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ABSTRACT

Large Language Models (LLMs) excel at both informal and formal (e.g. Lean 4)
mathematical reasoning but still struggle with autoformalisation, the task of trans-
forming informal into formal mathematical statements. Autoformalisation helps
pair the informal reasoning of LLMs with formal proof assistants which enable
machine-verifiable generation and mitigate hallucinations. Yet, the performance
of current Math LLMs is constrained by the scarcity of large-scale corpora, partic-
ularly those containing pairs of informal and formal statements. Although current
models are trained to generate code from natural language instructions, structural
and syntactic differences between these and formal mathematics limit effective
transfer learning. We propose TopoAlign, a framework that unlocks widely avail-
able code repositories as training resources for Math LLMs. TopoAlign decom-
poses code into docstrings, main functions, and dependency functions, and re-
assembles these components into analogues that structurally mirror formal state-
ments. This produces structurally aligned code data that can be used for train-
ing Math LLMs without requiring additional human annotation. We train two
state-of-the-art models, DEEPSEEK-MATH and HERALD, and evaluate them on
the MiniF2F, Putnam, and ProofNet benchmarks. TopoAlign provides substantial
gains for DEEPSEEK-MATH, improving performance by 17.77% on BEq@10 and
68.82% on typecheck@10. Despite introducing no new mathematical knowledge,
our framework achieves gains of 0.12% and 1.09% for HERALD on BEq@10 and
typecheck@10, respectively, demonstrating that training on aligned code data is
beneficial even for specialized models.

1 INTRODUCTION

Neuro-symbolic approaches that pair Large Language Models (LLMs) with proof assistants, such
as Isabelle (Nipkow et al., 2002) or Lean 4 (Moura & Ullrich, 2021), enable advanced mathematical
reasoning by enforcing rule-based logical consistency (Welleck & Saha, 2023). These assistants
operate on Formal Languages (FL), such as Lean 4, which provide rigorous, machine-verifiable
frameworks. However, proficiency in these formal languages requires specialized expertise, mean-
ing most mathematical problems are initially expressed in Natural Language (NL). While NL is ideal
for human communication, its inherent flexibility and contextual dependence make it challenging to
translate into a formal system. Bridging this gap requires autoformalisation, the process of faithfully
translating informal NL math problems into FL. This step is essential for interacting with automated
verifiers for tasks such as proof generation (Wu et al., 2022a; Ahn et al., 2024).

Despite recent advances, LLMs still struggle with autoformalisation, in part due to the lack of large-
scale, high-quality, parallel datasets that pair NL problem descriptions with corresponding formal
statements or proofs (Wu et al., 2022a). Synthetic datasets such as Herald statements (Gao et al.,
2025) address the lack of training corpora, but their scale and diversity remain limited—especially
compared to domains like code generation, where vast corpora are readily available. As a result,
current models often either fail outright or require thousands of attempts and auxiliary retrieval
systems to produce accurate formalisations of even simple mathematical problems (Li et al., 2024a).

We address this bottleneck by extending the training resources available for Math LLMs to include
widely available code repositories. Recent work demonstrates that models can learn the structure
of a task from syntactically aligned data, even if the data is semantically unrelated to the final task
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Docstring

Main
Function

Dependencies

def main(dbfile, category):
    db = sqlite3.connect(dbfile)
    cursor = db.cursor()
    members = get_category_members(db, category)
    for member in members:
        title = member[0]
        content.append(get_and_normalize(db,title))
    return content

    Read data from a database based on a 
    given category, normalize the content. 

def get_category_members(db, category)

def get_and_normalize(db, page) def count(db)

def print_db(db)

Repository
Library

Informal
Statement

Formal
Statement

Dependencies

Mathlib
Library

Prove the ceiling of the square root of 27 minus the
floor of the square root of 26 equals 1

theorem mathd_algebra_151 : Int.ceil
(Real.sqrt 27) - Int.floor (Real.sqrt 26) = 1 
 := sorry

def ceil : α → ℤ := floor_ring.ceil

def floor : α → ℤ := floor_ring.floor

def toSet (u : ZFSet.{u})
Set ZFSet.{u} := {x | x ∈ u}

Figure 1: Structural similarity between code (left) and formal statements in Lean 4 (right). Code
samples extracted from GitHub repositories are decomposed into: the docstring, which maps to
informal statements in mathematical problems, the main function, which corresponds to the formal
statements, and the dependency functions, which correspond to supporting lemmata and theorems,
included in external libraries (e.g. Mathlib for Lean 4).

