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Abstract

Nash equilibrium is perhaps the best-known so-
lution concept in game theory. Such a solution
assigns a strategy to each player which offers no
incentive to unilaterally deviate. While a Nash
equilibrium is guaranteed to always exist, the
problem of finding one in general-sum games is
PPAD-complete, generally considered intractable.
Regret minimization is an efficient framework
for approximating Nash equilibria in two-player
zero-sum games. However, in general-sum games,
such algorithms are only guaranteed to converge
to a coarse-correlated equilibrium (CCE), a so-
lution concept where player can correlate their
strategies. In this work, we use meta-learning to
minimize the correlations in strategies produced
by a regret minimizer. This encourages the regret
minimizer to find strategies that are closer to a
Nash equilibrium. The meta-learned regret mini-
mizer is still guaranteed to converge to a CCE, but
we give a bound on the distance to Nash equilib-
rium in terms of our meta-loss. We evaluate our
approach in general-sum imperfect information
games. Our algorithms provide significantly bet-
ter approximations of Nash equilibria than state-
of-the-art regret minimization techniques.

1. Introduction
The Nash equilibrium is one of the most influential solu-
tion concepts in game theory. A strategy profile is a Nash
equilibrium if it has the guarantee that no player can ben-
efit by unilaterally deviating from it. The robustness of
this guarantee means that Nash equilibria have applications
in many domains ranging from economics (Vickrey, 1961;
Milgrom & Weber, 1982) to machine learning (Goodfellow
et al., 2014). Finding an efficient algorithm for computing
Nash equilibria has attracted much attention (Rosenthal,
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1973; Monderer & Shapley, 1996; Kearns et al., 2001; Cai
& Daskalakis, 2011; Littman & Stone, 2005). However, it
was shown that, in its full generality, finding a Nash equilib-
rium is PPAD-complete (Papadimitriou, 1994; Daskalakis
et al., 2009a). Many related decision problems, such as ‘Is
a given action in the support of a Nash equilibrium?’, are
NP-complete (Gilboa & Zemel, 1989).

Despite these negative results, computing Nash equilibria in
special classes of games, in particular two-player zero-sum
games, is tractable. In this setting, regret minimization has
become the dominant approach for finding Nash equilib-
ria (Nisan et al., 2007). This framework casts each player as
an independent online learner who repeatedly interacts with
the game, selecting strategies according to dynamics that
lead to sublinear growth of their accumulated regret. Regret
minimizers guarantee convergence to Nash equilibria in two-
player zero-sum games, and are the basis for many signifi-
cant results in imperfect information games (Bowling et al.,
2015; Moravčik et al., 2017; Brown & Sandholm, 2018;
Brown et al., 2020; Brown & Sandholm, 2019a; Schmid
et al., 2023).

Outside the two-player zero-sum setting, regret minimiza-
tion algorithms are no longer guaranteed to converge to a
Nash equilibrium. Instead, a regret minimizer’s empirical
distribution of play converges to a coarse-correlated equi-
librium (CCE) (Hannan, 1957; Hart & Mas-Colell, 2000).
The CCE is a relaxed equilibrium concept, which gives a
distribution over the outcomes of the game such that it isn’t
beneficial for any player to deviate from it. If this distribu-
tion is uncorrelated, meaning it can be expressed as a profile
of independent strategies, it is also a Nash equilibrium. As
such, Nash equilibria form a subset of CCEs, for which
the outcome distribution can be marginalized into strategies
of the individual players. The degree to which a CCE is
correlated, or how much a player can infer about the actions
of other players given their action, can be formalized by
total correlation (Watanabe, 1960).

A recently proposed learning not to regret framework al-
lows one to meta-learn a regret minimizer to optimize a
specified objective, while keeping regret minimization guar-
antees (Sychrovský et al., 2024). Their goal was to accel-
erate the empirical convergence rate on a distribution of
black-box tasks. In this work, we meta-learn predictions
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that optimize an alternative meta-objective: minimizing cor-
relation in the players’ strategies. The resulting algorithm is
still guaranteed to converge to a CCE, and is meta-learned to
empirically converge to a Nash equilibrium on a distribution
of interest. If the support of the distribution doesn’t include
all general-sum games, the problem of finding Nash may be
tractable even if P̸=PPAD. We further show this approach
is sound by providing a bound on the distance to a Nash
equilibrium in terms of our meta-objective. We evaluate
our approach in general-sum imperfect information games.
Our algorithms provide significantly better approximations
of Nash equilibria than state-of-the-art regret minimization
techniques.

