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Figure 1: The image editing tasks that our DragonDiffusion can achieve without training.

ABSTRACT

Despite the ability of text-to-image (T2I) diffusion models to generate high-
quality images, transferring this ability to accurate image editing remains a chal-
lenge. In this paper, we propose a novel image editing method, DragonDiffusion,
enabling Drag-style manipulation on Diffusion models. Specifically, we treat
image editing as the change of feature correspondence in a pre-trained diffusion
model. By leveraging feature correspondence, we develop energy functions that
align with the editing target, transforming image editing operations into gradi-
ent guidance. Based on this guidance approach, we also construct multi-scale
guidance that considers both semantic and geometric alignment. Furthermore, we
incorporate a visual cross-attention strategy based on a memory bank design to
ensure consistency between the edited result and original image. Benefiting from
these efficient designs, all content editing and consistency operations come from
the feature correspondence without extra model fine-tuning. Extensive experi-
ments demonstrate that our method has promising performance on various image
editing tasks, including within a single image (e.g., object moving, resizing, and
content dragging) or across images (e.g., appearance replacing and object pasting).
Code is available at https://github.com/MC-E/DragonDiffusion.

1 INTRODUCTION

Thanks to the large-scale training data and huge computing power, generative models have devel-
oped rapidly, especially text-to-image (T2I) diffusion models Saharia et al. (2022); Rombach et al.
(2022); Nichol et al. (2022); Ramesh et al. (2022), which aims to generate images conditioned on
a given text/prompt. However, this generative capability is usually diverse, and it is challenging to
design suitable prompts to generate images consistent with what the user has in mind Mou et al.
(2023); Zhang et al. (2023), let alone fine-grained image editing based on the text condition.
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In the community of image editing, previous methods are usually designed based on GANs Abdal
et al. (2019; 2020); Alaluf et al. (2022) due to the compact and editable latent space, e.g., the W
space in StyleGAN Karras et al. (2019). Recently, DragGAN Pan et al. (2023) proposes a point-
to-point dragging scheme, which can achieve refined content dragging. However, it is limited by
the capacity and generalization of GANs. Compared to GANs, diffusion model Ho et al. (2020) has
higher stability and superior generation quality. Due to the lack of a concise and editable latent space,
numerous diffusion-based image editing methods Hertz et al. (2022); Feng et al. (2022); Balaji et al.
(2022) are built based on T2I diffusion models via correspondence between text and image features.
Recently, self-guidance Epstein et al. (2024) proposes a differentiable approach that employs cross-
attention maps between text and image to locate and calculate the size of objects within images.
Then, gradient guidance is utilized to edit these properties. However, the correspondence between
text and image features is weak, heavily relying on the design of prompts. Moreover, in complex
or multi-object scenarios, text struggles to build accurate correspondence with a specific object. In
this paper, we aim to investigate whether the diffusion model can achieve drag-style image editing,
which is a fine-grained and generalized editing ability not limited to point dragging.

In the large-scale T2I diffusion model, besides the correspondence between text features and inter-
mediate image features, there is also a strong correspondence across image features. This character-
istic is studied in DIFT Tang et al. (2023), which demonstrates that this correspondence is high-level,
enabling point-to-point correspondence of relevant image content. Therefore, we are intrigued by
the possibility of utilizing this strong correspondence across image features to achieve image edit-
ing. In this paper, we regard image editing as the change of feature correspondence and convert it
into gradient guidance via energy functions Dhariwal & Nichol (2021) in score-based diffusion Song
et al. (2020b). Additionally, the content consistency between editing results and original images is
also ensured by feature correspondence in a visual cross-attention design. Here, we notice that there
is a concurrent work, DragDiffusion Shi et al. (2023), studying this issue. It uses LORA Ryu (2023)
to maintain consistency with the original image and optimizes the latent in a specific diffusion step
to perform point dragging. Unlike DragDiffusion, our image editing is achieved by energy functions
and a visual cross-attention design, without extra model fine-tuning or new blocks. In addition, we
can complete various drag-style image editing tasks beyond the point dragging, as shown in Fig. 1.

In summary, the contributions of this paper are as follows:
• We achieve drag-style image editing via image feature correspondence in the pre-trained

diffusion model. We also study the roles of the features in different layers and develop
multi-scale guidance that considers both semantic and geometric correspondence.

