
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

PAINT: PARALLEL-IN-TIME NEURAL TWINS
FOR DYNAMICAL SYSTEM RECONSTRUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural surrogates have shown great potential in simulating dynamical systems,
while offering real-time capabilities. We envision Neural Twins as a progression
of neural surrogates, aiming to create digital replicas of real systems. A neural
twin consumes measurements at test time to update its state, thereby enabling
context-specific decision-making. A critical property of neural twins is their abil-
ity to remain on-trajectory, i.e., to stay close to the true system state over time.
We introduce Parallel-in-time Neural Twins (PAINT), an architecture-agnostic
family of methods for modeling dynamical systems from measurements. PAINT
trains a generative neural network to model the distribution of states parallel over
time. At test time, states are predicted from measurements in a sliding window
fashion. Our theoretical analysis shows that PAINT is on-trajectory, whereas
autoregressive models generally are not. Empirically, we evaluate our method
on a challenging two-dimensional turbulent fluid dynamics problem. The results
demonstrate that PAINT stays on-trajectory and predicts system states from sparse
measurements with high fidelity. These findings underscore PAINT’s potential for
developing neural twins that stay on-trajectory, enabling more accurate state esti-
mation and decision-making. 1

True

Autoregressive

Parallel-in-time

0 t− h t t+ n

Figure 1: Real world measurements allow parallel-in-time models to stay on-trajectory, while autore-
gressive models may drift over time. Dashed lines represent sampled trajectories. Parallel-in-time
models take a window of measurements and predict a distribution of subtrajectories which can be
sampled and used for state and uncertainty estimation. Autoregressive models are prone to over-
reliance on their autoregressive state (see Section 3.3) and typically depend on an initial state.

1 INTRODUCTION

Modern artificial intelligence is increasingly integrated into the modeling, monitoring, and control
of complex dynamical systems. A key development in this domain are digital twins (Grieves, 2014):
virtual models that run alongside a physical system, using live sensor data to update its predictions.
Unlike standard simulations, a digital twin continuously adjusts its internal state to match the real
system’s behavior, thereby enabling better monitoring and automated decision-making.

1The code will be made public upon acceptance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Neural surrogates emulate expensive, high-fidelity simulations and offer fast predictions while main-
taining reasonable accuracy. Recent works have already demonstrated remarkable results on com-
putational fluid dynamics (CFD) (Li et al., 2022a; Alkin et al., 2024a; Wu et al., 2024; Alkin et al.,
2025), as well as on particle based systems as surrogate models for discrete element methods (Alkin
et al., 2024c).

However, transforming neural surrogates into neural twins is a challenging endeavor. The current
generation of neural surrogates can neither ingest nor adapt to real-time measurements during infer-
ence. Therefore, we ask the question: How to design neural surrogates that adapt at test time using
real-time measurements?

We address this question by introducing Parallel-in-time Neural Twins (PAINT), a family of meth-
ods for reconstructing dynamical systems from measurements. At the core of PAINT is training a
generative neural network to model the joint conditional probability of system states given the mea-
surements. At inference, it reconstructs a sequence of states from measurements using a sliding-
window approach. This makes our method interpretable and avoids any dependence on an initial
condition.

Mathematically, we show that PAINT enables accurate state estimation from measurements due to
being on-trajectory, i.e., staying close to the true trajectory even in presence of prediction errors.
We also show that autoregressive models may possess this property under certain conditions (e.g.
Kalman filters), but not in general. Our analysis also sheds light on a phenomenon we call over-
reliance on the autoregressive state. It describes the problem of an autoregressive model over-relying
on an off-trajectory state, whereas an ideal model would recognize such drift and reduce the state’s
influence on the prediction.

Empirically, we implement FlowPAINT, an instance of PAINT based on Flow Matching. Flow-
PAINT is evaluated on a dataset of state-of-the-art large eddy simulations with varying Reynolds
numbers in 2D. This dataset is especially challenging due to the chaotic dynamics of the turbulent
fluid. The results confirm the generalization capabilities of our method.

We show – theoretically and empirically – how to design neural twins which stay on-trajectory for
arbitrary many timesteps. Our main contributions are summarized as follows:

• To the best of our knowledge, we are the first to train an on-trajectory neural twin for dy-
namical systems. Our method is interpretable, has an inherent measure of uncertainty and
takes no prior assumptions on the initial state, therefore making it more widely applicable.

• Mathematically, we show that our method is on-trajectory, i.e., stays close to the true tra-
jectory for arbitrarily long rollouts. Our analysis also sheds light on pitfalls when using
autoregressive models with sparse measurements.

• We empirically demonstrate the effectiveness of our method on a challenging 2D turbulent
fluid dynamics problem.

2 BACKGROUND

Notation. Vectors and matrices are denoted in bold, e.g., x ∈ Rn and A ∈ Rm×n. General
sequences such as [k, . . . , t] are denoted in brackets as [k, t]. We may also use brackets as subscripts
over sequences, e.g., x[k,t] = [xk, . . . ,xt]. True or ground-truth probability distributions are de-
noted p(·), while functions or distributions parameterized by neural networks use subscripts θ for
their parameters, e.g., fθ or pθ(·).

2.1 DIGITAL TWINS AND DATA INTEGRATION

Digital twins as defined by Grieves (2014) interact with an industrial process by (a) consuming real-
time data and (b) taking decisions based on the current state of the system. Ozan et al. (2025) marks
a first end-to-end approach to incorporate and control a PDE with a learned policy. However as the
state estimation is not interpretable, these models are hard to evaluate and can hardly be trusted for
real-world production use cases. For a comprehensive introduction we refer to (Thelen et al., 2022).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Bayesian filtering. Updating model states by incorporating measurement data has a rich history,
dating back to the seminal works on Wiener and Kalman filters (Wiener, 1949; Kalman, 1960).
These types of Bayesian filters were extensively studied, leading to generalizations and extensions
like the extended, unscented Kalman filters or particle methods. Bayesian filtering methods can be
categorized by (1) Filtering: p(xt | m[0,t]), (2) Prediction: p(xt+n | m[0,t]), and (3) Smoothing:
p(xt | m[0,T]), where x ∈ Rdx ,m ∈ Rdm , t ∈ [0, T] and n ∈ N. We refer to Särkkä & Svensson
(2023) for a comprehensive overview on classical Bayesian filtering.
With the rise of deep learning in the mid-2010s, several works married Kalman or Bayesian filters
with deep neural networks (Krishnan et al., 2015; Karl et al., 2016; Kim et al., 2025). However,
similar to the original Kalman filter these works usually rely on simplifying assumptions, on the
model, noise or initial condition, which is in stark contrast to our method.