1.1. Related Work

The Nash equilibrium is one of the oldest solution concepts
in game theory. Thanks to its many appealing properties, de-
veloping efficient algorithms for approximating Nash equi-
libria has seen much attention (Kontogiannis et al., 2009;
Daskalakis et al., 2009b; 2007; Bosse et al., 2010; Deligkas
et al., 2023; Li et al., 2024). Furthermore, it was shown that,
unless P = NP, polynomial algorithms for finding all Nash
equilibria cannot exist (Gilboa & Zemel, 1989). This nega-
tive result suggests that there are games for which finding a
Nash equilibrium requires enumerating all possible strate-
gies — an amount exponential in the number of actions.

The Lemke-Howson algorithm (Lemke & Howson, 1964)
is one such algorithm, which provably finds a Nash equi-
librium of two-player general-sum games in normal-form.
It works by constructing a path on an abstract polyhedron,
which is guaranteed to terminate at the Nash equilibrium.
Similar to the simplex method (Murty, 1984), the path may
be exponentially long in some games. However, such games
are empirically rare (Codenotti et al., 2008). Several modifi-
cations of the Lemke-Howson algorithm were proposed to
improve its empirical performance (Codenotti et al., 2008;
Gatti et al., 2012). However, the algorithm cannot work with
games in extensive-form. When converted to normal-form,
the size of the game increases exponentially, making these
algorithms scale very poorly.

Regret minimization is a powerful framework for online
convex optimization (Zinkevich, 2003; Nisan et al., 2007),
with regret matching as one of the most popular algorithms
in game applications (Hart & Mas-Colell, 2000). Coun-
terfactual regret minimization enables the use of regret
matching in sequential decision-making, by decomposing
the full regret to individual states (Zinkevich et al., 2007).
In two-player zero-sum games, regret minimization algo-
rithms are guaranteed to converge to a Nash equilibrium.
Many prior works explored modifications of regret match-
ing to speed up its empirical performance in two-player
zero-sum games, such as CFR+ (Tammelin, 2014), Linear

CFR (Brown et al., 2019), PCFR+ (Farina et al., 2023),
Discounted CFR (Brown & Sandholm, 2019c), and their
hyperparameter-scheduled counterparts (Zhang et al., 2024).

Despite the lack of theoretical guarantees in general-sum
games, regret minimization algorithms empirically con-
verge close to Nash equilibria on many standard bench-
marks (Risk & Szafron, 2010; Gibson, 2014; Brown & Sand-
holm, 2019a). Recently, some theoretical advancements
have been made to understand this empirical performance.
If the game has a special ‘pair-wise zero-sum’ structure,
then the regret minimizers are guaranteed to find a Nash
equilibrium (Cai & Daskalakis, 2011). Moreover, if a game
is ‘close’ to such ‘pair-wise zero-sum’ games, the regret min-
imzers converge ‘close’ to a Nash equilibrium (MacQueen
& Wright, 2024).

A recently introduced extension of regret matching, predic-
tive regret matching (Farina et al., 2021), forms a contin-
uous class of algorithms with regret minimization guaran-
tees. Subsequently, (Sychrovský et al., 2024) introduced
the ‘learning not to regret’ framework—a way to meta-learn
the predictions while keeping regret minimization guaran-
tees. Their aim was to accelerate convergence on a class of
oblivious environments.

1.2. Main Contribution

In this work, we extend the learning not to regret framework
to encourage convergence to Nash equilibria in general-sum
games. Our approach penalizes correlations in the average
empirical strategy profile found by the regret minimizer.
While our meta-learned algorithms do not guarantee con-
vergence to a Nash equilibrium, we find that our algorithms
empirically converge to CCEs with low correlations in the
players’ strategies, and provide significantly better approxi-
mations of Nash equilibria than prior regret minimization
algorithms.

