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ABSTRACT

Neural surrogates have shown great potential in simulating dynamical systems,
while offering real-time capabilities. We envision Neural Twins as a progression
of neural surrogates, aiming to create digital replicas of real systems. A neural
twin consumes measurements at test time to update its state, thereby enabling
context-specific decision-making. A critical property of neural twins is their abil-
ity to remain on-trajectory, i.e., to stay close to the true system state over time.
We introduce Parallel-in-time Neural Twins (PAINT), an architecture-agnostic
family of methods for modeling dynamical systems from measurements. PAINT
trains a generative neural network to model the distribution of states parallel over
time. At test time, states are predicted from measurements in a sliding window
fashion. Our theoretical analysis shows that PAINT is on-trajectory, whereas
autoregressive models generally are not. Empirically, we evaluate our method
on a challenging two-dimensional turbulent fluid dynamics problem. The results
demonstrate that PAINT stays on-trajectory and predicts system states from sparse
measurements with high fidelity. These findings underscore PAINT’s potential for
developing neural twins that stay on-trajectory, enabling more accurate state esti-
mation and decision-making. 1

True

Autoregressive

Parallel-in-time

0 t− h t t+ n

Figure 1: Real world measurements allow parallel-in-time models to stay on-trajectory, while autore-
gressive models may drift over time. Dashed lines represent sampled trajectories. Parallel-in-time
models take a window of measurements and predict a distribution of subtrajectories which can be
sampled and used for state and uncertainty estimation. Autoregressive models are prone to over-
reliance on their autoregressive state (see Section 3.3) and typically depend on an initial state.

1 INTRODUCTION

Modern artificial intelligence is increasingly integrated into the modeling, monitoring, and control
of complex dynamical systems. A key development in this domain are digital twins (Grieves, 2014):
virtual models that run alongside a physical system, using live sensor data to update its predictions.
Unlike standard simulations, a digital twin continuously adjusts its internal state to match the real
system’s behavior, thereby enabling better monitoring and automated decision-making.

1The code will be made public upon acceptance.
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Neural surrogates emulate expensive, high-fidelity simulations and offer fast predictions while main-
taining reasonable accuracy. Recent works have already demonstrated remarkable results on com-
putational fluid dynamics (CFD) (Li et al., 2022a; Alkin et al., 2024a; Wu et al., 2024; Alkin et al.,
2025), as well as on particle based systems as surrogate models for discrete element methods (Alkin
et al., 2024c).

However, transforming neural surrogates into neural twins is a challenging endeavor. The current
generation of neural surrogates can neither ingest nor adapt to real-time measurements during infer-
ence. Therefore, we ask the question: How to design neural surrogates that adapt at test time using
real-time measurements?

We address this question by introducing Parallel-in-time Neural Twins (PAINT), a family of meth-
ods for reconstructing dynamical systems from measurements. At the core of PAINT is training a
generative neural network to model the joint conditional probability of system states given the mea-
surements. At inference, it reconstructs a sequence of states from measurements using a sliding-
window approach. This makes our method interpretable and avoids any dependence on an initial
condition.

Mathematically, we show that PAINT enables accurate state estimation from measurements due to
being on-trajectory, i.e., staying close to the true trajectory even in presence of prediction errors.
We also show that autoregressive models may possess this property under certain conditions (e.g.
Kalman filters), but not in general. Our analysis also sheds light on a phenomenon we call over-
reliance on the autoregressive state. It describes the problem of an autoregressive model over-relying
on an off-trajectory state, whereas an ideal model would recognize such drift and reduce the state’s
influence on the prediction.

Empirically, we implement FlowPAINT, an instance of PAINT based on Flow Matching. Flow-
PAINT is evaluated on a dataset of state-of-the-art large eddy simulations with varying Reynolds
numbers in 2D. This dataset is especially challenging due to the chaotic dynamics of the turbulent
fluid. The results confirm the generalization capabilities of our method.

We show – theoretically and empirically – how to design neural twins which stay on-trajectory for
arbitrary many timesteps. Our main contributions are summarized as follows:

• To the best of our knowledge, we are the first to train an on-trajectory neural twin for dy-
namical systems. Our method is interpretable, has an inherent measure of uncertainty and
takes no prior assumptions on the initial state, therefore making it more widely applicable.

• Mathematically, we show that our method is on-trajectory, i.e., stays close to the true tra-
jectory for arbitrarily long rollouts. Our analysis also sheds light on pitfalls when using
autoregressive models with sparse measurements.

• We empirically demonstrate the effectiveness of our method on a challenging 2D turbulent
fluid dynamics problem.

2 BACKGROUND

Notation. Vectors and matrices are denoted in bold, e.g., x ∈ Rn and A ∈ Rm×n. General
sequences such as [k, . . . , t] are denoted in brackets as [k, t]. We may also use brackets as subscripts
over sequences, e.g., x[k,t] = [xk, . . . ,xt]. True or ground-truth probability distributions are de-
noted p(·), while functions or distributions parameterized by neural networks use subscripts θ for
their parameters, e.g., fθ or pθ(·).