Reconstructing flows from sparse measurements. Prior art has explored flow reconstruction
from sparse measurements. These measurements are usually assumed to come from Particle Track-
ing Velocimetry (PTV), probes in the walls or at informative locations. Some works used generative
modeling techniques to reconstruct flow fields from sparse measurements for a single timestep with-
out temporal context (Güemes et al., 2022; Cuéllar et al., 2024; Oommen et al., 2025; Kim et al.,
2021; Hemant Parikh et al., 2025). Similarly, Chakraborty et al. (2025) trained an instantaneous
super-resolution weather model. Several works used physics-informed neural networks (PINNs)
(Raissi et al., 2019) to reconstruct an instantaneous flow field from sparse measurements (Chaurasia
& Chakraborty, 2024; Hosseini & Shiri, 2024; Toscano et al., 2024), however they lack the gener-
ative modeling which is necessary to rightfully model the distribution of possible solutions. Dang
et al. (2024) used spatiotemporal information for reconstruction, but they did not model the target
trajectories probabilistically and therefore learn the theoretical mean of the conditional distribution.
From a conceptual point of view, the closest to our concrete implementation of PAINT is Sun &
Wang (2020), however their construction based on Bayesian neural networks is unnecessarily com-
plex, did only work on simple laminar flows and is not scalable to larger settings.

2.2 SCALABLE NEURAL SURROGATES

Surrogates models. A surrogate model, or simply a surrogate (Forrester et al., 2008), is a simplified
computational model designed to approximate a more intricate, computationally intensive system,
such as a high-fidelity simulation or a physical experiment.

Transformers. The application of transformers (Vaswani et al., 2017) as surrogate models has
recently taken over, building on their established efficacy in diverse scientific domains, including
protein folding (Jumper et al., 2021; Abramson et al., 2024) and weather forecasting (Bi et al.,
2023; Bodnar et al., 2024). These transformer-based neural surrogates are engineered to synthesize
information across varying spatial locations and scales by leveraging attention mechanisms (Vaswani
et al., 2017). Transformer-based surrogates represent an extension of the neural operator framework
(Lu et al., 2019; 2021; Li et al., 2020b;a; Kovachki et al., 2021), specifically by integrating self-
attention, cross-attention, or perceiver blocks (Jaegle et al., 2021b;a). Notable examples of these
models include OFormer (Li et al., 2022b), Transolver (Wu et al., 2024), and (AB-)UPT (Alkin
et al., 2024b; 2025). They have paved the way for scalable neural surrogate learning, scaling from
a few thousand (Li et al., 2022a; Wu et al., 2024; Alkin et al., 2024b) to millions of mesh points
(Alkin et al., 2025).

Generative modeling of PDEs. Over the past years, a powerful group of related generative mod-
eling frameworks were introduced around the works of Diffusion (Sohl-Dickstein et al., 2015; Ho
et al., 2020), Flow Matching (Liu et al., 2022; Lipman et al., 2022) and stochastic interpolants (Al-
bergo & Vanden-Eijnden, 2022; Albergo et al., 2023a; Gao et al., 2024).
Generative models were used to model PDEs (Sestak et al., 2025; Kohl et al., 2023). Some works
emphasize the beneficial properties of diffusion models for modeling high frequencies (Lippe et al.,
2023), leading to more accurate and physically plausible solutions. Our work differs, as prior works
sample any trajectory p(x[0,t]), while we model p(x[0,t] | m[0,t]) and aim to stay on the real trajec-
tory from measurements m[0,t] (see Section 3.2).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

2.3 COMPUTATIONAL FLUID DYNAMICS

The fluid mechanics problem, under the continuum assumption, is governed by the Navier–Stokes
equations, a set of highly complex, second-order nonlinear PDEs. These equations are comple-
mented by appropriate boundary and initial conditions and are for engineering problems typically
solved numerically. Because turbulence in fluid flows is in most engineering applications inevitable
and involves a wide range of spatial and temporal scales, direct numerical simulation (DNS) is al-
most never feasible in practice. Most industrial applications therefore rely on Reynolds-Averaged
Navier–Stokes (RANS) approaches, which solve only for mean fields under strong modeling as-
sumptions. Large-Eddy Simulation (LES) offers a compromise: it resolves the larger, energy-
containing scales while modeling only the smallest, but remains computationally demanding (David-
son, 2015; Fröhlich, 2006).

∇ · u = 0

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p+ µ∆u+ ρfe

(1)

3 METHOD

3.1 A NEURAL TWIN FRAMEWORK FOR DYNAMICAL SYSTEMS

We envision neural twins in a four-step process, depicted in Figure 2. First, design knowledge of the
dynamical system is used to create the simulations. This ensures that the simulations reflect physical
constraints and key behaviors. Second, a diverse training dataset is generated by exploring a broad
spectrum of trajectories. This dataset is used for training a neural twin. Third, at test time the neural
twin dynamically incorporates real-time measurement data, allowing it to stay aligned with actual
system trajectories and support real-time decision-making. Fourth, via the state estimation of the
neural twin, one can optionally control the dynamical system, e.g. via rule-based methods. The
approach combines domain expertise with adaptive learning, enabling both accuracy and agility in
complex environments.

Dynamical
System

Simulation Neural Twin

(1) Inform

(2) Training dataset

(3) Measurements

(4) Control

Figure 2: Interaction between a real-world dynamical system, simulations, and a neural twin. The
workflow is structured in three phases: (1) The dynamical systems informs the design of the simu-
lations. (2) Via the simulations, a diverse training dataset is generated, which is used for training the
neural twin. (3) During inference, the neural twin integrates real-time measurement data to remain
on-trajectory. (4) The state estimation of the neural twin can optionally be used for decision-making.

