

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOPOALIGN: A FRAMEWORK FOR ALIGNING CODE TO MATH VIA TOPOLOGICAL DECOMPOSITION

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) excel at both informal and formal (e.g. Lean 4) mathematical reasoning but still struggle with *autoformalisation*, the task of transforming informal into formal mathematical statements. Autoformalisation helps pair the informal reasoning of LLMs with formal proof assistants which enable machine-verifiable generation and mitigate hallucinations. Yet, the performance of current Math LLMs is constrained by the scarcity of large-scale corpora, particularly those containing pairs of informal and formal statements. Although current models are trained to generate code from natural language instructions, structural and syntactic differences between these and formal mathematics limit effective transfer learning. We propose *TopoAlign*, a framework that unlocks widely available code repositories as training resources for Math LLMs. TopoAlign decomposes code into docstrings, main functions, and dependency functions, and reassembles these components into analogues that structurally mirror formal statements. This produces structurally aligned code data that can be used for training Math LLMs without requiring additional human annotation. We train two state-of-the-art models, DEEPSEEK-MATH and HERALD, and evaluate them on the MiniF2F, Putnam, and ProofNet benchmarks. TopoAlign provides substantial gains for DEEPSEEK-MATH, improving performance by 17.77% on BEq@10 and 68.82% on typecheck@10. Despite introducing no new mathematical knowledge, our framework achieves gains of 0.12% and 1.09% for HERALD on BEq@10 and typecheck@10, respectively, demonstrating that training on aligned code data is beneficial even for specialized models.

1 INTRODUCTION

Neuro-symbolic approaches that pair Large Language Models (LLMs) with proof assistants, such as Isabelle (Nipkow et al., 2002b) or Lean 4 (Moura & Ullrich, 2021), enable advanced mathematical reasoning by enforcing rule-based logical consistency (Welleck & Saha, 2023). These assistants operate on Formal Languages (FL), such as Lean 4, which provide rigorous, machine-verifiable frameworks. However, proficiency in these formal languages requires specialized expertise, meaning most mathematical problems are initially expressed in Natural Language (NL). While NL is ideal for human communication, its inherent flexibility and contextual dependence make it challenging to translate into a formal system. Bridging this gap requires *autoformalisation*, the process of faithfully translating informal NL math problems into FL. This step is essential for interacting with automated verifiers for tasks such as proof generation (Wu et al., 2022a; Ahn et al., 2024).

Despite recent advances, LLMs still struggle with autoformalisation, in part due to the lack of large-scale, high-quality, parallel datasets that pair NL problem descriptions with corresponding formal statements or proofs (Wu et al., 2022a). Synthetic datasets such as Herald statements (Gao et al., 2025) address the lack of training corpora, but their scale and diversity remain limited—especially compared to domains like code generation, where vast corpora are readily available. As a result, current models often either fail outright or require thousands of attempts and auxiliary retrieval systems to produce accurate formalisations of even simple mathematical problems (Li et al., 2024).

We address this bottleneck by extending the training resources available for Math LLMs to include widely available code repositories. Recent work demonstrates that models can learn the structure

[†]Equal contribution.

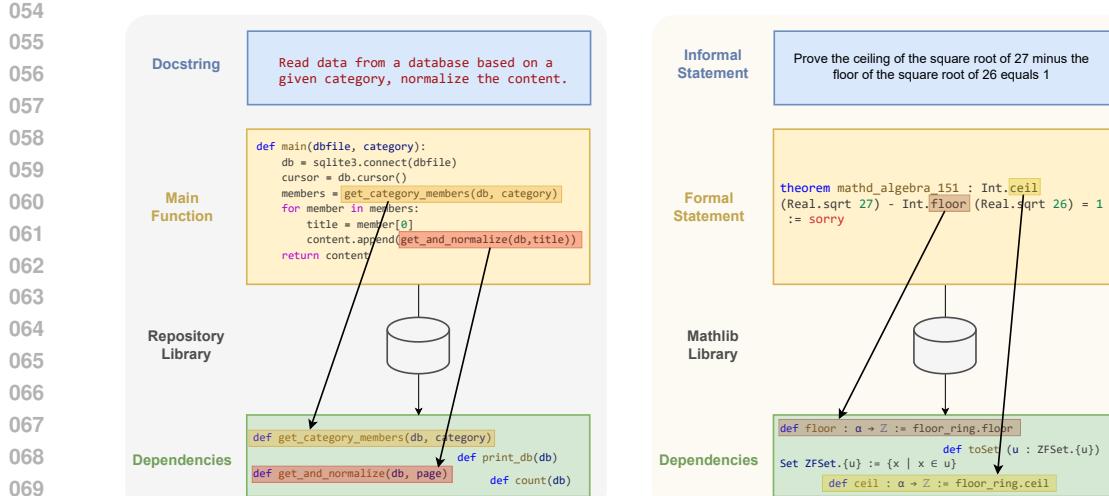


Figure 1: Structural similarity between code (left) and formal statements in Lean 4 (right). Code samples extracted from GitHub repositories are decomposed into: the docstring, which maps to informal statements in mathematical problems, the main function, which corresponds to the formal statements, and the dependency functions, which correspond to supporting lemmata and theorems, included in external libraries (e.g. Mathlib for Lean 4).

of a task from syntactically aligned data, even if the data is semantically unrelated to the final task (Gandhi et al., 2024). This suggests that vast programming code corpora could be leveraged to teach the compositional patterns of formal mathematics, provided the structure is correctly aligned. To achieve this, we propose *TopoAlign*, a framework that structurally aligns programming code with formal mathematics. TopoAlign decomposes code into docstrings, main functions, and dependency functions, and reassembles these components into sequences that mirror the structure of Lean 4 formal statements, see Figure 1. This alignment teaches the model the compositional structure of formal mathematics and enables transfer of problem-solving capabilities learned from code **without introducing new mathematical knowledge**. Applying TopoAlign, we construct a combined corpus of aligned code and formal math data. On top of this corpus, we introduce *code autoformalisation* (CAF), a task that emulates autoformalisation using the aligned code data. Specifically, we align code docstrings, dependency functions and main function bodies with informal descriptions, supporting lemmata, and formal statements in Lean code. Unlike regular code generation, where the challenge consists of solving the problem statement, our setting provides a synthetic docstring that already includes the solution intent, making the task closer to translating an informal mathematical description into a formal statement.

We train DEEPSEEK-MATH (Shao et al., 2024) and HERALD (Gao et al., 2025) with TopoAlign and the CAF objective, and evaluate on the MiniF2F, Putnam, and ProofNet benchmarks. The method yields consistent gains, achieving relative BEq improvements of 36.7% for DEEPSEEK-MATH and 6.2% for HERALD.

Contributions: **1)** We introduce TopoAlign, a novel method addressing the shortage of training corpora for Math LLMs by structurally aligning code data with formal mathematical languages. **2)** We propose “code autoformalisation” (CAF), a training task that leverages the structurally aligned code dataset to emulate autoformalisation, thereby reducing the dependence on annotated pairs of informal and formal mathematical statements. **3)** We release a large-scale **semi-synthetic** pre-training dataset of 300 million tokens, consisting of high-quality, structurally aligned code designed for autoformalisation tasks. **4)** Through detailed ablation studies, we demonstrate that a balanced ratio of our aligned code data and formal mathematical statements yields optimal autoformalisation performance.