(Gandhi et al., 2024). This suggests that vast programming code corpora could be leveraged to teach
the compositional patterns of formal mathematics, provided the structure is correctly aligned. To
achieve this, we propose TopoAlign, a framework that structurally aligns programming code with
formal mathematics. TopoAlign decomposes code into docstrings, main functions, and dependency
functions, and reassembles these components into sequences that mirror the structure of Lean 4
formal statements, see Figure 1. This alignment teaches the model the compositional structure of
formal mathematics and enables transfer of problem-solving capabilities learned from code. Apply-
ing TopoAlign, we construct a combined corpus of aligned code and formal math data. On top of this
corpus, we introduce code autoformalisation (CAF), a task that emulates autoformalisation using the
aligned code data. Specifically, we align code docstrings, dependency functions and main function
bodies with informal descriptions, supporting lemmata, and formal statements in Lean code. Unlike
regular code generation, where the challenge consists of solving the problem statement, our setting
provides a synthetic docstring that already includes the solution intent, making the task closer to
translating an informal mathematical description into a formal statement.

We train DEEPSEEK-MATH (Shao et al., 2024) and HERALD (Gao et al., 2025) with TopoAlign and
the CAF objective, and evaluate on the MiniF2F, Putnam, and ProofNet benchmarks. The method
yields consistent gains, achieving relative BEq improvements of 36.7% for DEEPSEEK-MATH and
6.2% for HERALD.

Contributions:. 1) We introduce TopoAlign, a novel method addressing the shortage of training
corpora for Math LLMs by structurally aligning code data with formal mathematical languages. 2)
We propose “code autoformalisation” (CAF), a training task that leverages the structurally aligned
code dataset to emulate autoformalisation, thereby reducing the dependence on annotated pairs of
informal and formal mathematical statements. 3) We release a large-scale pre-training dataset of 300
million tokens, consisting of high-quality, structurally aligned code designed for autoformalisation
tasks. 4) Through detailed ablation studies, we demonstrate that a balanced ratio of our aligned code
data and formal mathematical statements yields optimal autoformalisation performance.

2 RELATED WORK

Autoformalisation refers to the translation of informal mathematical problems in NL to FL state-
ments. This requires extensive mathematical knowledge and comprehensive understanding of of
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the problem statements. Autoformalisation is a foundational component for integrating LLMs in
neuro-symbolic approaches for tasks like theorem proving (Wu et al., 2022a). This forms a positive
feedback loop, as improvements in theorem proving have also been found to enhance autoformali-
sation (Tarrach et al., 2024). Therefore, advancing autoformalisation is essential for neuro-symbolic
approaches and mathematical reasoning.

Previous methods for autoformalisation draw inspiration from machine translation literature (Wang
et al., 2018; Dwivedi et al., 2022), i.e. Szegedy (2020) propose encoding NL and FL in a shared
latent space and selecting translation candidates based on embedding similarity. Some approaches
focus on rule-based methods, such as GFLean, which uses the Grammatical Framework for parsing
and linearization (Pathak, 2024). However, these methods struggle to adapt to diverse inputs, as
their rules require frequent updates. In contrast, LLMs provide more flexibility and consequently
show strong autoformalisation performance (Jiang et al., 2022; Jiang, 2024; Wu et al., 2022b).

Despite their success in narrow domains (Soroco et al., 2025; Zhu et al., 2024), these methods face a
common challenge: the scarcity of parallel NL-FL math datasets. Various approaches are aimed to
extend the training datasets: ATLAS (Liu et al., 2025b) proposes using a student-teacher model to
generate additional synthetic data, but its effectiveness relies on an excellent teacher model, whereas
it uses DeepSeek, which the general-purpose teacher reaches a mathematical knowledge boundary.
Herald Statements (Gao et al., 2025) are synthetically generated and, of lower quality compared to
human-annotated data as they contain variations of existing data. Jiang et al. (2024) show that mul-
tilingual data improves autoformalisation performance. Importantly, Chan et al. (2025) highlight
that high-quality data can yield further performance improvements. To address this, we leverage
structurally aligned code data for training Math LLMs. This provides a scalable alternative to math-
ematical statements in FL.

Codex demonstrated the power of pretraining on code data, as it achieves noticeable few-shot perfor-
mance for autoformalisation tasks (Chen et al., 2021). As such, typically, Math LLMs are initialised
from LLMs trained on extensive code data and progressively fine-tuned on mathematical datasets.
For example, Llemma (Zhang et al., 2024), Kimina (Wang et al., 2025) and DEEPSEEK-MATH
(Shao et al., 2024) are commonly trained on code and fine-tuned on math corpora problem. Li et al.
(2024a) claim that the autoformalisation capabilities of Math LLMs has not been fully exploited
using general-purpose code data during pretraining. To address this, we propose using widely avail-
able code repositories as a additional sources for Math LLMs by topologically decomposing and
aligning code with formal mathematical statements.

