Under review as a conference paper at ICLR 2026

TOPOALIGN: A FRAMEWORK FOR ALIGNING CODE
TO MATH VIA TOPOLOGICAL DECOMPOSITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) excel at both informal and formal (e.g. Lean 4)
mathematical reasoning but still struggle with autoformalisation, the task of trans-
forming informal into formal mathematical statements. Autoformalisation helps
pair the informal reasoning of LLMs with formal proof assistants which enable
machine-verifiable generation and mitigate hallucinations. Yet, the performance
of current Math LLMs is constrained by the scarcity of large-scale corpora, partic-
ularly those containing pairs of informal and formal statements. Although current
models are trained to generate code from natural language instructions, structural
and syntactic differences between these and formal mathematics limit effective
transfer learning. We propose TopoAlign, a framework that unlocks widely avail-
able code repositories as training resources for Math LLMs. TopoAlign decom-
poses code into docstrings, main functions, and dependency functions, and re-
assembles these components into analogues that structurally mirror formal state-
ments. This produces structurally aligned code data that can be used for train-
ing Math LLMs without requiring additional human annotation. We train two
state-of-the-art models, DEEPSEEK-MATH and HERALD, and evaluate them on
the MiniF2F, Putnam, and ProofNet benchmarks. TopoAlign provides substantial
gains for DEEPSEEK-MATH, improving performance by 17.77% on BEq@ 10 and
68.82% on typecheck@10. Despite introducing no new mathematical knowledge,
our framework achieves gains of 0.12% and 1.09% for HERALD on BEq@ 10 and
typecheck @10, respectively, demonstrating that training on aligned code data is
beneficial even for specialized models.

1 INTRODUCTION

Neuro-symbolic approaches that pair Large Language Models (LLMs) with proof assistants, such
as Isabelle (Nipkow et al., 2002) or Lean 4 (Moura & Ullrich,[2021), enable advanced mathematical
reasoning by enforcing rule-based logical consistency (Welleck & Saha, [2023). These assistants
operate on Formal Languages (FL), such as Lean 4, which provide rigorous, machine-verifiable
frameworks. However, proficiency in these formal languages requires specialized expertise, mean-
ing most mathematical problems are initially expressed in Natural Language (NL). While NL is ideal
for human communication, its inherent flexibility and contextual dependence make it challenging to
translate into a formal system. Bridging this gap requires autoformalisation, the process of faithfully
translating informal NL math problems into FL. This step is essential for interacting with automated
verifiers for tasks such as proof generation (Wu et al.l 2022a; /Ahn et al.| 2024)).

Despite recent advances, LLMs still struggle with autoformalisation, in part due to the lack of large-
scale, high-quality, parallel datasets that pair NL problem descriptions with corresponding formal
statements or proofs (Wu et al 2022a). Synthetic datasets such as Herald statements (Gao et al.,
2025) address the lack of training corpora, but their scale and diversity remain limited—especially
compared to domains like code generation, where vast corpora are readily available. As a result,
current models often either fail outright or require thousands of attempts and auxiliary retrieval
systems to produce accurate formalisations of even simple mathematical problems (Li et al., [2024a)).

We address this bottleneck by extending the training resources available for Math LLMs to include
widely available code repositories. Recent work demonstrates that models can learn the structure
of a task from syntactically aligned data, even if the data is semantically unrelated to the final task

Under review as a conference paper at ICLR 2026

Docstring Read data from a database based on a S'{‘fo"mal Prove the ceiling of the square root of 27 minus the
given category, normalize the content. atement floor of the square root of 26 equals 1
def main(dbfile, category):
db = sqlite3.connect(dbfile)
cursor = db.cursor() -
members =|get_category_members(db, category) theorem mathd_algebra 151 : Int.ceil
T e Wi Densr (Real.sqrt 27) - Int.floor (Real.dqrt 26) = 1
title = memffer[0] 1= sorry
content.apyfend (get_and_normalize(db, title))
return conten
Repository Mathlib
Library Library

def floor : a » Z := floor_ring.flopr
def get_category_members(db, cftegory) —

. . . def toset| (u : ZFSet.{u})
Dependencies def print_db(db) Dependencies | set zFset.{u} := {x | x € u}

def get_and_normalize(db, page
get_and_| (db, page) def count(db) I AR (T S e

Figure 1: Structural similarity between code (left) and formal statements in Lean 4 (right). Code
samples extracted from GitHub repositories are decomposed into: the docstring, which maps to
informal statements in mathematical problems, the main function, which corresponds to the formal
statements, and the dependency functions, which correspond to supporting lemmata and theorems,
included in external libraries (e.g. Mathlib for Lean 4).

(Gandhi et al.}2024)). This suggests that vast programming code corpora could be leveraged to teach
the compositional patterns of formal mathematics, provided the structure is correctly aligned. To
achieve this, we propose TopoAlign, a framework that structurally aligns programming code with
formal mathematics. TopoAlign decomposes code into docstrings, main functions, and dependency
functions, and reassembles these components into sequences that mirror the structure of Lean 4
formal statements, see Figure[I] This alignment teaches the model the compositional structure of
formal mathematics and enables transfer of problem-solving capabilities learned from code. Apply-
ing TopoAlign, we construct a combined corpus of aligned code and formal math data. On top of this
corpus, we introduce code autoformalisation (CAF), a task that emulates autoformalisation using the
aligned code data. Specifically, we align code docstrings, dependency functions and main function
bodies with informal descriptions, supporting lemmata, and formal statements in Lean code. Unlike
regular code generation, where the challenge consists of solving the problem statement, our setting
provides a synthetic docstring that already includes the solution intent, making the task closer to
translating an informal mathematical description into a formal statement.

We train DEEPSEEK-MATH (Shao et al.,|2024) and HERALD (Gao et al., 2025) with TopoAlign and
the CAF objective, and evaluate on the MiniF2F, Putnam, and ProofNet benchmarks. The method
yields consistent gains, achieving relative BEq improvements of 36.7% for DEEPSEEK-MATH and
6.2% for HERALD.