108
109
110
111
112
113
114

2 RELATED WORK

115
116
117
118
119
120

Autoformalisation refers to the translation of informal mathematical problems in NL to FL state-
ments. This requires extensive mathematical knowledge and comprehensive understanding of of
the problem statements. Autoformalisation is a foundational component for integrating LLMs in
neuro-symbolic approaches for tasks like theorem proving (Wu et al., 2022a). This forms a positive
feedback loop, as improvements in theorem proving have also been found to enhance autoformalisa-
tion (Tarrach et al., 2024). Therefore, advancing autoformalisation is essential for neuro-symbolic
approaches and mathematical reasoning.

121
122
123
124
125
126
127

Previous methods for autoformalisation draw inspiration from machine translation literature (Wang
et al., 2018; Dwivedi et al., 2022), i.e. Szegedy (2020) propose encoding NL and FL in a shared
latent space and selecting translation candidates based on embedding similarity. Some approaches
focus on rule-based methods, such as GFLean, which uses the Grammatical Framework for parsing
and linearization (Pathak, 2024). However, these methods struggle to adapt to diverse inputs, as
their rules require frequent updates. In contrast, LLMs provide more flexibility and consequently
show strong autoformalisation performance (Jiang et al., 2022; Jiang, 2024; Wu et al., 2022b).

128
129
130
131
132
133
134
135
136
137
138
139

Despite their success in narrow domains (Soroco et al., 2025; Zhu et al., 2024), these methods face a
common challenge: the scarcity of parallel NL-FL math datasets. Various approaches are aimed to
extend the training datasets: ATLAS (Liu et al., 2025b) proposes using a student-teacher model to
generate additional synthetic data, but its effectiveness relies on an excellent teacher model, whereas
it uses DeepSeek, which the general-purpose teacher reaches a mathematical knowledge boundary.
**Additionally, ATLAS generates fully synthetic mathematical problems and formalizations from ex-
isting Lean code. In contrast, TopoAlign structurally aligns code repositories with formal math-
ematics and does not introduce new Lean statements.** Herald Statements (Gao et al., 2025) are
synthetically generated and, of lower quality compared to human-annotated data as they contain
variations of existing data. Jiang et al. (2024) show that multilingual data improves autoformalisa-
tion performance. Importantly, Chan et al. (2025) highlight that high-quality data can yield further
performance improvements. To address this, we leverage structurally aligned code data for training
Math LLMs. This provides a scalable alternative to mathematical statements in FL.

140
141
142
143
144
145
146
147
148

Codex demonstrated the power of pretraining on code data, as it achieves noticeable few-shot perfor-
mance for autoformalisation tasks (Chen et al., 2021). As such, typically, Math LLMs are initialised
from LLMs trained on extensive code data and progressively fine-tuned on mathematical datasets.
For example, Llemma (Zhang et al., 2024), Kimina (Wang et al., 2025) and DEEPSEEK-MATH
(Shao et al., 2024) are commonly trained on code and fine-tuned on math corpora problem. Li et al.
(2024) claim that the autoformalisation capabilities of Math LLMs has not been fully exploited using
general-purpose code data during pretraining. To address this, we propose using widely available
code repositories as a additional sources for Math LLMs by topologically decomposing and aligning
code with formal mathematical statements.

149
150
151
152
153
154
155
156
157

Prior work has explored synthetic data generation methods to address the scarcity of autoformalisa-
tion data. Approaches, such as ATLAS, propose a student-teacher framework to create new samples,
but their effectiveness is capped by the performance of the initial teacher model (Liu et al., 2025b).
Other methods, like the Herald Statements dataset, generate variations of existing statements from
libraries like Mathlib, which may limit the novelty of the resulting data (Gao et al., 2025). Several
high-quality, human-annotated datasets have been curated, including ProofNet (Azerbayev et al.,
2022), MiniF2F (Zheng et al., 2022), Putnam (Tsoukalas et al., 2024), and the Mathlib library it-
self (mathlib Community, 2020). While invaluable, creating these datasets is resource-intensive,
requires domain experts, and is consequently limited in scale.

158
159
160
161

Finally, given data scarcity, previous work explored techniques for efficient usage of available data
resources. Related methods aim to extract the inherent relationships between NL and FL in the data,
proposing alignment methods based on symbolic equivalence and semantic consistency (Li et al.,
2024). However, aligning NL and FL remains challenging when their formats and structures differ,
making it difficult to transfer the LLMs knowledge and reasoning capabilities between NL and FL.

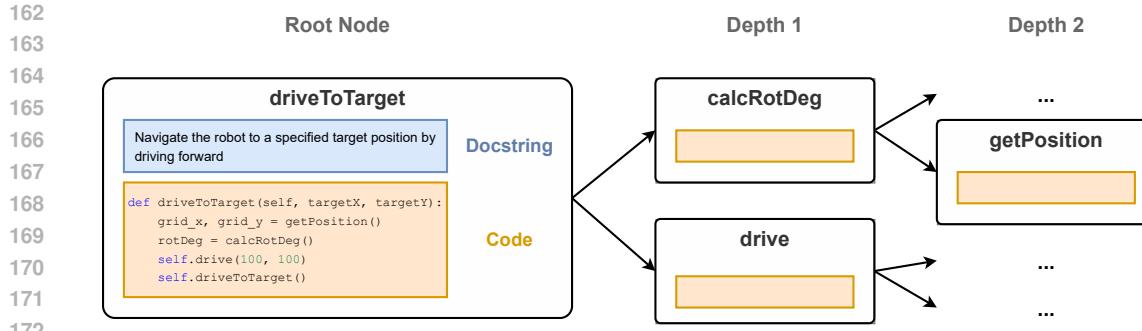


Figure 2: Function-level dependency tree showing the hierarchy of function calls, starting from the root node. Each child node represents a function called by its parent. The docstring for the root node is extracted to represent the description of the problem addressed in the code.

3 METHODOLOGY

We posit that current Math LLM performance is constrained primarily by the scarcity of large-scale training corpora. Large code datasets have already proven valuable for initializing these models (Shao et al., 2024; Wang et al., 2025), yet code data remains largely untapped during subsequent training on formal mathematics. Our TopoAlign framework and code autoformalisation task address this gap, demonstrating that structurally aligned code provides a complementary data source for mathematical autoformalisation.