• We design a memory bank, further utilizing the image feature correspondence to maintain
the consistency between editing results and original images. In conjunction with gradient
guidance, our method allows a direct transfer of T2I generation ability in diffusion models
to image editing tasks without the need for extra model fine-tuning or new blocks.

• Extensive experiments demonstrate that our method has promising performance in various
image editing tasks, including editing within a single image (e.g., object moving, resizing,
and content dragging) or across images (e.g., appearance replacing and object pasting).

2 RELATED WORK

2.1 DIFFUSION MODELS

Recently, diffusion models Ho et al. (2020) have achieved great success in the community of image
synthesis. It is designed based on thermodynamics Sohl-Dickstein et al. (2015); Song & Ermon
(2019), including a diffusion process and a reverse process. In the diffusion process, a natural image
x0 is converted to a Gaussian distribution xT by adding random Gaussian noise with T iterations.
The reverse process is to recover x0 from xT by several denoising steps. Therefore, the diffusion
model is to train a denoiser, conditioned on the current noisy image xt and time step t:

Ex0,t,ϵt∼N (0,1)

[
||ϵt − ϵθ(xt, t)||22

]
, (1)

where ϵθ is the function of the denoiser. Recently, some text-conditioned diffusion models (e.g.,
GLID Nichol et al. (2022) and StableDiffusion(SD) Rombach et al. (2022)) are proposed. Especially
SD, transforming xt to the latent space zt, significantly improves the generation performance. From

2



Published as a conference paper at ICLR 2024

the continuous perspective Song et al. (2020b), diffusion models can be viewed as a score function
(i.e., ϵθ(xt, t) ≈ ∇xt

log q(xt)) that samples from the corresponding distribution Song & Ermon
(2020) according to Langevin dynamics Sohl-Dickstein et al. (2015); Song & Ermon (2019).

2.2 ENERGY FUNCTION IN DIFFUSION MODEL

From the continuous perspective of score-based diffusion, the external condition y can be combined
by a conditional score function, i.e., ∇xt

log q(xt|y), to sample from a more enriched distribution.
The conditional score function can be further decomposed as:

∇xt log q(xt|y) = ∇xt log

(
q(y|xt)q(xt)

q(y)

)
∝ ∇xt log q(xt) +∇xt log q(y|xt), (2)

where the first term is the unconditional denoiser, and the second term refers to the conditional
gradient produced by an energy function E(xt; t,y) = q(xt|y). E can be selected based on the
generation target, such as a classifier Dhariwal & Nichol (2021) to specify the category of generation
results. Energy function has been used in various controllable generation tasks, e.g., sketch-guided
generation Voynov et al. (2023), mask-guided generation Singh et al. (2023), universal guidance Yu
et al. (2023); Bansal et al. (2023), and image editing Epstein et al. (2024). These methods, inspire
us to transform editing operations into conditional gradients, achieving fine-grained image editing.

2.3 IMAGE EDITING

In image editing, numerous previous methods Abdal et al. (2019; 2020); Alaluf et al. (2022) invert
images into the latent space of StyleGAN Karras et al. (2019) and then edit the image by manipulat-
ing latent vectors. Motivated by the success of diffusion model Ho et al. (2020), various diffusion-
based image editing methods Avrahami et al. (2022); Hertz et al. (2022); Kawar et al. (2023); Meng
et al. (2021); Brooks et al. (2023) are proposed. Most of them use text as the editing control. For
example, Kawar et al. (2023); Valevski et al. (2023); Kwon & Ye (2022) perform model fine-tuning
on a single image and then generate the editing result by target text. Prompt2Prompt Hertz et al.
(2022) achieves specific object editing by exchanging text-image attention maps. SDEdit Meng
et al. (2021) performs image editing by adding noise to the original image and then denoising under
new text conditions. InstructPix2Pix Brooks et al. (2023) finetunes the diffusion model with text
as the editing instruction. Recently, Self-guidance Epstein et al. (2024) transforms image editing
operations into gradients through the correspondence between text and image features. However,
the correspondence between text and image is weak, unable to perform fine-grained editing. Re-
cently, DragGAN Pan et al. (2023) presents a point-to-point dragging scheme. Nevertheless, its
editing quality and generalization are limited by GANs. How to utilize the high-quality and diverse
generation ability of diffusion models for fine-grained image editing is still an open challenge.

