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Abstract

Online discussions are abundant with different
opinions for a common topic, and identifying
agreement and disagreement between online
posts enables many opinion mining applica-
tions. Realizing the increasing needs to analyze
opinions for emergent new topics (e.g., from
"mask mandate" to "COVID vaccination") that
however tend to lack annotations, we present
the first meta-learning approach for few-shot
(dis)agreement identification on a new topic
with few labeled instances. We further design
a lexicon based regularization loss and pro-
pose domain-aware task augmentation for meta-
training to enable the meta-learner to learn both
domain-invariant cues and domain-specific ex-
pressions for (dis)agreement identification. Ex-
tensive experiments on two benchmark datasets
and evaluation on three topic domains demon-
strate the effectiveness of the meta-learning
approach that consistently and noticeably out-
performs the conventional transfer learning ap-
proach based on fine-tuning.

1 Introduction

As seen in many online forums and Subreddits,
people express different opinions and perspectives
toward a common topic in online discussions. De-
tecting agreement and disagreement relations be-
tween online posts addressing a shared topic will
enable many opinion mining applications and in-
form policy making. However, realizing that new
topics keep emerging (e.g., from "mask mandate"
to "COVID vaccination"), it is unrealistic to expect
existing annotated datasets to cover each topic of
interest. To avoid the time-consuming process to
create a large annotated dataset for a new topic, we
study few-shot agreement and disagreement iden-
tification that aims to quickly build a model on a
new topic domain with few labeled instances.

The traditional transfer learning approach that
trains a model on annotation-rich domains and then
fine-tunes the model for a new domain usually suf-

fers from the overfitting problem (Zhang et al.,
2017) when the number of labeled samples in the
target domain is very small. It is known that fine-
tuning on a limited number of samples often leads
the model to simply memorize the labels for these
samples and fail to learn generalizable features for
the new domain.

To tackle the difficulty of few-shot (dis)-
agreement identification under a new topic domain,
we present a metric-based meta-learning approach
that trains a meta-learner on annotation-rich do-
mains and adapts the meta-learner to a new do-
main with very few labeled instances. The meta-
learner takes K labeled samples per class in the
target new domain as support set, attentively builds
class embeddings using the support set, and com-
pares a test instance with each class embedding
via a learned relation network (Sung et al., 2018)
to make a prediction. To mimic the meta-testing
procedure and make the model accustomed to the
few-shot environment, the meta-training process
adopts episodic training (Vinyals et al., 2016) to
train the meta-learner: in each training episode,
we sampled instances from training domains, in-
cluding K examples per class as support set and
a query set as well, compared each query instance
with class embeddings derived from the support set
and minimized the loss on the query set.

Inspired by prior research (Misra and Walker,
2013) that studied rich domain-independent indi-
cators of agreement and denial in online discus-
sions, we further encourage the meta-learning sys-
tem to learn domain-invariant features and thus
enhance its ability of quickly generalizing to a new
test domain. Specifically, guided by (Misra and
Walker, 2013), we compiled a lexicon of domain-
independent (dis)agreement indicators consisting
of several hundred words and short phrases, e.g.,
"yes", "make sense", "no" and "but". Then, we
designed a regularization loss based on the lexicon
and added it to the meta-learning system so that



the meta-learner pay more attention to the domain-
independent cues.

Meanwhile, we decompose an entire training
dataset to clusters for episodic training, with each
cluster corresponding to a topic domain, in order to
better train the meta-learner to recognize domain-
specific expressions of agreement and disagree-
ments. Existing labeled datasets for agreement and
disagreement identification usually contain data
instances from multiple topic domains. If we ran-
domly sample from an entire dataset for each meta-
training episode, many episodes have sampled in-
stances in the support set and the query set that do
not match in domain and have divergent data dis-
tributions. The domain mismatch will lead to poor
transfer between support and query sets (Murty
et al., 2021), and thus hinders the meta-learner
from learning to recognize domain-specific expres-
sions of agreement and disagreements. Therefore,
we perform domain-aware task augmentation for
meta-training to strengthen the few-shot adaptation
ability of the meta-learner, where we sample in-
stances from the same domain to form support set
and query set for each episode.

