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Abstract

Online discussions are abundant with different001
opinions for a common topic, and identifying002
agreement and disagreement between online003
posts enables many opinion mining applica-004
tions. Realizing the increasing needs to analyze005
opinions for emergent new topics (e.g., from006
"mask mandate" to "COVID vaccination") that007
however tend to lack annotations, we present008
the first meta-learning approach for few-shot009
(dis)agreement identification on a new topic010
with few labeled instances. We further design011
a lexicon based regularization loss and pro-012
pose domain-aware task augmentation for meta-013
training to enable the meta-learner to learn both014
domain-invariant cues and domain-specific ex-015
pressions for (dis)agreement identification. Ex-016
tensive experiments on two benchmark datasets017
and evaluation on three topic domains demon-018
strate the effectiveness of the meta-learning019
approach that consistently and noticeably out-020
performs the conventional transfer learning ap-021
proach based on fine-tuning.022

1 Introduction023

As seen in many online forums and Subreddits,024

people express different opinions and perspectives025

toward a common topic in online discussions. De-026

tecting agreement and disagreement relations be-027

tween online posts addressing a shared topic will028

enable many opinion mining applications and in-029

form policy making. However, realizing that new030

topics keep emerging (e.g., from "mask mandate"031

to "COVID vaccination"), it is unrealistic to expect032

existing annotated datasets to cover each topic of033

interest. To avoid the time-consuming process to034

create a large annotated dataset for a new topic, we035

study few-shot agreement and disagreement iden-036

tification that aims to quickly build a model on a037

new topic domain with few labeled instances.038

The traditional transfer learning approach that039

trains a model on annotation-rich domains and then040

fine-tunes the model for a new domain usually suf-041

fers from the overfitting problem (Zhang et al., 042

2017) when the number of labeled samples in the 043

target domain is very small. It is known that fine- 044

tuning on a limited number of samples often leads 045

the model to simply memorize the labels for these 046

samples and fail to learn generalizable features for 047

the new domain. 048

To tackle the difficulty of few-shot (dis)- 049

agreement identification under a new topic domain, 050

we present a metric-based meta-learning approach 051

that trains a meta-learner on annotation-rich do- 052

mains and adapts the meta-learner to a new do- 053

main with very few labeled instances. The meta- 054

learner takes K labeled samples per class in the 055

target new domain as support set, attentively builds 056

class embeddings using the support set, and com- 057

pares a test instance with each class embedding 058

via a learned relation network (Sung et al., 2018) 059

to make a prediction. To mimic the meta-testing 060

procedure and make the model accustomed to the 061

few-shot environment, the meta-training process 062

adopts episodic training (Vinyals et al., 2016) to 063

train the meta-learner: in each training episode, 064

we sampled instances from training domains, in- 065

cluding K examples per class as support set and 066

a query set as well, compared each query instance 067

with class embeddings derived from the support set 068

and minimized the loss on the query set. 069

Inspired by prior research (Misra and Walker, 070

2013) that studied rich domain-independent indi- 071

cators of agreement and denial in online discus- 072

sions, we further encourage the meta-learning sys- 073

tem to learn domain-invariant features and thus 074

enhance its ability of quickly generalizing to a new 075

test domain. Specifically, guided by (Misra and 076

Walker, 2013), we compiled a lexicon of domain- 077

independent (dis)agreement indicators consisting 078

of several hundred words and short phrases, e.g., 079

"yes", "make sense", "no" and "but". Then, we 080

designed a regularization loss based on the lexicon 081

and added it to the meta-learning system so that 082
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the meta-learner pay more attention to the domain-083