3 METHOD

3.1 PRELIMINARY: HOW TO CONSTRUCT ENERGY FUNCTION IN DIFFUSION

Modeling an energy function E(xt; t,y) to produce the conditional gradient ∇xt
log q(y|xt) in

Eq. 2, remains an open question. E measures the distance between xt and the condition y. Some
methods Dhariwal & Nichol (2021); Voynov et al. (2023); Zhao et al. (2022) train a time-dependent
distance measuring function, e.g., a classifier Dhariwal & Nichol (2021) to predict the probability
that xt belongs to category y. However, the training cost and annotation difficulty are intractable
in our image editing task. Some tuning-free methods Yu et al. (2023); Bansal et al. (2023) propose
using the clean image x0|t predicted at each time step t to replace xt for distance measuring, i.e.,
E(xt; t,y) ≈ D(x0|t; t,y). Nevertheless, there is a bias between x0|t and x0, and there is hardly a
suitable D for distance measuring in image editing tasks. Hence, the primary issue is whether we
can circumvent the training requirement and construct an energy function to measure the distance
between xt and the editing target. Recent work Tang et al. (2023) has shown that the feature corre-
spondence in the diffusion UNet-denoiser ϵθ is high-level, enabling point-to-point correspondence
measuring. Inspired by this characteristic, we propose reusing ϵθ as a tuning-free energy function to
transform image editing operations into the change of feature correspondence.
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Figure 2: Overview of our DragonDiffusion, containing a memory bank and score-based gradient
guidance on the pre-trained SD Rombach et al. (2022) without extra training or modules.

3.2 OVERVIEW

The editing objective of our DragonDiffusion involves two issues: changing the content to be edited
and preserving unedited content. For example, if a user wants to move the cup in an image, the
generated result only needs to change the position of the cup, while the appearance of the cup and
other unedited content should not change. An overview of our method is presented in Fig. 2, which
is built on the pre-trained SD Rombach et al. (2022) to support image editing with and without
reference images. Since SD is a latent diffusion model (LDM), we first encode the original image
x0 into the latent space z0, which is then reversed to zT by DDIM inversion Song et al. (2020a).
If the reference image xref

0 exists, it will also be involved in the inversion to produce zrefT . In
this process, we store some intermediate features and latent at each time step to build a memory
bank, which is used to provide guidance for subsequent image editing. In generation, we transform
the information stored in the memory bank into content editing and consistency guidance through
two paths, i.e., visual cross-attention and gradient guidance. Both of these paths are built based on
feature correspondence in the pre-trained SD, without extra model fine-tuning or new blocks.

3.3 DDIM INVERSION WITH MEMORY BANK

In our image editing process, the starting point zT , produced by DDIM inversion Song et al. (2020a),
can provide a good generation prior to maintain consistency with the original image. However,
relying solely on the final step of this approximate inversion can hardly provide accurate generation
guidance. Therefore, we fully utilize the information in DDIM inversion by building a memory bank
to store the latent zgudt at each inversion step t, as well as corresponding keys Kgud

t and values Vgud
t

in the self-attention module of the decoder within the UNet denoiser. Note that in some cross-image
editing tasks (e.g., appearance replacing, object pasting), reference images are required. In these
tasks, the memory bank needs to be doubled to store the information of the reference images. Here,
we utilize zreft , Kref

t , and Vref
t to represent them. The information stored in the memory bank will

provide more accurate guidance for the subsequent image editing process.

3.4 GRADIENT-GUIDANCE-BASED EDITING DESIGN

�T

�0

�’0

Guidance
Continuous 

Sampling Space

: Original Gradient : Corrected Gradient
Figure 3: Illustration of continuous sampling
space in score-based diffusion. Bright colors
indicate areas where target data is densely dis-
tributed. The orange and green paths respec-
tively refer to the diffusion paths without and
with external gradient guidance.