We demonstrate the feasibility of our approach by conduct-
ing experiments in multiplayer general-sum games. We
start with a distribution of normal-form games, where prior
regret minimization algorithms overwhelmingly converge
to a strictly correlated CCE. Next, we shift our attention to
Leduc poker, a standard extensive-form imperfect informa-
tion benchmark. We show that, after a small modification of
the rules (to make the game general-sum), prior regret mini-
mizers no longer reliably converge to a Nash equilibrium.
When trained on this distribution, our meta-learning frame-
work produces a regret minimizer that reach significantly
closer to a Nash equilibrium. Finally, we demonstrate that
our framework can even be used to obtain better approxima-
tions of a Nash equilibrium on a single general-sum game
rather than just a family of games. We choose the three-
player Leduc poker, obtaining, to our best knowledge, the
closest approximation of a Nash equilibrium of this game.
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2. Preliminaries
We briefly introduce the formalism of incomplete informa-
tion games we will use. Next, we describe regret mini-
mization, a general online convex optimization framework.
Finally, we discuss how regret minimization can be used to
find equilibria of these games.

2.1. Games

We work within a formalism based on factored-observation
stochastic games (Kovařı́k et al., 2022) with terminal utili-
ties.

Definition 2.1. A game is a tuple ⟨N ,W, wo,A, T , u,O⟩,
where

• N = {1, . . . , n} is a player set. We use symbol i for
a player and -i for its opponents.

• W is a set of world states and w0 ∈ W is a unique
initial world state.

• A = A1×· · ·×An is a space of joint actions. A world
state with no legal actions is terminal. We denote the
set of terminal world states as Z .

• After taking a (legal) joint action a at w, the transition
function T determines the next world state w′, drawn
from the probability distribution T (w, a) ∈ ∆(W).

• ui(z) is the utility player i receives when a terminal
state z ∈ Z is reached.

• O = (O1, . . . ,On) is the observation function speci-
fying both the private and public observation that play-
ers receives upon the state transition.

The space Si of all action-observation sequences can be
viewed as the infostate tree of player i. A strategy profile
is a tuple σ = (σ1, . . . ,σn), where each player’s strategy
σi : si ∈ Si 7→ σi(si) ∈ ∆|Ai(si)| specifies the probability
distribution from which player i draws their next action con-
ditional on having information si. We denote the space of
all strategy profiles as Σ. A pure strategy ρi is a determin-
istic strategy: i.e. σi(si, ai) = 1 for some ai ∈ Ai(si). A
selection of pure strategies for all players ρ = (ρ1, . . .ρn)
is a pure strategy profile and the set of all pure strategy
profiles is P.

Let ∆(X) denote the set of distributions over a domain
X . A joint strategy profile δ ∈ ∆(P) is a distribution
over pure strategy profiles. As such, every strategy profile
is also a joint strategy profile. However, the opposite is
not true in general: only some joint strategy profiles are
“marginalizable” into an equivalent strategy profile, while
those with correlations between players’ strategies are not.

The expected utility under a joint strategy profile δ is
ui(δ) = Ez∼δ ui(z), where the expectation is over the

terminal states z ∈ Z and their reach probability un-
der δ. The best-response to the joint strategy of the
other players is br (δ-i) ∈ argmaxσi

ui(σi, δ-i), where
δ-i(ρ-i) =

P
ρi∈Ai

δ(ρi,ρ-i).

We may measure the distance of a strategy profile σ from a
Nash equilibrium by its NashGap: the maximum gain any
player can obtain by unilaterally deviating from σ

NashGap(σ) = max
i∈N

[ui(br (σ-i),σ-i)− ui(σ)] .

A strategy profile is a Nash equilibrium if its NashGap is
zero.1

The coarse correlated equilibrium (CCE) (Moulin & Vial,
1975; Nisan et al., 2007) is a generalization of Nash equi-
librium to joint strategy profiles that allows for correlation
between players’ strategies. A CCE is a joint strategy pro-
file such that any unilateral deviation by any player doesn’t
increase that player’s utility, while other players continue
to play according to the joint strategy. We define the CCE
Gap as

CCE Gap(δ) = max
i∈N

[ui(br (δ-i), δ-i)− ui(δ)] .