independent cues.084

Meanwhile, we decompose an entire training085

dataset to clusters for episodic training, with each086

cluster corresponding to a topic domain, in order to087

better train the meta-learner to recognize domain-088

specific expressions of agreement and disagree-089

ments. Existing labeled datasets for agreement and090

disagreement identification usually contain data091

instances from multiple topic domains. If we ran-092

domly sample from an entire dataset for each meta-093

training episode, many episodes have sampled in-094

stances in the support set and the query set that do095

not match in domain and have divergent data dis-096

tributions. The domain mismatch will lead to poor097

transfer between support and query sets (Murty098

et al., 2021), and thus hinders the meta-learner099

from learning to recognize domain-specific expres-100

sions of agreement and disagreements. Therefore,101

we perform domain-aware task augmentation for102

meta-training to strengthen the few-shot adaptation103

ability of the meta-learner, where we sample in-104

stances from the same domain to form support set105

and query set for each episode.106

We experiment on two benchmark datasets for107

agreement and disagreement identification, the In-108

ternet Argument Corpus (IAC) (Walker et al., 2012)109

and the Agreement by Create Debaters corpus110

(ABCD) (Rosenthal and McKeown, 2015). Eval-111

uation on three topic domains shows that com-112

pared to the conventional transfer learning, the113

meta-learning approach achieves consistent and114

noticeable performance gains across the three do-115

mains under the challenging few-shot setting for116

(dis)agreement identification. Both of the two117

strategies for strengthening the adaptation ability of118

the meta-learner further improve the performance119

of the meta-learner, by enabling it to learn both120

domain-invariant cues and domain-specific expres-121

sions for (dis)agreement identification.122

To summarize, our contributions are mainly123

three:124

• We present the first meta-learning approach125

for few-shot agreement and disagreement iden-126

tification.127

• We designed a lexicon based regularization128

loss to encourage the meta-learner to learn129

domain-invariant features.130

• We perform domain-aware task augmenta-131

tion for meta-training to better train the meta-132

learner to recognize domain-specific expres- 133

sions of agreement and disagreements. 134

2 Related Work 135

Research on agreement and disagreement detection 136

in online conversations or social media dialogues 137

attracted increasing attentions. (Walker et al., 2012) 138

provided the Internet Argument Corpus (IAC), an- 139

notating agreement/disagreement relation for Q-R 140

(Quote-Response) post pairs in ten different do- 141

mains, where Response is a single post replying 142

to the previous post Quote. (Misra and Walker, 143

2013) conducted binary classification (agreement 144

vs. disagreement) on the IAC corpus and studied 145

rich domain independent cues for (dis)agreement 146

identification. (Wang and Cardie, 2016) proposed 147

to improve three-way classification (agreement vs. 148

neutral vs. disagreement) with a socially-tuned sen- 149

timent lexicon. (Rosenthal and McKeown, 2015) 150

introduced a larger dataset, the Agreement by Cre- 151

ate Debaters (ABCD) corpus, and conducted three- 152

way classification with transfer learning. How- 153

ever, none of the prior research has studied the 154

(dis)agreement identification task under the cross- 155

domain few-shot setting. 156

Meta-learning has been studied for years as a 157

general method for few-shot learning. Metric- 158

based meta-learning learns a distance function be- 159

tween data instances and classifies test instances 160

by comparing them to K labeled samples. Several 161

metric-based meta-learners have been proposed, 162

including Siamese Network (Koch et al., 2015), 163

Matching Network (Vinyals et al., 2016), Proto- 164

type Network (Snell et al., 2017) and Relation Net- 165

work (Sung et al., 2018), which learn an embedding 166

function mapping individual instances into a rep- 167

resentation space and learn a similarity function 168

to calculate distance between two instances. An- 169

other direction is optimization-based meta-learning 170

(Finn et al., 2017) that aims to learn a good initial- 171

ization to make a neural model reach the optimal 172

for a new task quickly. We focus on developing a 173

metric-based meta-learning model on the basis of 174

Prototype and Relation Network models. 175

Meta-learning has been used for many NLP tasks 176

under the few-shot setting, including topic classi- 177

fication (Jiang et al., 2018), entity relation clas- 178

sification (Sun et al., 2019; Geng et al., 2019), 179

word sense disambiguation (Deng et al., 2020) and 180

event detection (Deng et al., 2020; Lai et al., 2020). 181

Mostly, prior works used meta-learning to identify 182
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unseen new classes and treat a class as a task, we,183

