (Aggregator 4) identifies monocytic cells as disease-specific instances (Figure 3C).
The second aggregator complements by assigning high attention to myeloblasts and granu-
locytic cells at different maturation stages.

4.4. Ablation Study

We select a single, fixed MoA configuration via ablations on AML-Hehr (Table 2) and apply
to the rest of the dataset. Compared to the single-aggregator baseline (78.6 balanced accu-
racy), mixtures only help when routing is lightly regularized and stochastic. Performance
is best with an intermediate number of aggregators and mild load balancing: a router with
four aggregators, A\j, = 0.01, and Gumbel noise enabled achieves 81.5 balanced accuracy
on AML-Hehr (+3.7% vs. base). Stronger regularization (Ay, = 0.10), disabling Gumbel
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Table 2: Selected router configurations on AML-Hehr. Base = baseline (single aggregator,
no router); MLP = multi-layer perceptron. Second line shows number of aggrega-
tors used. Third line shows load-balancing loss coefficient Aj,; fourth line indicates
whether Gumbel routing is used (True/False). Bold indicates the best-performing

configuration.
Router architecture: | Base Linear MLP Linear Linear Linear Linear
Number of aggregators: - 4 4 2 6 4 4
Alp: - 0.01 0.01 0.01 0.01 0.10 0.01
Gumbel noise: - T T T T T F
Balanced Acc | 78.6 81.5 76.1 76.8 79.3 80.0 78.1
% vs Base — +3.7 -3.2 -2.3 +0.9 +1.8 -0.6

noise, or changing the number of aggregators (2 or 6) reduces performance. We therefore
adopt this 4-aggregator, Gumbel + A, = 0.01 configuration as the fixed training recipe
for all subsequent experiments, where it generalizes well across organs and modalities (full
ablations in Appendix B).

4.5. Limitations

We acknowledge several limitations of our study. First, as shown in prior work, no single
MIL architecture uniformly outperforms all others; performance is strongly dataset depen-
dent. In our experiments, mixtures of aggregators improve over their single-aggregator
counterparts, but they may not always achieve the best performance compared to alterna-
tive MIL architectures. Finally, although we used a fixed training recipe across all datasets,
additional hyperparameter tuning may be necessary to benefit of MoA in other settings.

5. Conclusion

We propose Mixture of Aggregators (MoA), a framework that employs multiple aggrega-
tors for multiple instance learning to better capture diverse distributions in heterogeneous
datasets. Our approach improves diagnostic performance in both pathology and hemato-
logic cytology. Within this framework, aggregators specialize in different disease types, and
each specialized aggregator provides distinct, clinically relevant attention distributions over
the instances. These complementary attention patterns enhance diagnostic accuracy when
combined.
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Appendix A. Supplementary methods

A.1. Aggregator details

For ABMIL, we use the gated attention pooling mechanism introduced by Ilse et al (Ilse
et al., 2018). Given a bag of n instance embeddings h;j—, the attention weight for each
instance is computed as

exp{ w’ [tanh(Vhi) O] U(Uhi)] }

4= > i exp{ w" [tanh(Vh;) ® o(Uh;)] }’ ®)

where V,U € R>? and w € R are learnable parameters, tanh(-) and o(-) denote the
hyperbolic tangent and sigmoid activations, and ® is the element-wise product.The bag-level
representation is then obtained as a weighted sum of instances.

z= En:aihi- (4)
i=1

For Transformer archicture, we use recipe by (Wagner et al., 2023). Self attention is
defined as:

SA(Q, K, V) = soft (QKT) % (5)
K, V) =softmax | —— | V,
Vdy,
where queries Q € R"*%  keys K € R™ % and values V € R"*% are obtained from
input embeddings = via

Q=Woz, K=Wgzx, V=Wyz, (6)

with learnable weights Wq € Rk Wy € R4 and Wy € R¥X,

A.2. Training details

For model training, we use a fixed learning rate of 5 x 10™° with the AdamW optimizer,
update gradients every 16 patients, and train for 150 epochs with early stopping based
on the validation loss. We employ four aggregators and adopt a staged training schedule:
during the first three epochs, all four aggregators are used equally, after which we gradually
reduce the active expert count to two. The goal of this warm-up phase is to ensure that all
aggregators acquire a minimal, shared understanding of the task before the router begins
to decide which aggregators are most relevant for each sample. Enforcing top-2 routing
encourages the aggregators to specialize rather than collapsing into a simple ensemble.
We used single H100 80GB GPU for running the experiments.