A joint strategy profile δ is a CCE if and only if its
CCE Gap is zero. If a joint strategy profile has zero CCE
Gap, and can be written in terms of its marginal strategies
for each player δ = (σ1, . . . ,σn), then its marginals σi

are a Nash equilibrium. In general, CCEs do not admit this
player-wise decomposition of the joint strategy profile—see
Section 4.1 for an example.

2.2. Regret Minimization

An online algorithm m for the regret minimization task
repeatedly interacts with an environment through available
actions Ai. The goal of a regret minimization algorithm is
to maximize its hindsight performance (i.e., to minimize
regret). For reasons discussed in the following section, we
will describe the formalism from the point of view of player
i acting at an infostate s ∈ Si.

Formally, at each step t ≤ T , the algorithm submits a
strategy σt

i(s) ∈ ∆|Ai(s)|. Subsequently, it observes the
expected reward xt

i ∈ R|Ai(s)| at the state s for each of the
actions from the environment, which depends on the strategy
in the rest of the game. The difference in reward obtained un-
der σt

i(s) and any fixed action strategy is called the instan-
taneous regret ri(σ

t, s) = xt
i(σ

t) − ⟨σt
i(s),x

t
i(σ

t)⟩1.
The cumulative regret throughout time t is Rt

i(s) =Pt
τ=1 ri(σ

τ , s).

The goal of a regret minimization algorithm is to ensure
that the regret grows sublinearly for any sequence of re-

1This is because then the individual strategy profiles are mutual
best-responses.
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wards. One way to do that is for m to select σt+1
i (s) pro-

portionally to the positive parts of Rt
i(s), known as regret

matching (Blackwell et al., 1956).

2.3. Connection Between Games and Regret
Minimization

In normal-form games, or when Si is a singleton, if the
external regret Rext,T

i = maxa∈Ai R
T
i grows as O(

√
T )

for all players, then the empirical average joint strategy
profile δ

T def
= 1

T

PT
t=1 σ

t
1 × · · · × σt

n converges to a CCE
as O(1/

√
T ) (Nisan et al., 2007).

In extensive-form games, in order to obtain the external
regret, we would need to convert the game to normal-form.
However, the size of the normal-form representation is expo-
nential in the size extensive-form representation. Thankfully,
one can upper-bound the normal-form regret by individual
(i.e. per-infostate) counterfactual regrets (Zinkevich et al.,
2007)

X

i∈N
Rext,T

i ≤
X

i∈N

X

s∈Si

max
�RT

i (s)

∞ , 0

	
.

The counterfactual regret is defined with respect to the coun-
terfactual reward. At an infostate s ∈ Si, the counterfac-
tual rewards measure the expected utility the player would
obtain in the game when playing to reach s. In other words,
it is the expected utility of i at s, multiplied by the oppo-
nent’s and chance’s contribution to the probability of reach-
ing s. We can treat each infostate as a separate environment,
and minimize their counterfactual regrets independently.
This approach converges to a CCE (Zinkevich et al., 2007).

In two-player zero-sum games, the empirical average
strategy σ is guaranteed to converge to a Nash equilib-
rium (Zinkevich et al., 2007). In fact, any CCE of a
two-player zero-sum game is guaranteed to be marginal-
izable (Nisan et al., 2007). Intuitively, any correlations will
be beneficial for one of the players, which makes it irrational
for the opponent to follow it.

3. Meta-Learning Framework
We aim to find a regret minimization algorithm mθ with
some parameterization θ which tends to converge close
to a Nash equilibrium on a distribution of games G. In
this section, we describe the predictive regret minimization
algorithm over which we meta-learn. Then, we formalize
our optimization objective for the meta-learning.

3.1. Neural Predictive Counterfactual Regret
Minimization (NPCFR)

We work in the learning not to regret framework (Sy-
chrovský et al., 2024), which is built on the predictive regret

Algorithm 1 Neural Predictive Regret Matching
(Sychrovský et al., 2024)

1: R0 ← 0 ∈ R|A|, x0 ← 0 ∈ R|A|

2: es ← embedding of state s

3: NextStrategy()
4: ξt ← [Rt−1 + pt ]+

5: if ∥ξt∥1 > 0
6: σt ← ξt/∥ξt∥1
7: else
8: σt ← arbitrary point in ∆|A|

9: return σt

10: ObserveReward(xt, es)
11: rt ← r(σt,xt)
12: Rt ← Rt−1 + rt

13: pt+1 ← α(rt + π(rt,Rt, es
��θ))

matching (PRM) (Farina et al., 2021). PRM is an extension
of regret matching (Hart & Mas-Colell, 2000) which addi-
tionally uses a predictor about future reward. PRM provably
enjoys O(

√
T ) bound on the external regret for arbitrary

bounded predictions (Farina et al., 2021).