Contributions:. 1) We introduce TopoAlign, a novel method addressing the shortage of training
corpora for Math LLMs by structurally aligning code data with formal mathematical languages. 2)
We propose “code autoformalisation” (CAF), a training task that leverages the structurally aligned
code dataset to emulate autoformalisation, thereby reducing the dependence on annotated pairs of
informal and formal mathematical statements. 3) We release a large-scale pre-training dataset of 300
million tokens, consisting of high-quality, structurally aligned code designed for autoformalisation
tasks. 4) Through detailed ablation studies, we demonstrate that a balanced ratio of our aligned code
data and formal mathematical statements yields optimal autoformalisation performance.

2 RELATED WORK

Autoformalisation refers to the translation of informal mathematical problems in NL to FL state-
ments. This requires extensive mathematical knowledge and comprehensive understanding of of

Under review as a conference paper at ICLR 2026

the problem statements. Autoformalisation is a foundational component for integrating LLMs in
neuro-symbolic approaches for tasks like theorem proving (Wu et al.}2022a). This forms a positive
feedback loop, as improvements in theorem proving have also been found to enhance autoformali-
sation (Tarrach et al.,[2024). Therefore, advancing autoformalisation is essential for neuro-symbolic
approaches and mathematical reasoning.

Previous methods for autoformalisation draw inspiration from machine translation literature (Wang
et al., |2018; |[Dwivedi et al.| 2022)), i.e. |Szegedy| (2020) propose encoding NL and FL in a shared
latent space and selecting translation candidates based on embedding similarity. Some approaches
focus on rule-based methods, such as GFLean, which uses the Grammatical Framework for parsing
and linearization (Pathak| 2024). However, these methods struggle to adapt to diverse inputs, as
their rules require frequent updates. In contrast, LLMs provide more flexibility and consequently
show strong autoformalisation performance (Jiang et al., 2022} [Jiang} 2024} Wu et al.| [2022b)).

Despite their success in narrow domains (Soroco et al.,|2025;[Zhu et al., [2024]), these methods face a
common challenge: the scarcity of parallel NL-FL math datasets. Various approaches are aimed to
extend the training datasets: ATLAS (Liu et al., 2025b) proposes using a student-teacher model to
generate additional synthetic data, but its effectiveness relies on an excellent teacher model, whereas
it uses DeepSeek, which the general-purpose teacher reaches a mathematical knowledge boundary.
Herald Statements (Gao et al.| 2025)) are synthetically generated and, of lower quality compared to
human-annotated data as they contain variations of existing data. Jiang et al.| (2024)) show that mul-
tilingual data improves autoformalisation performance. Importantly, (Chan et al.| (2025) highlight
that high-quality data can yield further performance improvements. To address this, we leverage
structurally aligned code data for training Math LLMs. This provides a scalable alternative to math-
ematical statements in FL.

Codex demonstrated the power of pretraining on code data, as it achieves noticeable few-shot perfor-
mance for autoformalisation tasks (Chen et al., 2021). As such, typically, Math LLMs are initialised
from LLMs trained on extensive code data and progressively fine-tuned on mathematical datasets.
For example, Llemma (Zhang et al., |2024), Kimina (Wang et al., [2025) and DEEPSEEK-MATH
(Shao et al.,[2024) are commonly trained on code and fine-tuned on math corpora problem. |Li et al.
(20244a) claim that the autoformalisation capabilities of Math LLMs has not been fully exploited
using general-purpose code data during pretraining. To address this, we propose using widely avail-
able code repositories as a additional sources for Math LLMs by topologically decomposing and
aligning code with formal mathematical statements.

Prior work has explored synthetic data generation methods to address the scarcity of autoformalisa-
tion data. Approaches, such as ATLAS, propose a student-teacher framework to create new samples,
but their effectiveness is capped by the performance of the initial teacher model (Liu et al., [2025b)).
Other methods, like the Herald Statements dataset, generate variations of existing statements from
libraries like Mathlib, which may limit the novelty of the resulting data (Gao et al., [2025). Several
high-quality, human-annotated datasets have been curated, including ProofNet (Azerbayev et al.|
2022), MiniF2F (Zheng et al., [2022), Putnam (Tsoukalas et al., [2024), and the Mathlib library it-
self (mathlib Community, 2020). While invaluable, creating these datasets is resource-intensive,
requires domain experts, and is consequently limited in scale.

Finally, given data scarcity, previous work explored techniques for efficient usage of available data
resources. Related methods aim to extract the inherent relationships between NL and FL in the data,
proposing alignment methods based on symbolic equivalence and semantic consistency (Li et al.|
2024b). However, aligning NL and FL remains challenging when their formats and structures differ,
making it difficult to transfer the LLMs knowledge and reasoning capabilities between NL and FL.

3 METHODOLOGY

We posit that current Math LLM performance is constrained primarily by the scarcity of large-scale
training corpora. Large code datasets have already proven valuable for initializing these models
(Shao et al., 2024} Wang et al., 2025), yet code data remains largely untapped during subsequent
training on formal mathematics. Our TopoAlign framework and code autoformalisation task address
this gap, demonstrating that structurally aligned code provides a complementary data source for
mathematical autoformalisation.

Under review as a conference paper at ICLR 2026

Root Node Depth 1 Depth 2
' " N
driveToTarget calcRotDeg
Navigate the robot to a specified target position by Docstring getPosition
driving forward
def driveToTarget (self, targetX, targetY):
grid_x, grid y = getPosition()
rotDeg = calcRotDeg () drive
self.drive (100, 100)
self.driveToTarget () <
\ J

Figure 2: Function-level dependency tree showing the hierarchy of function calls, starting from the
root node. Each child node represents a function called by its parent. The docstring for the root node
is extracted to represent the description of the problem addressed in the code.