Prior work has explored synthetic data generation methods to address the scarcity of autoformalisa-
tion data. Approaches, such as ATLAS, propose a student-teacher framework to create new samples,
but their effectiveness is capped by the performance of the initial teacher model (Liu et al., 2025b).
Other methods, like the Herald Statements dataset, generate variations of existing statements from
libraries like Mathlib, which may limit the novelty of the resulting data (Gao et al., 2025). Several
high-quality, human-annotated datasets have been curated, including ProofNet (Azerbayev et al.,
2022), MiniF2F (Zheng et al., 2022), Putnam (Tsoukalas et al., 2024), and the Mathlib library it-
self (mathlib Community, 2020). While invaluable, creating these datasets is resource-intensive,
requires domain experts, and is consequently limited in scale.

Finally, given data scarcity, previous work explored techniques for efficient usage of available data
resources. Related methods aim to extract the inherent relationships between NL and FL in the data,
proposing alignment methods based on symbolic equivalence and semantic consistency (Li et al.,
2024b). However, aligning NL and FL remains challenging when their formats and structures differ,
making it difficult to transfer the LLMs knowledge and reasoning capabilities between NL and FL.

3 METHODOLOGY

We posit that current Math LLM performance is constrained primarily by the scarcity of large-scale
training corpora. Large code datasets have already proven valuable for initializing these models
(Shao et al., 2024; Wang et al., 2025), yet code data remains largely untapped during subsequent
training on formal mathematics. Our TopoAlign framework and code autoformalisation task address
this gap, demonstrating that structurally aligned code provides a complementary data source for
mathematical autoformalisation.

3
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driveToTarget

def driveToTarget(self, targetX, targetY):

    grid_x, grid_y = getPosition()

    rotDeg = calcRotDeg()

    self.drive(100, 100)

    self.driveToTarget()

Navigate the robot to a specified target position by
driving forward Docstring

Code

...

...

...

Root Node Depth 1 Depth 2

calcRotDeg

drive

getPosition

Figure 2: Function-level dependency tree showing the hierarchy of function calls, starting from the
root node. Each child node represents a function called by its parent. The docstring for the root node
is extracted to represent the description of the problem addressed in the code.

3.1 TOPOLOGICAL DECOMPOSITION OF CODE FOR STRUCTURAL ALIGNMENT WITH
FORMAL MATH DATA

TopoAlign builds on the premise that code and formal mathematical statements share a composi-
tional structure. Functions in code solve distinct subproblems and may rely on auxiliary functions,
analogous to how formal statements resolve informal problem descriptions using lemmata and theo-
rems. We therefore decompose code at the function level (see Figure 1) into three transferable com-
ponents: (i) the docstring, corresponding to the informal problem statement, (ii) the main function
body, serving as a proxy for the formal statement; and (iii) its dependency functions, corresponding
to supporting lemmata or library theorems (i.e., from Mathlib in Lean 4). Disassembling code into
components that mirror those in formal mathematics enables structural transfer, allowing the aligned
sequences to be used for training tasks such as autoformalisation and theorem proving.

To extract functional dependencies, we employ a topological dependency parser that performs a
breadth-first search to build function-level dependency graphs (see Algorithm 1 in Appendix D).
This contrasts with file-level dependency extraction (i.e., DeepSeek (Guo et al., 2024)), which cap-
tures inter-file execution order but omits intra-file functional relationships. Our parser leverages
abstract syntax trees to trace calls and parent definitions across files, and is designed to handle
standalone functions, class or instance methods, recursive calls, and imports. The result is a tree-
structured representation of code dependencies, as illustrated in Figure 2.