3.1 TOPOLOGICAL DECOMPOSITION OF CODE FOR STRUCTURAL ALIGNMENT WITH FORMAL MATH DATA

TopoAlign builds on the premise that code and formal mathematical statements share a compositional structure. Functions in code solve distinct subproblems and may rely on auxiliary functions, analogous to how formal statements resolve informal problem descriptions using lemmata and theorems. We therefore decompose code at the function level (see Figure 1) into three transferable components: (i) the docstring, corresponding to the informal problem statement, (ii) the main function body, serving as a proxy for the formal statement; and (iii) its dependency functions, corresponding to supporting lemmata or library theorems (i.e., from Mathlib in Lean 4). **We select Lean as the representative mathematical formal language in this work, while other systems such as Isabelle (Nipkow et al., 2002a) and Coq (The Coq Development Team, 2020) are discussed in Appendix E.** Disassembling code into components that mirror those in formal mathematics enables structural transfer, allowing the aligned sequences to be used for training tasks such as autoformalisation and theorem proving. **Importantly, TopoAlign targets structural alignment and does not assume semantic equivalence between programming-language type systems and Lean’s dependent type system. The framework provides complementary pretraining data that enhances, rather than replaces, training on formal mathematical corpora.**

To extract functional dependencies, we employ a topological dependency parser that performs a breadth-first search to build function-level dependency graphs (see Algorithm 1 in Appendix D). This contrasts with file-level dependency extraction (i.e., DeepSeek (Guo et al., 2024)), which captures inter-file execution order but omits intra-file functional relationships. Our parser leverages abstract syntax trees to trace calls and parent definitions across files, and is designed to handle standalone functions, class or instance methods, recursive calls, and imports. The result is a tree-structured representation of code dependencies, as illustrated in Figure 2.

To obtain informal problem statements analogous to those in mathematics, we extract natural language descriptions from docstrings and README files. However, standard docstring conventions do not always align with the needs of autoformalisation. Docstrings are often designed to describe a function’s interface, including its inputs, outputs, and usage examples, rather than its implementation, which is closer to the role of an informal mathematical statement. A summary of the function’s implementation is therefore a more fitting analogue. Consequently, to create more suitable informal

descriptions and to augment missing or low-quality documentation, we generate concise summaries of each main function’s logic using Qwen3 (Yang et al., 2025). We perform a 10-gram contamination analysis following Guo et al. (2024) to ensure no information leakage between our dataset and the test set, and confirm no meaningful overlap exists.¹

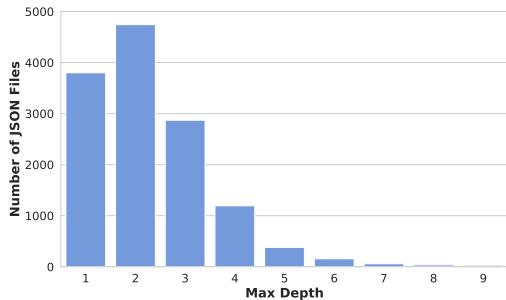


Figure 3: Distribution of maximum dependency tree depths across a random sample of 200 repositories.

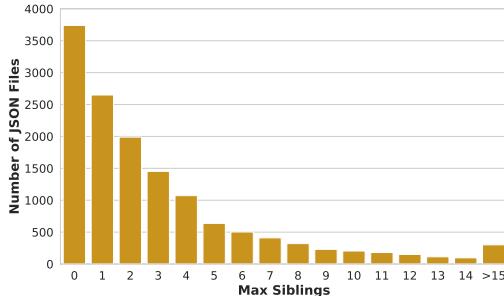


Figure 4: Distribution of the maximum number of siblings in dependency trees across a random sample of 200 repositories.

We analyse the structural properties of function-level dependency trees in the collected code to select repositories whose hierarchical patterns resemble those found in formal mathematics. For each repository we compute the maximum tree depth, reflecting overall complexity and the maximum number of sibling nodes at any depth, indicating the breadth of direct dependencies. We retain repositories with depth between 3 and 6 and maximum sibling counts between 3 and 10, thus excluding overly complex codebases as well as simple scripts. Figures 3 and 4 show the distributions of maximum depth and maximum sibling count for a random sample of 200 repositories. After filtering, the corpus contains 156,684 functions comprising 324.5 million tokens.²

3.2 CODE AUTOFORMALISATION (CAF)

To leverage structurally aligned code for training Math LLMs on autoformalisation, we introduce code autoformalisation (CAF), which emulates the autoformalisation process on code data. Treating each aligned code instance as an analogue of a formalisation scenario allows the model to learn structural patterns while transferring general problem-solving strategies acquired in programming. Importantly, our method focuses on transferring structural and problem-solving capabilities, rather than introducing new mathematical knowledge. While we recognize that this technique could be adapted to emulate other formal reasoning tasks like theorem proving, in this work, we focus specifically on addressing the prevalent data scarcity bottleneck in autoformalisation.

We train Math LLMs using a mixture of TopoAlign code data and formal mathematical data. This combined approach integrates mathematical knowledge and structure with problem-solving capabilities from code, while also mitigating catastrophic forgetting during fine-tuning (Chen et al., 2019). In our multi-task training approach, each training sample consists of an input x , a docstring for code or an informal statement for math, and a set of dependencies d , a set of dependency functions for code or supporting lemmata and theorems for math. The model is conditioned on x and d and trained to generate the target y : the main function for code data or the formal statement for math data, as illustrated in Figure 5.

The proportion of code and math samples during training is controlled by parameter α , where α determines the fraction of math samples and $1 - \alpha$ the fraction of code samples. The overall objective is defined as $\mathcal{L} = \alpha \mathcal{L}_{\text{math}} + (1 - \alpha) \mathcal{L}_{\text{CAF}}$, where $\mathcal{L}_{\text{math}}$ and \mathcal{L}_{CAF} denote the losses for math and code tasks, respectively. For each task, the loss is computed using next-token prediction, formulated as the negative log-likelihood $\mathcal{L} = -\sum_{i=1}^N \log P_\theta(y_i \mid y_{<i}, x)$, where x is the input sequence, $y = (y_1, y_2, \dots, y_N)$ is the target sequence, and P_θ is the model with parameters θ .

¹Additional details are provided in Appendix C.

²Dataset available at: ANONYMIZED.

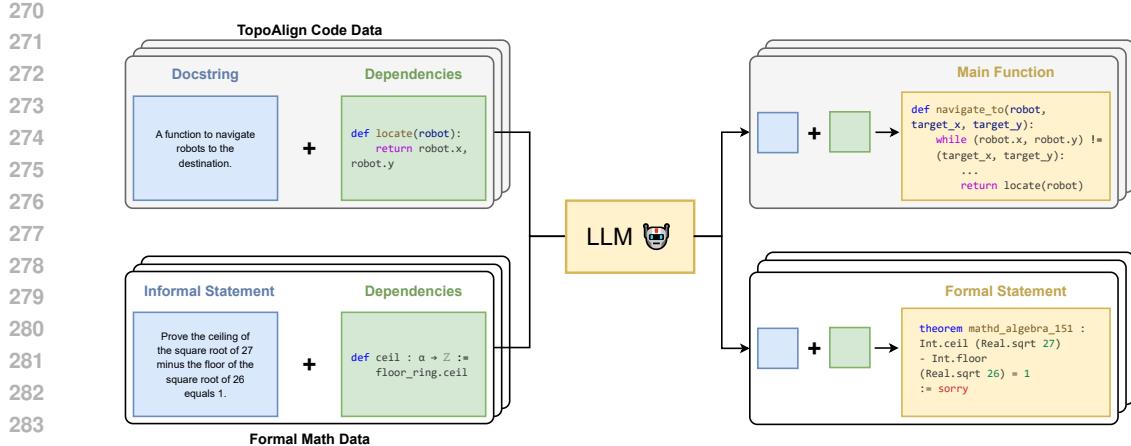


Figure 5: Overview of the training pipeline. The model takes a problem description (for either code or math) and its dependencies as input. The training objective is to generate the corresponding solution: the root code block for code inputs, or the formal statement for math inputs.