however, aim to identify (dis)agreement in unseen184

new domains and treat a domain as a task.185

Domain generalization has been studied long186

before the emergence of meta-learning, aiming to187

generalize from a set of seen domains to unseen188

domains without accessing any instance from the189

unseen domain during the training stage. As a strat-190

egy to achieve domain generalization, (Blanchard191

et al., 2011; Li et al., 2018; Muandet et al., 2013)192

proposed extracting domain-invariant features from193

various seen domains to enhance generalization194

ability. To the best of our knowledge, we lead on195

using domain-invariant features together with meta-196

learning to enhance few-shot generalization ability197

across domains.198

Lack of well-defined data distribution is a rec-199

ognized obstacle of meta-learning for solving NLP200

problems, generating some attempts in augment-201

ing meta-training tasks. Task augmentation for202

meta-learner was first studied in (Rajendran et al.,203

2020). (Bansal et al., 2020) proposed the SMLMT204

method to create new self-supervised tasks. Most205

closely related to our work is the strategy men-206

tioned in (Murty et al., 2021) which clustered the207

entire dataset into several clusters by K-means and208

sampled support & query set from the same clus-209

ter to form training tasks. Our idea of task aug-210

mentation is different from theirs in that we relied211

on domain information to decompose the entire212

dataset into different training domains, creating213

clearer boundaries for different types of tasks.214

3 The Meta-Learning Approach215

In this section, we will elaborate our meta-learning216

approach in details. Firstly, we introduced the struc-217

ture of the basic meta-learning model. Then we218

enhanced the model’s domain generalization abil-219

ity from two perspectives: (1) Manually created a220

lexicon for domain-independent (dis)agreement in-221

dicators, and designed a regularization loss to make222

the meta-learner focus more on domain-invariant223

features, (2) Decomposed the entire training dataset224

into several sub-datasets based on domain-specific225

info to augment the task distribution. Fig. 1 illus-226

trated the pipeline of our meta-learning approach.227

3.1 The Basic Meta-Learning Model228

In the cross-domain few-shot (dis)agreement229

identification problem, we are given a training230

dataset Dmeta−train consisting of rich labeled231

Q-R pairs from various domains, and a testing 232

dataset Dmeta−test in an unseen new domain. 233

Dmeta−test is splitted into two parts: a support set 234

Dtest−support with only a small number of K la- 235

beled Q-R pairs per class, and a test set Dtest−query 236

used to evaluate the model performance on. Our 237

goal is to train a meta-learner f : (S, x) → ŷ 238

that takes a support set S = {sik, i ∈ 1 . . . C, k ∈ 239

1 . . .K} and a test instance x as input, then re- 240

turns a prediction ŷ for the instance (x, y), where 241

y ∈ {1, . . . , C} is the true label, C is the number 242

of classes. The few-shot problem is often named a 243

C-way K-shot learning problem. 244

3.1.1 Episodic Training 245

To mimic the meta-testing task that takes a sup- 246

port set Dtest−support & test instances Dtest−query 247

as input, and make the model accustomed to the 248

few-shot environment, we followed the episodic 249

training idea in (Vinyals et al., 2016) to create train- 250

ing tasks: randomly sampled K labeled examples 251

per class from the training dataset as the support set 252

Dtrain−support (K ∗ C support examples in total), 253

and N query examples from the rest of training 254

data as query set Dtrain−query, output prediction 255

values for query examples and minimized the loss 256

on the query set to update the meta-learning model. 257

Note that the K labeled support examples in the 258

testing dataset Dtest−support did not participate in 259

the training stage, but just served as model input in 260

testing tasks. 261

3.1.2 Attentive Class Embedding Building 262

Within a training/testing task, each class embed- 263

ding is derived attentively from the given support 264

examples via learned attention weights on them: 265

first obtained the Q-R pair embedding for each 266

support & query sample, then mapped support ex- 267

amples through two-layer neural networks learned 268

separately for each class, lastly calculated the atten- 269

tion weights to derive attentive class embedding. 270

The initial embedding for the support sik, i ∈ 271

{1, . . . , C}, k ∈ {1, . . . ,K} and query examples 272

eq are obtained on the basis of pre-trained BERT 273

model (Devlin et al., 2018): concatenating the hid- 274

den state vectors at the [CLS] token of quote and 275

response sentence together as the pair embedding. 276

Then, we mapped support examples through a 277

two-layer neural network learned separately for 278

each class: 279

ŝik = W i
2(W

i
1s

i
k + bi1) + bi2 (1) 280
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Figure 1: Illustration of the meta-learning approach for 3-way 2-shot problem with one query instance

At last, support examples were aggregated into281

class embedding via learned attentions {aik}Kk=1282

over {ŝik}Kk=1, in which attention weights are cal-283

culated wrt both support {ŝik} and query eq:284

aik = softmax(mT tanh(W3ŝ
i
k +W4eq)) (2)285

286

ci =
K∑
k=1

aik ∗ ŝik (3)287

where ci, i ∈ {1, . . . , C} is i-th class embedding.288

Different from the naive mean average in the289

original Prototype Network (Snell et al., 2017), our290

method derived class embedding from support set291

in an attentive way, and also took the query instance292

into consideration when calculating the attention293

weight over support examples.294

3.1.3 Relation Network295

With the classes embedding and query embedding296

at hand, the final step is to compare the query in-297

stance with each class embedding via a learned two-298

layer relation network, output the relation scores299

for each class, and choose the class with maximum300

relation score as the prediction result.301

For each class, relation feature is designed as the302

concatenation of class embedding ci, query embed-303

ding eq, and the element-wise subtraction, element-304

wise multiplication, L2 norm, dot product of them:305

fiq = [ci; eq; ci−eq; ci⊙eq; ||ci−eq||; ci ·eq] (4)306

Then relation features were fed into a two-layer307

relation network to learn the relation scores be- 308

tween the i-th class and query eq as output: 309

riq = sigmoid(W6(W5fiq + b5) + b6) (5) 310

Output relation score riq is a scalar between 0 311

and 1 to measure the similarity between query in- 312

stance and each class, and the ground truth yq ∈ 313

{0, 1} meaning matched class has similarity 1 & 314

mismatched class has similarity 0. The objective 315

function we used is the mean square error (MSE) 316

loss on the query set: 317

LMSE =
C∑
i=1

N∑
q=1

(riq − I(yq == i))2 (6) 318

3.2 Lexicon Based Regularization Loss 319

To further strengthen model’s ability of quickly 320

generalizing to a new domain, we manually created 321

a lexicon of domain-independent (dis)agreement 322

indicators to incorporate domain-invariant features 323

from various seen domain. Moreover, we de- 324

signed a lexicon based regularization loss to make 325

the meta-learner focus more on selected domain- 326

independent indicators. 327

When creating the domain-independent lexi- 328

con, we followed the similar scenario in prior 329

work (Misra and Walker, 2013), which proved 330

domain-independent words/phrases in cue words, 331

agreement words, denial words, and hedge 332

words categories are all crucial to cross-domain 333

(dis)agreement identification. We manually in- 334

spected 695 disagreements and 141 agreements 335
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Category Examples

Cue words (48)
so, oh, well, just, and, because,
though, as well, if, then, thus,
unless, seems, also, you, uh

Agreement (145)

yes, correct, agree, accept,
support, true, like, good, exactly,
ok, right, clear, sure, thanks,
believe, of course, make sense

Denial (278)

no, not, never, nothing, however,
but, doesn’t, don’t, isn’t, yet,
none, hate, false, wrong, doubt,
disagree, how can, I don’t think