2.1 DIGITAL TWINS AND DATA INTEGRATION

Digital twins as defined by Grieves (2014) interact with an industrial process by (a) consuming real-
time data and (b) taking decisions based on the current state of the system. Ozan et al. (2025) marks
a first end-to-end approach to incorporate and control a PDE with a learned policy. However as the
state estimation is not interpretable, these models are hard to evaluate and can hardly be trusted for
real-world production use cases. For a comprehensive introduction we refer to (Thelen et al., 2022).
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Bayesian filtering. Updating model states by incorporating measurement data has a rich history,
dating back to the seminal works on Wiener and Kalman filters (Wiener, 1949; Kalman, 1960).
These types of Bayesian filters were extensively studied, leading to generalizations and extensions
like the extended, unscented Kalman filters or particle methods. Bayesian filtering methods can be
categorized by (1) Filtering: p(xt | m[0,t]), (2) Prediction: p(xt+n | m[0,t]), and (3) Smoothing:
p(xt | m[0,T ]), where x ∈ Rdx ,m ∈ Rdm , t ∈ [0, T ] and n ∈ N. We refer to Särkkä & Svensson
(2023) for a comprehensive overview on classical Bayesian filtering.
With the rise of deep learning in the mid-2010s, several works married Kalman or Bayesian filters
with deep neural networks (Krishnan et al., 2015; Karl et al., 2016; Kim et al., 2025). However,
similar to the original Kalman filter these works usually rely on simplifying assumptions, on the
model, noise or initial condition, which is in stark contrast to our method.

Reconstructing flows from sparse measurements. Prior art has explored flow reconstruction
from sparse measurements. These measurements are usually assumed to come from Particle Track-
ing Velocimetry (PTV), probes in the walls or at informative locations. Some works used generative
modeling techniques to reconstruct flow fields from sparse measurements for a single timestep with-
out temporal context (Güemes et al., 2022; Cuéllar et al., 2024; Oommen et al., 2025; Kim et al.,
2021; Hemant Parikh et al., 2025). Similarly, Chakraborty et al. (2025) trained an instantaneous
super-resolution weather model. Several works used physics-informed neural networks (PINNs)
(Raissi et al., 2019) to reconstruct an instantaneous flow field from sparse measurements (Chaurasia
& Chakraborty, 2024; Hosseini & Shiri, 2024; Toscano et al., 2024), however they lack the gener-
ative modeling which is necessary to rightfully model the distribution of possible solutions. Dang
et al. (2024) used spatiotemporal information for reconstruction, but they did not model the target
trajectories probabilistically and therefore learn the theoretical mean of the conditional distribution.
From a conceptual point of view, the closest to our concrete implementation of PAINT is Sun &
Wang (2020), however their construction based on Bayesian neural networks is unnecessarily com-
plex, did only work on simple laminar flows and is not scalable to larger settings.

2.2 SCALABLE NEURAL SURROGATES

Surrogates models. A surrogate model, or simply a surrogate (Forrester et al., 2008), is a simplified
computational model designed to approximate a more intricate, computationally intensive system,
such as a high-fidelity simulation or a physical experiment.

Transformers. The application of transformers (Vaswani et al., 2017) as surrogate models has
recently taken over, building on their established efficacy in diverse scientific domains, including
protein folding (Jumper et al., 2021; Abramson et al., 2024) and weather forecasting (Bi et al.,
2023; Bodnar et al., 2024). These transformer-based neural surrogates are engineered to synthesize
information across varying spatial locations and scales by leveraging attention mechanisms (Vaswani
et al., 2017). Transformer-based surrogates represent an extension of the neural operator framework
(Lu et al., 2019; 2021; Li et al., 2020b;a; Kovachki et al., 2021), specifically by integrating self-
attention, cross-attention, or perceiver blocks (Jaegle et al., 2021b;a). Notable examples of these
models include OFormer (Li et al., 2022b), Transolver (Wu et al., 2024), and (AB-)UPT (Alkin
et al., 2024b; 2025). They have paved the way for scalable neural surrogate learning, scaling from
a few thousand (Li et al., 2022a; Wu et al., 2024; Alkin et al., 2024b) to millions of mesh points
(Alkin et al., 2025).

Generative modeling of PDEs. Over the past years, a powerful group of related generative mod-
eling frameworks were introduced around the works of Diffusion (Sohl-Dickstein et al., 2015; Ho
et al., 2020), Flow Matching (Liu et al., 2022; Lipman et al., 2022) and stochastic interpolants (Al-
bergo & Vanden-Eijnden, 2022; Albergo et al., 2023a; Gao et al., 2024).
Generative models were used to model PDEs (Sestak et al., 2025; Kohl et al., 2023). Some works
emphasize the beneficial properties of diffusion models for modeling high frequencies (Lippe et al.,
2023), leading to more accurate and physically plausible solutions. Our work differs, as prior works
sample any trajectory p(x[0,t]), while we model p(x[0,t] | m[0,t]) and aim to stay on the real trajec-
tory from measurements m[0,t] (see Section 3.2).
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2.3 COMPUTATIONAL FLUID DYNAMICS