4 EXPERIMENTS

Training Data. Our code data is sourced from Python repositories in the Stack v2 dataset (Lozhkov et al., 2024). For formal mathematical statements, we use the Herald Statements corpus (Gao et al., 2025), a synthetic dataset built from Mathlib (mathlib Community, 2020). It contains Lean statements similar in style and structure to those found in math pretraining corpora, while avoiding overlap with downstream evaluation benchmarks such as MiniF2F, ProofNet, and Putnam. Dependency functions for the formal statements are extracted using the `jixia` library³.

Models. We evaluate two base models: DEEPSEEK-MATH (Shao et al., 2024) and HERALD (Gao et al., 2025), each comprising 7 billion parameters. HERALD is specialised for autoformalisation, having been trained on the synthetic Herald Statements data. In contrast, DEEPSEEK-MATH is trained on a broader range of mathematical data from DeepSeek-Coder (Guo et al., 2024), optimised for general mathematical problem-solving rather than explicit autoformalisation. This setup allows us to compare the performance of a dedicated autoformalisation model against one with enhanced code understanding.

Settings. For each base model, we evaluate four distinct variations, namely **Baseline**, **Math**, **Code** and **TopoAlign**. The **Baseline** setting evaluates the pretrained models directly on downstream tasks without any additional fine-tuning. The **Math** setting involves fine-tuning models exclusively on formal mathematical data from the Herald Statements corpus, which is equivalent to applying the CAF objective with a mixing ratio of $\alpha = 1$; this allows us to assess the impact of training on purely mathematical data. In the **Code** setting, models are trained only on unaligned code data extracted from the Stack v2 corpus, providing a control to test the effect of training without structural alignment via TopoAlign. Finally, the **TopoAlign** setting trains models on a balanced combination of formal mathematics and structurally aligned code using CAF, with a mixing ratio of $\alpha = 0.5$. This setting uses approximately **randomly selected** 4,000 samples from GitHub repositories and 4,000 samples from the Herald Statements dataset. For consistency, the number of training samples is kept equal across all settings. Details on training hyperparameters and prompts are provided in Appendix A.

Benchmarks. We evaluate models on several Lean 4 autoformalisation benchmarks: Putnam (Tsoukalas et al., 2024), the validation and test sets of MiniF2F (Zheng et al., 2022), and ProofNet (Azerbaiyev et al., 2022). Each benchmark consists of paired natural language and formal language statements, with the autoformalisation task consisting of generating the correct formal statement

³<https://github.com/frenzymath/jixia>

324	Dataset	Base Model	Setting	TC@1	BEq@1	TC@10	BEq@10
325	MiniF2F-valid	DEEPSEEK-MATH	Baseline	0.00	0.00	0.00	0.00
326			Math	45.18	9.65	79.82	19.74
327			Code	42.98	10.53	88.16	23.68
328			TopoAlign	51.75	14.47	87.28	26.32
329	MiniF2F-test	DEEPSEEK-MATH	Baseline	73.25	25.44	92.98	38.16
330			Math	75.44	24.12	93.86	41.23
331			Code	75.00	20.61	90.79	32.02
332			TopoAlign	76.75	26.75	94.74	41.23
333	ProofNet	DEEPSEEK-MATH	Baseline	0.00	0.00	0.00	0.00
334			Math	43.11	9.33	77.33	21.78
335			Code	52.89	7.56	91.52	26.79
336			TopoAlign	54.67	16.89	88.89	29.78
337	Putnam	DEEPSEEK-MATH	Baseline	78.22	24.44	95.54	41.96
338			Math	80.89	24.44	95.54	40.36
339			Code	80.89	20.89	90.63	34.38
340			TopoAlign	79.56	27.56	94.20	42.86
341	ProofNet	HERALD	Baseline	0.00	0.00	0.00	0.00
342			Math	21.12	5.35	43.42	12.57
343			Code	22.73	2.67	49.47	7.49
344			TopoAlign	32.89	9.09	56.95	14.97
345	Putnam	HERALD	Baseline	46.52	10.16	74.87	20.32
346			Math	46.79	10.43	75.40	19.77
347			Code	38.24	4.55	63.37	9.36
348			TopoAlign	43.85	9.63	75.67	16.84
349	Putnam	DEEPSEEK-MATH	Baseline	0.00	0.00	0.00	0.00
350			Math	10.69	0.00	27.04	0.00
351			Code	12.58	0.00	37.42	0.00
352			TopoAlign	17.30	0.00	42.14	0.00
353	Putnam	HERALD	Baseline	37.42	2.20	73.58	4.72
354			Math	43.71	2.52	70.44	4.09
355			Code	35.85	0.00	69.18	0.00
356			TopoAlign	36.16	1.57	76.73	4.72

Table 1: Auto-formalisation performance in percent for MiniF2F, ProofNet, and Putnam datasets under pass@1 and pass@10 metrics for Typecheck (TC) and BEq. Baseline setting refers to the pretrained model, Math is trained on additional formal math data and code is trained on additional code data that is not structurally aligned. Topoalign mixes math and structurally aligned code data.

given an informal description and its dependencies. Among these, Putnam presents the most challenging problems, ProofNet comprises textbook theorems, and MiniF2F is considered the most in-distribution benchmark, as it overlaps with Mathlib data.

Evaluation Metrics. We measure model performance using two primary metrics. First, we use Typecheck (TC) with the Lean 4 compiler (v4.11.0) to verify the syntactic correctness of generated statements (Poiroux et al., 2025; Limperg, 2025; Rabe et al., 2020; Wu et al., 2022b). For a more rigorous assessment of semantic fidelity, we employ bidirectional equivalence (BEq) (Liu et al., 2025a), which uses an LLM to generate proof tactics establishing logical equivalence between the model’s output and the reference statement. This provides a stronger signal of faithful autoformalisation than typechecking alone. For both metrics, we report pass@k scores, where a sample is considered correct if at least one of its k generated candidates passes the evaluation criterion.

5 RESULTS AND DISCUSSION

Table 1 presents the Typecheck and BEq performances for pass@k with $k = \{1, 10\}$, evaluated on the MiniF2F-valid, MiniF2F-test, ProofNet, and Putnam datasets.

378 Our proposed TopoAlign method consistently outperforms most of the baseline models in BEq
 379 across most datasets with substantial gains within both model families. For example, in the case
 380 of DEEPSEEK-MATH, the BEq@1 score on the MiniF2F-valid dataset increases from 9.65% to
 381 14.47%. It is worth noting that BEq@1 can exhibit some variance due to the stochastic nature of
 382 sampling, particularly with temperature-based decoding. This variability explains occasional per-
 383 formance drops in certain cases such as the slightly lower BEq@1 observed for HERALD on the
 384 Putnam dataset. Additionally, in terms of Typecheck accuracy, our model demonstrates superior
 385 performance across all baselines as well with only a few exceptions observed among the HERALD
 386 variants. In the more robust BEq@10 evaluation, TopoAlign shows consistent and substantial im-
 387 provements for both DEEPSEEK-MATH and HERALD across Putnam MiniF2F-valid and MiniF2F-
 388 test. These results demonstrate the effectiveness and generalisability of the TopoAlign in enhancing
 389 autoformalisation performance, particularly on less complex theorem formalisation datasets such as
 390 MiniF2F-valid and MiniF2F-test. These results suggest that the combination of topological align-
 391 ment and code autoformalisation effectively transfers both problem-solving skills and structural
 392 knowledge from code to mathematical autoformalisation tasks.