Hedge (25)

maybe, probably, would, could,
rather, although, really, actually,
wondering, possibly, essentially,
anyway, somewhat, I suppose

Table 1: Examples of selected domain-invariant features

from the ten domains in IAC dev set, and se-336

lected the words/phrases belonging to discourse337

markers associated with stating a personal opinion338

(cue words), agreement markers expressing support339

(agreement words), denial markers showing rejec-340

tion/negation (denial words), and hedges that delib-341

erately vague/soften a claim (hedge words), which342

are important for human to identify agree/disagree.343

Besides, in order to provide better generaliza-344

tion, we generalized the selected phrases, e.g., I345

don’t think would also result in I don’t see being346

added into the lexicon (Misra and Walker, 2013).347

Table 1 listed examples of our selected domain-348

independent words/phrases.349

To make the meta-learner focus more on the350

domain-independent features, we designed a regu-351

larization loss to maximize the model’s attention352

on selected domain-invariant words. For an in-353

stance consisting of n words, the model’s attention354

on the lth word is designed as L2 norm of the gradi-355

ent of model output (relation scores) wrt lth word’s356

embedding. Thus, model’s attention on the words357

in a query instance eq is:358

−→gq = (|| ∂rtq
∂w1q

||, || ∂rtq
∂w2q

||, . . . , || ∂rtq
∂wnq

||) (7)359

where (w1q, w2q, . . . , wnq) ∈ eq and yq = t.360

Similarly, the attention on the words in a support361

example stk is:362

−→gstk = (|| ∂rtq
∂w1stk

||, || ∂rtq
∂w2stk

||, . . . , || ∂rtq
∂wnstk

||) (8)363

where (w1stk
, w2stk

, . . . , wnstk
) ∈ stk. Bigger gradi-364

ent value means more influence on the model out-365

put, and thus means more model attention. Then, 366

we used an indicator I(w1, w2, . . . , wn) to show 367

whether the word belongs to our selected domain- 368

independent words set, which is a vector consisting 369

of value 0 or 1. Finally, our regularization loss 370

is designed as the dot product of gradient vector 371

(model attention) and indicator vector: 372

Lreg = −
N∑
q=1

{
−→gq · I(w1q, w2q, . . . , wnq)

+
K∑
k=1

−→gstk · I(w1stk
, w2stk

, . . . , wnstk
)

} (9) 373

where yq = t. Note that we added the regulariza- 374

tion loss on both query and support examples in a 375

training task. The total objective loss will be: 376

Ltotal = LMSE + λ ∗ Lreg (10) 377

where λ is a hyper-parameter. 378

3.3 Meta-training Task Augmentation 379

In our previous episodic training process, we treat 380

the entire training dataset as tasks, meaning sup- 381

port set and query set are sampled from the entire 382

training dataset for each single training task, which 383

is also the common approach used by previous pa- 384

pers (Murty et al., 2021). This brings us two major 385

problems: one is meta-learning actually needs a 386

well-defined task distribution from which a large 387

number of diverse tasks can be sampled to train 388

the meta-learner, another one is the entire training 389

dataset consisting of various domains data is also 390

heterogeneous. Thus, sampling support & query 391

from the entire training dataset not only limited the 392

diversity of meta-training tasks, but also resulted in 393

support & query examples are heterogeneous with 394

each other, making the meta-learner harder to foster 395

the ability of quickly adapting to new domains. 396

For these reasons, we proposed to augment the 397

task distribution by decomposing the entire training 398

dataset into several sub-datasets based on domain- 399

specific information and sampling support & query 400

from the same sub-dataset to form training tasks. 401

To be detailed, for the dataset having ground-truth 402

domain labels, we grouped all the pairs by true 403

domain labels to form distinct training domains as 404

sub-datasets. But for the dataset without domain 405

labels, we made use of sentences in discussion 406

titles which mainly contains domain-specific fea- 407

ture to cluster the dataset into several clusters. K- 408

means algorithm (MacQueen, 1967) is applied on 409
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the discussion title’s [CLS] token embedding from410