3.1 ToOPOLOGICAL DECOMPOSITION OF CODE FOR STRUCTURAL ALIGNMENT WITH
FORMAL MATH DATA

TopoAlign builds on the premise that code and formal mathematical statements share a composi-
tional structure. Functions in code solve distinct subproblems and may rely on auxiliary functions,
analogous to how formal statements resolve informal problem descriptions using lemmata and theo-
rems. We therefore decompose code at the function level (see Figure[I)) into three transferable com-
ponents: (i) the docstring, corresponding to the informal problem statement, (ii) the main function
body, serving as a proxy for the formal statement; and (iii) its dependency functions, corresponding
to supporting lemmata or library theorems (i.e., from Mathlib in Lean 4). Disassembling code into
components that mirror those in formal mathematics enables structural transfer, allowing the aligned
sequences to be used for training tasks such as autoformalisation and theorem proving.

To extract functional dependencies, we employ a topological dependency parser that performs a
breadth-first search to build function-level dependency graphs (see Algorithm [I] in Appendix D).
This contrasts with file-level dependency extraction (i.e., DeepSeek (Guo et al.,|2024)), which cap-
tures inter-file execution order but omits intra-file functional relationships. Our parser leverages
abstract syntax trees to trace calls and parent definitions across files, and is designed to handle
standalone functions, class or instance methods, recursive calls, and imports. The result is a tree-
structured representation of code dependencies, as illustrated in Figure[2]

To obtain informal problem statements analogous to those in mathematics, we extract natural lan-
guage descriptions from docstrings and README files. However, standard docstring conventions
do not always align with the needs of autoformalisation. Docstrings are often designed to describe a
function’s interface, including its inputs, outputs, and usage examples, rather than it’s implementa-
tion, which is closer to the role of an informal mathematical statement. A summary of the function’s
implementation is therefore a more fitting analogue. Consequently, to create more suitable informal
descriptions and to augment missing or low-quality documentation, we generate concise summaries
of each main function’s logic using an LLM

We analyse the structural properties of function-level dependency trees in the collected code to se-
lect repositories whose hierarchical patterns resemble those found in formal mathematics. For each
repository we compute the maximum tree depth, reflecting overall complexity and the maximum
number of sibling nodes at any depth, indicating the breadth of direct dependencies. We retain
repositories with depth between 3 and 6 and maximum sibling counts between 3 and 10, thus ex-
cluding overly complex codebases as well as simple scripts. Figures [3|and [4] show the distributions
of maximum depth and maximum sibling count for a random sample of 200 repositories. After
filtering, the corpus contains 156,684 functions comprising 324.5 million tokensE]

! Additional details are provided in Appendix@
’Dataset available at: ANONYMI ZED)

ANONYMIZED

Under review as a conference paper at ICLR 2026

5000 4000

4000 4
9 3000

w
S
=3
S)
N
a
=3
=3

N
=3
S
5]

™
o
=3
S

Number of JSON Files
=
I
S
1S3

Number of JSON Fi

1000
1000

v
=)
5}

o
=)

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 >15
Max Depth Max Siblings

Figure 3: Distribution of maximum dependency Figure 4: Distribution of the maximum number
tree depths across a random sample of 200 repos- of siblings in dependency trees across a random
itories. sample of 200 repositories.

3.2 CODE AUTOFORMALISATION (CAF)

To leverage structurally aligned code for training Math LLMs on autoformalisation, we introduce
code autoformalisation (CAF), which emulates the autoformalisation process on code data. Treat-
ing each aligned code instance as an analogue of a formalisation scenario allows the model to learn
structural patterns while transferring general problem-solving strategies acquired in programming.
Importantly, our method focuses on transferring structural and problem-solving capabilities, rather
than introducing new mathematical knowledge. While we recognize that this technique could be
adapted to emulate other formal reasoning tasks like theorem proving, in this work, we focus specif-
ically on addressing the prevalent data scarcity bottleneck in autoformalisation.

We train Math LLMs using a mixture of TopoAlign code data and formal mathematical data. This
combined approach integrates mathematical knowledge and structure with problem-solving capabil-
ities from code, while also mitigating catastrophic forgetting during fine-tuning (Chen et al.,[2019).
In our multi-task training approach, each training sample consists of an input x, a docstring for code
or an informal statement for math, and a set of dependencies d, a set of dependency functions for
code or supporting lemmata and theorems for math. The model is conditioned on = and d and trained
to generate the target y: the main function for code data or the formal statement for math data, as
illustrated in Figure[3]

The proportion of code and math samples during training is controlled by parameter «, where «
determines the fraction of math samples and 1 —« the fraction of code samples. The overall objective
is defined as £ = @ Lpan + (1 — @) Lear, Where Ly and Lear denote the losses for math and
code tasks, respectively. For each task, the loss is computed using next-token prediction, formulated

as the negative log-likelihood £ = — Zfil log Py (y2 | y<i, :L'), where x is the input sequence,
y = (Y1, Y2, -.,yn) is the target sequence, and Py is the model with parameters 6.

4 EXPERIMENTS

Training Data. Our code data is sourced from Python repositories in the Stack v2 dataset (Lozhkov
et al.| 2024])). For formal mathematical statements, we use the Herald Statements corpus (Gao et al.,
2025), a synthetic dataset built from Mathlib (mathlib Communityl, [2020). It contains Lean state-
ments similar in style and structure to those found in math pretraining corpora, while avoiding over-
lap with downstream evaluation benchmarks such as MiniF2F, ProofNet, and Putnam. Dependency
functions for the formal statements are extracted using the jixia libraryﬂ

Models. We evaluate two base models: DEEPSEEK-MATH (Shao et al., [2024) and HERALD (Gao
et al., [2025), each comprising 7 billion parameters. HERALD is specialised for autoformalisation,
having been trained on the synthetic Herald Statements data. In contrast, DEEPSEEK-MATH is