393 Furthermore, TopoAlign consistently surpasses the code-only model variants for both the HERALD
 394 and DEEPSEEK-MATH models on both BEq and Typecheck metrics. This pattern implies that the
 395 underlying code dataset, when used without structural alignment, does not provide information ben-
 396 efitical for autoformalisation beyond basic problem-solving capabilities. In contrast, the topological
 397 alignment and CAF task enable the successful transfer of both advanced problem-solving and struc-
 398 tural knowledge to math autoformalisation. Based on these findings, we conclude that TopoAlign
 399 and CAF effectively leverage code data to enhance the training of Math LLMs. This approach
 400 demonstrates that structurally aligned code datasets can serve as valuable sources of training data for
 401 Math LLMs, thereby addressing the scarcity of math-specific data. **Principally, TopoAlign unlocks**
 402 **code repositories as structurally aligned pretraining data while leaving the underlying code content**
 403 **unchanged, and CAF then facilitates the transfer of this knowledge from code to mathematics.** Our
 404 results validate that integrating widely available code data into the pretraining corpus substantially
 405 improves math autoformalisation performance, **and even provides additional performance benefits**
 406 **for specialized autoformalization models.**

407 5.1 QUALITATIVE ERROR ANALYSIS

408 To better understand the model’s behavior, we conduct a qualitative error analysis on 40 randomly
 409 selected samples from the ProofNet dataset. Our analysis focuses on the pass@1 results for the
 410 HERALD model trained with TopoAlign. The HERALD + TopoAlign model successfully formalises
 411 36 of the 40 samples according to BEq. Interestingly, when comparing these outputs to those from
 412 the HERALD + Math model, we observe that their successes are complementary: each model cor-
 413 rectly formalises a distinct set of problems that the other fails on. Upon closer examination, we find
 414 that the HERALD + TopoAlign model typically generates the main semantic components correctly
 415 with respect to the ground truth. However, a frequent source of error is the incorrect assignment of
 416 variable types. For example, consider the problem:

417
 418
 419 Informal Statement: For all odd n , show that $8 \mid n^2 - 1$.
 420

421 Autoformalisation (HERALD + TopoAlign):

422 `theorem eigh_dvd_sq_sub_one_of_odd {n : ℤ} : Odd n → 8 ∣ n^2 - 1 :=`
 423 `sorry`

425 Ground Truth:

426 `theorem exercise_1_27 {n : ℙ} (hn : Odd n) : 8 ∣ (n^2 - 1) :=`
 427 `sorry`

431 The crucial difference here is that the generated sample uses n as an integer (\mathbb{Z}), whereas the ground
 432 truth requires n to be a natural number (\mathbb{N}). This distinction is important, as $n^2 - 1$ must be non-

Dataset	Data ratio	TC@1	BEq@1
Putnam	$\alpha = 0.25$	12.58	0.00
	$\alpha = 0.50$	17.30	0.00
	$\alpha = 0.75$	12.89	0.00
ProofNet	$\alpha = 0.25$	24.60	6.15
	$\alpha = 0.50$	32.89	9.09
	$\alpha = 0.75$	26.20	8.29
MiniF2F-valid	$\alpha = 0.25$	44.74	11.84
	$\alpha = 0.50$	51.75	14.47
	$\alpha = 0.75$	52.63	10.96
MiniF2F-test	$\alpha = 0.25$	42.67	7.56
	$\alpha = 0.50$	54.67	16.89
	$\alpha = 0.75$	56.44	14.67

Table 2: Ablation study on training data composition for DEEPSEEK-MATH. The table compares Typecheck (TC) and bidirectional equivalence (BEq) scores for pass@1 to identify the optimal ratio of formal math data to our aligned code data.

negative. We hypothesize that this type of mismatch arises because the structurally aligned code data does not sufficiently emphasize type constraints. *TopoAlign* focuses on structural alignment, leaving fine-grained type distinctions as future work. One promising direction is incorporating strongly typed languages (e.g., Java, C++) during pretraining to mitigate the “type blindness” observed with weakly typed Python alone. Such type awareness would complement formal mathematics training and potentially improve correctness in autoformalization.

5.2 FINE-TUNING MATH MODELS ON CODE-ONLY DATA

We evaluated the HERALD model trained solely on code data to assess its ability to generalize to mathematical tasks. This experiment was motivated by the previously observed limitation of the DEEPSEEK-MATH model, which performs poorly on such tasks without targeted fine-tuning. The results show that the code-only HERALD model drops in performance, with BEq scores falling to zero and a significant decrease in typecheck accuracy. The generated outputs, while sometimes semantically plausible, are frequently syntactically invalid in Python. Representative examples of these outputs are provided in Appendix B.

5.3 IMPACT OF CODE-MATH DATA RATIO

We further explored the effect of varying the ratio of code to mathematics data in the CAF objective by adjusting the α parameter. To do this, we trained additional DEEPSEEK-MATH models with α values of 0.25 and 0.75, and report the results in Table 2. The balanced ratio ($\alpha = 0.5$) consistently yields the highest or near-highest performance for both Typecheck@1 and BEq@1. Lowering the mathematical content ($\alpha = 0.25$) leads to the weakest results, likely due to the token-level loss being dominated by the larger code samples, biasing the model toward code generation. Increasing the proportion of mathematical data ($\alpha = 0.75$) improves Typecheck@1 scores, especially on benchmarks closer to Mathlib, such as MiniF2F, but does not consistently improve BEq@1. These findings indicate that a balanced mix of code and mathematical data is crucial for optimal autoformalisation performance: mathematical data enhances syntactic accuracy, while code data enhances problem-solving capabilities.