Inspired by classifier guidance Dhariwal & Nichol
(2021), we build energy functions to transform im-
age editing operations into gradient guidance in dif-
fusion sampling. An intuitive illustration is presented
in Fig. 3, showing a continuous sampling space of the
score-based diffusion Song et al. (2020b). The sam-
pling starting point zT , obtained from DDIM inversion,
will approximately return to the original point only ac-
cording to the gradient/score predicted by the denoiser.
After incorporating the gradient guidance generated by
the energy function that matches the editing target, the
additional guidance gradient will change the path to
reach a sampling result that meets the editing target.
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3.4.1 ENERGY FUNCTION VIA FEATURE CORRESPONDENCE

In our DragonDiffusion, energy functions are designed to provide gradient guidance for image edit-
ing, mainly including content editing and consistency terms. Specifically, at the t-th time step, we
reuse the UNet denoiser ϵθ to extract intermediate features Fgen

t from the latent zgent at the current
time step. The same operation is used to extract guided features Fgud

t from zgudt in memory bank.
Following DIFT Tang et al. (2023), Fgen

t and Fgud
t come from intermediate features in the UNet

decoder. The image editing operation is represented by two binary masks (i.e., mgud and mgen) to
locate the original content position and target dragging position, respectively. Therefore, the energy
function is built by constraining the correspondence between these two regions in Fgud

t and Fgen
t .

Here, we utilize cosine distance cos(·) ∈ [−1, 1] to measure the similarity and normalize it to [0, 1]:

Slocal(F
gen
t ,mgen,Fgud

t ,mgud) = 0.5 · cos
(
Fgen

t [mgen], sg(Fgud
t [mgud])

)
+ 0.5, (3)

where sg(·) is the gradient clipping operation. Eq. 3 is mainly used for dense constraints on the
spatial location of content. In addition, a global appearance similarity is defined as:

Sglobal(F
gen
t ,mgen,Fgud

t ,mgud) = 0.5 ·cos

(∑
Fgen

t [mgen]∑
mgen

, sg(
∑

Fgud
t [mgud]∑
mgud

)

)
+0.5, (4)

which utilizes the mean of the features in a region as a global appearance representation. When we
want to have fine control over the spatial position of an object or a rough global control over its
appearance, we only need to constrain the similarity in Eq. 3 and Eq. 4 to be as large as possible.
Therefore, the energy function to produce editing guidance is defined as:

Eedit =
1

α+ β · S(Fgen
t ,mgen,Fgud

t ,mgud)
, S ∈ {Slocal, Sglobal}, (5)

where α and β are two hyper-parameters, which are set as 1 and 4, respectively. In addition to edit-
ing, we hope the unedited content remains consistent with the original image. We use a mask mshare

to locate areas without editing. The similarity between the editing result and the original image
in mshare can also be calculated by the cosine similarity as Slocal(F

gen
t ,mshare,Fgud

t ,mshare).
Therefore, the energy function to produce content consistency guidance is defined as:

Econtent =
1

α+ β · Slocal(F
gen
t ,mshare,Fgud

t ,mshare)
. (6)

In addition to Eedit and Econtent, an optional guidance term Eopt may need to be added in some tasks
to achieve the editing goal. Finally, the base energy function is defined as:

E = we · Eedit + wc · Econtent + wo · Eopt, (7)

where we, wc, and wo are hyper-parameters to balance these guidance terms. They vary slightly
in different editing tasks but are fixed within the same task. Finally, regarding [mgen,mshare] as
condition, the conditional score function in Eq. 2 can be written as:

∇zgen
t

log q(zgent |y) ∝ ∇zgen
t

log q(zgent ) +∇zgen
t

log q(y|zgent ), y = [mgen,mshare]. (8)

The conditional gradient ∇zgen
t

log q(y|zgent ) can be computed by ∇zgen
t

E , which will also mul-
tiplies by a learning rate η. In experiments, we find that the gradient guidance in later diffusion
generation steps hinders the generation of textures. Therefore, we only add gradient guidance in the
first n steps of diffusion generation. Experientially, we set n = 30 in 50 sampling steps.