*https://github.com/frenzymath/jixia

https://github.com/frenzymath/jixia

Under review as a conference paper at ICLR 2026

TopoAlign Code Data

L L
Docstring Dependencies
def navigate_to(robot,
target_x, target_y):
A function to navigate def locate(robot): —>| D + —_> e (et (eEBE)
robots to the + return robot.x,
" (target_x, target_y):
destination. robot.y
| return locate(robot) Y,
¥
fa
Va
[
Informal Statement Dependencies
U —— theorem mathd_algebra 151 :
rove the ceiling of :
the square root of 27 . HT— L + —»| Int.ceil (Real.sqrt 27)
¢ def ceil : a » Z := - Int.floor
minus the floor of the + o N i 0
square root of 26 oor_ring. cel (Real.sqrt 26) = 1
equals 1 8= SR
| V
| V

Formal Math Data

Figure 5: Overview of the training pipeline. The model takes a problem description (for either
code or math) and its dependencies as input. The training objective is to generate the corresponding
solution: the root code block for code inputs, or the formal statement for math inputs.

trained on a broader range of mathematical data from DeepSeek-Coder (Guo et al.,[2024), optimised
for general mathematical problem-solving rather than explicit autoformalisation. This setup allows
us to compare the performance of a dedicated autoformalisation model against one with enhanced
code understanding.

Settings. For each base model, we evaluate four distinct variations, namely Baseline, Math, Code
and TopoAlign. The Baseline setting evaluates the pretrained models directly on downstream tasks
without any additional fine-tuning. The Math setting involves fine-tuning models exclusively on
formal mathematical data from the Herald Statements corpus, which is equivalent to applying the
CAF objective with a mixing ratio of & = 1; this allows us to assess the impact of training on
purely mathematical data. In the Code setting, models are trained only on unaligned code data
extracted from the Stack v2 corpus, providing a control to test the effect of training without structural
alignment via TopoAlign. Finally, the TopoAlign setting trains models on a balanced combination
of formal mathematics and structurally aligned code using CAF, with a mixing ratio of « = 0.5.
This setting uses approximately 4,000 samples from GitHub repositories and 4,000 samples from
the Herald Statements dataset. For consistency, the number of training samples is kept equal across
all settings. Details on training hyperparameters and prompts are provided in Appendix [A]

Benchmarks. We evaluate models on several Lean 4 autoformalisation benchmarks: Putnam
(Tsoukalas et al., 2024)), the validation and test sets of MiniF2F (Zheng et al.| [2022), and ProofNet
(Azerbayev et al.| 2022)). Each benchmark consists of paired natural language and formal language
statements, with the autoformalisation task consisting of generating the correct formal statement
given an informal description and its dependencies. Among these, Putnam presents the most chal-
lenging problems, ProofNet comprises textbook theorems, and MiniF2F is considered the most in-
distribution benchmark, as it overlaps with Mathlib data.

Evaluation Metrics. We measure model performance using two primary metrics. First, we use
Typecheck (TC) with the Lean 4 compiler (v4.11.0) to verify the syntactic correctness of generated
statements (Poiroux et al., 2025} [Limperg, [2025; Rabe et al., 20205 [Wu et al., [2022b)). For a more
rigorous assessment of semantic fidelity, we employ bidirectional equivalence (BEq) (Liu et al.,
2025a), which uses an LLM to generate proof tactics establishing logical equivalence between the
model’s output and the reference statement. This provides a stronger signal of faithful autoformal-
isation than typechecking alone. For both metrics, we report pass@k scores, where a sample is
considered correct if at least one of its k generated candidates passes the evaluation criterion.

Under review as a conference paper at ICLR 2026

Dataset Base Model Setting TC@1 BEq@1 TC@10 BEq@10
Baseline 0.00 0.00 0.00 0.00

Math 45.18 9.65 79.82 19.74

DEEPSEEK-MATH (- 4 42.98 10.53 88.16 23.68
MiniF2F-valid TopoAlign 51.75 14.47 87.28 26.32
Baseline 73.25 25.44 92.98 38.16

Math 75.44 24.12 93.86 41.23

HERALD Code 75.00 20.61 90.79 32.02

TopoAlign 76.75 26.75 94.74 41.23

Baseline 0.00 0.00 0.00 0.00

Math 43.11 9.33 7733 21.78

DEEPSEEK-MATH (- 4 52.89 7.56 91.52 26.79
MiniF2F-test TopoAlign 54.67 16.89 88.89 29.78
Baseline 78.22 24.44 95.54 41.96

Math 80.89 24.44 95.54 40.36

HERALD Code 80.89 20.89 90.63 34.38

TopoAlign ~ 79.56 27.56 94.20 42.86

Baseline 0.00 0.00 0.00 0.00

Math 21.12 5.35 43.42 12.57

DEEPSEEK-MATH (- 4 2273 2.67 49.47 7.49

ProofNet TopoAlign 32.89 9.09 56.95 14.97
Baseline 46.52 10.16 74.87 20.32

Math 46.79 10.43 75.40 19.77

HERALD Code 38.24 455 63.37 9.36

TopoAlign ~ 43.85 9.63 75.67 16.84

Baseline 0.00 0.00 0.00 0.00

Math 10.69 0.00 27.04 0.00

DEEPSEEK-MATH 12,58 0.00 37.42 0.00

Putnam TopoAlign 17.30 0.00 42.14 0.00
Baseline 37.42 2.20 73.58 4.72

Math 4371 2.52 70.44 4.09

HERALD Code 35.85 0.00 69.18 0.00

TopoAlign ~ 36.16 1.57 76.73 472

Table 1: Auto-formalisation performance in percent for MiniF2F, ProofNet, and Putnam datasets
under pass@1 and pass@ 10 metrics for Typecheck (TC) and BEq. Baseline setting refers to the
pretrained model, Math is trained on additional formal math data and code is trained on additional
code data that is not structurally aligned. Topoalign mixes math and structurally aligned code data.