5.4 BASE MODEL PERFORMANCE

The DEEPSEEK-MATH base model, which lacks pretraining on autoformalisation tasks, fails to generate meaningful outputs, often producing repeated symbols or malformed syntax that result in typecheck failures. In contrast, HERALD, which is pretrained on a large mathematical corpus, provides strong BEq performance across multiple datasets. Notably, the introduction of CAF training further improves its results: for instance, BEq@1 on MiniF2F-valid increases from 25.44% to 26.75%, and

486 on MiniF2F-test from 24.44% to 27.56%. These improvements confirm that TopoAlign provides
 487 significant benefits even for models that already possess strong autoformalisation capabilities.
 488

489 6 CONCLUSION

490 This work shows that widely available code repositories are a valuable, previously untapped re-
 491 source for pretraining more capable Math LLMs. We address the challenge of mathematical data
 492 scarcity by introducing TopoAlign, a method for structurally aligning code with formal mathemat-
 493 ics through topological decomposition of docstrings, main functions, and dependency functions.
 494 Using this approach, we curated a 324.5 million token dataset that mirrors the structure of formal
 495 mathematical statements. Training DEEPSEEK-MATH and HERALD models on this dataset leads
 496 to substantial improvements across four autoformalisation benchmarks, as evidenced by gains in
 497 both Typecheck and BEq metrics. Our methodology successfully transfers structural and problem-
 498 solving knowledge from code to mathematical reasoning. Ablation studies further highlight the need
 499 for a balanced mix of code and formal mathematical data: code improves problem-solving ability,
 500 while mathematical data ensures syntactic accuracy. Our findings establish structurally aligned code
 501 as a resource for advancing Math LLMs and open new opportunities for scaling their capabilities
 502 by leveraging code repositories. **Beyond autoformalization, TopoAlign’s structural alignment may**
 503 **extend to other mathematical reasoning tasks such as proof generation, though the distinct structures**
 504 **of formal statements and proofs warrant careful investigation in future work.**

505 ETHICS STATEMENT

506 This research has been conducted in accordance with ethical standards and guidelines. The study
 507 does not involve human participants, animals, or sensitive data, and thus does not raise any ethical
 508 concerns. All data used in this research were obtained from publicly available sources and were
 509 handled in compliance with relevant data protection regulations. We affirm that the work presented
 510 in this paper adheres to the principles of integrity, transparency, and academic honesty. We used
 511 LLMs solely to assist in editing and improving the language of this manuscript.

512 REPRODUCIBILITY STATEMENT

513 To ensure full reproducibility, all data sources, tools, and code are publicly available. The
 514 downstream evaluation benchmarks were sourced directly from their official repositories:
 515 MiniF2F (<https://github.com/openai/minif2f>), Putnam (<https://github.com/trishullab/PutnamBench>), and Herald (https://huggingface.co/datasets/FrenzyMath/Herald_statements). Ground truth dependencies were processed using Jixia
 516 (<https://github.com/frenzymath/jixia>), as detailed in Section 4. Our complete code-
 517 base and the generated dataset have been released at ANONYMIZED.

518 REFERENCES

519 Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
 520 for mathematical reasoning: Progresses and challenges. In Neele Falk, Sara Papi, and Mike
 521 Zhang (eds.), *Proceedings of the 18th Conference of the European Chapter of the Association
 522 for Computational Linguistics: Student Research Workshop*, pp. 225–237, St. Julian’s, Malta,
 523 March 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.eacl-srw.17.
 524 URL <https://aclanthology.org/2024.eacl-srw.17/>.

525 Zhangir Azerbayev, Bartosz Piotrowski, and Jeremy Avigad. Proofnet: A benchmark for auto-
 526 formalizing and formally proving undergraduate-level mathematics problems. In *Workshop
 527 on MATH-AI: Toward Human-Level Mathematical Reasoning, NeurIPS 2022*, 2022. URL
 528 <https://neurips.cc/virtual/2022/58291>. Poster presented virtually at NeurIPS
 529 2022.

530 W. Chan, M. Souliman, J. Nordhagen, et al. Lean-ing on quality: How high-quality data beats
 531 diverse multilingual data in autoformalization. *arXiv preprint arXiv:2502.15795*, 2025.

540 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
 541 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
 542 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
 543 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
 544 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
 545 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
 546 Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
 547 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
 548 Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
 549 Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
 550 language models trained on code, 2021. URL <https://arxiv.org/abs/2107.03374>.

551 Xinyang Chen, Sinan Wang, Bo Fu, Mingsheng Long, and Jianmin Wang. Catastrophic forgetting
 552 meets negative transfer: Batch spectral shrinkage for safe transfer learning. *Advances in neural*
 553 *information processing systems*, 32, 2019.

554 Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
 555 Graph neural networks with learnable structural and positional representations. In *Proceedings*
 556 *of the International Conference on Learning Representations (ICLR)*, 2022. URL <https://openreview.net/forum?id=wTTjnvGphYj>.

557 Saumya Gandhi, Ritu Gala, Vijay Viswanathan, Tongshuang Wu, and Graham Neubig. Better
 558 synthetic data by retrieving and transforming existing datasets. In Lun-Wei Ku, Andre Martins,
 559 and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL*
 560 2024, pp. 6453–6466, Bangkok, Thailand, August 2024. Association for Computational Linguis-
 561 tics. doi: 10.18653/v1/2024.findings-acl.385. URL [https://aclanthology.org/2024.findings-acl.385/](https://aclanthology.org/2024.findings-acl.385).

562 Guoxiong Gao, Yutong Wang, Jiedong Jiang, Qi Gao, Zihan Qin, Tianyi Xu, and Bin Dong. Herald:
 563 A natural language annotated lean 4 dataset. In *Proceedings of the International Conference on*
 564 *Learning Representations (ICLR)*, 2025. URL <https://iclr.cc/media/iclr-2025/Slides/29589.pdf>. Poster presented at ICLR 2025, Singapore EXPO; slides available on-
 565 line.

566 Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
 567 Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—the
 568 rise of code intelligence, 2024. URL <https://arxiv.org/abs/2401.14196>, 5:19, 2024.

569 A. Jiang, C. E. Staats, C. Szegedy, et al. Autoformalization with large language models. 2022, 2022.

570 A. Q. Jiang, W. Li, and M. Jamnik. Multi-language diversity benefits autoformalization. *Advances*
 571 *in Neural Information Processing Systems*, 37:83600–83626, 2024.

572 Q. Jiang. *Language Models for Verifiable Mathematical Automation Interaction, Integration, and*
 573 *Autoformalization*. PhD thesis, University of Cambridge, United Kingdom, 2024.

574 Zenan Li, Yifan Wu, Zhaoyu Li, Ximeng Wei, Xian Zhang, Fan Yang, and Xiaoxing Ma. Autoformal-
 575 ization mathematical statements by symbolic equivalence and semantic consistency. *Advances in*
 576 *Neural Information Processing Systems*, 37:53598–53625, 2024.

577 Jannis Limberg. Tactic script optimisation for aesop. In *Proceedings of the 14th ACM SIGPLAN*
 578 *International Conference on Certified Programs and Proofs*, pp. 98–111, 2025.

579 Q. Liu, X. Zheng, X. Lu, et al. Rethinking and improving autoformalization: towards a faithful
 580 metric and a dependency retrieval-based approach. In *The Thirteenth International Conference*
 581 *on Learning Representations*, 2025a.

582 Xiaoyang Liu, Kangjie Bao, Jiashuo Zhang, Yunqi Liu, Yuntian Liu, Yu Chen, Yang Jiao, and
 583 Tao Luo. Atlas: Autoformalizing theorems through lifting, augmentation, and synthesis of data,
 584 2025b. URL <https://arxiv.org/abs/2502.05567>.

585 Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
 586 Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
 587 next generation. *arXiv preprint arXiv:2402.19173*, 2024.

594 The mathlib Community. The lean mathematical library. In *Proceedings of the 9th ACM SIGPLAN*
 595 *International Conference on Certified Programs and Proofs*, POPL '20, pp. 367–381. ACM,
 596 January 2020. doi: 10.1145/3372885.3373824. URL <http://dx.doi.org/10.1145/3372885.3373824>.