pre-trained BERT, and the number of clusters is se-411

lected by elbow method (Joshi and Nalwade, 2013).412

In this way, training tasks are created by sampling413

support & query from the same sub-datasets, and414

ideally the same training domain.415

4 Experiments416

4.1 Datasets417

Internet Argument Corpus (IAC) (Walker et al.,418

2012) annotated Q-R pair from the website 4fo-419

rums.com with (dis)agreement scores from -5 to420

5, with -5 as strongly disagree and 5 as strongly421

agree. We transformed the average score into422

(dis)agreement label as previous paper did (Wang423

and Cardie, 2016)(Misra and Walker, 2013): [-5,-1]424

as Disagreement, (-1,1) as Neutral, [1,5] as Agree-425

ment. Also, pairs in IAC have human-annotated do-426

main labels in a total of ten domains. Train/dev/test427

are split in the ratio of 7:1:2 within each domain.428

To evaluate the meta-learner’s generalization ability429

among different domains in the same dataset, we430

did experiments of both 2-way and 3-way classifica-431

tion within IAC and selected Evolution, Gun Con-432

trol, Gay Marriage as testing domain. While test-433

ing on Evolution, for example, the training dataset434

Dtrain is all the other domains in IAC exclude Evo-435

lution, and the support set Dtest−support is sampled436

from Evolution train set. The statistics of the test437

set from these three domains are listed in Table 2.438

When augmenting meta-training tasks, we divided439

Dtrain by golden domain label.440

Agreement by Create Debaters (ABCD) dataset441

(Rosenthal and McKeown, 2015) collected Q-R442

pair from another website createdebate.com. The443

(dis)agreement label is derived in this way: if the444

side labels of Response and Quote are the same, the445

relation is Agreement, if different, the relation is446

Disagreement, and when the author is the same for447

both posts or Response is directly replying to the448

discussion title, the relation is Neutral. To evaluate449

the model’s generalization ability among different450

datasets, we did experiment using ABCD as train-451

ing dataset Dtrain and also chose Evolution, Gun452

Control, Gay Marriage in IAC as testing domain453

Dtest. Since the relation between two different454

users’ posts can only be Agreement or Disagree-455

ment in ABCD, we can only conduct 2-way clas-456

sification generalizing from ABCD to IAC. Also,457

when augmenting meta-training tasks, we clustered458

the discussion titles in ABCD with K-means and459

Domain Agree Neutral Disagree
Evolution 91 202 522

Gun Control 49 110 234
Gay Marriage 24 46 102

Table 2: Statistics of test sets in IAC

Dataset Thread Pairs Agree Neutral Disagree
ABCD 10468 128343 28111 60128 40104

IAC 1806 9980 1113 2712 6155

Table 3: Statistics of ABCD and IAC datasets

selected five as the number of clusters by elbow 460

method. Table 3 summarized statistics of the two 461

datasets we used in this paper. 462

4.2 Experimental Setting 463

Implementation Details: To evaluate proposed 464

meta-learning approaches, we tested our models on 465

a new domain within the same dataset as well as 466

on a new dataset. The number of support examples 467

per class K is set to 5, and the query set size N 468

is set to 15 in each meta-training task. The λ in 469

equation (10) is set to 1. Learning rate is set to 2e-5. 470

For 2-way and 3-way classification within IAC, we 471

trained the model from epoch 1 to 10 and selected 472

the best one. For 2-way classification generalizing 473

from ABCD to IAC, the number of epoch is 2. 474

Evaluation The testing task in the new domain 475

consists of a support set Dtest−support and a real 476

test set Dtest−query to evaluate the prediction re- 477

sults on. Here, we used F1 score for each class 478

and macro Precision/Recall/F1 score as evaluation 479

metrics. To control for variations across different 480

support sets, we sampled 50 random support sets 481

for each testing task, and report the average results 482

on these support sets. 483

Baseline Conventional transfer learning which 484

trained a supervised model on the dataset with 485

richer labeling resource and then fine tuned on the 486

few provided labeled examples in a new domain 487

is commonly used previously. To train a super- 488

vised model on the training dataset Dtrain, we also 489

used the same instance embedding as in the meta- 490

learning models, then add a classification layer on 491

top of it and activated by a softmax layer to output 492

the probability for each class. The loss in super- 493

vised model is the classical cross-entropy classifi- 494

cation loss. Then we fine tuned it on the support 495

set Dtest−support in the new testing domain, and 496

also reported the average results on 50 randomly 497

sampled support sets. 498
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Test Domain Evolution Gun Control Gay Marriage
Model A D Macro A D Macro A D Macro

F1 P R F1 F1 P R F1 F1 P R F1
Supervised 71.4 81.9 80.8 72.6 76.7 75.2 78.8 77.4 76.7 77.0 87.1 89.4 88.9 87.6 88.2
Fine Tune 77.9 77.6 78.5 77.0 77.7 76.0 77.4 77.3 76.2 76.7 86.1 86.7 86.7 86.2 86.4

Meta 76.6 83.6 82.3 77.9 80.1 80.9 80.0 80.5 80.4 80.4 91.7 93.1 93.1 91.7 92.4
Meta + reg 79.0 85.3 84.6 79.7 82.1 81.4 83.0 82.3 82.1 82.2 93.6 94.5 94.5 93.7 94.1
Meta + aug 80.0 84.4 83.1 81.3 82.2 84.8 82.1 84.0 82.9 83.4 93.7 94.6 94.6 93.7 94.2

Meta + aug + reg 81.0 85.3 84.3 82.1 83.2 85.3 83.2 84.7 83.9 84.3 95.8 96.3 96.3 95.9 96.1

Table 4: Results of 2-way classification when training on other domains exclude test domain within IAC (A:
Agreement, D: Disagreement, P; Precision, R: Recall, F1: F1 score)

Test Domain Evolution Gun Control Gay Marriage
Model A N D Macro A N D Macro A N D Macro

F1 P R F1 F1 P R F1 F1 P R F1
Supervised 50.4 49.1 55.6 54.9 48.5 51.7 52.3 36.4 52.0 48.2 45.6 46.9 66.3 50.8 57.8 62.7 53.9 58.3
Fine Tune 54.4 47.5 56.8 55.2 50.5 52.9 56.2 38.2 51.8 49.6 47.8 48.7 66.0 51.8 58.6 61.8 55.8 58.8