3.4.2 MULTI-SCALE FEATURE CORRESPONDANCE

The decoder of the UNet denoiser contains four blocks of different scales. DIFT Tang et al. (2023)
finds that the second layer contains more semantic information, while the third layer contains more
geometric information. We also studied the role of features from different layers in image editing
tasks, as shown in Fig. 4. In the experiment, we set zT as random Gaussian noise and set mgen,
mgud as zeros matrixes. mshare is set as a ones matrix. In this way, generation relies solely on
content consistency guidance (i.e., Eq. 6) to restore image content. We can find that the guidance
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Original Image Guided by 
the layer-1

Guided by 
the layer-2

Guided by 
the layer-3

Guided by 
the layer-4

Guided by the 
layer-2&3

Figure 4: Illustration of using features from different layers as guidance to restore the original image.
zT is randomly initialized. The generation is solely guided by content consistency guidance in Eq. 6.

from the first layer is too high-level to reconstruct the original image accurately. The guidance from
the fourth layer has weak feature correspondence, resulting in significant differences between the
reconstructed and original images. The features from the second and third layers are more suitable
to produce guidance signals, and each has its own specialty. Concretely, the features in the second
layer contain more semantic information and can reconstruct images that are semantically similar
to the original image but with some differences in content details. The features in the third layer
tend to express low-level characteristics, but they cannot provide effective supervision for high-level
texture, resulting in blurry results. In our design, we combine these two levels (i.e., high and low)
of guidance by proposing a multi-scale supervision approach. Specifically, we compute gradient
guidance on the second and third layers. The reconstructed results in Fig. 4 also demonstrate that
this combination can balance the generation of low-level and high-level visual characteristics.

3.4.3 IMPLEMENTATION DETAILS FOR EACH APPLICATION

Original Image Moving w/o ���� Moving w ����

��ℎ���

����

����

����

����

Figure 5: Visualization of the effectiveness of in-
painting guidance (Eopt) in the object moving task,
presenting that Eopt can guide the inpainting of the
area where the object is initially located.

Object moving. In the task of object mov-
ing, mgen and mgud locate the same object
in different spatial positions. mshare is the
complement (Cu) of the union (∪) of mgen

and mgud, i.e., mshare = Cu(m
gen∪mgud).

However, solely using the content editing and
consistency guidance in Eq. 5 and Eq. 6 can
lead to some issues, as shown in the second
image of Fig. 5. Concretely, although the
bread is moved according to the editing sig-
nal, some of the bread content is still pre-
served in its original position in the generated
result. This is because the energy function does not constrain the area where the moved object was
initially located, causing inpainting to easily restore the original object. To rectify this issue, we
use the optional energy term (i.e., Eopt in Eq. 7) to constrain the inpainting content to be dissimilar
to the moved object and similar to a predefined reference region. Here, we use mref to locate the
reference region and define mipt = {p|p ∈ mgud and p /∈ mgen} to locate the inpainting region.
Finally, Eopt in this task is defined as:

Eopt =
wi

α+ β · Sglobal(F
gen
t ,mipt,Fgud

t ,mref )
+ Slocal(F

gen
t ,mipt,Fgud

t ,mipt), (9)

where wi is a weight parameter, set as 2.5 in our implementation. The third image in Fig. 5 shows
that this design can effectively achieve the editing goal without impeachable artifact.

Object resizing. The score function in this task is the same as the object moving, except that a
scale factor γ > 0 is added during feature extraction. Specifically, we use interpolation to transform
mgud and Fgud

t to the target size, and then extract Fgud
t [mgud] as the feature of the resized object.

To locate the target object with the same size in Fgen
t , we resize mgen with the same scale factor γ.

Then we extract a new mgen of the original size from the center of the resized mgen. Note that if
γ < 1, we use 0 to pad the vacant area.

Appearance replacing. This task aims to replace the appearance between objects of the same
category across images. Therefore, the capacity of the memory bank needs to be doubled to store
extra information from the image containing the reference appearance, i.e., zreft , Kref

t , and Vref
t .

mgen and mgud respectively locate the editing object in the original image and the reference object
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in the reference image. mshare is set as the complement of mgen, i.e., Cu(m
gen). To constrain

appearance, we choose Sglobal(F
gen
t ,mgen,Fref

t ,mgud) in Eq. 5. This task has no need for Eopt.

Reference Image Original Image

Copy-paste DragonDiffusion 
Figure 6: Visual comparison between
our DragonDiffusion and direct copy-
paste in cross-image object pasting.

Object pasting. Object pasting aims to paste an object
from an image onto any position in another image. Al-
though it can be completed by simple copy-paste, it of-
ten results in inconsistencies between the paste area and
other areas due to differences in light and perspective, as
shown in Fig. 6. As can be seen, the result obtained by
copy-paste exists discontinuities, while the result gener-
ated by our DragonDiffusion can achieve a more harmo-
nized integration of the scene and the pasted object. In
implementation, similar to the appearance replacing, the
memory bank needs to store information of the reference
image, which contains the target object. mgen and mgud

respectively mark the position of the object in the edited
image and reference image. mshare is set as Cu(m

gen).