598 Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
 599 In *Automated Deduction–CADE 28: 28th International Conference on Automated Deduction,*
 600 *Virtual Event, July 12–15, 2021, Proceedings 28*, pp. 625–635. Springer, 2021.

602 Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. *Isabelle/HOL: A Proof Assistant for*
 603 *Higher-Order Logic*, volume 2283 of *LNCS*. Springer, 2002a.

604 Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. *Isabelle/HOL: a proof assistant for*
 605 *higher-order logic*. Springer, 2002b.

607 Shashank Pathak. Gflean: An autoformalisation framework for lean via gf, 2024. URL <https://arxiv.org/abs/2404.01234>.

609 Auguste Poiroux, Gail Weiss, Viktor Kunčak, and Antoine Bosselut. Improving autoformalization
 610 using type checking, 2025. URL <https://arxiv.org/abs/2406.07222>.

612 Markus N Rabe, Dennis Lee, Kshitij Bansal, and Christian Szegedy. Mathematical reasoning via
 613 self-supervised skip-tree training. *arXiv preprint arXiv:2006.04757*, 2020.

615 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 616 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 617 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

618 Mauricio Soroco, Jialin Song, Mengzhou Xia, Kye Emond, Weiran Sun, and Wuyang Chen. Pde-
 619 controller: Llms for autoformalization and reasoning of pdes, 2025. URL <https://arxiv.org/abs/2502.00963>.

621 C. Szegedy. A promising path towards autoformalization and general artificial intelligence. In *Intelligent Computer Mathematics: 13th International Conference, CICM 2020, Bertinoro, Italy, July*
 622 *26–31, 2020, Proceedings 13*, pp. 3–20, Bertinoro, Italy, 2020. Springer International Publishing.

625 G. Tarrach, A. Q. Jiang, D. Raggi, et al. More details, please: Improving autoformalization with
 626 more detailed proofs. In *AI for Math Workshop@ ICML 2024*, 2024.

628 The Coq Development Team. *The Coq Proof Assistant Reference Manual*. INRIA, 2020. <https://coq.inria.fr>.

630 George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings,
 631 Amitayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers
 632 on the putnam mathematical competition. In *NeurIPS 2024 Poster Session*, 2024. URL
 633 <https://nips.cc/virtual/2024/poster/97811>. Virtual poster presented at the
 634 Thirty-eighth Annual Conference on Neural Information Processing Systems (NeurIPS), Van-
 635 couver.

636 Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
 637 Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large
 638 formal reasoning models with reinforcement learning. *arXiv preprint arXiv:2504.11354*, 2025.

640 Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First experiments with neural translation of
 641 informal to formal mathematics, 2018. URL <https://arxiv.org/abs/1805.06502>.

642 Sean Welleck and Rahul Saha. Llmstep: Llm proofstep suggestions in lean. In *Proceedings of*
 643 *the 3rd Workshop on Mathematical Reasoning and AI (MATH-AI), NeurIPS 2023*, 2023. URL
 644 <https://neurips.cc/virtual/2023/74987>. Poster presented virtually at NeurIPS
 645 2023.

647 Y. Wu, A. Jiang, W. Li, et al. Autoformalization for neural theorem proving. *Artificial Intelligence and Theorem Proving (AITP)*, 2022a.

648 Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jam-
 649 nik, and Christian Szegedy. Autoformalization with large language models. In S. Koyejo,
 650 S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neu-
 651 ral Information Processing Systems*, volume 35, pp. 32353–32368. Curran Associates, Inc.,
 652 2022b. URL [https://proceedings.neurips.cc/paper_files/paper/2022/
 653 file/d0c6bc641a56bebee9d985b937307367-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2022/file/d0c6bc641a56bebee9d985b937307367-Paper-Conference.pdf).

654
 655 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 656 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 657 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 658 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 659 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 660 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 661 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 662 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 663 Qiu. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.

664
 665 Lan Zhang, Xin Quan, and Andre Freitas. Consistent autoformalization for constructing math-
 666 ematical libraries. In *Proceedings of the 2024 Conference on Empirical Methods in Natural
 667 Language Processing*, pp. 4020–4033. Association for Computational Linguistics, 2024. doi:
 668 10.18653/v1/2024.emnlp-main.233. URL [http://dx.doi.org/10.18653/v1/2024.
 669 emnlp-main.233](http://dx.doi.org/10.18653/v1/2024.emnlp-main.233).

670
 671 Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: A cross-system benchmark for
 672 formal olympiad-level mathematics. In *Proceedings of the International Conference on Learn-
 673 ing Representations (ICLR)*. OpenReview.net, 2022. URL [https://openreview.net/
 674 forum?id=9ZPegFuFTFv](https://openreview.net/forum?id=9ZPegFuFTFv).

675
 676 N. Zhu, X. Zhang, Q. Huang, et al. Fgeo-parser: Autoformalization and solution of plane geometric
 677 problems. *Symmetry*, 17(1):8, 2024.

680 A TRAINING HYPERPARAMETERS

681 The hyperparameters used for training the LLMs are listed in Tables 3 and 4. We adhere to the
 682 default settings provided in the original papers.

686 B GENERATED SAMPLE FROM CODE-ONLY TRAINED MODEL

687 These samples are generated by HERALD trained exclusively on code data. The outputs demonstrate
 688 that while the model captures the underlying logical structure correctly, it lacks proficiency in Lean
 689 4 syntax. However, this suggests the presence of semantic similarity between programming code
 690 and formal mathematical language.

695 Hyperparameters	696 DEEPSEEK-MATH	697 HERALD
698 learning rate	2e-4	1e-6
699 weight decay	0.1	0.1
700 epochs	1	1
701 batch size	32	32

Table 3: Training hyperparameter settings.

	Hyperparameters	DEEPSEEK-MATH	HERALD
704	temperature	0.70	0.70
705	top p	0.95	0.95
706	max token	1024	1024

Table 4: Inference hyperparameter settings used for autoformalisation in the pass@10 setting.

```

714 from math import sqrt, ceil, floor
715
716 def evaluate_sqrt_expressions_1():
717     assert(int(ceil(sqrt(27))) - int(floor(sqrt(26))) == 1)
718
719 def is_increasing_function(a, b):
720     """
721     The function checks if the function  $f(x) = 4bx + (a+1)x^2$  is
722     increasing for  $x \geq 0$ .
723     """
724     return 4*b <= 4*b**2 + (a+1)**2
725
726 def is_3_(girls: list[int]) -> int:
727     """
728     >>> is_3_([1, 2, 3, 4, 5, 6, 7])
729     3
730     """
731     return 3
732
733
734
735

```

C TRAINING INSTRUCTIONS AND INFERENCE PROMPTS

740 To generate docstrings describing the main functions in the code repositories, we employ Qwen3-
741 14B model (<https://huggingface.co/Qwen/Qwen3-14B>) using the following prompt
742 format:

Prompt

748 Provide a concise description of the problem solved in the code snippet below. Format the
749 response as a docstring.
750 {code}