Meta 61.4 51.1 56.6 60.0 52.6 56.4 56.1 47.1 53.7 55.7 48.9 52.3 69.1 54.4 63.8 64.5 60.4 62.4
Meta + reg 63.5 50.2 61.8 60.1 56.9 58.5 59.2 49.8 53.0 57.4 50.5 54.0 70.6 59.1 65.6 66.4 63.8 65.1
Meta + aug 64.0 52.5 62.0 60.6 58.4 59.5 58.9 46.2 57.7 56.7 51.9 54.3 77.3 44.8 67.3 63.1 63.1 63.1

Meta + aug + reg 64.3 53.9 64.7 62.6 59.4 61.0 60.8 47.7 57.2 58.4 52.0 55.2 78.4 56.7 64.1 67.3 65.4 66.4

Table 5: Results of 3-way classification when training on other domains exclude test domain within IAC (A:
Agreement, N: Neutral, D: Disagreement, P; Precision, R: Recall, F1: F1 score)

4.3 Results499

Experimental results are summarized in Table 4-6.500

For the baseline methods, we reported the super-501

vised model’s performance before and after fine502

tuning in the first (Supervised) and second (Fine503

Tune) row. For our meta-learning approaches, we504

reported the performance of basic meta-learning505

model (Meta), only adding the lexicon based regu-506

larization loss (Meta + reg), only with task augmen-507

tation (Meta + aug), and task augmentation together508

with regularization loss (Meta + aug + reg).509

Table 4-5 shows the experiments generalizing510

among domains within the same dataset, we can511

observe that fine tuning on the few labeled exam-512

ples can bring us F1 score improvement in most513

cases, but sometime it will lower the performance.514

As analyzed in (Zhang et al., 2017), it is due to the515

overfitting problem for transfer learning without516

large amount of training data, so that the model sim-517

ply memorize the labeled samples and fail to learn518

generalizable features for new domains. In com-519

parison, under both 2-way and 3-way classification,520

the basic meta-learning model can outperform fine521

tuning baseline by 2.4% to 6% in macro F1 score522

across all the three testing domains consistently.523

The meta-learning with lexicon based regulariza-524

tion and task augmentation can further enhance525

the domain adaptation ability, resulting in 2.9% to526

4.6% increase in F1 score compared to the basic527

meta-learner, in accompany with improvement in528

both Precision and Recall. 529

Table 6 evaluates the models’ ability to general- 530

ize across different datasets. Since the Q-R pairs in 531

ABCD and IAC are collected from different web- 532

site sources, the distribution of data points in Dtrain 533

and Dtest are distinct with each other, making this 534

experiment setting more difficult. Similar to the 535

experiments within the same dataset, fine tuning 536

also has the problem of overfitting and received a 537

poor performance under Evolution and Gun Con- 538

trol domain. The basic meta-learning model shows 539

better performance than fine tuning baseline across 540

all the testing domains, with 1.8% to 2.6% increase 541

in macro F1 score. After training with lexicon 542

based regularization & task augmentation, the per- 543

formance was further increased by 2.6% to 6.5% in 544

macro F1 score, with improvement in both Preci- 545

sion and Recall. The above results indicate that the 546

basic meta-learner can achieve better adaptation 547

performance, while incorporating lexicon based 548

regularization loss and task augmentation together 549

can further boost meta-learner’s domain general- 550

ization ability. 551

4.4 Ablation Study 552

Effectiveness of lexicon based regularization loss 553

Comparing Meta + reg with Meta, the results 554

show making meta-learner focus more on domain- 555

independent features through lexicon based regular- 556

ization can generate better performance across all 557
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Test Domain Evolution Gun Control Gay Marriage
Model A D Macro A D Macro A D Macro

F1 P R F1 F1 P R F1 F1 P R F1
Supervised 77.1 82.3 80.6 78.8 79.7 76.8 76.8 76.8 76.8 76.8 84.1 83.5 83.9 83.8 83.8
Fine Tune 77.0 81.5 80.1 78.4 79.2 76.6 76.5 76.9 76.2 76.5 84.8 86.1 85.8 85.1 85.4

Meta 79.7 82.2 81.2 80.8 81.0 80.8 77.4 79.5 78.6 79.1 86.4 88.1 87.6 87.1 87.3
Meta + reg 81.3 84.6 83.5 82.5 83.0 80.7 81.9 81.4 81.3 81.3 89.2 88.9 89.1 89.0 89.0
Meta + aug 80.7 84.2 83.0 81.9 82.4 82.1 78.8 81.1 79.9 80.5 90.0 90.8 90.6 90.3 90.4

Meta + aug + reg 82.8 85.9 84.9 83.7 84.3 82.3 81.1 81.8 81.6 81.7 93.3 94.3 94.3 93.3 93.8

Table 6: Results of 2-way classification when training on ABCD and testing on domains in IAC (A: Agreement, D:
Disagreement, P; Precision, R: Recall, F1: F1 score)