The fluid mechanics problem, under the continuum assumption, is governed by the Navier–Stokes
equations, a set of highly complex, second-order nonlinear PDEs. These equations are comple-
mented by appropriate boundary and initial conditions and are for engineering problems typically
solved numerically. Because turbulence in fluid flows is in most engineering applications inevitable
and involves a wide range of spatial and temporal scales, direct numerical simulation (DNS) is al-
most never feasible in practice. Most industrial applications therefore rely on Reynolds-Averaged
Navier–Stokes (RANS) approaches, which solve only for mean fields under strong modeling as-
sumptions. Large-Eddy Simulation (LES) offers a compromise: it resolves the larger, energy-
containing scales while modeling only the smallest, but remains computationally demanding (David-
son, 2015; Fröhlich, 2006).

∇ · u = 0

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p+ µ∆u+ ρfe

(1)

3 METHOD

3.1 A NEURAL TWIN FRAMEWORK FOR DYNAMICAL SYSTEMS

We envision neural twins in a four-step process, depicted in Figure 2. First, design knowledge of the
dynamical system is used to create the simulations. This ensures that the simulations reflect physical
constraints and key behaviors. Second, a diverse training dataset is generated by exploring a broad
spectrum of trajectories. This dataset is used for training a neural twin. Third, at test time the neural
twin dynamically incorporates real-time measurement data, allowing it to stay aligned with actual
system trajectories and support real-time decision-making. Fourth, via the state estimation of the
neural twin, one can optionally control the dynamical system, e.g. via rule-based methods. The
approach combines domain expertise with adaptive learning, enabling both accuracy and agility in
complex environments.

Dynamical
System

Simulation Neural Twin

(1) Inform

(2) Training dataset

(3) Measurements

(4) Control

Figure 2: Interaction between a real-world dynamical system, simulations, and a neural twin. The
workflow is structured in three phases: (1) The dynamical systems informs the design of the simu-
lations. (2) Via the simulations, a diverse training dataset is generated, which is used for training the
neural twin. (3) During inference, the neural twin integrates real-time measurement data to remain
on-trajectory. (4) The state estimation of the neural twin can optionally be used for decision-making.

3.2 PARALLEL-IN-TIME NEURAL TWINS

Problem description. Consider a transient dynamical system where the state space is a compact
subset X ⊂ Rdx , dx ∈ N and xt ∈ X denotes the system state at time t. We assume a dm ∈ N
dimensional compact measurement space M ∈ Rdm . At each timestep t ∈ N the system provides
a measurement mt from the emission model pe, where mt ∼ pe(mt | xt).
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PAINT. The goal of our generative model pθ is to sample trajectories from p(x[0,t]) | m[0,t]).
At the core of our method is joint modeling of this distribution. In contrast, autoregressive models
factorize this distribution which may lead to drifting (see Section 3.3).
As the number of timesteps may become very large, PAINT models the joint probability over a
window (see Figure 1) of width h and may predict n timesteps into the future:

pθ(x[t−h,t+n] | m[t−h,t]). (2)

In this setup, future measurements can inform past states to obtain temporal consistency. Further-
more, there is no reliance on the existence or an assumption about an initial condition.
PAINT is agnostic to the generative modeling framework and the neural network architecture. Com-
mon building blocks may be transformers, MLPs, CNNs (LeCun et al., 2002).

3.3 THEORETICAL CONSIDERATIONS

Autoregressive models factorize the joint distribution as a product of conditionals. Assuming the
system is Markovian and conditioned on a sequence of variables m[0,t], we obtain:

p(x[0,t] | m[0,t]) = p(x0 | m[0,t]) ·
t∏

i=1

pθ(xi | xi−1,m[0,t]), (3)

where the autoregressive model learns the conditional probability pθ(xt | xt−1,m[0,t]). Notice, this
does not equal pθ(xt | xt−1,mt), although e.g. Kalman filters use this form.

Autoregressive model drift. Our analysis is leaned on the analysis of error growth of dynam-
ical systems (Orrell, 2005) and key observations made in (Hess et al., 2023). We assume a fully
differentiable neural network , which learns the probability distribution pθ(xt||xt−1,m[0,t]). To
sample from this probability distribution xt ∼ pθ(xt||xt−1,m[0,t]) we rewrite the neural network
to a deterministic function with a stochastic input ηt:

xt = fθ(xt−1,m[0,t], ηt) ηt ∼ p(η) (4)

The Jacobian is then defined as Jt := ∂fθ/∂xt. In contrast to Orrell (2005), this is a discrete random
ordinary differential equation (RODE), i.e., an ODE with a random input at each timestep.
To show the model drift from small perturbations, we fix a path of the RODE by fixing η[0,t]. For
simplicity, we then write F t

θ(xt) = fθ(xt−1,m[0,t], ηt) where we absorb the measurement m[0,t]

and the stochastic input ηt into the function, such that xt = F t
θ(xt−1). Hence for the generation of

a state xt from a previous state xk it follows from function composition:

xt = F t
θ ◦ F t−1

θ ◦ ... ◦ F k+1
θ (xk) = F

[k+1,t]
θ (xk) (5)

The first-order Taylor approximation of a small input perturbation at t = k is:

F
[k+1,t]
θ (xk + ϵ) = F

[k+1,t]
θ (xk) + ϵ

t∏
i=k+1

Ji(xi−1) + o(ϵ2) (6)

This means, a deviation at timestep k induces a deviation multiplied by the Jacobian product se-
ries at timestep t. This has also been experimentally explored by Hess et al. (2023), who include
visualizations of the Jacobian product series for chaotic dynamical systems.