752
753
754
755 We manually verified 50 randomly sampled docstrings from our dataset, and all of them exhibit
 accurate and complete descriptions of the corresponding code. Selected samples are provided below:

```

756
757     def sync(self, title: str, keywords: Union[str, list[str]]) -> dict:
758
759         title = validate_title(title)
760         keywords = validate_keywords(keywords)
761         filter_item = self.filter(title)
762         remote_keywords = filter_item["keywords"]
763         [...]
764         params = OrderedDict(
765             {
766                 "title": title,
767                 "context[]": filter_item["context"],
768                 "filter_action": filter_item["filter_action"],
769             }
770         )
771         params.update(self._build_keyword_params(add_keywords +
772         delete_keywords))
772         response = self._call_api(
773             "put", f"/api/v2/filters/{filter_item['id']}", params=params
774         )
775         response["added"] = add_keywords
776         response["deleted"] = delete_keywords
777         return response
778
779
780
Generated Docstring
781
782     This function synchronizes local and remote keywords for a filter by comparing provided
783     keywords with existing ones. It identifies keywords to add and remove, logs changes, con-
784     structs API parameters, and updates the filter via a PUT request. The response includes
785     added/deleted keywords to confirm synchronization.
786
787
788
789
790     def attention_mlp_stack(inputs, out_channel, num_heads, depth,
791         key_dim, attn_ratio, mlp_ratio, strides, stack_drop=0,
792         activation="hard_swish", name="") :
793
794         nn = inputs
795         embed_dim = nn.shape[-1]
796         stack_drop_s, stack_drop_e = stack_drop if isinstance(stack_drop,
797         (list, tuple)) else [stack_drop, stack_drop]
798         for ii in range(depth):
799             block_name = name + "block{}_".format(ii + 1)
800             drop_rate = stack_drop_s + (stack_drop_e - stack_drop_s) * ii
801             / depth
802             nn = res_mhsa_with_multi_head_position(nn, embed_dim,
803             num_heads, key_dim, attn_ratio, drop_rate, activation=activation,
804             name=block_name)
805
806             if mlp_ratio > 0:
807                 [...]
808             if mlp_ratio > 0:
809                 nn = res_mlp_block(nn, mlp_ratio, drop_rate,
810                 activation=activation, name=block_name + "mlp_")
811
812             return keras.layers.Activation("linear", name=name + "output") (nn)
813

```

810
811**Generated Docstring**812
813
814
815
816
817

This function constructs a neural network stack with multi-head attention and MLP blocks. It applies a series of attention mechanisms (res_mhsa_with_multi_head_position) and optional MLPs (res_mlp_block) across ‘depth’ layers, adjusting dropout rates progressively. The stack supports configurable heads, key dimensions, ratios, and activation functions, returning a linear output layer.

818
819
820
821

These examples demonstrate that generated docstrings faithfully capture the code: the first enhances a minimal existing docstring with concise descriptions of keyword synchronization logic, while the second provides a detailed description of the multi-layer attention–MLP architecture for a function that originally lacked a docstring.

822
823

For math-related tasks, we use the following prompt format:

824
825
826
827
828
829
830
831
832
833
834
835**Prompt**

Use the following pre-defined Lean 4 dependencies:
 {dependencies}

Based on the context and the problem description, generate a single, syntactically correct Lean 4 formal statement that accurately captures the problem’s meaning.

Problem Description:
 {problem description}

For code-related tasks, we employ a parallel prompt structure:

836
837
838
839
840
841
842
843
844
845
846
847
848**Prompt**

Use the following pre-defined functions:
 {pre-defined functions}

Based on the context and the problem description, generate a syntactically correct function implementation that accurately captures the problem’s meaning.

Problem Description:
 {problem description}

D DEPENDENCY TREE EXTRACTION ALGORITHM849
850
851
852
853
854
855
856
857

The dependency tree extraction process is formally described in Algorithm 1. The algorithm iterates through all files within a given directory, systematically identifying user-defined functions, including both class methods and standalone functions. We then analyse inter-file and inter-class dependency relationships. Through static analysis of function call patterns, we construct a directed dependency graph where each function call establishes a parent-child relationship. The calling function serves as the parent node, while the called function becomes the child node.

E EXTENDING TOPOALIGN TO OTHER FORMAL LANGUAGES858
859
860
861
862
863

Formal statements in other proof assistants (e.g., Coq and Isabelle) share structural similarities with Lean. Below we show Isabelle and Coq versions of the informal statement: *Prove the ceiling of the square root of 27 minus the floor of the square root of 26 equals 1.*

Isabelle:

theorem ceil_sqrt27_minus_floor_sqrt26: “ceiling (sqrt 27) - floor (sqrt 26) = (1::int)”

864 **Algorithm 1** Function Call Dependency Analysis

865 **Require:** Python project directory

866 **Ensure:** Dependency graph of function calls

867 1: **Data Structures:**

868 2: *function_definitions* $\leftarrow \{\}$ ▷ Record defined functions

869 3: *imports* $\leftarrow \{\}$ *object_types* $\leftarrow \{\}$ ▷ Imported names \rightarrow full paths; Object names \rightarrow class

870 names; Save these two to track their parent function definitions or the file where they're defined

871 4: ANALYZEFILE(*f*) for all Python files *f* in directory (recursively)

872 5: **procedure** ANALYZEFILE(*file_path*)

873 6: Parse AST from *file_path*

874 7: Initialize *function_calls* $\leftarrow \{\}$, *object_types* $\leftarrow \{\}$

875 8: **for** all nodes *n* in AST **do**

876 9: **if** *n* is **ClassDef** **then**

877 10: Track current class context ▷ Class defined function

878 11: **else if** *n* is **Import/ImportFrom** **then**

879 12: 13: Record *imports*[*alias*] \leftarrow full module path ▷ Function from other files

880 13: **else if** *n* is **FunctionDef** **then**

881 14: 15: Register function with *current_class.name* if applicable

882 15: Initialize *function_calls*[*name*] $\leftarrow \{\}$ ▷ Save its dependency

883 16: **else if** *n* is **Assign** with constructor call **then**

884 17: 18: Map *object_types*[*var*] \leftarrow class name ▷ Record the codes that initialise this function

885 18: **else if** *n* is **Call** **then**

886 19: 20: Resolve full function name (direct call(*obj()*), method call(*obj.method()*), or imports *imports*[*name*])

887 20: Append to *function_calls*[*current_func*] ▷ The list to record the dependency information

888 21: **end if**

889 22: **end for**

890 23: **end procedure**

891 24: **procedure** BUILDDependencyGRAPH

892 25: Filter to keep only project-internal calls

893 26: Detect recursive calls (*f* \rightarrow *f*) ▷ Self-recursive call

894 27: **Topological Sort:** ▷ BFS search

895 28: Construct nested call tree from sorted order

896 29: Insert recursion markers at tree root if needed

897 30: **end procedure**

898

899

900 Coq:

901 Theorem ceil_sqrt27_minus_floor_sqrt26 : (up (sqrt 27) - Z.floor (sqrt 26))%Z = 1%Z.

902

903 While these formal languages show similar structural characteristics to the decomposed code data in

904 TopoAlign, supporting multiple formal languages would require either training dedicated models for

905 each target language or constructing a mixed pretraining corpus that incorporates multiple formal

906 languages. Although this direction offers promising practical applications, it lies beyond the scope

907 of the present work.

908

909

910

911

912

913

914

915

916

917