Neural predictive regret matching is an extension of PRM
which uses a predictor π, parameterized by a neural network
θ (Sychrovský et al., 2024); see Algorithm 1. At each step
t and each infostate s ∈ Si, i ∈ N , the predictor π(·|θ)
makes a prediction about the next observed regret rt+1.
This prediction is then used when selecting the strategy,
as if that regret was in fact observed. The strategy is then
selected as if this predicted regret was observed. Network
parameters θ are shared across all infostates s ∈ Si, i ∈ N ,
and α ∈ R is a hyperparameter, see Appendix B for more
details. The es denotes some embedding of the infostate s;
see Section 4.

Since we make the predictions bounded, the predictor can
be meta-learned to minimize a desired objective while main-
taining the regret minimization guarantees (Sychrovský
et al., 2024), which makes the algorithm converge to a CCE.
We use a novel meta-objective, which is introduced in the
following section, to encourage the algorithm to converge
to a Nash equilibrium. Applying the algorithm to coun-
terfactual regrets at each infostate allows us to use it on
extensive-form games. This setup is refer to as neural pre-
dictive counterfactual regret minimization (NPCFR).

3.2. Meta-Loss Function

Any instance of NPCFR is a regret minimizer and is there-
fore guaranteed to converge to a CCE. Since any Nash equi-
librium is a CCE for which player strategies are uncorrelated,
we propose a meta-loss objective that penalizes correlation

4
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Player 1
States

Player 2
States

Terminal
States

Mutual
Information

Figure 1. Computational graph of NPCFR(+) for a simple extensive form game. The algorithm mθ produces a strategy in each infostate
using the regret rt,Rt, and its hidden state ht, see Algorithm 1. Each terminal state z ∈ Z accumulates its empirical average reach
probability 1

t

Pt
τ=1 d(σ

τ )(z). Marginalizability I is computed between this accumulated average reach and the reach probability under
the empirical average strategy profile in the game tree. The meta-loss is the average mutual information experienced over T steps,
according to (1). Its gradient is propagated through all edges.

in the CCE found by NPCFR. Informally, these correlations
measure the mutual dependence of players’ strategies. Or in
other words, how much a player can infer about the actions
of other players given their action.

One could express this measure of correlation as the mu-
tual information of the CCE.2 However, for extensive-form
games, this leads to an exponential blow-up in the size of
the game, since there are exponentially more pure strate-
gies than infostates. Instead, we exploit the structure of
extensive-form games to define an equivalent meta-loss that
does not suffer from this blow-up.

Formally, let ψT = (σt)Tt=1 be a sequence of strategy pro-
files selected by a regret minimizer. Let d(σ) be the distri-
bution of reach probabilities of terminals z ∈ Z under σ,
where d(σ)(z) is the reach probability of z. d(σ) can be de-
composed into a product of player’s (and chance’s) contribu-
tion of reaching z: d(σ)(z) = dc(z)

Q
i∈N di(σ)(z) where

dc(z) is chance’s contribution to reaching z and di(σ)(z) is
the product of σi(s, a) for infostates s ∈ Si on the path to z.

The average distribution over terminals across ψT is
d(ψT )

def
= 1

T

PT
t=1 d(σ

t). We define the marginal across
terminals µ(ψT ) for ψT as a distribution across terminals
under the empirical average strategy in the game. Formally,

µ(ψT )(z)
def
= dc(z)

Y

i∈N

1

T

TX

t=1

di(σ
t)(z).

2We describe this measure in more detail in Appendix A.