3.2 PARALLEL-IN-TIME NEURAL TWINS

Problem description. Consider a transient dynamical system where the state space is a compact
subset X ⊂ Rdx , dx ∈ N and xt ∈ X denotes the system state at time t. We assume a dm ∈ N
dimensional compact measurement space M ∈ Rdm . At each timestep t ∈ N the system provides
a measurement mt from the emission model pe, where mt ∼ pe(mt | xt).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

PAINT. The goal of our generative model pθ is to sample trajectories from p(x[0,t]) | m[0,t]).
At the core of our method is joint modeling of this distribution. In contrast, autoregressive models
factorize this distribution which may lead to drifting (see Section 3.3).
As the number of timesteps may become very large, PAINT models the joint probability over a
window (see Figure 1) of width h and may predict n timesteps into the future:

pθ(x[t−h,t+n] | m[t−h,t]). (2)

In this setup, future measurements can inform past states to obtain temporal consistency. Further-
more, there is no reliance on the existence or an assumption about an initial condition.
PAINT is agnostic to the generative modeling framework and the neural network architecture. Com-
mon building blocks may be transformers, MLPs, CNNs (LeCun et al., 2002).

3.3 THEORETICAL CONSIDERATIONS

Autoregressive models factorize the joint distribution as a product of conditionals. Assuming the
system is Markovian and conditioned on a sequence of variables m[0,t], we obtain:

p(x[0,t] | m[0,t]) = p(x0 | m[0,t]) ·
t∏

i=1

pθ(xi | xi−1,m[0,t]), (3)

where the autoregressive model learns the conditional probability pθ(xt | xt−1,m[0,t]). Notice, this
does not equal pθ(xt | xt−1,mt), although e.g. Kalman filters use this form.

Autoregressive model drift. Our analysis is leaned on the analysis of error growth of dynam-
ical systems (Orrell, 2005) and key observations made in (Hess et al., 2023). We assume a fully
differentiable neural network , which learns the probability distribution pθ(xt||xt−1,m[0,t]). To
sample from this probability distribution xt ∼ pθ(xt||xt−1,m[0,t]) we rewrite the neural network
to a deterministic function with a stochastic input ηt:

xt = fθ(xt−1,m[0,t], ηt) ηt ∼ p(η) (4)

The Jacobian is then defined as Jt := ∂fθ/∂xt. In contrast to Orrell (2005), this is a discrete random
ordinary differential equation (RODE), i.e., an ODE with a random input at each timestep.
To show the model drift from small perturbations, we fix a path of the RODE by fixing η[0,t]. For
simplicity, we then write F t

θ(xt) = fθ(xt−1,m[0,t], ηt) where we absorb the measurement m[0,t]

and the stochastic input ηt into the function, such that xt = F t
θ(xt−1). Hence for the generation of

a state xt from a previous state xk it follows from function composition:

xt = F t
θ ◦ F t−1

θ ◦ ... ◦ F k+1
θ (xk) = F

[k+1,t]
θ (xk) (5)

The first-order Taylor approximation of a small input perturbation at t = k is:

F
[k+1,t]
θ (xk + ϵ) = F

[k+1,t]
θ (xk) + ϵ

t∏
i=k+1

Ji(xi−1) + o(ϵ2) (6)

This means, a deviation at timestep k induces a deviation multiplied by the Jacobian product se-
ries at timestep t. This has also been experimentally explored by Hess et al. (2023), who include
visualizations of the Jacobian product series for chaotic dynamical systems.

On-trajectory. In the following we will formalize the notions of a model being “on-trajectory”.
For this, we rely on Assumption 1, which states that the predictive relevance of past measurements
decays within a finite window h.
Assumption 1. Temporal decay of measurement information: For the given dynamical system,
there is a finite window size h ∈ N, such that almost all information from past measurements comes
from measurements within this window. Formally, for all ϵ > 0 and all t ∈ N there exists an h ≪ t
such that ||p(xt | m[t−h,t])− p(xt | m[0,t])|| < ϵ.

Next, we proceed with our definition of on-trajectory.
Definition 1. On-trajectory: Assuming unbounded model size, compute and data, a model is on-
trajectory if the modeled distribution is arbitrarily close to the true distribution. Formally, for all
t ∈ N and any ϵ > 0 it holds that: ||pθ(xt | m[0,t])− p(xt | m[0,t])|| < ϵ.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Parallel-in-time models are on-trajectory under Assumption 1 . We derive this in Appendix B.1.
Intuitively, for each ϵ we can choose the window h large enough to guarantee arbitrary closeness. In
contrast, autoregressive models are in general not on-trajectory. As a counterexample, consider an
underlying chaotic system where the model ignores the measurements (for further discussion, see
Hess et al. (2023) and Appendix B.2).

Over-reliance on the autoregressive state. The above analysis highlights a fundamental problem
we call over-reliance on the autoregressive state. Intuitively, it states that an autoregressive state
plays an ambiguous role. If the state is on-trajectory, it helps the model as it provides useful in-
formation for the next state. If the state is off-trajectory, the model may still make use of it for
prediction and drift off further. In principle, the only way for the model to correct an off-trajectory
autoregressive state is with informative measurements. This excludes edge cases, e.g., where the
model converges to a global steady state.
Ideally, a model would detect when the autoregressive state drifts off and decrease its influence on
the prediction. Depending on the informativeness of the measurements, it could increase its reliance
on measurement information or capture the inherent uncertainty in a different way.
Over-reliance on autoregressive state is also influenced by the training strategy. Autoregressive
models are usually trained with teacher-forcing, where the ground-truth previous state xt is used to
predict the next state xt+1. As these states are highly correlated, the model might learn to over-rely
on xt and under-rely on mt+1. This could potentially be mitigated by training techniques such as
generalized teacher forcing (Hess et al., 2023) or unrolled training (Kohl et al., 2023).
How much information is taken from the autoregressive state is indicated by Jt(xt). To avoid
autoregressive error accumulation, the Jacobian product series should ideally have a small norm.
Notice that parallel-in-time models predict x[t−h,t] = fθ(m[k,t], η) without any recurrence. Conse-
quently the Jacobians are all zero-matrices.

Advice for practitioners

The selection of an on-trajectory neural twin approach depends on two key factors:
(1) Measurement Informativeness. Highly informative measurements often justify the use
of autoregressive models (e.g., Kalman filters). If measurements lack sufficient informa-
tion for state reconstruction, parallel-in-time models are preferable to ensure staying on-
trajectory – but they require the selected window’s measurements to be informative.
(2) System Dynamics. If measurements provide limited information, chaotic systems typ-
ically demand parallel-in-time models to stay on-trajectory. For stable or periodic systems
(e.g., steady-state behavior) autoregressive models may suffice.