On-trajectory. In the following we will formalize the notions of a model being “on-trajectory”.
For this, we rely on Assumption 1, which states that the predictive relevance of past measurements
decays within a finite window h.
Assumption 1. Temporal decay of measurement information: For the given dynamical system,
there is a finite window size h ∈ N, such that almost all information from past measurements comes
from measurements within this window. Formally, for all ϵ > 0 and all t ∈ N there exists an h ≪ t
such that ||p(xt | m[t−h,t])− p(xt | m[0,t])|| < ϵ.

Next, we proceed with our definition of on-trajectory.
Definition 1. On-trajectory: Assuming unbounded model size, compute and data, a model is on-
trajectory if the modeled distribution is arbitrarily close to the true distribution. Formally, for all
t ∈ N and any ϵ > 0 it holds that: ||pθ(xt | m[0,t])− p(xt | m[0,t])|| < ϵ.
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Parallel-in-time models are on-trajectory under Assumption 1 . We derive this in Appendix B.1.
Intuitively, for each ϵ we can choose the window h large enough to guarantee arbitrary closeness. In
contrast, autoregressive models are in general not on-trajectory. As a counterexample, consider an
underlying chaotic system where the model ignores the measurements (for further discussion, see
Hess et al. (2023) and Appendix B.2).

Over-reliance on the autoregressive state. The above analysis highlights a fundamental problem
we call over-reliance on the autoregressive state. Intuitively, it states that an autoregressive state
plays an ambiguous role. If the state is on-trajectory, it helps the model as it provides useful in-
formation for the next state. If the state is off-trajectory, the model may still make use of it for
prediction and drift off further. In principle, the only way for the model to correct an off-trajectory
autoregressive state is with informative measurements. This excludes edge cases, e.g., where the
model converges to a global steady state.
Ideally, a model would detect when the autoregressive state drifts off and decrease its influence on
the prediction. Depending on the informativeness of the measurements, it could increase its reliance
on measurement information or capture the inherent uncertainty in a different way.
Over-reliance on autoregressive state is also influenced by the training strategy. Autoregressive
models are usually trained with teacher-forcing, where the ground-truth previous state xt is used to
predict the next state xt+1. As these states are highly correlated, the model might learn to over-rely
on xt and under-rely on mt+1. This could potentially be mitigated by training techniques such as
generalized teacher forcing (Hess et al., 2023) or unrolled training (Kohl et al., 2023).
How much information is taken from the autoregressive state is indicated by Jt(xt). To avoid
autoregressive error accumulation, the Jacobian product series should ideally have a small norm.
Notice that parallel-in-time models predict x[t−h,t] = fθ(m[k,t], η) without any recurrence. Conse-
quently the Jacobians are all zero-matrices.

Advice for practitioners

The selection of an on-trajectory neural twin approach depends on two key factors:
(1) Measurement Informativeness. Highly informative measurements often justify the use
of autoregressive models (e.g., Kalman filters). If measurements lack sufficient informa-
tion for state reconstruction, parallel-in-time models are preferable to ensure staying on-
trajectory – but they require the selected window’s measurements to be informative.
(2) System Dynamics. If measurements provide limited information, chaotic systems typ-
ically demand parallel-in-time models to stay on-trajectory. For stable or periodic systems
(e.g., steady-state behavior) autoregressive models may suffice.

4 EXPERIMENTS

4.1 MODELS

PAINT via Flow Matching. We implement FlowPAINT as a concrete instantiation of PAINT
using Flow Matching (Albergo & Vanden-Eijnden, 2022; Albergo et al., 2023a; Lipman et al., 2022;
Liu et al., 2022). PAINT is agnostic to the neural network architecture. We therefore aimed for
simplicity and use established building blocks of the computer vision literature (Dosovitskiy et al.,
2020; Hoogeboom et al., 2023; 2024; Peebles & Xie, 2023). Further experimental details can be
found in Appendix A.2.

Data-coupled stochastic interpolants. PAINT is also agnostic to the generative modeling
paradigm, as long as it maps a source to a target distribution. We follow the modeling from Al-
bergo et al. (2023b) and model the unmasking as data-coupled distribution matching. However, the
masking ratio of our method is very high (25 of 16K pixels are unmasked). In early experiments
we observed that the gradient signal was too weak for the vicinity of the probes. Therefore, we in-
troduce a spatially weighted loss that puts higher weight on pixels in the neighborhood of the probe
points. As stochastic interpolants and Flow Matching in principle lead to the same training setup,
we use a common Flow Matching implementation (Lipman et al., 2024).