Point dragging. In this task, we want to drag image con-
tent via several points, as DragGAN Pan et al. (2023). In
this case, mgen and mgud locate neighboring areas cen-
tered around the destination and starting points. Here, we
extract a 3 × 3 rectangular patch centered around each point as the neighboring area. Unlike the
previous tasks, mshare is manually defined.

3.5 VISUAL CROSS-ATTENTION

As mentioned previously, two strategies are used to ensure the consistency between the editing
result and the original image: (1) DDIM inversion to initialize zT ; (2) content consistency guidance
in Eq. 6. However, it is still challenging to maintain high consistency. Inspired by the consistency
preserving in some video and image editing works Wu et al. (2022); Cao et al. (2023); Wang et al.
(2023), we design a visual cross-attention guidance. Instead of generating guidance information
through an independent inference branch, we reuse the intermediate features of the inversion process
stored in the memory bank. Specifically, similar to the injection of text conditions in SD Rombach
et al. (2022), we replace the key and value in the self-attention module of the UNet decoder with
the corresponding key and value collected by the memory bank in DDIM inversion. Note that in
the appearance replacing and object pasting tasks, the memory bank stores two sets of keys and
values from the original image (Kgud

t ,Vgud
t ) and the reference image (Kref

t ,Vref
t ). In this case,

we concatenate the two sets of keys and values in the length dimension. The visual cross-attention
at each time step is defined as follows. c⃝ refers to the concatenation operation.{

Qt = Qgen
t ; Kt = Kgud

t or (Kgud
t c⃝Kref

t ); Vt = Vgud
t or (Vgud

t c⃝Vref
t )

Att(Qt,Kt,Vt) = softmax(QtK
T
t√

d
)Vt.

(10)

4 EXPERIMENTS

In experiments, we use StableDiffusion-V1.5 Rombach et al. (2022) as the base model. The infer-
ence adopts DDIM sampling with 50 steps, and we set the classifier-free guidance scale as 5.

4.1 COMPARISONS

In this part, we compare our DragonDiffusion with other methods on various image editing tasks.

Content dragging. In this task, we compare our method with the recent UserControllableLT Endo
(2022), DragGAN Pan et al. (2023), and DragDiffusion Shi et al. (2023). We first present the time
complexity of different methods in Tab. 1. Specifically, We divide the time complexity of differ-
ent methods into two parts, i.e., the preparing and inference stages. The preparing stage involves
Diffusion/GAN inversion and model fine-tuning. The inference stage generates the editing result.
The time complexity is tested on one point dragging, with the image resolution being 512 × 512.
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Table 1: Quantitative evaluation on face manipulation with 68 and 17 points. The accuracy is
calculated by Euclidean distance between edited points and target points. The initial distance (i.e.,
57.19 and 36.36) is the upper bound, without editing. FID Seitzer (2020) is utilized to quantize the
editing quality of different methods. The time complexity is computed on the ‘1 point’ dragging.

Preparing
complexity↓

Inference
complexity↓

Unaligned
face

17 Points↓
From 57.19

68 Points↓
From 36.36

FID↓
17/68 points

UserControllableLT 1.2s 0.05s % 32.32 24.15 51.20/50.32
DragGAN 52.40s 6.71s % 15.96 10.60 39.27/39.50

DragDiffusion 48.25s 19.71s ! 22.95 17.32 38.06/36.55
DragonDiffusion(ours) 3.62s 15.93s ! 18.51 13.94 35.75/34.58

Original Face Reference Face UserControllableLT DragGAN DragDiffusion Ours
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Figure 7: Qualitative comparison between our DragonDiffusion and other methods in face manipu-
lation (target points are blue), object pasting, appearance replacing, and object moving.

The experiment is conducted on an NVIDIA A100 GPU with Float32 precision. The results present
that our method is relatively efficient in the preparing stage, requiring only 3.62s to prepare zT and
memory bank. The inference complexity is also acceptable for diffusion generation.