To obtain informal problem statements analogous to those in mathematics, we extract natural lan-
guage descriptions from docstrings and README files. However, standard docstring conventions
do not always align with the needs of autoformalisation. Docstrings are often designed to describe a
function’s interface, including its inputs, outputs, and usage examples, rather than it’s implementa-
tion, which is closer to the role of an informal mathematical statement. A summary of the function’s
implementation is therefore a more fitting analogue. Consequently, to create more suitable informal
descriptions and to augment missing or low-quality documentation, we generate concise summaries
of each main function’s logic using an LLM.1

We analyse the structural properties of function-level dependency trees in the collected code to se-
lect repositories whose hierarchical patterns resemble those found in formal mathematics. For each
repository we compute the maximum tree depth, reflecting overall complexity and the maximum
number of sibling nodes at any depth, indicating the breadth of direct dependencies. We retain
repositories with depth between 3 and 6 and maximum sibling counts between 3 and 10, thus ex-
cluding overly complex codebases as well as simple scripts. Figures 3 and 4 show the distributions
of maximum depth and maximum sibling count for a random sample of 200 repositories. After
filtering, the corpus contains 156,684 functions comprising 324.5 million tokens.2

1Additional details are provided in Appendix A.
2Dataset available at: ANONYMIZED.
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Figure 3: Distribution of maximum dependency
tree depths across a random sample of 200 repos-
itories.
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Figure 4: Distribution of the maximum number
of siblings in dependency trees across a random
sample of 200 repositories.

3.2 CODE AUTOFORMALISATION (CAF)

To leverage structurally aligned code for training Math LLMs on autoformalisation, we introduce
code autoformalisation (CAF), which emulates the autoformalisation process on code data. Treat-
ing each aligned code instance as an analogue of a formalisation scenario allows the model to learn
structural patterns while transferring general problem-solving strategies acquired in programming.
Importantly, our method focuses on transferring structural and problem-solving capabilities, rather
than introducing new mathematical knowledge. While we recognize that this technique could be
adapted to emulate other formal reasoning tasks like theorem proving, in this work, we focus specif-
ically on addressing the prevalent data scarcity bottleneck in autoformalisation.

We train Math LLMs using a mixture of TopoAlign code data and formal mathematical data. This
combined approach integrates mathematical knowledge and structure with problem-solving capabil-
ities from code, while also mitigating catastrophic forgetting during fine-tuning (Chen et al., 2019).
In our multi-task training approach, each training sample consists of an input x, a docstring for code
or an informal statement for math, and a set of dependencies d, a set of dependency functions for
code or supporting lemmata and theorems for math. The model is conditioned on x and d and trained
to generate the target y: the main function for code data or the formal statement for math data, as
illustrated in Figure 5.

The proportion of code and math samples during training is controlled by parameter α, where α
determines the fraction of math samples and 1−α the fraction of code samples. The overall objective
is defined as L = αLmath + (1 − α)LCAF, where Lmath and LCAF denote the losses for math and
code tasks, respectively. For each task, the loss is computed using next-token prediction, formulated
as the negative log-likelihood L = −

∑N
i=1 logPθ

(
yi | y<i, x

)
, where x is the input sequence,

y = (y1, y2, . . . , yN ) is the target sequence, and Pθ is the model with parameters θ.

4 EXPERIMENTS

Training Data. Our code data is sourced from Python repositories in the Stack v2 dataset (Lozhkov
et al., 2024). For formal mathematical statements, we use the Herald Statements corpus (Gao et al.,
2025), a synthetic dataset built from Mathlib (mathlib Community, 2020). It contains Lean state-
ments similar in style and structure to those found in math pretraining corpora, while avoiding over-
lap with downstream evaluation benchmarks such as MiniF2F, ProofNet, and Putnam. Dependency
functions for the formal statements are extracted using the jixia library3.

Models. We evaluate two base models: DEEPSEEK-MATH (Shao et al., 2024) and HERALD (Gao
et al., 2025), each comprising 7 billion parameters. HERALD is specialised for autoformalisation,
having been trained on the synthetic Herald Statements data. In contrast, DEEPSEEK-MATH is

3https://github.com/frenzymath/jixia
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A function to navigate
robots to the
destination.

Docstring Dependencies

+

Prove the ceiling of
the square root of 27
minus the floor of the

square root of 26
equals 1.

Informal Statement Dependencies

+

LLM 🤖

def locate(robot):
    return robot.x,
robot.y

+
Navigate the robot to a
specified target position

by driving forward
def ceil : α → ℤ :=
    floor_ring.ceil

+

+

theorem mathd_algebra_151 :
Int.ceil (Real.sqrt 27)
- Int.floor
(Real.sqrt 26) = 1
:= sorry

Formal Statement

Main Function

def navigate_to(robot, 
target_x, target_y):
    while (robot.x, robot.y) !=
    (target_x, target_y):
        ...
        return locate(robot)

TopoAlign Code Data

Formal Math Data

Figure 5: Overview of the training pipeline. The model takes a problem description (for either
code or math) and its dependencies as input. The training objective is to generate the corresponding
solution: the root code block for code inputs, or the formal statement for math inputs.

trained on a broader range of mathematical data from DeepSeek-Coder (Guo et al., 2024), optimised
for general mathematical problem-solving rather than explicit autoformalisation. This setup allows
us to compare the performance of a dedicated autoformalisation model against one with enhanced
code understanding.