4 EXPERIMENTS

4.1 MODELS

PAINT via Flow Matching. We implement FlowPAINT as a concrete instantiation of PAINT
using Flow Matching (Albergo & Vanden-Eijnden, 2022; Albergo et al., 2023a; Lipman et al., 2022;
Liu et al., 2022). PAINT is agnostic to the neural network architecture. We therefore aimed for
simplicity and use established building blocks of the computer vision literature (Dosovitskiy et al.,
2020; Hoogeboom et al., 2023; 2024; Peebles & Xie, 2023). Further experimental details can be
found in Appendix A.2.

Data-coupled stochastic interpolants. PAINT is also agnostic to the generative modeling
paradigm, as long as it maps a source to a target distribution. We follow the modeling from Al-
bergo et al. (2023b) and model the unmasking as data-coupled distribution matching. However, the
masking ratio of our method is very high (25 of 16K pixels are unmasked). In early experiments
we observed that the gradient signal was too weak for the vicinity of the probes. Therefore, we in-
troduce a spatially weighted loss that puts higher weight on pixels in the neighborhood of the probe
points. As stochastic interpolants and Flow Matching in principle lead to the same training setup,
we use a common Flow Matching implementation (Lipman et al., 2024).

Autoregressive UNet. To compare PAINT to an autoregressive model, we use the UNet architec-
ture from Kohl et al. (2023). We follow their proposed paradigm and condition on the probe values

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

mt+1 by concatenating the mask and probe values to the channels. The model sizes are chosen to
match parameters. FlowPAINT has 19.8M and the autoregressive UNet 20.6M. Further architectural
details and hyperparameters are reported in Appendix A.2.

4.2 DATASET AND EVALUATION

Turbulent single jet dataset. We generate a CFD dataset using the incompressible, pressure-
based solver pimpleFOAM in OpenFOAM 8 (OpenCFD, 2009), with subgrid scales modeled by the
Smagorinsky LES model (Pope, 2001; Fröhlich, 2006). Simulations are performed on a structured
mesh, and for training purposes, a subregion is extracted and interpolated onto a regular grid. Since
the state-space represents 2D velocities, we will write ut instead of xt with ut ∈ Rd1×d2 . The
train/val/test splits across Reynolds numbers are provided in Appendix A.1.

Physical coherence. Due to the chaotic and rapidly diverging nature of turbulent flows, comparing
a single predicted frame or a short sequence to the ground truth is not meaningful. Research in turbu-
lence instead focuses on the flow’s inherently reproducible statistical properties (Pope, 2001; David-
son, 2015). Given a possibly infinitely long trajectory u[0,t], we follow a common notation in fluid
dynamics and decompose u[0,t] into a time-averaged mean component u := limt→∞

1
t

∑t
i=1 ui

and a turbulent fluctuation component u′
[0,t], such that u[0,t] = u+u′

[0,t]. The variance over time is

denoted as u′2 := limt→∞
1
t

∑t
i=1(ui − u)2. Further, we define E(k) as the mean kinetic energy

spectrum. While these metrics are defined over an infinite-time, in practice they are computed over
a large, finite horizon.

(a) Grid. (b) Vertical.

Figure 3: Probe positions.

Probe constellations. The model was trained with 25 randomly
sampled probe points for each data point in a batch. At inference,
we investigate the two probe point constellations depicted in Figure
3. Grid: A 10×10 grid of 100 probe points evenly spaced across the
domain (see Figure 3a). Vertical: A linear arrangement of 25 probe
points positioned at the 3/4 axial location of the domain (see Figures
3b). In both configurations, an additional probe point is placed at
the center of the inlet of the jet to capture the inlet velocity.

4.3 RESULTS

Table 1: Results for physical coherence of FlowPAINT (ours) and the autoregressive UNet baseline
(AR UNet). The MAE, MSE and RMSE are taken between the ground truth and the predicted
quantity. u and u′2 denote the mean and variance over time. E(k) is the predicted kinetic energy
spectra. MSE(u[0,t]) is the mean squared error between the predicted and the ground-truth trajectory
as a whole. All values are taken along 900 timesteps in the test trajectories. The values after ± are
standard deviations from averaging over 10 seeds. Generally, the higher Reynolds number seems to
be more difficult for both models.

Model Re Probes MAE(u) ↓ MAE(u′2) ↓ MSE([u[0,t]]) ↓ RMSE(E(k)) ↓
×10−3 ×10−5 ×10−5 ×10−6

FlowPAINT 2100 grid 1.2± 1.6 9.9± 21.7 8.1± 3.6 6.85
AR UNet 2100 grid 9.5± 14.3 98.7± 110.4 158.3± 46.8 70.9
FlowPAINT 2100 vertical 2.2± 3.1 30.2± 38.4 49± 21 20.1
AR UNet 2100 vertical 9.2± 13.8 97.8± 108.8 157.3± 70.0 71.8
FlowPAINT 1100 grid 0.9± 1.3 2.2± 5.5 2± 1 1.98
AR UNet 1100 grid 3.5± 5.6 17.3± 25.9 28.8± 8.3 12.4
FlowPAINT 1100 vertical 1.1± 1.6 6.3± 11.1 8.9± 3.4 3.68
AR UNet 1100 vertical 3.4± 5.5 16.9± 25.5 28.8± 8.1 12.2

Quantitative results. The quantitative results are reported in Table 1. FlowPAINT outperforms the
autoregressive UNet across all metrics, probe constellations and Reynolds numbers in the test set.
We conclude that FlowPAINT is more physically coherent than the probe-conditioned autoregressive
baseline. Further results and analyses can be found in Appendix C.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4: Ground truth vs. predicted states at different timesteps for Re = 2100 using the vertical
probe constellation. PAINT (ours) does not accumulate errors over time. For the autoregressive
UNet a pronounced drift over time is observable. All values are normalized by the mean inlet
velocity.

Figure 5: Mean velocity u and variance u′2 of the reconstructed Re = 2100 test trajectory using the
vertical probe constellation compared with the ground truth. All values are normalized by the mean
inlet velocity.

Recovery of the physical flow characteristics. We observe the models ability to reconstruct
physical plausible states from different constellations of probe points (see Figures 5 and 6). The
model’s ability to reproduce the correct physical statistics seems to depend directly on the number
and position of the sample points (as can be seen when comparing Figure 5 with Figures 10a, 11a
and 12a).