Following DragGAN Pan et al. (2023), the performance evaluation is conducted on the face key-
point manipulation with 17 and 68 points. The test set is randomly formed by 800 aligned faces
from CelebA-HQ Karras et al. (2018) training set. Note that we do not set fixed regions for all
methods, due to the difficulty in manually providing a mask for each face. In addition to accuracy,
we also compute the FID Seitzer (2020) between face editing results and CelebA-HQ training set
to represent the editing quality. The quantitative and qualitative comparison is presented in Tab. 1
and Fig. 7, respectively. One can see that our DragonDiffusion achieves promising results in edit-
ing accuracy and content consistency. Although DragGAN achieves better editing accuracy, it has
limitations in content consistency and robustness in areas outside faces (e.g., the headwear is dis-
torted). The limitations of GAN-based DragGAN and UserControllableLT also exist in requiring
alignment before editing, as shown in Fig. 8. It can be seen that if editing without alignment, the
results of DragGAN will suffer from severe degradation. The alignment operation is not friendly to
our editing goal, as it will change the original image content, e.g., filtering out the background. In
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Original Image Moving w/o Inversion 
Prior

Moving w/o Content 
Consistency guidance ��������

Moving w/o Visual 
Cross-attention

Full Implementation

Figure 9: Effectiveness of different components in our DragonDiffusion in the object moving task.

comparison, our method has promising editing accuracy, and the generation prior from SD enables
better robustness and generalization for different content. In this task, our method also has better
performance than DragDiffusion. More results are shown in the appendix.

Other applications. For object pasting, we compare our method with Paint-by-example Yang
et al. (2023). For appearance replacing and object moving, we compare our method with Self-
Guidance Epstein et al. (2024). The visual comparison in Fig. 7 shows that our method can
achieve comparable performance to the training method (i.e., Paint-by-example) in object pasting.

Original Image DragGAN w/o 
alignment

DragGAN w 
alignment

Ours w/o 
alignment

Figure 8: Editing comparison between our
DragonDiffusion and DragGAN Pan et al.
(2023) on the unaligned body and face.

Compared to self-guidance, our method has better edit-
ing accuracy and content consistency. Due to the lack of
consistency constraints, Self-Guidance produces some
unexpected artifacts. Moreover, Self-Guidance has ob-
vious deviation in complex scenes, due to the coarse
correspondence between text and image features. More
results are presented in Appendix.

4.2 ABLATION STUDY

In this part, we demonstrate the effectiveness of some
components in our DragonDiffusion, as shown in
Fig. 9. We conduct the experiment on the object mov-
ing task. Specifically, (1) we verify the importance of
the inversion prior by randomly initializing zT instead of obtaining from DDIM inversion. As can
be seen, the random zT leads to a significant difference between the editing result and the original
image. (2) We remove the content consistency guidance (i.e., Econtent) in Eq. 7, which causes local
distortion in the editing result, e.g., the finger is twisted. (3) We remove the visual cross-attention.
It can be seen that visual cross-attention plays an important role in maintaining the consistency be-
tween the edited object and the original object. Using a memory bank to provide Kt and Vt can
greatly reduce the additional cost. In Appendix, we show an ablation study for memory bank. There-
fore, these components work together on both edited and unedited content, forming the fine-grained
image editing model DragonDiffusion, which does not require extra training or modules.

5 CONCLUSION

Despite the ability of existing large-scale text-to-image (T2I) diffusion models to generate high-
quality images from detailed textual descriptions, they often lack the ability to precisely edit the
generated or real images. In this paper, we aim to develop a drag-style and general image editing
scheme based on the strong correspondence of intermediate image features in the pre-trained diffu-
sion model. To this end, we model image editing as the change of feature correspondence and design
energy functions to transform the editing operations into gradient guidance. Based on the gradient
guidance strategy, we also propose multi-scale guidance to consider both semantic and geometric
alignment. Moreover, a visual cross-attention is added based on a memory bank design, which can
enhance the consistency between the original image and the editing result. Due to the reuse of in-
termediate information from the inversion process, this content consistency strategy almost has no
additional cost. Extensive experiments demonstrate that our proposed DragonDiffusion can perform
various image editing tasks, including object moving, resizing, appearance replacing, object pasting,
and content dragging. At the same time, the complexity of our DragonDiffusion is acceptable, and
it does not require extra model fine-tuning or additional modules.
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