Settings. For each base model, we evaluate four distinct variations, namely Baseline, Math, Code
and TopoAlign. The Baseline setting evaluates the pretrained models directly on downstream tasks
without any additional fine-tuning. The Math setting involves fine-tuning models exclusively on
formal mathematical data from the Herald Statements corpus, which is equivalent to applying the
CAF objective with a mixing ratio of α = 1; this allows us to assess the impact of training on
purely mathematical data. In the Code setting, models are trained only on unaligned code data
extracted from the Stack v2 corpus, providing a control to test the effect of training without structural
alignment via TopoAlign. Finally, the TopoAlign setting trains models on a balanced combination
of formal mathematics and structurally aligned code using CAF, with a mixing ratio of α = 0.5.
This setting uses approximately 4,000 samples from GitHub repositories and 4,000 samples from
the Herald Statements dataset. For consistency, the number of training samples is kept equal across
all settings. Details on training hyperparameters and prompts are provided in Appendix A.

Benchmarks. We evaluate models on several Lean 4 autoformalisation benchmarks: Putnam
(Tsoukalas et al., 2024), the validation and test sets of MiniF2F (Zheng et al., 2022), and ProofNet
(Azerbayev et al., 2022). Each benchmark consists of paired natural language and formal language
statements, with the autoformalisation task consisting of generating the correct formal statement
given an informal description and its dependencies. Among these, Putnam presents the most chal-
lenging problems, ProofNet comprises textbook theorems, and MiniF2F is considered the most in-
distribution benchmark, as it overlaps with Mathlib data.

Evaluation Metrics. We measure model performance using two primary metrics. First, we use
Typecheck (TC) with the Lean 4 compiler (v4.11.0) to verify the syntactic correctness of generated
statements (Poiroux et al., 2025; Limperg, 2025; Rabe et al., 2020; Wu et al., 2022b). For a more
rigorous assessment of semantic fidelity, we employ bidirectional equivalence (BEq) (Liu et al.,
2025a), which uses an LLM to generate proof tactics establishing logical equivalence between the
model’s output and the reference statement. This provides a stronger signal of faithful autoformal-
isation than typechecking alone. For both metrics, we report pass@k scores, where a sample is
considered correct if at least one of its k generated candidates passes the evaluation criterion.
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Dataset Base Model Setting TC@1 BEq@1 TC@10 BEq@10

MiniF2F-valid

DEEPSEEK-MATH

Baseline 0.00 0.00 0.00 0.00
Math 45.18 9.65 79.82 19.74
Code 42.98 10.53 88.16 23.68
TopoAlign 51.75 14.47 87.28 26.32

HERALD

Baseline 73.25 25.44 92.98 38.16
Math 75.44 24.12 93.86 41.23
Code 75.00 20.61 90.79 32.02
TopoAlign 76.75 26.75 94.74 41.23

MiniF2F-test

DEEPSEEK-MATH

Baseline 0.00 0.00 0.00 0.00
Math 43.11 9.33 77.33 21.78
Code 52.89 7.56 91.52 26.79
TopoAlign 54.67 16.89 88.89 29.78

HERALD

Baseline 78.22 24.44 95.54 41.96
Math 80.89 24.44 95.54 40.36
Code 80.89 20.89 90.63 34.38
TopoAlign 79.56 27.56 94.20 42.86

ProofNet

DEEPSEEK-MATH

Baseline 0.00 0.00 0.00 0.00
Math 21.12 5.35 43.42 12.57
Code 22.73 2.67 49.47 7.49
TopoAlign 32.89 9.09 56.95 14.97

HERALD

Baseline 46.52 10.16 74.87 20.32
Math 46.79 10.43 75.40 19.77
Code 38.24 4.55 63.37 9.36
TopoAlign 43.85 9.63 75.67 16.84

Putnam

DEEPSEEK-MATH

Baseline 0.00 0.00 0.00 0.00
Math 10.69 0.00 27.04 0.00
Code 12.58 0.00 37.42 0.00
TopoAlign 17.30 0.00 42.14 0.00

HERALD

Baseline 37.42 2.20 73.58 4.72
Math 43.71 2.52 70.44 4.09
Code 35.85 0.00 69.18 0.00
TopoAlign 36.16 1.57 76.73 4.72

Table 1: Auto-formalisation performance in percent for MiniF2F, ProofNet, and Putnam datasets
under pass@1 and pass@10 metrics for Typecheck (TC) and BEq. Baseline setting refers to the
pretrained model, Math is trained on additional formal math data and code is trained on additional
code data that is not structurally aligned. Topoalign mixes math and structurally aligned code data.