In words, this is the distribution on terminals induced by
each player’s empirical average strategy in the game tree.
The sequence ψT is uncorrelated if d(ψT ) and µ(ψT ) have
no mutual dependence. This is formally captured by tak-
ing the KL divergence across terminals between d(ψT ) and
µ(ψT ). We denote this KL as I(ψ), since it is equal to mu-
tual information for the two-player case and total correlation
for the n-player case (Watanabe, 1960).
Definition 3.1. We say that ψT is ϵ-extensive-form
marginalizable (ϵ-EFM) if

I(ψT )
def
= DKL

�
d(ψT ) || µ(ψT )

�
≤ ϵ. (1)

When a sequence of strategies of a regret minimizer is close
to extensive-form marginalizable, it provably converges
close to a Nash equilibrium. Formally, let σT be the average
strategy profile of ψT .
Theorem 1. If ψT was produced by an external regret
minimizer with regret bounded by O(

√
T ) after T iterations

and ψT is ϵ-EFM, then

NashGap(σT ) ≤ O(1/
√
T ) + 2M

√
2ϵ, (2)

where M = maxi∈N maxz∈Z |ui(z)|.

For a given horizon T , we define the meta-loss of NPCFR to
be the average mutual information of the average terminal
reach of the strategies selected up to T on games g ∼ G

L(θ) = E
g∈G

"
1

T

TX

t=1

I(ψt
θ)

#
. (3)

5
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Note minimizing this loss is different from directly minimiz-
ing the extensive form marginalizability after T steps. We
do this to encourage the iterates to be marginalizable as well.
This is analogous to minimizing

PT
t=1 f(x

t) rather than
f(xT ) as in (Andrychowicz et al., 2016), where the authors
meta-learned a function optimizer. The computational graph
of NPCFR is shown in Figure 1. The gradient of (3) origi-
nates in the cumulative mutual information and propagates
through the game tree, the regrets rt,Rt and the hidden
states ht. The gradients accumulate in the predictor π(·|θ),
which is used by the algorithms mθ at every information
state s ∈ Si and every step t, see Algorithm 1.

4. Experiments
We conduct our experiments in general-sum games where
regret minimizers are not guaranteed to converge to a Nash
equilibrium. Starting in the normal-form setting, we present
a distribution of games for which standard regret minimiza-
tion algorithms converge to a strictly correlated CCE. We
then apply our meta-learning framework to the extensive-
form settings, showing we can obtain much better approx-
imate Nash equilibria than prior algorithms. Finally, we
illustrate that the meta-learned algorithms may lose their
empirical performance when used out-of-distribution.

We minimize (3) for T = 32 iterations over 256 epochs
using the Adam optimizer. The neural network uses two
LSTM layers followed by a fully-connected layer. We per-
formed a small grid search over relevant hyperparameters,
see Appendix B. The meta-learning can be completed in
about ten minutes for the normal-form experiments, and ten
hours extensive-form games on a single CPU. See Table 4
for the memory requirements of all algorithms used.

We compare the meta-learned algorithms to a selection of
current and former state-of-the-art regret minimization al-
gorithms. Each algorithm is used to minimize counter-
factual regret at each infostate of the game tree (Zinke-
vich et al., 2007). Specifically, we use regret matching
(CFR) (Hart & Mas-Colell, 2000), predictive regret match-
ing (PCFR) (Farina et al., 2021), smooth predictive regret
matching (SPCFR) (Farina et al., 2023), discounted and
linear regret minimization (DCFR, LCFR) (Brown & Sand-
holm, 2019b), and Hedge (Lattimore & Szepesvári, 2020).
Whenever applicable, we also investigate the ‘plus’ version
of each algorithm (Tammelin et al., 2015).

4.1. Normal-Form Games

The Shapley game

u1(σ) = σ⊤
1 ·



1 0 0

0 1 0

0 0 1


 · σ2,

u2(σ) = σ⊤
1 ·



0 1 0

0 0 1

1 0 0


 · σ2, (4)

was used as a simple example where the best-response dy-
namics doesn’t stabilize (Shapley, 1964). Indeed, it cycles
on the elements which are non-zero for one player. The
empirical average joint-strategy converges to a CCE

δ∗ =
1

6



1 1 0

0 1 1

1 0 1


 . (5)

Clearly, δ∗ is not a Nash equilibrium, as it cannot be written
as σ1σ

⊤
2 . However, thanks to the symmetry of the game,

the marginals of δ∗, or the uniform strategy, turn out to be a
Nash equilibrium.