We experiment on two benchmark datasets for
agreement and disagreement identification, the In-
ternet Argument Corpus (IAC) (Walker et al., 2012)
and the Agreement by Create Debaters corpus
(ABCD) (Rosenthal and McKeown, 2015). Eval-
uation on three topic domains shows that com-
pared to the conventional transfer learning, the
meta-learning approach achieves consistent and
noticeable performance gains across the three do-
mains under the challenging few-shot setting for
(dis)agreement identification. Both of the two
strategies for strengthening the adaptation ability of
the meta-learner further improve the performance
of the meta-learner, by enabling it to learn both
domain-invariant cues and domain-specific expres-
sions for (dis)agreement identification.

To summarize, our contributions are mainly
three:

* We present the first meta-learning approach
for few-shot agreement and disagreement iden-
tification.

* We designed a lexicon based regularization
loss to encourage the meta-learner to learn
domain-invariant features.

* We perform domain-aware task augmenta-
tion for meta-training to better train the meta-

learner to recognize domain-specific expres-
sions of agreement and disagreements.

2 Related Work

Research on agreement and disagreement detection
in online conversations or social media dialogues
attracted increasing attentions. (Walker et al., 2012)
provided the Internet Argument Corpus (IAC), an-
notating agreement/disagreement relation for Q-R
(Quote-Response) post pairs in ten different do-
mains, where Response is a single post replying
to the previous post Quote. (Misra and Walker,
2013) conducted binary classification (agreement
vs. disagreement) on the IAC corpus and studied
rich domain independent cues for (dis)agreement
identification. (Wang and Cardie, 2016) proposed
to improve three-way classification (agreement vs.
neutral vs. disagreement) with a socially-tuned sen-
timent lexicon. (Rosenthal and McKeown, 2015)
introduced a larger dataset, the Agreement by Cre-
ate Debaters (ABCD) corpus, and conducted three-
way classification with transfer learning. How-
ever, none of the prior research has studied the
(dis)agreement identification task under the cross-
domain few-shot setting.

Meta-learning has been studied for years as a
general method for few-shot learning. Metric-
based meta-learning learns a distance function be-
tween data instances and classifies test instances
by comparing them to K labeled samples. Several
metric-based meta-learners have been proposed,
including Siamese Network (Koch et al., 2015),
Matching Network (Vinyals et al., 2016), Proto-
type Network (Snell et al., 2017) and Relation Net-
work (Sung et al., 2018), which learn an embedding
function mapping individual instances into a rep-
resentation space and learn a similarity function
to calculate distance between two instances. An-
other direction is optimization-based meta-learning
(Finn et al., 2017) that aims to learn a good initial-
ization to make a neural model reach the optimal
for a new task quickly. We focus on developing a
metric-based meta-learning model on the basis of
Prototype and Relation Network models.

Meta-learning has been used for many NLP tasks
under the few-shot setting, including topic classi-
fication (Jiang et al., 2018), entity relation clas-
sification (Sun et al., 2019; Geng et al., 2019),
word sense disambiguation (Deng et al., 2020) and
event detection (Deng et al., 2020; Lai et al., 2020).
Mostly, prior works used meta-learning to identify



unseen new classes and treat a class as a task, we,
however, aim to identify (dis)agreement in unseen
new domains and treat a domain as a task.

Domain generalization has been studied long
before the emergence of meta-learning, aiming to
generalize from a set of seen domains to unseen
domains without accessing any instance from the
unseen domain during the training stage. As a strat-
egy to achieve domain generalization, (Blanchard
et al., 2011; Li et al., 2018; Muandet et al., 2013)
proposed extracting domain-invariant features from
various seen domains to enhance generalization
ability. To the best of our knowledge, we lead on
using domain-invariant features together with meta-
learning to enhance few-shot generalization ability
across domains.

Lack of well-defined data distribution is a rec-
ognized obstacle of meta-learning for solving NLP
problems, generating some attempts in augment-
ing meta-training tasks. Task augmentation for
meta-learner was first studied in (Rajendran et al.,
2020). (Bansal et al., 2020) proposed the SMLMT
method to create new self-supervised tasks. Most
closely related to our work is the strategy men-
tioned in (Murty et al., 2021) which clustered the
entire dataset into several clusters by K-means and
sampled support & query set from the same clus-
ter to form training tasks. Our idea of task aug-
mentation is different from theirs in that we relied
on domain information to decompose the entire
dataset into different training domains, creating
clearer boundaries for different types of tasks.