5 RESULTS AND DISCUSSION

Table 1 presents the Typecheck and BEq performances for pass@k with k = {1, 10}, evaluated on
the MiniF2F-valid, MiniF2F-test, ProofNet, and Putnam datasets.

Our proposed TopoAlign method consistently outperforms most of the baseline models in BEq
across most datasets with substantial gains within both model families. For example, in the case
of DEEPSEEK-MATH, the BEq@1 score on the MiniF2F-valid dataset increases from 9.65% to
14.47%. It is worth noting that BEq@1 can exhibit some variance due to the stochastic nature of
sampling, particularly with temperature-based decoding. This variability explains occasional per-
formance drops in certain cases such as the slightly lower BEq@1 observed for HERALD on the
Putnam dataset. Additionally, in terms of Typecheck accuracy, our model demonstrates superior
performance across all baselines as well with only a few exceptions observed among the HERALD
variants. In the more robust BEq@10 evaluation, TopoAlign shows consistent and substantial im-
provements for both DEEPSEEK-MATH and HERALD across Putnam MiniF2F-valid and MiniF2F-
test. These results demonstrate the effectiveness and generalisability of the TopoAlign in enhancing
autoformalisation performance, particularly on less complex theorem formalisation datasets such as
MiniF2F-valid and MiniF2F-test. These results suggest that the combination of topological align-
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ment and code autoformalisation effectively transfers both problem-solving skills and structural
knowledge from code to mathematical autoformalisation tasks.

Furthermore, TopoAlign consistently surpasses the code-only model variants for both the HER-
ALD and DEEPSEEK-MATH models on both BEq and Typecheck metrics. This pattern implies that
the underlying code dataset, when used without structural alignment, does not provide information
beneficial for autoformalisation beyond basic problem-solving capabilities. In contrast, the topo-
logical alignment and CAF task enable the successful transfer of both advanced problem-solving
and structural knowledge to math autoformalisation. Based on these findings, we conclude that
TopoAlign and CAF effectively leverage code data to enhance the training of Math LLMs. This
approach demonstrates that structurally aligned code datasets can serve as valuable sources of train-
ing data for Math LLMs, thereby addressing the scarcity of math-specific data. Our results validate
that integrating widely available code data into the pretraining corpus substantially improves math
autoformalisation performance.

5.1 QUALITATIVE ERROR ANALYSIS

To better understand the model’s behavior, we conduct a qualitative error analysis on 40 randomly
selected samples from the ProofNet dataset. Our analysis focuses on the pass@1 results for the
HERALD model trained with TopoAlign. The HERALD + TopoAlign model successfully formalises
36 of the 40 samples according to BEq. Interestingly, when comparing these outputs to those from
the HERALD + Math model, we observe that their successes are complementary: each model cor-
rectly formalises a distinct set of problems that the other fails on. Upon closer examination, we find
that the HERALD + TopoAlign model typically generates the main semantic components correctly
with respect to the ground truth. However, a frequent source of error is the incorrect assignment of
variable types. For example, consider the problem:

Informal Statement: For all odd n, show that 8 | n2 − 1.

Autoformalisation (HERALD + TopoAlign):

theorem eigh_dvd_sq_sub_one_of_odd {n : Z}: Odd n → 8 nˆ2 1 :=
sorry

Ground Truth:

theorem exercise_1_27 {n : N} (hn : Odd n) : 8 (nˆ2 - 1) :=
sorry

The crucial difference here is that the generated sample uses n as an integer (Z), whereas the ground
truth requires n to be a natural number (N). This distinction is important, as n2 − 1 must be non-
negative. We hypothesize that this type of mismatch arises because the structurally aligned code data
does not sufficiently emphasize type constraints. The Python code samples lack explicit variable
type enforcement. To address this issue, future work could investigate the use of programming
languages with stricter typing systems, such as Java or C++, which could better highlight variable
types and improve overall correctness in code autoformalisation.