Autoregressive UNet. To compare PAINT to an autoregressive model, we use the UNet architec-
ture from Kohl et al. (2023). We follow their proposed paradigm and condition on the probe values
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mt+1 by concatenating the mask and probe values to the channels. The model sizes are chosen to
match parameters. FlowPAINT has 19.8M and the autoregressive UNet 20.6M. Further architectural
details and hyperparameters are reported in Appendix A.2.

4.2 DATASET AND EVALUATION

Turbulent single jet dataset. We generate a CFD dataset using the incompressible, pressure-
based solver pimpleFOAM in OpenFOAM 8 (OpenCFD, 2009), with subgrid scales modeled by the
Smagorinsky LES model (Pope, 2001; Fröhlich, 2006). Simulations are performed on a structured
mesh, and for training purposes, a subregion is extracted and interpolated onto a regular grid. Since
the state-space represents 2D velocities, we will write ut instead of xt with ut ∈ Rd1×d2 . The
train/val/test splits across Reynolds numbers are provided in Appendix A.1.

Physical coherence. Due to the chaotic and rapidly diverging nature of turbulent flows, comparing
a single predicted frame or a short sequence to the ground truth is not meaningful. Research in turbu-
lence instead focuses on the flow’s inherently reproducible statistical properties (Pope, 2001; David-
son, 2015). Given a possibly infinitely long trajectory u[0,t], we follow a common notation in fluid
dynamics and decompose u[0,t] into a time-averaged mean component u := limt→∞

1
t

∑t
i=1 ui

and a turbulent fluctuation component u′
[0,t], such that u[0,t] = u+u′

[0,t]. The variance over time is

denoted as u′2 := limt→∞
1
t

∑t
i=1(ui − u)2. Further, we define E(k) as the mean kinetic energy

spectrum. While these metrics are defined over an infinite-time, in practice they are computed over
a large, finite horizon.

(a) Grid. (b) Vertical.

Figure 3: Probe positions.

Probe constellations. The model was trained with 25 randomly
sampled probe points for each data point in a batch. At inference,
we investigate the two probe point constellations depicted in Figure
3. Grid: A 10×10 grid of 100 probe points evenly spaced across the
domain (see Figure 3a). Vertical: A linear arrangement of 25 probe
points positioned at the 3/4 axial location of the domain (see Figures
3b). In both configurations, an additional probe point is placed at
the center of the inlet of the jet to capture the inlet velocity.

4.3 RESULTS

Table 1: Results for physical coherence of FlowPAINT (ours) and the autoregressive UNet baseline
(AR UNet). The MAE, MSE and RMSE are taken between the ground truth and the predicted
quantity. u and u′2 denote the mean and variance over time. E(k) is the predicted kinetic energy
spectra. MSE(u[0,t]) is the mean squared error between the predicted and the ground-truth trajectory
as a whole. All values are taken along 900 timesteps in the test trajectories. The values after ± are
standard deviations from averaging over 10 seeds. Generally, the higher Reynolds number seems to
be more difficult for both models.

Model Re Probes MAE(u) ↓ MAE(u′2) ↓ MSE([u[0,t]]) ↓ RMSE(E(k)) ↓
×10−3 ×10−5 ×10−5 ×10−6

FlowPAINT 2100 grid 1.2± 1.6 9.9± 21.7 8.1± 3.6 6.85
AR UNet 2100 grid 9.5± 14.3 98.7± 110.4 158.3± 46.8 70.9
FlowPAINT 2100 vertical 2.2± 3.1 30.2± 38.4 49± 21 20.1
AR UNet 2100 vertical 9.2± 13.8 97.8± 108.8 157.3± 70.0 71.8
FlowPAINT 1100 grid 0.9± 1.3 2.2± 5.5 2± 1 1.98
AR UNet 1100 grid 3.5± 5.6 17.3± 25.9 28.8± 8.3 12.4
FlowPAINT 1100 vertical 1.1± 1.6 6.3± 11.1 8.9± 3.4 3.68
AR UNet 1100 vertical 3.4± 5.5 16.9± 25.5 28.8± 8.1 12.2

Quantitative results. The quantitative results are reported in Table 1. FlowPAINT outperforms the
autoregressive UNet across all metrics, probe constellations and Reynolds numbers in the test set.
We conclude that FlowPAINT is more physically coherent than the probe-conditioned autoregressive
baseline. Further results and analyses can be found in Appendix C.
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Figure 4: Ground truth vs. predicted states at different timesteps for Re = 2100 using the vertical
probe constellation. PAINT (ours) does not accumulate errors over time. For the autoregressive
UNet a pronounced drift over time is observable. All values are normalized by the mean inlet
velocity.

Figure 5: Mean velocity u and variance u′2 of the reconstructed Re = 2100 test trajectory using the
vertical probe constellation compared with the ground truth. All values are normalized by the mean
inlet velocity.

Recovery of the physical flow characteristics. We observe the models ability to reconstruct
physical plausible states from different constellations of probe points (see Figures 5 and 6). The
model’s ability to reproduce the correct physical statistics seems to depend directly on the number
and position of the sample points (as can be seen when comparing Figure 5 with Figures 10a, 11a
and 12a ).