Figure 2: Change of model attention on selected domain-independent words after lexicon based regularization loss

the testing domains, in both Precision and Recall,558

resulting in 0.9% to 3.4% macro F1 increase.559

Effectiveness of task augmentation Comparing560

Meta + aug with Meta, we can see task augmenta-561

tion will also bring us improvement, ranging from562

0.7% to 3.1% F1 score raise, in terms of both Pre-563

cision and Recall.564

In addition, combing the regularization loss and565

task augmentation together will generate the most566

improvement wrt the basic meta-learner, with 2.6%567

to 6.5% increase in macro F1 score. Meta + aug568

+ reg can outperform the fine tuning baseline by a569

total number of 5.1% to 9.7% F1 score.570

4.5 Analysis571

We found that after training with additional regu-572

larization loss on seen domains, the meta-learner573

will indeed focus more on our selected domain-574

independent words in unseen domains during test-575

ing. Take 2-way classification within IAC dataset576

as an example, the average of model attentions577

on our selected domain-independent words was in-578

creased by 0.6%, 0.7%, 1.2% when testing on Evo-579

lution, Gun Control, Gay Marriage domain respec-580

tively. This observation is also valid on other exper-581

iments: the lexicon based regularization loss will in-582

crease the model attention on domain-independent583

words from 0.4% to 1.2%, thus can indeed make584

meta-learner focus more on them.585

We also analyzed the model attention on each 586

single domain-independent word before and after 587

adding the regularization loss. Figure 2 shows 588

some examples in the experiment of 2-way classifi- 589

cation within IAC while testing on Gay Marriage 590

domain. We can observe that the additional regular- 591

ization loss can help some (dis)agreement related 592

words like "so", "because", "though", "agree", "no", 593

"disagree", "yet", "don’t", "didn’t", "actually", "per- 594

haps" seize more model attention on them and thus 595

generate better results. There are also few words 596

receiving less attention, like "still", "also", "seri- 597

ously", we can interpret this as these words are 598

actually weaker indicators for meta-learner. 599

5 Conclusion 600

In this paper, we developed a metric-based meta- 601

learning model for few-shot (dis)agreement iden- 602

tification problem. To enhance the meta-learner’s 603

domain generalization, we firstly manually created 604

a lexicon of domain-independent (dis)agreement 605

indicators and designed a lexicon based regular- 606

ization loss, secondly augmented task distribution 607

by decomposing the entire dataset into different 608

training domains based on domain-specific info to 609

form diverse types of meta-training tasks. In the 610

future work, we plan to refine the manually created 611

lexicon and replace some weak words/phrases with 612

stronger indicators. 613

8



References614

Trapit Bansal, Rishikesh Jha, Tsendsuren Munkhdalai,615
and Andrew McCallum. 2020. Self-supervised meta-616
learning for few-shot natural language classification617
tasks. In Proceedings of the 2020 Conference on618
Empirical Methods in Natural Language Processing619
(EMNLP), pages 522–534.620

Gilles Blanchard, Gyemin Lee, and Clayton Scott. 2011.621
Generalizing from several related classification tasks622
to a new unlabeled sample. In Advances in Neural623
Information Processing Systems, volume 24. Curran624
Associates, Inc.625

Shumin Deng, Ningyu Zhang, Jiaojian Kang, Yichi626
Zhang, Wei Zhang, and Huajun Chen. 2020. Meta-627
learning with dynamic-memory-based prototypical628
network for few-shot event detection. In Proceed-629
ings of the 13th International Conference on Web630
Search and Data Mining, WSDM ’20, page 151–159,631
New York, NY, USA. Association for Computing632
Machinery.633

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and634
Kristina Toutanova. 2018. Bert: Pre-training of deep635
bidirectional transformers for language understand-636
ing. Cite arxiv:1810.04805Comment: 13 pages.637

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.638
Model-agnostic meta-learning for fast adaptation of639
deep networks. In Proceedings of the 34th Interna-640
tional Conference on Machine Learning, volume 70641
of Proceedings of Machine Learning Research, pages642
1126–1135. PMLR.643

Ruiying Geng, Binhua Li, Yongbin Li, Yuxiao Ye, Ping644
Jian, and Jian Sun. 2019. Few-shot text classification645
with induction network. CoRR, abs/1902.10482.646

Xiang Jiang, Mohammad Havaei, Gabriel Chartrand,647
Hassan Chouaib, Thomas Vincent, Andrew Jesson,648
Nicolas Chapados, and Stan Matwin. 2018. Attentive649
task-agnostic meta-learning for few-shot text classifi-650
cation.651

Kalpana D. Joshi and Prakash S. Nalwade. 2013. Modi-652
fied k-means for better initial cluster centres.653

Gregory Koch, Richard Zemel, and Ruslan Salakhut-654
dinov. 2015. Siamese neural networks for one-shot655
image recognition.656

Viet Dac Lai, Franck Dernoncourt, and Thien Huu657
Nguyen. 2020. Exploiting the matching information658
in the support set for few shot event classification.659
CoRR, abs/2002.05295.660

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C.661
Kot. 2018. Domain generalization with adversarial662
feature learning. In 2018 IEEE/CVF Conference663
on Computer Vision and Pattern Recognition, pages664
5400–5409.665

J. B. MacQueen. 1967. Some methods for classification666
and analysis of multivariate observations. In Proc.667

of the fifth Berkeley Symposium on Mathematical 668
Statistics and Probability, volume 1, pages 281–297. 669
University of California Press. 670