5.2 FINE-TUNING MATH MODELS ON CODE-ONLY DATA

We evaluated the HERALD model trained solely on code data to assess its ability to generalize to
mathematical tasks. This experiment was motivated by the previously observed limitation of the
DEEPSEEK-MATH model, which performs poorly on such tasks without targeted fine-tuning. The
results show that the code-only HERALD model drops in performance, with BEq scores falling to
zero and a significant decrease in typecheck accuracy. The generated outputs, while sometimes
semantically plausible, are frequently syntactically invalid in Python. Representative examples of
these outputs are provided in Appendix B.
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Dataset Data ratio TC@1 BEq@1

Putnam
α = 0.25 12.58 0.00
α = 0.50 17.30 0.00
α = 0.75 12.89 0.00

ProofNet
α = 0.25 24.60 6.15
α = 0.50 32.89 9.09
α = 0.75 26.20 8.29

MiniF2F-valid
α = 0.25 44.74 11.84
α = 0.50 51.75 14.47
α = 0.75 52.63 10.96

MiniF2F-test
α = 0.25 42.67 7.56
α = 0.50 54.67 16.89
α = 0.75 56.44 14.67

Table 2: Ablation study on training data composition for DEEPSEEK-MATH. The table compares
Typecheck (TC) and bidirectional equivalence (BEq) scores for pass@1 to identify the optimal ratio
of formal math data to our aligned code data.

5.3 IMPACT OF CODE–MATH DATA RATIO

We further explored the effect of varying the ratio of code to mathematics data in the CAF objective
by adjusting the α parameter. To do this, we trained additional DEEPSEEK-MATH models with α
values of 0.25 and 0.75, and report the results in Table 2. The balanced ratio (α = 0.5) consistently
yields the highest or near-highest performance for both Typecheck@1 and BEq@1. Lowering the
mathematical content (α = 0.25) leads to the weakest results, likely due to the token-level loss
being dominated by the larger code samples, biasing the model toward code generation. Increas-
ing the proportion of mathematical data (α = 0.75) improves Typecheck@1 scores, especially on
benchmarks closer to Mathlib, such as MiniF2F, but does not consistently improve BEq@1. These
findings indicate that a balanced mix of code and mathematical data is crucial for optimal autofor-
malisation performance: mathematical data enhances syntactic accuracy, while code data enhances
problem-solving capabilities.

5.4 BASE MODEL PERFORMANCE

The DEEPSEEK-MATH base model, which lacks pretraining on autoformalisation tasks, fails to gen-
erate meaningful outputs, often producing repeated symbols or malformed syntax that result in type-
check failures. In contrast, HERALD, which is pretrained on a large mathematical corpus, provides
strong BEq performance across multiple datasets. Notably, the introduction of CAF training further
improves its results: for instance, BEq@1 on MiniF2F-valid increases from 25.44% to 26.75%, and
on MiniF2F-test from 24.44% to 27.56%. These improvements confirm that TopoAlign provides
significant benefits even for models that already possess strong autoformalisation capabilities.

6 CONCLUSION

This work shows that widely available code repositories are a valuable, previously untapped re-
source for pretraining more capable Math LLMs. We address the challenge of mathematical data
scarcity by introducing TopoAlign, a method for structurally aligning code with formal mathemat-
ics through topological decomposition of docstrings, main functions, and dependency functions.
Using this approach, we curated a 324.5 million token dataset that mirrors the structure of formal
mathematical statements. Training DEEPSEEK-MATH and HERALD models on this dataset leads
to substantial improvements across four autoformalisation benchmarks, as evidenced by gains in
both Typecheck and BEq metrics. Our methodology successfully transfers structural and problem-
solving knowledge from code to mathematical reasoning. Ablation studies further highlight the need
for a balanced mix of code and formal mathematical data: code improves problem-solving ability,
while mathematical data ensures syntactic accuracy. Our findings establish structurally aligned code
as a resource for advancing Math LLMs and open new opportunities for scaling their capabilities by
leveraging code repositories.
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ETHICS STATEMENT

This research has been conducted in accordance with ethical standards and guidelines. The study
does not involve human participants, animals, or sensitive data, and thus does not raise any ethical
concerns. All data used in this research were obtained from publicly available sources and were
handled in compliance with relevant data protection regulations. We affirm that the work presented
in this paper adheres to the principles of integrity, transparency, and academic honesty. We used
LLMs solely to assist in editing and improving the language of this manuscript.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility, all data sources, tools, and code are publicly available. The
downstream evaluation benchmarks were sourced directly from their official repositories:
MiniF2F (https://github.com/openai/miniF2F), Putnam (https://github.com/
trishullab/PutnamBench), and Herald (https://huggingface.co/datasets/
FrenzyMath/Herald_statements). Ground truth dependencies were processed using Jixia
(https://github.com/frenzymath/jixia), as detailed in Section 4. Our complete code-
base and the generated dataset have been released at ANONYMIZED.
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A TRAINING HYPERPARAMETERS

The hyperparameters used for training the LLMs are listed in Tables 3 and 4. We adhere to the
default settings provided in the original papers.