Parallel-in-time model maintains stable error, while autoregressive baseline drifts. The au-
toregressive approach exhibits a drift in MSE when rolled out (compare Figures 4, 7, 13,14 and 15).
Importantly, the autoregressive model benefits from a known, correct initial state, which is often
unknown in practice.

Sampling a sequence vs. a single state. PAINT can be used in two variants. The first samples
a connected sequence, usually x[t−h,t] ∼ p(x[t−h,t]) | m[t−h,t] (see Figure 16). This sequence is
smooth over time and can be used by practitioners to interpret results.
The second variant samples a single timestep. It is used for state estimation in a sliding window
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(a) Time-averaged kinetic energy spectrum. (b) Histogram of the kinetic energy.

Figure 6: Statistical analysis of reconstructed flow fields for Reynolds number 2100 and a vertical
probe point constellation.

(b) Grid probe constellation. (a) Vertical probe constellation.

Figure 7: MSE over time of ground-truth vs. predicted trajectories for the Re = 2100 test trajectory
and different probe point constellations. Interestingly, the MSE’s of the two autoregressive trajecto-
ries are very similar, even if more informative probes are provided for the grid. The autoregressive
model indicates over-reliance on the autoregressive state.

fashion by sampling xt ∼ p(xt | m[t−h,t]). In this case a sampled sequence of consecutive states
is not smooth over time.

Measure of uncertainty. One can obtain a measure for uncertainty by sampling several times and
computing the variance. In Figure 9 it is visible that the model is most certain around the probe
positions and most uncertain to the left and the right.

Compute at training and inference. FlowPAINT needs substantially more training resources and
is slower at inference than the autoregressive baseline. It was trained on 12 A100 (64 GB VRAM)
for 30 hours, whereas the UNet was trained on a single H100 (80GB VRAM) for 24 hours. Notably,
the UNet takes about 66 milliseconds and FlowPAINT around 6.6 seconds for 20 denoising steps.
Further details can be found in Appendix A.2.

5 CONCLUSION

In this paper we introduced parallel-in-time neural twins (PAINT) a novel data-driven method for
reconstructing dynamical systems from real-time measurements. PAINT employs a generative neu-
ral network to model the joint conditional probability of system states. Our method provable stays
on-trajectory and does not rely on an initial condition. The empirical validation with FlowPAINT
on 2D turbulent fluid dynamics confirms its effectiveness. This paper represents an advancement in
designing interpretable and widely applicable neural twins for complex dynamical systems.

Limitations and future work The biggest limitation of our method are the high computational
costs, which deserves further investigation. Another limitation is that the sliding window approach
does not generate continuous generations. This could potentially be mitigated by stitching tech-
niques (Wei et al., 2019).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Ethics statement. More broadly, our work aims to advance the field of machine learning and
may contribute to its broader societal impact. More specifically, our work advances reconstruction
of dynamical systems, with a wide range of potential applications. While our method or future
derivatives of it might enable transformative societal benefits it also introduces risks of misconduct
or dual-use risks. To mitigate the risk of misconduct, we will strive to be transparent about the
capabilities and limitations of this method and encourage the use in real-world applications only
after rigorous testing. We welcome critical discussions on further safeguarding such technologies
against adversarial use.

Reproducibility statement. We provide code to reproduce the main results in the supplementary
material. Additionally, we report hyperparameters, and important implementation details to facilitate
the reproduction of our results. Upon publication, the code will be made publicly available on
GitHub.

Usage of LLMs. LLMs assisted in ideation and in refining and optimizing formulations on a
sentence- and paragraph-level.
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A EXPERIMENTAL DETAILS

A.1 DATASET

Turbulent single jet dataset. We use an in-house dataset to ensure its quality and match the
specific requirements of our study. As we have the capability to generate reliable high-fidelity data,
additional external datasets were not needed. We consider the domain shown in Figure 8, which
produces a two-dimensional turbulent free jet. The inlet is prescribed by a turbulent power-law
velocity profile, with the system dynamics controlled by the mean inlet velocity. The Reynolds
number is defined with respect to the inlet velocity as

Re = ⟨u⟩inlethinletν
−1. (7)

The dataset is generated using the incompressible, pressure-based solver pimpleFOAM in
OpenFOAM 8 (OpenCFD (2009)), with subgrid scales modeled by the Smagorinsky LES model
(Pope, 2001; Fröhlich, 2006). Simulations are performed on a structured mesh consisting of 19040
cells, and for training purposes, a subregion is extracted and interpolated onto a regular 128 ×
128 grid to facilitate adaptability.. The numerical simulations made use of a timestep size of
∆t = 6.5 × 10−4s. For training purposes, the data are sampled every 70th timestep, resulting
in an effective temporal resolution of 4.55×10−2s. For each Reynolds number, the dataset contains
1000 such snapshots.

u = uinlet

u = 0

∂u

∂n
= 0 for u · n ≥ 0,

u = 0 for u · n < 0.hinlet

Figure 8: Computational domain of the CFD simulation, featuring a thin channel with a prescribed
inlet velocity profile, transitioning into an expanded outflow region zone. The channel and outflow
orifice walls enforce a no-slip boundary condition, while the top, bottom and right boundaries of
the outflow region implement a conditional Neumann/Dirichlet outflow condition. The light-grey
subregion denotes the part of the CFD domain considered for model training. The arrow shows the
imposed inlet flow direction.