5 RESULTS AND DISCUSSION

Table presents the Typecheck and BEq performances for pass@k with k& = {1, 10}, evaluated on
the MiniF2F-valid, MiniF2F-test, ProofNet, and Putnam datasets.

Our proposed TopoAlign method consistently outperforms most of the baseline models in BEq
across most datasets with substantial gains within both model families. For example, in the case
of DEEPSEEK-MATH, the BEq@1 score on the MiniF2F-valid dataset increases from 9.65% to
14.47%. 1t is worth noting that BEq@1 can exhibit some variance due to the stochastic nature of
sampling, particularly with temperature-based decoding. This variability explains occasional per-
formance drops in certain cases such as the slightly lower BEq@1 observed for HERALD on the
Putnam dataset. Additionally, in terms of Typecheck accuracy, our model demonstrates superior
performance across all baselines as well with only a few exceptions observed among the HERALD
variants. In the more robust BEq@ 10 evaluation, TopoAlign shows consistent and substantial im-
provements for both DEEPSEEK-MATH and HERALD across Putnam MiniF2F-valid and MiniF2F-
test. These results demonstrate the effectiveness and generalisability of the TopoAlign in enhancing
autoformalisation performance, particularly on less complex theorem formalisation datasets such as
MiniF2F-valid and MiniF2F-test. These results suggest that the combination of topological align-

Under review as a conference paper at ICLR 2026

ment and code autoformalisation effectively transfers both problem-solving skills and structural
knowledge from code to mathematical autoformalisation tasks.

Furthermore, TopoAlign consistently surpasses the code-only model variants for both the HER-
ALD and DEEPSEEK-MATH models on both BEq and Typecheck metrics. This pattern implies that
the underlying code dataset, when used without structural alignment, does not provide information
beneficial for autoformalisation beyond basic problem-solving capabilities. In contrast, the topo-
logical alignment and CAF task enable the successful transfer of both advanced problem-solving
and structural knowledge to math autoformalisation. Based on these findings, we conclude that
TopoAlign and CAF effectively leverage code data to enhance the training of Math LLMs. This
approach demonstrates that structurally aligned code datasets can serve as valuable sources of train-
ing data for Math LLMs, thereby addressing the scarcity of math-specific data. Our results validate
that integrating widely available code data into the pretraining corpus substantially improves math
autoformalisation performance.

5.1 QUALITATIVE ERROR ANALYSIS

To better understand the model’s behavior, we conduct a qualitative error analysis on 40 randomly
selected samples from the ProofNet dataset. Our analysis focuses on the pass@]1 results for the
HERALD model trained with TopoAlign. The HERALD + TopoAlign model successfully formalises
36 of the 40 samples according to BEq. Interestingly, when comparing these outputs to those from
the HERALD + Math model, we observe that their successes are complementary: each model cor-
rectly formalises a distinct set of problems that the other fails on. Upon closer examination, we find
that the HERALD + TopoAlign model typically generates the main semantic components correctly
with respect to the ground truth. However, a frequent source of error is the incorrect assignment of
variable types. For example, consider the problem:

Informal Statement: For all odd n, show that 8 | n? —1.

Autoformalisation (HERALD + TopoAlign):

theorem eigh_dvd_sqg_sub_one_of_odd {n : Z2}: Odd n - 8 n"2 1 :=
sorry

Ground Truth:

theorem exercise_1 27 {n : N} (hn : O0dd n) : 8 (n"2 - 1) :=
sorry

The crucial difference here is that the generated sample uses n as an integer (Z), whereas the ground
truth requires 7 to be a natural number (N). This distinction is important, as n> — 1 must be non-
negative. We hypothesize that this type of mismatch arises because the structurally aligned code data
does not sufficiently emphasize type constraints. The Python code samples lack explicit variable
type enforcement. To address this issue, future work could investigate the use of programming
languages with stricter typing systems, such as Java or C++, which could better highlight variable
types and improve overall correctness in code autoformalisation.

5.2 FINE-TUNING MATH MODELS ON CODE-ONLY DATA

We evaluated the HERALD model trained solely on code data to assess its ability to generalize to
mathematical tasks. This experiment was motivated by the previously observed limitation of the
DEEPSEEK-MATH model, which performs poorly on such tasks without targeted fine-tuning. The
results show that the code-only HERALD model drops in performance, with BEq scores falling to
zero and a significant decrease in typecheck accuracy. The generated outputs, while sometimes
semantically plausible, are frequently syntactically invalid in Python. Representative examples of
these outputs are provided in Appendix

Under review as a conference paper at ICLR 2026

Dataset Dataratio TC@1 BEq@1
a=0.25 12.58 0.00

Putnam a = 0.50 17.30 0.00
a=0.75 12.89 0.00
a=0.25 24.60 6.15

ProofNet a = 0.50 32.89 9.09
a=0.75 26.20 8.29

a=0.25 44.74 11.84
MiniF2F-valid o = 0.50 51.75 14.47
a=0.75 52.63 10.96

a=0.25 42.67 7.56
MiniF2F-test o = 0.50 54.67 16.89
a=0.75 56.44 14.67

Table 2: Ablation study on training data composition for DEEPSEEK-MATH. The table compares
Typecheck (TC) and bidirectional equivalence (BEq) scores for pass@1 to identify the optimal ratio
of formal math data to our aligned code data.

5.3 IMPACT OF CODE-MATH DATA RATIO

We further explored the effect of varying the ratio of code to mathematics data in the CAF objective
by adjusting the o parameter. To do this, we trained additional DEEPSEEK-MATH models with o
values of 0.25 and 0.75, and report the results in Table 2] The balanced ratio (o« = 0.5) consistently
yields the highest or near-highest performance for both Typecheck@1 and BEq@1. Lowering the
mathematical content (v = 0.25) leads to the weakest results, likely due to the token-level loss
being dominated by the larger code samples, biasing the model toward code generation. Increas-
ing the proportion of mathematical data (o« = 0.75) improves Typecheck@1 scores, especially on
benchmarks closer to Mathlib, such as MiniF2F, but does not consistently improve BEq@1. These
findings indicate that a balanced mix of code and mathematical data is crucial for optimal autofor-
malisation performance: mathematical data enhances syntactic accuracy, while code data enhances
problem-solving capabilities.

