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Abstract

Neural cellular automata (NCA) provide a powerful computational paradigm
for modelling morphogenetic processes through local interactions and self-
organization. We apply NCAs to a number of prototypical complex systems
ranging from morphogenesis to reaction-diffusion systems. We explore the ca-
pacity of NCA to not only replicate complex visual patterns, but also to learn the
underlying update rules of dynamic systems from spatiotemporal image sequences.
We reproduce the behaviour of a morphogenesis system through various training
regimes and demonstrate how training strategies critically influence the ability of
the NCA to grow, persist, and regenerate patterns from visual data. We find that
NCAs cannot be applied “out of the box" to these diverse problems but must be
adapted. We introduce a stratified multi-step training process that can be used to
train NCAs to replicate diverse complex systems from image observations. Our
approach demonstrates the potential for learning complex system dynamics from
purely visual observations, a key capability for imageomics applications. Lastly
we find that NCAs use the hidden channels to generalize to novel behaviour. We
further analyse the role of hidden channels in encoding spatial memory and guid-
ing complex pattern formation. Our experiments provide new insights into how
neural CA can be adapted as general-purpose models for learning, replicating,
and possibly innovating system dynamics from image-based observations. Our
findings illustrate the versatility of NCA as a self-organising and rule-learning
system (albeit with complex training regimes) and suggest broader applications in
modelling natural and artificial systems through visual pattern analysis.

1 Introduction

Cellular automata have long served as a compelling framework for studying complex systems through
simple local rules. Recent work by Mordvintsev et al. [2020] introduced a neural formulation of
cellular automata (NCA) that combines the interpretability of traditional automata with the flexibility
of neural networks. This approach encodes the state of each cell in multiple channels - including both
visible (e.g. RGB) and hidden dimensions - and evolves the system through convolutional update
rules derived from local perceptions of neighbouring cells.
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The original NCA model demonstrated impressive capabilities in self-organizing and regenerating
images from seed states, offering a novel framework for differentiable morphogenesis. However, it
remains an open question whether such systems can generalize beyond handcrafted targets and be
used to infer rules underlying arbitrary spatiotemporal phenomena.

In this paper, we explore the potential of NCA to learn the dynamics of a system from observation
alone. We investigate how different training regimes impact the ability of NCA to capture growth,
persistence, and regeneration behaviours. In particular, we study how carefully curated datasets
and loss strategies can induce desired behaviours such as long-term stability and structural recovery.
We further analyze the role of hidden channels in encoding spatial memory and guiding complex
pattern formation. Our experiments provide new insights into how neural CA can be adapted as
general-purpose models for learning, replicating, and possibly innovating system dynamics.

2 Inferring the Rules

We investigate whether neural cellular automata can be used to reproduce complex behaviour by
inferring the rules of a system given only snapshots of how the system evolves, investigating the
morphogenesis system of Mordvintsev et al. [2020], the BZ reaction and Conway’s Game of Life
Gardner [1970a].

The first training regime that was used was to simply provide the model with a snapshot given as input
and its successor as the target, so that the model would learn a single step. However, training based
only on a single step of the model meant that although the model was quite accurate when predicting
a single step, it failed to learn the long-term dynamics of the system. Additionally, the models do
not learn to control their behaviour, and running the models for a large number of iterations displays
instability.

Figure 1: Schematic of the multi-step training strategy.

To allow the model to learn to exhibit long-term dynamics, the loss must be computed over multiple
steps. This training regime randomly chooses a number n and computes the loss between the model
prediction of the state n time-steps into the future and the true state of the frame at that time-step.
This training regime is much more effective than the single-step regime, exhibiting the correct growth
and stability behaviour; however, the model still suffered from the fact that the growth stage in the
training data was relatively small, which meant that the model was not able to reproduce the pattern
to the level of detail which the original NCA produced. Additionally, since the training data did not
contain any regeneration data, the model did not learn how to regenerate damaged images.

Thus, the training strategy has to be further modified to emphasise the growing stage and to include
regeneration behaviour.

We can broadly categorise the behaviour of the morphogenesis system into two parts: the growing
stage, where the seed grows into the pattern over successive updates, and the stable stage, where once
the target pattern has been created, successive updates do not change the pattern.

Whether the system is in the growing stage or the stable stage is controlled by the values of the hidden
channels. A middle ground is when the system is regenerating a pattern: here, the system maintains
the persistence behaviour for most of the image, but exhibits growth on the damaged section.

In order to ensure that the NCA we are training also exhibits this behaviour, multiple runs of the
model were used as training data: one where the system is growing, one where the system is stable
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Figure 2: Top: evolution of the original morphogenesis system. Bottom: evolution of the trained
NCA model using the stratified multiple step training.

and one where the system is regenerating. Stratified sampling from each of these phases was used per
batch, with an emphasis on the growing phase. This ensures that the model does not just learn the
simpler behaviour of persisting an already grown image, and but is also able to grow it from scratch
like the original morphogenesis system.

3 Influence of Hidden Channels

The hidden channels of the model are crucial to controlling the behaviour of the morphogenesis
system. Although the morphogenesis model is only directly trained by taking the L2 loss over the
RGBA channels, the hidden channels govern the behaviour of the model. During the growth phase,
all channels are active in the pattern. However, in the stable phase, different channels are active in
different physical locations of the pattern, using the channels to encode the final pattern.