A note on 2D turbulence. In fluid mechanics, the behavior of turbulent flows differs fundamentally
between three and two dimensions. In three dimensions, turbulence is characterized by the energy
cascade: the largest eddies form due to inertial instabilities but tend to exist only briefly, breaking up
into progressively smaller eddies. This cascade continues until viscous forces dissipate the smallest
scales.

In contrast, in two dimensions, the energy cascade is reversed, transferring energy from smaller to
larger eddies, which produces coherent, long-lived vortices. Intuitively, this can be explained by
vortex stretching. Consider a thin tube of vorticity: if a velocity gradient along the tube axis is
present, the tube stretches, and due to conservation of angular momentum, the vorticity magnitude
increases. This mechanism is absent in two dimensions because there is no third dimension along
which stretching can occur. As a result, vortices cannot break up and tend to merge into larger
structures if they have the same rotational sense, which explains the inverse energy cascade.

Mathematically, this is seen in the vorticity transport equation derived from the curl of the
Navier–Stokes equations. In 2D, the velocity and vorticity vectors are perpendicular, which makes
the vortex stretching term identically zero.

In reality, there is no perfectly two-dimensional turbulence; even quasi-2D flows, such as atmo-
spheric flows, exhibit three-dimensional structures at smaller scales. Nevertheless, we are confident
that the proposed method, having demonstrated robust performance in two-dimensional turbulence,
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will generalize effectively to three-dimensional turbulent flows. For a more detailed discussion of
two-dimensional turbulence, see Davidson (2015).

Train/val/test splits. We consider 18 different training trajectories with varying Reynolds numbers,
as explained above. The Reynolds numbers used range from 700 to 2400 in steps of 100. The split
is performed at random, but avoiding that any validation or test data is placed in the extrapolation
regime. The exact split can be seen in Table 2.

Table 2: Reynolds numbers by split.

Reynolds train val test
700 X
800 X
900 X
1000 X
1100 X
1200 X
1300 X
1400 X
1500 X
1600 X
1700 X
1800 X
1900 X
2000 X
2100 X
2200 X
2300 X
2400 X

A.2 IMPLEMENTATION AND ARCHITECTURE

Architecture and hyperparameters. FlowPAINT and the autoregressive UNet were both imple-
mented in Pytorch (Paszke et al., 2017). For FlowPAINT we trained in float16 mixed precision. The
most important training parameters are provided in Table 3. Our code also uses FlashAttention (Dao
et al., 2022; Dao, 2024). For both models we use 20 denoising steps for generating samples.

Autoregressive UNet. For the UNet we followed (Kohl et al., 2023) and took the implementation
of the public Github repository 2. We matched the number of parameters by increasing the default
model dimension from 128 to 224. For probe-conditioning, we followed the same recipe as for prior
timestep conditioning and added mask and probe values as additional channels.

Compute requirements. FlowPaint is expensive during training, as it needs to reconstruct a video
in parallel. We had limited access to a cluster environment and trained FlowPaint on 3 nodes each
consisting of 4 NVIDIA Ampere A100 GPUs with 64GB VRAM. Training took around 30 hours
for 100K iterations.
The autoregressive baseline is comparably cheap. It was trained on a single Nvidia H100-SXM-
80GB for ca. 24 hours. The inference times are reported in the main paper.

B THEORY

B.1 PARALLEL-IN-TIME MODELS ARE ON-TRAJECTORY

Here we provide a simple derivation to show that parallel-in-time models are on-trajectory under
Assumption 1. We will show that for an appropriate window size h, for all t ∈ N and any ϵ1 > 0:

||pθ(xt | m[t−h,t])− p(xt | m[0,t])|| < ϵ1. (8)

2https://github.com/tum-pbs/autoreg-pde-diffusion
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Table 3: Experimental details for FlowPaint and the autoregressive baseline.

FlowPaint AR baseline
Data

History length 16 2
Forward prediction 8 1

Optimization
Optimizer AdamW AdamW
AdamW decay 0.05 0.05
Learning rate 10−4 10−4

Learning rate start 5 · 10−7 5 · 10−7

Learning rate warmup steps 10000 10000
Learning rate end 10−5 10−5

Train steps 100K 100K
Batch size 144 144

Table 4: Architectural details of FlowPaint.

Encoding
num layers of 3x3x3 conv 3
patch size in pixels 4x4

Transformer
model dim 192
layers 10
num heads 3
Spatial Block Yes
Temporal Block Yes
Temporal Convolution No

Decoding
num layers of 3x3x3 conv 3

First, from Assumption 1 choose a window size h such that:

||p(xt | m[t−h,t])− p(xt | m[0,t])|| < ϵ2 <
ϵ1
2
. (9)

Then, from the Universal Function Approximator Theorem (Cybenko, 1989), choose an approxima-
tion of the true distribution as follows:

||pθ(xt | m[t−h,t])− p(xt | m[t−h,t])|| < ϵ3 <
ϵ1
2
. (10)

Summing up the individual ϵ1 and ϵ2 the total approximation error is: ϵ2 + ϵ3 < ϵ1
2 + ϵ1

2 < ϵ1.