5.4 BASE MODEL PERFORMANCE

The DEEPSEEK-MATH base model, which lacks pretraining on autoformalisation tasks, fails to gen-
erate meaningful outputs, often producing repeated symbols or malformed syntax that result in type-
check failures. In contrast, HERALD, which is pretrained on a large mathematical corpus, provides
strong BEq performance across multiple datasets. Notably, the introduction of CAF training further
improves its results: for instance, BEq@1 on MiniF2F-valid increases from 25.44% to 26.75%, and
on MiniF2F-test from 24.44% to 27.56%. These improvements confirm that TopoAlign provides
significant benefits even for models that already possess strong autoformalisation capabilities.

6 CONCLUSION

This work shows that widely available code repositories are a valuable, previously untapped re-
source for pretraining more capable Math LLMs. We address the challenge of mathematical data
scarcity by introducing TopoAlign, a method for structurally aligning code with formal mathemat-
ics through topological decomposition of docstrings, main functions, and dependency functions.
Using this approach, we curated a 324.5 million token dataset that mirrors the structure of formal
mathematical statements. Training DEEPSEEK-MATH and HERALD models on this dataset leads
to substantial improvements across four autoformalisation benchmarks, as evidenced by gains in
both Typecheck and BEq metrics. Our methodology successfully transfers structural and problem-
solving knowledge from code to mathematical reasoning. Ablation studies further highlight the need
for a balanced mix of code and formal mathematical data: code improves problem-solving ability,
while mathematical data ensures syntactic accuracy. Our findings establish structurally aligned code
as a resource for advancing Math LLMs and open new opportunities for scaling their capabilities by
leveraging code repositories.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research has been conducted in accordance with ethical standards and guidelines. The study
does not involve human participants, animals, or sensitive data, and thus does not raise any ethical
concerns. All data used in this research were obtained from publicly available sources and were
handled in compliance with relevant data protection regulations. We affirm that the work presented
in this paper adheres to the principles of integrity, transparency, and academic honesty. We used
LLMs solely to assist in editing and improving the language of this manuscript.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility, all data sources, tools, and code are publicly available. The
downstream evaluation benchmarks were sourced directly from their official repositories:
MiniF2F (https://github.com/openai/miniF2F), Putham (https://github.com/
trishullab/PutnamBench)), and Herald (https://huggingface.co/datasets/
FrenzyMath/Herald_statements). Ground truth dependencies were processed using Jixia
(https://github.com/frenzymath/jixia), as detailed in Section 4. Our complete code-
base and the generated dataset have been released at ANONYMIZED.

REFERENCES

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. In Neele Falk, Sara Papi, and Mike
Zhang (eds.), Proceedings of the 18th Conference of the European Chapter of the Association
for Computational Linguistics: Student Research Workshop, pp. 225-237, St. Julian’s, Malta,
March 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.eacl-srw.17.
URL https://aclanthology.orqg/2024.eacl—-srw.17/.

Zhangir Azerbayev, Bartosz Piotrowski, and Jeremy Avigad. Proofnet: A benchmark for aut-
oformalizing and formally proving undergraduate-level mathematics problems. In Workshop
on MATH-AI: Toward Human-Level Mathematical Reasoning, NeurlPS 2022, 2022. URL
https://neurips.cc/virtual/2022/58291. Poster presented virtually at NeurIPS
2022.

W. Chan, M. Souliman, J. Nordhagen, et al. Lean-ing on quality: How high-quality data beats
diverse multilingual data in autoformalization. arXiv preprint arXiv:2502.15795, 2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374,

Xinyang Chen, Sinan Wang, Bo Fu, Mingsheng Long, and Jianmin Wang. Catastrophic forgetting
meets negative transfer: Batch spectral shrinkage for safe transfer learning. Advances in neural
information processing systems, 32, 2019.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In Proceedings
of the International Conference on Learning Representations (ICLR), 2022. URL https://
openreview.net/forum?id=wTT jnvGphY j.

Saumya Gandhi, Ritu Gala, Vijay Viswanathan, Tongshuang Wu, and Graham Neubig. Better
synthetic data by retrieving and transforming existing datasets. In Lun-Wei Ku, Andre Mar-
tins, and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics: ACL

10

https://github.com/openai/miniF2F
https://github.com/trishullab/PutnamBench
https://github.com/trishullab/PutnamBench
https://huggingface.co/datasets/FrenzyMath/Herald_statements
https://huggingface.co/datasets/FrenzyMath/Herald_statements
https://github.com/frenzymath/jixia
ANONYMIZED
https://aclanthology.org/2024.eacl-srw.17/
https://neurips.cc/virtual/2022/58291
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=wTTjnvGphYj
https://openreview.net/forum?id=wTTjnvGphYj

Under review as a conference paper at ICLR 2026

2024, pp. 6453—6466, Bangkok, Thailand, August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.findings-acl.385. URL https://aclanthology.org/2024.
findings-acl.385/.

Guoxiong Gao, Yutong Wang, Jiedong Jiang, Qi Gao, Zihan Qin, Tianyi Xu, and Bin Dong. Herald:
A natural language annotated lean 4 dataset. In Proceedings of the International Conference on
Learning Representations (ICLR), 2025. URL https://iclr.cc/media/iclr—-2025/
Slides/29589.pdfl Poster presented at ICLR 2025, Singapore EXPO; slides available on-
line.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—
the rise of code intelligence, 2024. URL https://arxiv. org/abs/2401.14196, 5:19, 2024.

A. Jiang, C. E. Staats, C. Szegedy, et al. Autoformalization with large language models. 2022, 2022.

A. Q. Jiang, W. Li, and M. Jamnik. Multi-language diversity benefits autoformalization. Advances
in Neural Information Processing Systems, 37:83600-83626, 2024.