In order to break the symmetry, we perturb the utility of
one of the outcomes of the game. Specifically, we give
payoff η ∈ R to both players when the first player selects
the first, and the second their last action, see Appendix C.1.
To preserve that δ∗ is a CCE, the perturbation η needs to
be bounded. We show in Appendix C.1 that for η ≤ 1/2,
δ∗ is a CCE. Furthermore, there is a unique Nash equi-
librium, which is non-uniform for η ̸= 0. We denote the
distribution over biased Shapley games for η ∼ U(a, b) as
biased shapley(a, b).

To quantify the performance of the regret minimization
algorithms, we study the chance that they find a solution
with a given NashGap. We present our results in Table 1.
All the prior regret minimization algorithms fail to reliably
find the Nash equilibrium. The ‘plus’ non-meta-learned
algorithms exhibit particularly poor performance in this
regime, typically converging to a strictly correlated CCE.
However, they don’t all converge to δ∗ either, see Figure 2
for an illustration of the joint strategy profiles each algo-
rithm converges to. In contrast, NPCFR(+) exhibit fast
convergence and remarkable generalization. We show the
convergence comparison of the regret minimization algo-
rithms on biased shapley(0, 1/2) in Figure 4 in Ap-
pendix D.1. Despite being trained only for T = 32 steps,
our meta-learned algorithms are able to minimize NashGap
past 104 steps.
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NashGap CFR(+) PCFR(+) DCFR LCFR SPCFR(+) Hedge(+) NPCFR(+)

10−2 0.78 0.09 1 0.09 0.09 0.42 1 0.09 1 0.36 1 1
10−3 0.09 0.02 0.91 0.02 0.02 0.02 1 0.02 1 0.06 1 1
10−5 0 0 0.02 0 0 0 0.11 0 0.25 0 0.14 1

Table 1. The fraction of games from biased shapley each algorithm can solve to a given NashGap within 214 = 16, 384 steps. For
the algorithms marked (+), the left column show the standard version, while the right shows the ‘plus’. See also Table 3 in Appendix D.1.

(a) CFR (b) CFR+ (c) DCFR

(d) SPCFR (e) NPCFR (f) NPCFR+

���� ���� ���� ���� ���� ���� ����

Figure 2. The empirical average joint strategy profiles found by regret minimizers δ
T

(left) and its marginalized version (right) found on
a random sample drawn from biased shapley(0, 1/2) after T = 214 steps; see Eq. (5). Darker colors indicate higher probability
under δ

T
, and minimal differences between left and right figures imply the joint strategy is marginalizable. The remaining algorithms are

shown in Figure 5 in Appendix C.1.

4.2. Extensive-Form Games

To evaluate our algorithms in a sequential setting, we use
the standard benchmark Leduc poker (Waugh et al., 2009),
see Appendix C.2 for more details.

4.2.1. TWO-PLAYER LEDUC POKER

Since Leduc poker is a zero-sum game, regret minimizers
are guaranteed to converge to a Nash equilibrium in the
two-player version. Under standard rules, players split the
pot in the case of a tie, receiving a payoff equal to their total
amount bet. We break the zero-sum property by modifying
tie payoffs such that players only receive a β-fraction of
their bets. This change disincentives betting to increase
the size of the pot, but only if the players have the same
card ranks, potentially leading to correlations in players’
strategies.

We define biased 2p leduc as a distribution over such
games, where β ∼ U(0, 1/2). To quantify the performance
of regret minimization algorithms, we plot the expected

NashGap for each algorithm on biased 2p leduc in
Figure 6. While the performance averaged over the domain
is similar for all algorithms, the meta-learned algorithms
obtain much better approximations of Nash equilibria in
each run. To show this, we investigate the chance that they
find a solution with at most a given NashGap. Table 2 shows
the chance for thresholds 10−2, 10−3, and 10−5. With some
exceptions, non-meta-learned algorithms generally fail to
find a solution with a NashGap of 10−2. The ‘plus’ variants
perform better empirically but still struggle to obtain solu-
tions close to a Nash equilibrium as reliably as NPCFR(+).
NPCFR+ performs the best overall.