B.2 IN GENERAL, AUTOREGRESSIVE MODELS ARE NOT ON-TRAJECTORY

Here we show a more detailled counterexample to illustrate that autoregressive model of the form

p(x[0,t] | m[0,t]) = p(x0 | m[0,t]) ·
t∏

i=1

pθ(xi | xi−1,m[0,t]), (11)

do not generally fulfill the on-trajectory property. We construct this example while demonstrating
the over-reliance on autoregressive state. Being on-trajectory is defined as: for all t ∈ N and any
ϵ > 0:

||pθ(xt | m[0,t])− p(xt | m[0,t])|| < ϵ. (12)

From Section 3.3 it is known that autoregressive models accumulate errors with the product of
Jacobians, similar to classical ODEs (Orrell, 2005).

Logistic map. Let f : R 7→ R be the logistic map, which is chaotic for r = 3.8 (May, 1976):

f(xt−1, ηt) = r · xt−1 · (1− xt−1) (13)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Then we assume the model fθ ignores the measurements and learns to predict xt from xt−1 alone,
but with a small error ϵ′ > 0.

fθ(xt−1,m[0,t], ηt) = r · xt−1 · (1− xt−1) + ϵ′ (14)

This is an extreme case of over-reliance on autoregressive state, namely solely relying on it and
not relying on the measurements at all. For infinitesimal perturbations in xt−1 exponentiate over
time, causing pθ(xt | m[0,t]) to diverge from the true trajectory distribution p(xt | m[0,t]) even for
arbitrarily small ϵ′. Thus, the autoregressive factorization is not on-trajectory because the model’s
sequential predictions amplify initial errors, violating the required closeness condition for all t > 0.

C ADDITIONAL RESULTS

We show additional results for other Reynolds numbers and probe constellations in Figures 9, 10,
11, 12, 14, 13, 15, and 16.

Figure 9: Left: Exemplary groundtruth velocity snapshot, for Reynolds number 2100 and using
the vertical probe point constellation. Center: Mean of the predictions over 10 independent seeds.
Right: Standard deviation of the predictions over the same 10 seeds. All values are normalized by
the mean inlet velocity.
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(a) Mean velocity (u) and variance (u′2) of the reconstructed trajectories compared with the ground
truth. All values are normalized by the mean inlet velocity.

(b) Histogram of time-averaged kinetic energy. (c) Time-averaged kinetic energy spectrum.

Figure 10: Statistical analysis of reconstructed flow fields for Reynolds number 2100 and a grid
probe point constellation.
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(a) Mean velocity (u) and variance (u′2) of the reconstructed trajectories compared with the ground
truth. All values are normalized by the mean inlet velocity.

(b) Histogram of time-averaged kinetic energy. (c) Time-averaged kinetic energy spectrum.

Figure 11: Statistical analysis of reconstructed flow fields for Reynolds number 1100 and a grid
probe point constellation.
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(a) Mean velocity (u) and variance (u′2) of the reconstructed trajectories compared with the ground
truth. All values are normalized by the mean inlet velocity.

(b) Histogram of time-averaged kinetic energy. (c) Time-averaged kinetic energy spectrum.

Figure 12: Statistical analysis of reconstructed flow fields for Reynolds number 1100 and a vertical
probe point constellation.

(a) Vertical probe constellation. (b) Grid probe constellation.

Figure 13: Histogram of all MSE values of the Reynolds number 2100 test trajectory and a grid
probe point constellation.
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(a) Temporal evolution of the mean and
standard deviation of the MSE when comparing

the parallel-in-time and autoregressive
approaches.

(b) Histogram of all MSE values accumulated
over the rollout, comparing the parallel-in-time

and autoregressive approaches.

Figure 14: Comparison of error characteristics between the parallel-in-time and autoregressive re-
construction approaches for Reynolds number 1100 and a grid probe point constellation.

(a) Temporal evolution of the mean and
standard deviation of the MSE when comparing

the parallel-in-time and autoregressive
approaches.

(b) Histogram of all MSE values accumulated
over the rollout, comparing the parallel-in-time

and autoregressive approaches.

Figure 15: Comparison of error characteristics between the parallel-in-time and autoregressive re-
construction approaches for Reynolds number 1100 and a vertical probe point constellation.
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(a) Grid probe constellation.

(b) Vertical probe constellation.

Figure 16: The top rows show five exemplary LES ground truth snapshots. Time steps with t ≤
0 correspond to reconstructions based on measurements, while time steps with t > 0 represent
predictions with no measurements present. The following three rows display reconstructions from
three independent random seeds, each showing a connected sequence generated based on the probe
information provided. All values are normalized by the mean inlet velocity.
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