Q. Jiang. Language Models for Verifiable Mathematical Automation Interaction, Integration, and
Autoformalization. PhD thesis, University of Cambridge, United Kingdom, 2024.

Zenan Li, Yifan Wu, Zhaoyu Li, Xinming Wei, Xian Zhang, Fan Yang, and Xiaoxing Ma. Autofor-
malize mathematical statements by symbolic equivalence and semantic consistency. Advances in
Neural Information Processing Systems, 37:53598-53625, 2024a.

Zenan Li, Yifan Wu, Zhaoyu Li, Xinming Wei, Xian Zhang, Fan Yang, and Xiaoxing Ma. Aut-
oformalize mathematical statements by symbolic equivalence and semantic consistency. In
Advances in Neural Information Processing Systems (NeurIPS) 2024, 2024b. URL https:
//arxiv.org/abs/2410.20936. NeurlPS 2024 conference paper; code available online.

Jannis Limperg. Tactic script optimisation for aesop. In Proceedings of the 14th ACM SIGPLAN
International Conference on Certified Programs and Proofs, pp. 98—111, 2025.

Q. Liu, X. Zheng, X. Lu, et al. Rethinking and improving autoformalization: towards a faithful
metric and a dependency retrieval-based approach. In The Thirteenth International Conference
on Learning Representations, 2025a.

Xiaoyang Liu, Kangjie Bao, Jiashuo Zhang, Yunqi Liu, Yuntian Liu, Yu Chen, Yang Jiao, and
Tao Luo. Atlas: Autoformalizing theorems through lifting, augmentation, and synthesis of data,
2025b. URL https://arxiv.org/abs/2502.05567.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

The mathlib Community. The lean mathematical library. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, POPL 20, pp. 367-381. ACM,
January 2020. doi: 10.1145/3372885.3373824. URL http://dx.doi.org/10.1145/
3372885.3373824.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
In Automated Deduction—-CADE 28: 28th International Conference on Automated Deduction,
Virtual Event, July 12—-15, 2021, Proceedings 28, pp. 625—635. Springer, 2021.

Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL: a proof assistant for
higher-order logic. Springer, 2002.

Shashank Pathak. Gflean: An autoformalisation framework for lean via gf, 2024. URL https:
//arxiv.org/abs/2404.01234.

Auguste Poiroux, Gail Weiss, Viktor Kuncak, and Antoine Bosselut. Improving autoformalization
using type checking, 2025. URL https://arxiv.org/abs/2406.07222,

11

https://aclanthology.org/2024.findings-acl.385/
https://aclanthology.org/2024.findings-acl.385/
https://iclr.cc/media/iclr-2025/Slides/29589.pdf
https://iclr.cc/media/iclr-2025/Slides/29589.pdf
https://arxiv.org/abs/2410.20936
https://arxiv.org/abs/2410.20936
https://arxiv.org/abs/2502.05567
http://dx.doi.org/10.1145/3372885.3373824
http://dx.doi.org/10.1145/3372885.3373824
https://arxiv.org/abs/2404.01234
https://arxiv.org/abs/2404.01234
https://arxiv.org/abs/2406.07222

Under review as a conference paper at ICLR 2026

Markus N Rabe, Dennis Lee, Kshitij Bansal, and Christian Szegedy. Mathematical reasoning via
self-supervised skip-tree training. arXiv preprint arXiv:2006.04757, 2020.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Mauricio Soroco, Jialin Song, Mengzhou Xia, Kye Emond, Weiran Sun, and Wuyang Chen. Pde-
controller: Llms for autoformalization and reasoning of pdes, 2025. URL https://arxiv.
org/abs/2502.00963.

C. Szegedy. A promising path towards autoformalization and general artificial intelligence. In Intel-
ligent Computer Mathematics: 13th International Conference, CICM 2020, Bertinoro, Italy, July
26-31, 2020, Proceedings 13, pp. 3-20, Bertinoro, Italy, 2020. Springer International Publishing.

G. Tarrach, A. Q. Jiang, D. Raggi, et al. More details, please: Improving autoformalization with
more detailed proofs. In Al for Math Workshop@ ICML 2024, 2024.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings,
Amitayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers
on the putnam mathematical competition. In NeurIPS 2024 Poster Session, 2024. URL
https://nips.cc/virtual/2024/poster/97811L Virtual poster presented at the
Thirty-eighth Annual Conference on Neural Information Processing Systems (NeurIPS), Van-
couver.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Jungi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large
formal reasoning models with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025.

Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First experiments with neural translation of
informal to formal mathematics, 2018. URL |https://arxiv.org/abs/1805.06502.

Sean Welleck and Rahul Saha. llmstep: Llm proofstep suggestions in lean. In Proceedings of
the 3rd Workshop on Mathematical Reasoning and Al (MATH-AI), NeurIPS 2023, 2023. URL
https://neurips.cc/virtual/2023/74987. Poster presented virtually at NeurIPS
2023.

Y. Wu, A. Jiang, W. Li, et al. Autoformalization for neural theorem proving. Artificial Intelligence
and Theorem Proving (AITP), 2022a.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jam-
nik, and Christian Szegedy. Autoformalization with large language models. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 32353-32368. Curran Associates, Inc.,
2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/d0Ocbbc64la56bebee9d9850937307367-Paper—Conference.pdfl

Lan Zhang, Xin Quan, and Andre Freitas. Consistent autoformalization for constructing math-
ematical libraries. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 4020—4033. Association for Computational Linguistics, 2024. doi:
10.18653/v1/2024.emnlp-main.233. URL |http://dx.doi.org/10.18653/v1/2024.
emnlp-main.233.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: A cross-system benchmark for
formal olympiad-level mathematics. In Proceedings of the International Conference on Learn-
ing Representations (ICLR). OpenReview.net, 2022. URL https://openreview.net/
forum?id=9Z2PegFulFTFv.