Amita Misra and Marilyn Walker. 2013. Topic indepen- 671
dent identification of agreement and disagreement in 672
social media dialogue. In Proceedings of the SIG- 673
DIAL 2013 Conference, pages 41–50, Metz, France. 674
Association for Computational Linguistics. 675

Krikamol Muandet, David Balduzzi, and Bernhard 676
Schölkopf. 2013. Domain generalization via invari- 677
ant feature representation. In Proceedings of the 678
30th International Conference on Machine Learning, 679
volume 28 of Proceedings of Machine Learning Re- 680
search, pages 10–18, Atlanta, Georgia, USA. PMLR. 681

Shikhar Murty, Tatsunori Hashimoto, and Christopher D 682
Manning. 2021. Dreca: A general task augmenta- 683
tion strategy for few-shot natural language inference. 684
In Proceedings of the 2021 Conference of the North 685
American Chapter of the Association for Computa- 686
tional Linguistics: Human Language Technologies, 687
pages 1113–1125. 688

Janarthanan Rajendran, Alexander Irpan, and Eric Jang. 689
2020. Meta-learning requires meta-augmentation. In 690
Advances in Neural Information Processing Systems, 691
volume 33, pages 5705–5715. Curran Associates, 692
Inc. 693

Sara Rosenthal and Kathleen McKeown. 2015. I 694
couldn’t agree more: The role of conversational struc- 695
ture in agreement and disagreement detection in on- 696
line discussions. In Proceedings of the 16th Annual 697
Meeting of the Special Interest Group on Discourse 698
and Dialogue, pages 168–177. 699

Jake Snell, Kevin Swersky, and Richard Zemel. 2017. 700
Prototypical networks for few-shot learning. In Pro- 701
ceedings of the 31st International Conference on Neu- 702
ral Information Processing Systems, NIPS’17, page 703
4080–4090, Red Hook, NY, USA. Curran Associates 704
Inc. 705

Shengli Sun, Qingfeng Sun, Kevin Zhou, and Tengchao 706
Lv. 2019. Hierarchical attention prototypical net- 707
works for few-shot text classification. In Proceed- 708
ings of the 2019 Conference on Empirical Methods 709
in Natural Language Processing and the 9th Inter- 710
national Joint Conference on Natural Language Pro- 711
cessing (EMNLP-IJCNLP), pages 476–485, Hong 712
Kong, China. Association for Computational Lin- 713
guistics. 714

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, 715
Philip HS Torr, and Timothy M Hospedales. 2018. 716
Learning to compare: Relation network for few-shot 717
learning. In Proceedings of the IEEE conference 718
on computer vision and pattern recognition, pages 719
1199–1208. 720

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, 721
Daan Wierstra, et al. 2016. Matching networks for 722
one shot learning. Advances in neural information 723
processing systems, 29:3630–3638. 724

9

https://proceedings.neurips.cc/paper/2011/file/b571ecea16a9824023ee1af16897a582-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/b571ecea16a9824023ee1af16897a582-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/b571ecea16a9824023ee1af16897a582-Paper.pdf
https://doi.org/10.1145/3336191.3371796
https://doi.org/10.1145/3336191.3371796
https://doi.org/10.1145/3336191.3371796
https://doi.org/10.1145/3336191.3371796
https://doi.org/10.1145/3336191.3371796
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
http://arxiv.org/abs/1902.10482
http://arxiv.org/abs/1902.10482
http://arxiv.org/abs/1902.10482
http://arxiv.org/abs/2002.05295
http://arxiv.org/abs/2002.05295
http://arxiv.org/abs/2002.05295
https://doi.org/10.1109/CVPR.2018.00566
https://doi.org/10.1109/CVPR.2018.00566
https://doi.org/10.1109/CVPR.2018.00566
https://aclanthology.org/W13-4006
https://aclanthology.org/W13-4006
https://aclanthology.org/W13-4006
https://aclanthology.org/W13-4006
https://aclanthology.org/W13-4006
https://proceedings.mlr.press/v28/muandet13.html
https://proceedings.mlr.press/v28/muandet13.html
https://proceedings.mlr.press/v28/muandet13.html
https://proceedings.neurips.cc/paper/2020/file/3e5190eeb51ebe6c5bbc54ee8950c548-Paper.pdf
https://doi.org/10.18653/v1/D19-1045
https://doi.org/10.18653/v1/D19-1045
https://doi.org/10.18653/v1/D19-1045


Marilyn Walker, Jean Fox Tree, Pranav Anand, Rob725
Abbott, and Joseph King. 2012. A corpus for re-726
search on deliberation and debate. In Proceedings727
of the Eighth International Conference on Language728
Resources and Evaluation (LREC’12), pages 812–729
817, Istanbul, Turkey. European Language Resources730
Association (ELRA).731

Lu Wang and Claire Cardie. 2016. Improving agree-732
ment and disagreement identification in online discus-733
sions with a socially-tuned sentiment lexicon. arXiv734
preprint arXiv:1606.05706.735

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin736
Recht, and Oriol Vinyals. 2017. Understanding deep737
learning requires rethinking generalization.738

10

http://www.lrec-conf.org/proceedings/lrec2012/pdf/1078_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/1078_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/1078_Paper.pdf
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1611.03530