Parallel-in-time model maintains stable error, while autoregressive baseline drifts. The au-
toregressive approach exhibits a drift in MSE when rolled out (compare Figures 4, 7, 13,14 and 15).
Importantly, the autoregressive model benefits from a known, correct initial state, which is often
unknown in practice.

Sampling a sequence vs. a single state. PAINT can be used in two variants. The first samples
a connected sequence, usually x[t−h,t] ∼ p(x[t−h,t]) | m[t−h,t] (see Figure 16). This sequence is
smooth over time and can be used by practitioners to interpret results.
The second variant samples a single timestep. It is used for state estimation in a sliding window

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

(a) Time-averaged kinetic energy spectrum. (b) Histogram of the kinetic energy.

Figure 6: Statistical analysis of reconstructed flow fields for Reynolds number 2100 and a vertical
probe point constellation.

(b) Grid probe constellation. (a) Vertical probe constellation.

Figure 7: MSE over time of ground-truth vs. predicted trajectories for the Re = 2100 test trajectory
and different probe point constellations. Interestingly, the MSE’s of the two autoregressive trajecto-
ries are very similar, even if more informative probes are provided for the grid. The autoregressive
model indicates over-reliance on the autoregressive state.

fashion by sampling xt ∼ p(xt | m[t−h,t]). In this case a sampled sequence of consecutive states
is not smooth over time.

Measure of uncertainty. One can obtain a measure for uncertainty by sampling several times and
computing the variance. In Figure 9 it is visible that the model is most certain around the probe
positions and most uncertain to the left and the right.

Compute at training and inference. FlowPAINT needs substantially more training resources and
is slower at inference than the autoregressive baseline. It was trained on 12 A100 (64 GB VRAM)
for 30 hours, whereas the UNet was trained on a single H100 (80GB VRAM) for 24 hours. Notably,
the UNet takes about 66 milliseconds and FlowPAINT around 6.6 seconds for 20 denoising steps.
Further details can be found in Appendix A.2.

5 CONCLUSION

In this paper we introduced parallel-in-time neural twins (PAINT) a novel data-driven method for
reconstructing dynamical systems from real-time measurements. PAINT employs a generative neu-
ral network to model the joint conditional probability of system states. Our method provable stays
on-trajectory and does not rely on an initial condition. The empirical validation with FlowPAINT
on 2D turbulent fluid dynamics confirms its effectiveness. This paper represents an advancement in
designing interpretable and widely applicable neural twins for complex dynamical systems.

Limitations and future work The biggest limitation of our method are the high computational
costs, which deserves further investigation. Another limitation is that the sliding window approach
does not generate continuous generations. This could potentially be mitigated by stitching tech-
niques (Wei et al., 2019).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Ethics statement. More broadly, our work aims to advance the field of machine learning and
may contribute to its broader societal impact. More specifically, our work advances reconstruction
of dynamical systems, with a wide range of potential applications. While our method or future
derivatives of it might enable transformative societal benefits it also introduces risks of misconduct
or dual-use risks. To mitigate the risk of misconduct, we will strive to be transparent about the
capabilities and limitations of this method and encourage the use in real-world applications only
after rigorous testing. We welcome critical discussions on further safeguarding such technologies
against adversarial use.

Reproducibility statement. We provide code to reproduce the main results in the supplementary
material. Additionally, we report hyperparameters, and important implementation details to facilitate
the reproduction of our results. Upon publication, the code will be made publicly available on
GitHub.

Usage of LLMs. LLMs assisted in ideation and in refining and optimizing formulations on a
sentence- and paragraph-level.

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, pp. 1–3, 2024.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. arXiv preprint arXiv:2209.15571, 2022.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023a.

Michael S Albergo, Mark Goldstein, Nicholas M Boffi, Rajesh Ranganath, and Eric Vanden-Eijnden.
Stochastic interpolants with data-dependent couplings. arXiv preprint arXiv:2310.03725, 2023b.

Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes
Brandstetter. Universal physics transformers. CoRR, 2024a.

Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes
Brandstetter. Universal physics transformers: A framework for efficiently scaling neural opera-
tors. Advances in Neural Information Processing Systems, 37:25152–25194, 2024b.

Benedikt Alkin, Tobias Kronlachner, Samuele Papa, Stefan Pirker, Thomas Lichtenegger, and Jo-
hannes Brandstetter. Neuraldem–real-time simulation of industrial particulate flows. arXiv
preprint arXiv:2411.09678, 2024c.

Benedikt Alkin, Maurits Bleeker, Richard Kurle, Tobias Kronlachner, Reinhard Sonnleitner,
Matthias Dorfer, and Johannes Brandstetter. Ab-upt: Scaling neural cfd surrogates for high-
fidelity automotive aerodynamics simulations via anchored-branched universal physics transform-
ers. arXiv preprint arXiv:2502.09692, 2025.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate medium-
range global weather forecasting with 3d neural networks. Nat., 619(7970):533–538, 2023. doi:
10.1038/S41586-023-06185-3.

Cristian Bodnar, Wessel P. Bruinsma, Ana Lucic, Megan Stanley, Johannes Brandstetter, Patrick
Garvan, Maik Riechert, Jonathan A. Weyn, Haiyu Dong, Anna Vaughan, Jayesh K. Gupta, Kit
Thambiratnam, Alex Archibald, Elizabeth Heider, Max Welling, Richard E. Turner, and Paris
Perdikaris. Aurora: A foundation model of the atmosphere. CoRR, abs/2405.13063, 2024. doi:
10.48550/ARXIV.2405.13063.

Dibyajyoti Chakraborty, Haiwen Guan, Jason Stock, Troy Arcomano, Guido Cervone, and Romit
Maulik. Multimodal atmospheric super-resolution with deep generative models. arXiv preprint
arXiv:2506.22780, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Nagendra Kumar Chaurasia and Shubhankar Chakraborty. Reconstruction of the turbulent flow field
with sparse measurements using physics-informed neural network. Physics of Fluids, 36(8), 2024.

Antonio Cuéllar, Alejandro Güemes, Andrea Ianiro, Óscar Flores, Ricardo Vinuesa, and Stefano
Discetti. Three-dimensional generative adversarial networks for turbulent flow estimation from
wall measurements. Journal of Fluid Mechanics, 991:A1, 2024.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Hiep Vo Dang, Joseph B Choi, and Phong CH Nguyen. Flronet: Deep operator learning for
high-fidelity fluid flow field reconstruction from sparse sensor measurements. arXiv preprint
arXiv:2412.08009, 2024.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In Inter-
national Conference on Learning Representations (ICLR), 2024.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2022.