Hyperparameters Value
DEEPSEEK-MATH HERALD

learning rate 2e-4 1e-6
weight decay 0.1 0.1
epochs 1 1
batch size 32 32

Table 3: Hyperparameters for training

Hyperparameters Value
DEEPSEEK-MATH HERALD

temperature 0.70 0.70
top p 0.95 0.95
max token 1024 1024

Table 4: Hyperparameter settings used for autoformalisation in the pass@10 setting.

B GENERATED SAMPLE FROM CODE-ONLY TRAINED MODEL

These samples are generated by HERALD trained exclusively on code data. The outputs demonstrate
that while the model captures the underlying logical structure correctly, it lacks proficiency in Lean
4 syntax. However, this suggests the presence of semantic similarity between programming code
and formal mathematical language.

from math import sqrt, ceil, floor

def evaluate_sqrt_expressions_1():
assert(int(ceil(sqrt(27))) - int(floor(sqrt(26))) == 1)

def is_increasing_function(a, b):
’’’
The function checks if the function f(x) = 4bx + (a+1)xˆ2 is
increasing for x >= 0.
’’’
return 4*b <= 4*b**2 + (a+1)**2

def is_3_(girls: list[int]) -> int:
"""
>>> is_3_([1,2,3,4,5,6,7])
3
"""
return 3

C TRAINING INSTRUCTIONS AND INFERENCE PROMPTS

To generate docstrings describing the main functions in the code repositories, we employ Qwen3-
14B model (https://huggingface.co/Qwen/Qwen3-14B) using the following prompt
format:
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Prompt

Provide a concise description of the problem solved in the code snippet below. Format the
response as a docstring.
{code}

For math-related tasks, we use the following prompt format:

Prompt

Use the following pre-defined Lean 4 dependencies:
{dependencies}

Based on the context and the problem description, generate a single, syntactically
correct Lean 4 formal statement that accurately captures the problem’s meaning.

Problem Description:
{problem description}

For code-related tasks, we employ a parallel prompt structure:

Prompt

Use the following pre-defined functions:
{pre-defined functions}

Based on the context and the problem description, generate a syntactically correct
function implementation that accurately captures the problem’s meaning.
Problem Description:
{problem description}

D DEPENDENCY TREE EXTRACTION ALGORITHM

The dependency tree extraction process is formally described in Algorithm 1. The algorithm iterates
through all files within a given directory, systematically identifying user-defined functions, including
both class methods and standalone functions. We then analyse inter-file and inter-class dependency
relationships. Through static analysis of function call patterns, we construct a directed dependency
graph where each function call establishes a parent-child relationship. The calling function serves
as the parent node, while the called function becomes the child node.
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Algorithm 1 Function Call Dependency Analysis
Require: Python project directory
Ensure: Dependency graph of function calls

1: Data Structures:
2: function definitions ← {} ▷ Record defined functions
3: imports ← {} object types ← {} ▷ Imported names→ full paths; Object names→ class

names; Save these two to track their parent function definitions or the file where they’re defined
4: ANALYZEFILE(f ) for all Python files f in directory (recursively)
5: procedure ANALYZEFILE(file path)
6: Parse AST from file path
7: Initialize function calls ← {}, object types ← {}
8: for all nodes n in AST do
9: if n is ClassDef then

10: Track current class context ▷ Class defined function
11: else if n is Import/ImportFrom then
12: Record imports[alias]← full module path ▷ Function from other files
13: else if n is FunctionDef then
14: Register function with current class.name if applicable
15: Initialize function calls[name]← [] ▷ Save its dependency
16: else if n is Assign with constructor call then
17: Map object types[var]← class name▷ Record the codes that initialise this function
18: else if n is Call then ▷ Record the codes that call this function
19: Resolve full function name (direct call(obj()), method call(obj.method()), or im-

ports imports[name]
20: Append to function calls[current func] ▷ The list to record the dependency

information
21: end if
22: end for
23: end procedure
24: procedure BUILDDEPENDENCYGRAPH
25: Filter to keep only project-internal calls
26: Detect recursive calls (f → f ) ▷ Self-recursive call
27: Topological Sort: ▷ BFS search
28: Construct nested call tree from sorted order
29: Insert recursion markers at tree root if needed
30: end procedure
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