N. Zhu, X. Zhang, Q. Huang, et al. Fgeo-parser: Autoformalization and solution of plane geometric
problems. Symmetry, 17(1):8, 2024.

12

https://arxiv.org/abs/2502.00963
https://arxiv.org/abs/2502.00963
https://nips.cc/virtual/2024/poster/97811
https://arxiv.org/abs/1805.06502
https://neurips.cc/virtual/2023/74987
https://proceedings.neurips.cc/paper_files/paper/2022/file/d0c6bc641a56bebee9d985b937307367-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/d0c6bc641a56bebee9d985b937307367-Paper-Conference.pdf
http://dx.doi.org/10.18653/v1/2024.emnlp-main.233
http://dx.doi.org/10.18653/v1/2024.emnlp-main.233
https://openreview.net/forum?id=9ZPegFuFTFv
https://openreview.net/forum?id=9ZPegFuFTFv

Under review as a conference paper at ICLR 2026

A TRAINING HYPERPARAMETERS

The hyperparameters used for training the LLMs are listed in Tables [3| and |4, We adhere to the
default settings provided in the original papers.

Hyperparameters Value

yperp DEEPSEEK-MATH HERALD
learning rate 2e-4 le-6
weight decay 0.1 0.1
epochs 1 1
batch size 32 32

Table 3: Hyperparameters for training

Hyperparameters Value

yperp DEEPSEEK-MATH HERALD
temperature 0.70 0.70
top p 0.95 0.95
max token 1024 1024

Table 4: Hyperparameter settings used for autoformalisation in the pass@ 10 setting.

B GENERATED SAMPLE FROM CODE-ONLY TRAINED MODEL

These samples are generated by HERALD trained exclusively on code data. The outputs demonstrate
that while the model captures the underlying logical structure correctly, it lacks proficiency in Lean
4 syntax. However, this suggests the presence of semantic similarity between programming code
and formal mathematical language.

from math import sqrt, ceil, floor
def evaluate_sqgrt_expressions_1():

assert (int (ceil (sgrt (27))) - int (floor (sgrt (26))) == 1)

def is_increasing_function(a, b):
rrr

The function checks if the function f(x) = 4bx + (a+l)x"2 is

increasing for x >= 0.
rrrs

return 4+xb <= 4xbx*x*2 + (a+l)*x*2

def is_3_(girls: list[int]) -> int:

nwn

>>> is_3_([1,2,3,4,5,6,7])
3

return 3

C TRAINING INSTRUCTIONS AND INFERENCE PROMPTS

To generate docstrings describing the main functions in the code repositories, we employ Qwen3-
14B model (https://huggingface.co/Qwen/Qwen3—-14B) using the following prompt
format:

13

https://huggingface.co/Qwen/Qwen3-14B

Under review as a conference paper at ICLR 2026

Prompt

Provide a concise description of the problem solved in the code snippet below. Format the
response as a docstring.
{code}

For math-related tasks, we use the following prompt format:

Prompt

Use the following pre-defined Lean 4 dependencies:
{dependencies}

Based on the context and the problem description, generate a single, syntactically
correct Lean 4 formal statement that accurately captures the problem’s meaning.

Problem Description:
{problem description}

For code-related tasks, we employ a parallel prompt structure:

Prompt

Use the following pre-defined functions:
{pre-defined functions}

Based on the context and the problem description, generate a syntactically correct
function implementation that accurately captures the problem’s meaning.

Problem Description:

{problem description}

D DEPENDENCY TREE EXTRACTION ALGORITHM

The dependency tree extraction process is formally described in Algorithm[I} The algorithm iterates
through all files within a given directory, systematically identifying user-defined functions, including
both class methods and standalone functions. We then analyse inter-file and inter-class dependency
relationships. Through static analysis of function call patterns, we construct a directed dependency
graph where each function call establishes a parent-child relationship. The calling function serves
as the parent node, while the called function becomes the child node.

14

Under review as a conference paper at ICLR 2026

Algorithm 1 Function Call Dependency Analysis

Require: Python project directory
Ensure: Dependency graph of function calls

20:

21:
22:
23:
24
25:
26:
27:
28:
29:
30:

Data Structures:
function_definitions < {} > Record defined functions
imports < {} object_types + {} > Imported names — full paths; Object names — class
names; Save these two to track their parent function definitions or the file where they’re defined
ANALYZEFILE(f) for all Python files f in directory (recursively)
procedure ANALYZEFILE(file_path)

Parse AST from file_path

Initialize function_calls < {}, object_types < {}

for all nodes n in AST do

if n is ClassDef then

Track current class context > Class defined function
else if n is Import/ImportFrom then

Record imports|alias] < full module path > Function from other files

else if n is FunctionDef then
Register function with current_class.name if applicable
Initialize function_calls[name] < || > Save its dependency
else if n is Assign with constructor call then
Map object _types[var] < class namer> Record the codes that initialise this function
else if n is Call then > Record the codes that call this function
Resolve full function name (direct call(obj()), method call(obj.method()), or im-
ports imports[name]
Append to function_calls|current _func] > The list to record the dependency
information
end if
end for
end procedure

procedure BUILDDEPENDENCYGRAPH
Filter to keep only project-internal calls
Detect recursive calls (f — f) > Self-recursive call
Topological Sort: > BFS search

Construct nested call tree from sorted order
Insert recursion markers at tree root if needed
end procedure

15

	Introduction
	Related Work
	Methodology
	Topological Decomposition of Code for Structural Alignment with Formal Math Data
	Code Autoformalisation (CAF)

	Experiments
	Results and Discussion
	Qualitative Error Analysis
	Fine-tuning math models on code-only data
	Impact of Code–Math Data Ratio
	Base model performance

	Conclusion
	Training Hyperparameters
	Generated Sample from Code-Only Trained Model
	Training Instructions and Inference Prompts
	Dependency Tree Extraction Algorithm