Peter Davidson. Turbulence: an introduction for scientists and engineers. Oxford university press,
2015.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Alexander Forrester, Andras Sobester, and Andy Keane. Engineering design via surrogate mod-
elling: a practical guide. John Wiley & Sons, 2008.

Jochen Fröhlich. Large Eddy Simulation turbulenter Strömungen: Mit 145 Abbildungen und 14
Tabellen. Springer, 2006.

Ruiqi Gao, Emiel Hoogeboom, Jonathan Heek, Valentin De Bortoli, Kevin P. Murphy, and Tim
Salimans. Diffusion meets flow matching: Two sides of the same coin. 2024. URL https:
//diffusionflow.github.io/.

Michael Grieves. Digital twin: manufacturing excellence through virtual factory replication. White
paper, 1(2014):1–7, 2014.

Alejandro Güemes, Carlos Sanmiguel Vila, and Stefano Discetti. Super-resolution gans of
randomly-seeded fields. arXiv preprint arXiv:2202.11701, 2022.

Meet Hemant Parikh, Xiantao Fan, and Jian-Xun Wang. Conditional flow matching for generative
modeling of near-wall turbulence with quantified uncertainty. arXiv e-prints, pp. arXiv–2504,
2025.

Florian Hess, Zahra Monfared, Manuel Brenner, and Daniel Durstewitz. Generalized teacher forcing
for learning chaotic dynamics. arXiv preprint arXiv:2306.04406, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion for
high resolution images. In International Conference on Machine Learning, pp. 13213–13232.
PMLR, 2023.

Emiel Hoogeboom, Thomas Mensink, Jonathan Heek, Kay Lamerigts, Ruiqi Gao, and Tim Sali-
mans. Simpler diffusion (sid2): 1.5 fid on imagenet512 with pixel-space diffusion. arXiv preprint
arXiv:2410.19324, 2024.

11

https://diffusionflow.github.io/
https://diffusionflow.github.io/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Mohammad Yasin Hosseini and Yousef Shiri. Flow field reconstruction from sparse sensor mea-
surements with physics-informed neural networks. Physics of Fluids, 36(7), 2024.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David
Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A
general architecture for structured inputs & outputs. In International Conference on Learning
Representations, 2021a.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In International conference on machine
learning, pp. 4651–4664. PMLR, 2021b.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick Van der Smagt. Deep varia-
tional bayes filters: Unsupervised learning of state space models from raw data. arXiv preprint
arXiv:1605.06432, 2016.

Hyojin Kim, Junhyuk Kim, Sungjin Won, and Changhoon Lee. Unsupervised deep learning for
super-resolution reconstruction of turbulence. Journal of Fluid Mechanics, 910:A29, 2021.

Sukkeun Kim, Ivan Petrunin, and Hyo-Sang Shin. A review of bayes filters with machine learning
techniques and their applications. Information Fusion, 114:102707, 2025. ISSN 1566-2535. doi:
https://doi.org/10.1016/j.inffus.2024.102707. URL https://www.sciencedirect.com/
science/article/pii/S1566253524004858.

Georg Kohl, Li-Wei Chen, and Nils Thuerey. Benchmarking autoregressive conditional diffusion
models for turbulent flow simulation. arXiv preprint arXiv:2309.01745, 2023.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces.
arXiv preprint arXiv:2108.08481, 2021.

Rahul G Krishnan, Uri Shalit, and David Sontag. Deep kalman filters. arXiv preprint
arXiv:1511.05121, 2015.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 2002.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning. arXiv preprint arXiv:2205.13671, 2022a.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning. arXiv preprint arXiv:2205.13671, 2022b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differ-
ential equations. arXiv preprint arXiv:2003.03485, 2020b.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky T. Q.
Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code, 2024.
URL https://arxiv.org/abs/2412.06264.

12

https://www.sciencedirect.com/science/article/pii/S1566253524004858
https://www.sciencedirect.com/science/article/pii/S1566253524004858
https://arxiv.org/abs/2412.06264

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, and Johannes Brandstetter. Pde-refiner:
Achieving accurate long rollouts with neural pde solvers. Advances in Neural Information Pro-
cessing Systems, 36:67398–67433, 2023.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Robert M May. Simple mathematical models with very complicated dynamics. Nature, 261(5560):
459–467, 1976.

Vivek Oommen, Siavash Khodakarami, Aniruddha Bora, Zhicheng Wang, and George Em Kar-
niadakis. Learning turbulent flows with generative models: Super-resolution, forecasting, and
sparse flow reconstruction. arXiv preprint arXiv:2509.08752, 2025.

OpenFOAM OpenCFD. The open source cfd toolbox. User Guide, OpenCFD Ltd, 770, 2009.

D Orrell. Estimating error growth and shadow behavior in nonlinear dynamical systems. Interna-
tional Journal of Bifurcation and Chaos, 15(10):3265–3280, 2005.

Defne Ege Ozan, Andrea Nóvoa, and Luca Magri. Data-assimilated model-based reinforcement
learning for partially observed chaotic flows. In International Conference on Computational
Science, pp. 65–72. Springer, 2025.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Stephen B Pope. Turbulent flows. Measurement Science and Technology, 12(11):2020–2021, 2001.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Simo Särkkä and Lennart Svensson. Bayesian filtering and smoothing, volume 17. Cambridge
university press, 2023.

Florian Sestak, Artur Toshev, Andreas Fürst, Günter Klambauer, Andreas Mayr, and Johannes
Brandstetter. Lam-slide: Latent space modeling of spatial dynamical systems via linked enti-
ties. arXiv preprint arXiv:2502.12128, 2025.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

Luning Sun and Jian-Xun Wang. Physics-constrained bayesian neural network for fluid flow recon-
struction with sparse and noisy data. Theoretical and Applied Mechanics Letters, 10(3):161–169,
2020.

Adam Thelen, Xiaoge Zhang, Olga Fink, Yan Lu, Sayan Ghosh, Byeng D Youn, Michael D Todd,
Sankaran Mahadevan, Chao Hu, and Zhen Hu. A comprehensive review of digital twin—part 1:
modeling and twinning enabling technologies. Structural and Multidisciplinary Optimization, 65
(12):354, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Juan Diego Toscano, Theo Käufer, Zhibo Wang, Martin Maxey, Christian Cierpka, and George Em
Karniadakis. Inferring turbulent velocity and temperature fields and their statistics from la-
grangian velocity measurements using physics-informed kolmogorov-arnold networks. arXiv
preprint arXiv:2407.15727, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Lyu Wei, Zhou Zhong, Chen Lang, and Zhou Yi. A survey on image and video stitching. Virtual
Reality & Intelligent Hardware, 1(1):55–83, 2019.