4.2.2. THREE-PLAYER LEDUC POKER

Generally, meta-learning is applied over a distribution of
problem instances. However, in our setting, it is appealing
even to apply it to a single instance of a game. This is
because regret minimization algorithms are not guaranteed
to converge to a Nash equilibrium in general-sum games.
However, our meta-learning framework allows us to obtain
better approximations of Nash equilibrium.
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NashGap CFR(+) PCFR(+) DCFR LCFR SPCFR(+) Hedge(+) NPCFR(+)

10−2 0 1 0.03 1 0.13 0 0.54 1 0 0.29 0.84 1
10−3 0 0 0 0.87 0 0 0 0.72 0 0 0.73 0.98
10−5 0 0 0 0.16 0 0 0 0.11 0 0 0.73 0.96

Table 2. The fraction of games from biased 2p leduc each algorithm can solve to a given NashGap within 218 = 262, 144 steps. For
the algorithms marked (+), the left column show the standard version, while the right shows the ‘plus’. See also Table 5 in Appendix D.2.

We demonstrate this approach on the three-player version
of Leduc poker; see Appendix C.2. We refer to the game
as three player leduc. There have been conflicting
reports in the literature as to the ability of regret mini-
mization algorithms to converge to a Nash equilibrium in
this game (Risk & Szafron, 2010; MacQueen & Wright,
2024). We found the performance of non-meta-learned al-
gorithms varied significantly, with those using alternating
updates giving approx. 4 − 6-times better results. The
best approximation of a Nash equilibrium we found among
non-meta-learned algorithms using alternating updates3 was
NashGap = 0.004, produced by CFR+. Without alter-
nating updates, we found NashGap = 0.027, produced
by CFR. Our meta-learned algorithms have been able to
find a strategy with NashGap = 0.012 for NPCFR, and
NashGap = 0.001 for NPCFR+; see Table 6 and Figure 7
in Appendix D.3 for details. To the best of our knowledge,
this is the closest approximation of Nash equilibrium of
three player leduc.

To the best of our knowledge, the only theoretically sound
way to find a Nash equilibrium in this game is to use
support-enumeration-based algorithms such as the Lemke-
Howson (Lemke & Howson, 1964). First, we would need to
transform it into a two-player general-sum game. This can
be done by having one of the players always best-respond,
and treating them as a part of chance.4 However, all of
these algorithms work with the game in normal-form. For
three player leduc, the number of pure strategies per
player is ≈ 10472, making these approaches unusable in
practice.

4.3. Out-of-Distribution Convergence

To illustrate that the meta-learned algorithms are
tailored to a specific domain, we evaluate them
out-of-distribution. Specifically, we run NPCFR(+),
which were trained on biased shapley(0, 1/2), on

3Among the algorithms we consider, this includes the ‘plus’
algorithms and DCFR. DCFR is similar to CFR+, and was shown
to outperform CFR+ on two-player poker (Brown & Sandholm,
2019c).

4This is the ‘inverse’ of the dummy player argument, which is
normally used to show that n-player zero-sum games are as hard
to solve as n− 1-player general-sum games.

biased shapley(−1, 0). When evaluated out-of-
distribution, the meta-learned algorithms lose the ability
to converge to a Nash equilibrium. See Figure 8 in Ap-
pendix D.4 for more details.

5. Conclusion
We present a novel framework for approximating Nash equi-
libria in general-sum games. We apply regret minimization,
which is a family of efficient algorithms, guaranteed to con-
verge to a coarse-correlated equilibrium (CCE). This weaker
solution concept allows player to correlate their strategies.
We use meta-learning to search a class of predictive regret
minimization algorithms, minimizing the correlations in the
CCE found by the algorithm. The resulting algorithm is
still guaranteed to converge to a CCE, and is meta-learned
to empirically find close approximations of Nash equilib-
ria. Experiments in general-sum games, including large
imperfect-information games, reveal our algorithms can
considerably outperform other regret minimization algo-
rithms.

Future Work. Our meta-learning framework might be
useful for finding CCEs with desired properties. For ex-
ample, one can search for welfare maximizing equilibria
by setting the meta-loss to the negative total utility of all
players. We also see other domains, such as auctions, as
a promising field where our approach can be used. One
limitation of our approach is that it can be quite memory
demanding, especially for larger horizons. Training on ab-
stractions of the games is promising.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Moravčik, M., Schmid, M., Burch, N., Lisý, V., Morrill, D.,
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