A.3. Dataset details

AML-Hehr (Hehr et al., 2023) includes 189 patients from four acute myeloid leukemia
(AML) genetic subtypes (PML-RARA fusion, NPM1-mutation, CBFB-MYH11 fusion and
RUNXI1-RUNXIT1 fusion) and healthy controls. Each patient has an average of 430 4107
single-cell white blood cell images. We hold out 43 patients as the test set.
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cAltomorph data (Dasdelen et al., 2025) includes 2,043 patients spanning seven hema-
tologic conditions—acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), myelo-
proliferative neoplasms (MPN), MDS/MPN overlap syndromes, lymphoma, plasma cell neo-
plasms, and reactive changes—along with a healthy cohort. The number of white blood cell
images per patient ranges from 55 to 500, with an average of 488 + 55 cells. A total of 409
patients are held out for testing. This dataset is particularly challenging due to substantial
inter-class heterogeneity and intra-class overlap.

BCNB (Xu et al., 2021) includes 1058 core needle biopsy slides from early breast cancer
patients. It includes binary prediction tasks of ER, PR and HER2 status.

BRACS (Brancati et al., 2022) consist of 547 breast tissue biopsy slides from 189 pa-
tients. It includes 7 classes: normal, pathological benign, usual ductal hyperplasia, flat
epithelial atypia, qtypical ductal hyperplasia, ductal carcinoma in situ and invasive carci-
noma.

CPTAC-CCRCC (National Cancer Institute Clinical Proteomic Tumor Analysis Con-
sortium (CPTAC), 2018a) has 103 slides with clear cell renal cell carcinoma. We predict
the immune class of patients: low, medium, high.

CPTAC-HNSCC (National Cancer Institute Clinical Proteomic Tumor Analysis Con-
sortium (CPTAC), 2018b) has 107 slides with head and neck cancer. Immune class predic-
tion is made (low, medium, high).

CPTAC-LSCC (National Cancer Institute Clinical Proteomic Tumor Analysis Con-
sortium (CPTAC), 2018¢) includes 104 slides with lung squamous cell carcinoma. Histologic
grade of the patients are predicted (well differentiated vs moderately differentiated)

CPTAC-UCEC (National Cancer Institute Clinical Proteomic Tumor Analysis Con-
sortium (CPTAC), 2019) has 94 slides with endometrial carcinoma. Immune class prediction
is made (low, medium, high).

HANCOCK (Dérrich et al., 2025) is a multimodal dataset of 763 head and neck cancer
patients. We include 6 different task from this dataset. 5 of them are binary including:
Keratinizing squamous cell carcinoma grading (n=383), non keratinizing squamous cell
carcinoma grading (n=74), lymphovascular invasion (n=697), perineural invasion (n=697)
and primary vs. metastasis tumor (n=676). Prediction of primary tumor site includes 696
cases from 4 different location (oral cavity, larynx, oropharynx, hypopharynx)

IMP-Cervix (Oliveira et al., 2024) includes 5333 samples from cervical biopsy. Cervical
cancer grade is predicted: non-neoplastic, low-grade, high-grade.

For train-test splits, we follow PathoBench benchmark (Zhang et al., 2025). We held
out the test split and apply 5 cross-validation within training set.

Appendix B. Supplementary findings
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Table 3: Full ablation of different configurations on AML-Hehr data. Base = baseline
(single aggregator, no router); Lin. = Linear; MLP = multi-layer perceptron.
Second line shows number of experts used. Third line for load balancinf loss coeff
Alb; fourth line Gumbel routing (True/False). Bold indicates the best-performing
configuration

router-arch: | Base MLP Lin Lin MLP MLP Lin Lin MLP MLP Lin Lin MLP Lin MLP MLP Lin Lin MLP MLP Lin Lin MLP MLP Lin

#Experts: 2 2 2 2 4 4 4 4 6 6 6 6 2 2 2 2 4 4 4 4 6 6 6 6
Ab: - 0.01 0.01 0.10 0.10 0.01 001 0.10 010 0.01 0.01 0.10 0.10 0.10 0.01 0.10 0.01 0.10 0.01 0.10 0.01 0.10 0.01 0.10  0.01
Gumbel: F F F F F F F F F F F F T T T T T T T T T T T T

Balanced Acc

% vs Base

786 79.1 785 785 791 749 781 758 785 791 781 776 722 768 796 778 768 80.0 761 763 81.5 741 780 782 793
- +06 -0.1 -01 +06 -47 -06 -36 -01 +06 -06 -1.3 -81 -23 +13 -10 -23 +18 -32 -29 +3.7 -57 -08 -05 +09

Table 4: Inference times of different MIL architectures on the HANCOCK dataset. MoA
increases inference time by approximately 2.5x compared to a single-aggregator

model.
Architecture Total time [s] Time / sample [ms]
ABMIL 0.0518 0.3677
MoA-ABMIL 0.1483 1.0515
TransMIL 0.4617 3.2744
MoA-TransMIL 1.1004 7.8046
DSMIL 0.1009 0.7158
CLAM-SB 0.1976 1.4014
Mean 0.0245 0.1734
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