Norbert Wiener. The linear filter for a single time series. In Extrapolation, Interpolation, and
Smoothing of Stationary Time Series, pp. 81–103. The MIT Press, 1949.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast
transformer solver for pdes on general geometries. arXiv preprint arXiv:2402.02366, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A EXPERIMENTAL DETAILS

A.1 DATASET

Turbulent single jet dataset. We use an in-house dataset to ensure its quality and match the
specific requirements of our study. As we have the capability to generate reliable high-fidelity data,
additional external datasets were not needed. We consider the domain shown in Figure 8, which
produces a two-dimensional turbulent free jet. The inlet is prescribed by a turbulent power-law
velocity profile, with the system dynamics controlled by the mean inlet velocity. The Reynolds
number is defined with respect to the inlet velocity as

Re = ⟨u⟩inlethinletν
−1. (7)

The dataset is generated using the incompressible, pressure-based solver pimpleFOAM in
OpenFOAM 8 (OpenCFD (2009)), with subgrid scales modeled by the Smagorinsky LES model
(Pope, 2001; Fröhlich, 2006). Simulations are performed on a structured mesh consisting of 19040
cells, and for training purposes, a subregion is extracted and interpolated onto a regular 128 ×
128 grid to facilitate adaptability.. The numerical simulations made use of a timestep size of
∆t = 6.5 × 10−4s. For training purposes, the data are sampled every 70th timestep, resulting
in an effective temporal resolution of 4.55×10−2s. For each Reynolds number, the dataset contains
1000 such snapshots.

u = uinlet

u = 0

∂u

∂n
= 0 for u · n ≥ 0,

u = 0 for u · n < 0.hinlet

Figure 8: Computational domain of the CFD simulation, featuring a thin channel with a prescribed
inlet velocity profile, transitioning into an expanded outflow region zone. The channel and outflow
orifice walls enforce a no-slip boundary condition, while the top, bottom and right boundaries of
the outflow region implement a conditional Neumann/Dirichlet outflow condition. The light-grey
subregion denotes the part of the CFD domain considered for model training. The arrow shows the
imposed inlet flow direction.

A note on 2D turbulence. In fluid mechanics, the behavior of turbulent flows differs fundamentally
between three and two dimensions. In three dimensions, turbulence is characterized by the energy
cascade: the largest eddies form due to inertial instabilities but tend to exist only briefly, breaking up
into progressively smaller eddies. This cascade continues until viscous forces dissipate the smallest
scales.

In contrast, in two dimensions, the energy cascade is reversed, transferring energy from smaller to
larger eddies, which produces coherent, long-lived vortices. Intuitively, this can be explained by
vortex stretching. Consider a thin tube of vorticity: if a velocity gradient along the tube axis is
present, the tube stretches, and due to conservation of angular momentum, the vorticity magnitude
increases. This mechanism is absent in two dimensions because there is no third dimension along
which stretching can occur. As a result, vortices cannot break up and tend to merge into larger
structures if they have the same rotational sense, which explains the inverse energy cascade.

Mathematically, this is seen in the vorticity transport equation derived from the curl of the
Navier–Stokes equations. In 2D, the velocity and vorticity vectors are perpendicular, which makes
the vortex stretching term identically zero.

In reality, there is no perfectly two-dimensional turbulence; even quasi-2D flows, such as atmo-
spheric flows, exhibit three-dimensional structures at smaller scales. Nevertheless, we are confident
that the proposed method, having demonstrated robust performance in two-dimensional turbulence,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

will generalize effectively to three-dimensional turbulent flows. For a more detailed discussion of
two-dimensional turbulence, see Davidson (2015).

Train/val/test splits. We consider 18 different training trajectories with varying Reynolds numbers,
as explained above. The Reynolds numbers used range from 700 to 2400 in steps of 100. The split
is performed at random, but avoiding that any validation or test data is placed in the extrapolation
regime. The exact split can be seen in Table 2.

Table 2: Reynolds numbers by split.

Reynolds train val test
700 X
800 X
900 X
1000 X
1100 X
1200 X
1300 X
1400 X
1500 X
1600 X
1700 X
1800 X
1900 X
2000 X
2100 X
2200 X
2300 X
2400 X

A.2 IMPLEMENTATION AND ARCHITECTURE

Architecture and hyperparameters. FlowPAINT and the autoregressive UNet were both imple-
mented in Pytorch (Paszke et al., 2017). For FlowPAINT we trained in float16 mixed precision. The
most important training parameters are provided in Table 3. Our code also uses FlashAttention (Dao
et al., 2022; Dao, 2024). For both models we use 20 denoising steps for generating samples.

Autoregressive UNet. For the UNet we followed (Kohl et al., 2023) and took the implementation
of the public Github repository 2. We matched the number of parameters by increasing the default
model dimension from 128 to 224. For probe-conditioning, we followed the same recipe as for prior
timestep conditioning and added mask and probe values as additional channels.

Compute requirements. FlowPaint is expensive during training, as it needs to reconstruct a video
in parallel. We had limited access to a cluster environment and trained FlowPaint on 3 nodes each
consisting of 4 NVIDIA Ampere A100 GPUs with 64GB VRAM. Training took around 30 hours
for 100K iterations.
The autoregressive baseline is comparably cheap. It was trained on a single Nvidia H100-SXM-
80GB for ca. 24 hours. The inference times are reported in the main paper.

B THEORY

B.1 PARALLEL-IN-TIME MODELS ARE ON-TRAJECTORY

Here we provide a simple derivation to show that parallel-in-time models are on-trajectory under
Assumption 1. We will show that for an appropriate window size h, for all t ∈ N and any ϵ1 > 0:

||pθ(xt | m[t−h,t])− p(xt | m[0,t])|| < ϵ1. (8)

2https://github.com/tum-pbs/autoreg-pde-diffusion

16

https://github.com/tum-pbs/autoreg-pde-diffusion

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Table 3: Experimental details for FlowPaint and the autoregressive baseline.