Figure 3: Snapshot of the morphogenesis model displaying all 16 channels at the growing (top) and
stable (bottom) phases. The first image is the RGB channels, the second image is of the alpha channel
which is used to determine whether a cell is considered alive or dead, and the four other images
display three of the hidden channels each.

A key finding of this work is insight into how information about the spatial location of cells is encoded
in the hidden channels, allowing the different features of the pattern to be grown at different locations
despite using a common update rule for all the cells.

Figure 3 shows a visualisation of the channels for when the system is in the growing and stable
phases. When the system is still growing, the expression of all the channels is still changing for each
cell, and there is overlap between the locations where each channel takes a high value. However, in
the stable state the cells differentiate themselves, using the different channels to encode information
about role within the pattern. The channels become active in separate regions of the pattern, with less
overlap than in the growing stages (visually, this corresponds to the fact that the colours displayed in
Figure 3 are mostly the primary colours). For example, the cells which have large values of channel 8
(corresponding to the green channel in the third image from the right in Figure 3) are concentrated in
the lower half of the pattern, but not in the nose, whereas cells which have large values of channel of
channel 9 (the blue channel in the third image from the right) are concentrated in the nose and the
ears of the fox pattern.

To analyse the spatial distribution of cells with similar states, clustering is performed on the cell
states. The k-means clustering algorithm was applied to cluster the cell states (real valued vectors)
over multiple iterations and across all spatial locations. Figure 4a visualises the result of clustering
the cells into five clusters2, showing how the cluster membership varies over time as the system grows
and then persists the pattern. During the growing stage, the cells are similar, belonging mainly to the

2The number of clusters was varied between two and fifteen, and the value of five clusters chosen by the
elbow method for both the fox and cat morphogenesis systems.
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(a) Fox morphogenesis system (b) Cat morphogenesis system

Figure 4: Visualisation of clustering of the cells of the stable state of the two systems into five clusters.

second and third cluster. However, as the system grows, the cells differentiate and the fourth and fifth
clusters appear. The cells which form the boundary all belong to the same cluster, suggesting that the
pattern is prevented from growing further due to the boundary cells encoding that information in the
channels. Similar behaviour is illustrated in Figure 4b, which shows the clustering of the cell states in
the cat morphogenesis system as the system evolves.

This insight into the behaviour of the morphogenesis system helps explain previous results, which
show that reducing the number of channels available to an NCA model diminishes its ability to
perform the task of image morphing Richardson et al. [2024]. Using fewer channels limits the model’s
capacity to encode information about the pattern features, thereby affecting the model’s ability to
produce detailed patterns. Thus, as the number of available channels is decreased, the model loses
the capacity to exhibit complex behaviour.

(a) State reached by models using different numbers of
channels after 300 iterations

(b) Loss with the target at each iteration of
the morphogenesis models

Figure 5: Comparison of morphogenesis models that use different numbers of channels to encode the
cell state

4 Conway’s Game of Life

Compared to the morphogenesis and BZ reaction systems, Conway’s Game of Life Gardner [1970b]
has much simpler rules. However, an added complexity is that the system is discrete, whereas NCA
are continuous.

The training data was collected by using different well-known patterns of the Game of Life such as
the glider gun and pulsar, as well as including a randomly initialised run of the system.

Training using the single step regime achieves loss of 1e-6, suggesting that in this case the single step
dynamics are simple enough that they can be learnt. However, we see that when running the model
for multiple steps, the model fails to replicate the behaviour of the Game of Life system. This is due
to the fact that each step of the model adds noise, and so over multiple steps the noise continuously
accumulates and destroys the pattern.
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Thus, even for incredibly simple systems such as this one, single step training is not sufficient. To
train the model to avoid this accumulation of noise, we again have to use the multiple step training
regime, training the model to predict between 1 and 8 steps into the future. It is effective to first train
the model using the single step training, and then perform the multi-step training, since the model has
effectively learnt the update rule, and only needs to learn to avoid adding noise.

5 Conclusion

Our study reaffirms the ability of neural cellular automata to replicate, persist, and regenerate
complex patterns through localised interactions. By designing training strategies that emphasise
different phases of morphogenetic evolution, growth, stability, and regeneration, we demonstrate that
NCAs can internalise sophisticated rule-based behaviours from data alone. The stratified multi-step
training regime proves especially effective in balancing these phases and in preventing models from
degenerating into trivial persistence or overfitting to short-term dynamics.

We further highlight the critical role of hidden channels in modulating emergent behaviours, suggest-
ing that these internal representations function analogously to latent fields in biological development.
Our experiments show that NCAs not only reconstruct known dynamics but can also generalize to
novel behaviours such as pattern reproduction, hinting at their broader applicability in artificial life,
system identification, and generative modeling.

Because all of our training and evaluation use spatiotemporal image sequences (RGB/alpha frame
observations and derived perception filters), the results speak directly to imageomics workflows:
NCAs can be used to learn, compress, and forecast dynamics from raw image data in domains such
as microscopy, remote sensing, and experimental imaging. In particular, NCAs present a lightweight
and interpretable inductive bias for (i) identifying latent spatial memory fields from images, (ii)
performing robust short- and long-horizon forecasting, and (iii) enabling image-level interventions
such as targeted regeneration or controlled pattern perturbation.

As neural CA continue to blur the boundaries between rule-based simulation and learned behaviour,
future work should explore their use in more abstract domains, from agent-based modelling to
distributed computation, and investigate the extent to which they can discover interpretable or
symbolic representations of the systems they emulate.
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