FlowPaint AR baseline
Data

History length 16 2
Forward prediction 8 1

Optimization
Optimizer AdamW AdamW
AdamW decay 0.05 0.05
Learning rate 10−4 10−4

Learning rate start 5 · 10−7 5 · 10−7

Learning rate warmup steps 10000 10000
Learning rate end 10−5 10−5

Train steps 100K 100K
Batch size 144 144

Table 4: Architectural details of FlowPaint.

Encoding
num layers of 3x3x3 conv 3
patch size in pixels 4x4

Transformer
model dim 192
layers 10
num heads 3
Spatial Block Yes
Temporal Block Yes
Temporal Convolution No

Decoding
num layers of 3x3x3 conv 3

First, from Assumption 1 choose a window size h such that:

||p(xt | m[t−h,t])− p(xt | m[0,t])|| < ϵ2 <
ϵ1
2
. (9)

Then, from the Universal Function Approximator Theorem (Cybenko, 1989), choose an approxima-
tion of the true distribution as follows:

||pθ(xt | m[t−h,t])− p(xt | m[t−h,t])|| < ϵ3 <
ϵ1
2
. (10)

Summing up the individual ϵ1 and ϵ2 the total approximation error is: ϵ2 + ϵ3 < ϵ1
2 + ϵ1

2 < ϵ1.

B.2 IN GENERAL, AUTOREGRESSIVE MODELS ARE NOT ON-TRAJECTORY

Here we show a more detailled counterexample to illustrate that autoregressive model of the form

p(x[0,t] | m[0,t]) = p(x0 | m[0,t]) ·
t∏

i=1

pθ(xi | xi−1,m[0,t]), (11)

do not generally fulfill the on-trajectory property. We construct this example while demonstrating
the over-reliance on autoregressive state. Being on-trajectory is defined as: for all t ∈ N and any
ϵ > 0:

||pθ(xt | m[0,t])− p(xt | m[0,t])|| < ϵ. (12)

From Section 3.3 it is known that autoregressive models accumulate errors with the product of
Jacobians, similar to classical ODEs (Orrell, 2005).

Logistic map. Let f : R 7→ R be the logistic map, which is chaotic for r = 3.8 (May, 1976):

f(xt−1, ηt) = r · xt−1 · (1− xt−1) (13)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Then we assume the model fθ ignores the measurements and learns to predict xt from xt−1 alone,
but with a small error ϵ′ > 0.

fθ(xt−1,m[0,t], ηt) = r · xt−1 · (1− xt−1) + ϵ′ (14)

This is an extreme case of over-reliance on autoregressive state, namely solely relying on it and
not relying on the measurements at all. For infinitesimal perturbations in xt−1 exponentiate over
time, causing pθ(xt | m[0,t]) to diverge from the true trajectory distribution p(xt | m[0,t]) even for
arbitrarily small ϵ′. Thus, the autoregressive factorization is not on-trajectory because the model’s
sequential predictions amplify initial errors, violating the required closeness condition for all t > 0.

C ADDITIONAL RESULTS

We show additional results for other Reynolds numbers and probe constellations in Figures 9, 10,
11, 12, 14, 13, 15, and 16.

Figure 9: Left: Exemplary groundtruth velocity snapshot, for Reynolds number 2100 and using
the vertical probe point constellation. Center: Mean of the predictions over 10 independent seeds.
Right: Standard deviation of the predictions over the same 10 seeds. All values are normalized by
the mean inlet velocity.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

(a) Mean velocity (u) and variance (u′2) of the reconstructed trajectories compared with the ground
truth. All values are normalized by the mean inlet velocity.

(b) Histogram of time-averaged kinetic energy. (c) Time-averaged kinetic energy spectrum.

Figure 10: Statistical analysis of reconstructed flow fields for Reynolds number 2100 and a grid
probe point constellation.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

(a) Mean velocity (u) and variance (u′2) of the reconstructed trajectories compared with the ground
truth. All values are normalized by the mean inlet velocity.

(b) Histogram of time-averaged kinetic energy. (c) Time-averaged kinetic energy spectrum.

Figure 11: Statistical analysis of reconstructed flow fields for Reynolds number 1100 and a grid
probe point constellation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

(a) Mean velocity (u) and variance (u′2) of the reconstructed trajectories compared with the ground
truth. All values are normalized by the mean inlet velocity.

(b) Histogram of time-averaged kinetic energy. (c) Time-averaged kinetic energy spectrum.

Figure 12: Statistical analysis of reconstructed flow fields for Reynolds number 1100 and a vertical
probe point constellation.

(a) Vertical probe constellation. (b) Grid probe constellation.

Figure 13: Histogram of all MSE values of the Reynolds number 2100 test trajectory and a grid
probe point constellation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

(a) Temporal evolution of the mean and
standard deviation of the MSE when comparing

the parallel-in-time and autoregressive
approaches.

(b) Histogram of all MSE values accumulated
over the rollout, comparing the parallel-in-time

and autoregressive approaches.

Figure 14: Comparison of error characteristics between the parallel-in-time and autoregressive re-
construction approaches for Reynolds number 1100 and a grid probe point constellation.

(a) Temporal evolution of the mean and
standard deviation of the MSE when comparing

the parallel-in-time and autoregressive
approaches.

(b) Histogram of all MSE values accumulated
over the rollout, comparing the parallel-in-time

and autoregressive approaches.

Figure 15: Comparison of error characteristics between the parallel-in-time and autoregressive re-
construction approaches for Reynolds number 1100 and a vertical probe point constellation.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

(a) Grid probe constellation.

(b) Vertical probe constellation.

Figure 16: The top rows show five exemplary LES ground truth snapshots. Time steps with t ≤
0 correspond to reconstructions based on measurements, while time steps with t > 0 represent
predictions with no measurements present. The following three rows display reconstructions from
three independent random seeds, each showing a connected sequence generated based on the probe
information provided. All values are normalized by the mean inlet velocity.

23

	Introduction
	Background
	Digital twins and data integration
	Scalable Neural Surrogates
	Computational Fluid Dynamics

	Method
	A neural twin framework for dynamical systems
	Parallel-in-time Neural Twins
	Theoretical Considerations

	Experiments
	Models
	Dataset and evaluation
	Results

	Conclusion
	Experimental details
	Dataset
	Implementation and architecture

	Theory
	Parallel-in-time models are on-trajectory
	In general, autoregressive models are not on-trajectory

	Additional results