3 The Meta-Learning Approach

In this section, we will elaborate our meta-learning
approach in details. Firstly, we introduced the struc-
ture of the basic meta-learning model. Then we
enhanced the model’s domain generalization abil-
ity from two perspectives: (1) Manually created a
lexicon for domain-independent (dis)agreement in-
dicators, and designed a regularization loss to make
the meta-learner focus more on domain-invariant
features, (2) Decomposed the entire training dataset
into several sub-datasets based on domain-specific
info to augment the task distribution. Fig. 1 illus-
trated the pipeline of our meta-learning approach.

3.1 The Basic Meta-Learning Model

In the cross-domain few-shot (dis)agreement
identification problem, we are given a training
dataset Dj,etq—train consisting of rich labeled

Q-R pairs from various domains, and a testing
dataset Dj,eta—test 1IN an unseen new domain.
Dineta—test 18 splitted into two parts: a support set
Diest—support With only a small number of K la-
beled Q-R pairs per class, and a test set Dyest—query
used to evaluate the model performance on. Our
goal is to train a meta-learner f : (S,z) — gy
that takes a support set S = {st ;i € 1...C,k €
1...K} and a test instance = as input, then re-
turns a prediction ¢ for the instance (z,y), where
y € {1,...,C} is the true label, C' is the number
of classes. The few-shot problem is often named a
C-way K -shot learning problem.

3.1.1 Episodic Training

To mimic the meta-testing task that takes a sup-
port set Dyest—support & test instances Diest—query
as input, and make the model accustomed to the
few-shot environment, we followed the episodic
training idea in (Vinyals et al., 2016) to create train-
ing tasks: randomly sampled K labeled examples
per class from the training dataset as the support set
Dirain—support (I x C support examples in total),
and N query examples from the rest of training
data as query set Dyyqin—query, Output prediction
values for query examples and minimized the loss
on the query set to update the meta-learning model.
Note that the K labeled support examples in the
testing dataset Dyest— support did not participate in
the training stage, but just served as model input in
testing tasks.

3.1.2 Attentive Class Embedding Building

Within a training/testing task, each class embed-
ding is derived attentively from the given support
examples via learned attention weights on them:
first obtained the Q-R pair embedding for each
support & query sample, then mapped support ex-
amples through two-layer neural networks learned
separately for each class, lastly calculated the atten-
tion weights to derive attentive class embedding.

The initial embedding for the support st,i €
{1,...,C},k € {1,..., K} and query examples
eq are obtained on the basis of pre-trained BERT
model (Devlin et al., 2018): concatenating the hid-
den state vectors at the [CLS] token of quote and
response sentence together as the pair embedding.

Then, we mapped support examples through a
two-layer neural network learned separately for
each class:

8, = Wi(Wisj, + b}) + b (1)
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Figure 1: Illustration of the meta-learning approach for 3-way 2-shot problem with one query instance

At last, support examples were aggregated into
class embedding via learned attentions {a}}X
over {3 }5_ | in which attention weights are cal-
culated wrt both support {5}, } and query e,:

ai, = softmaz(mT tanh(W35, + Wie,)) (2)

3

where ¢;,i € {1,...,C} is i-th class embedding.

Different from the naive mean average in the
original Prototype Network (Snell et al., 2017), our
method derived class embedding from support set
in an attentive way, and also took the query instance
into consideration when calculating the attention
weight over support examples.

3.1.3 Relation Network

With the classes embedding and query embedding
at hand, the final step is to compare the query in-
stance with each class embedding via a learned two-
layer relation network, output the relation scores
for each class, and choose the class with maximum
relation score as the prediction result.

For each class, relation feature is designed as the
concatenation of class embedding c;, query embed-
ding e, and the element-wise subtraction, element-
wise multiplication, L2 norm, dot product of them:

fig = ciseqs ci—eqs ci@eg; ||ci—eql|i ci-eq) (4)

Then relation features were fed into a two-layer

relation network to learn the relation scores be-
tween the i-th class and query e, as output:

riqg = sigmoid(We(Ws fiq + bs) +bs)  (5)

Output relation score 74 is a scalar between 0
and 1 to measure the similarity between query in-
stance and each class, and the ground truth y, €
{0, 1} meaning matched class has similarity 1 &
mismatched class has similarity 0. The objective
function we used is the mean square error (MSE)
loss on the query set:

c N
Lyse = Z Z(Tz‘q —I(yg, ==1))*> (6)

i=1 g=1

3.2 Lexicon Based Regularization Loss

To further strengthen model’s ability of quickly
generalizing to a new domain, we manually created
a lexicon of domain-independent (dis)agreement
indicators to incorporate domain-invariant features
from various seen domain. Moreover, we de-
signed a lexicon based regularization loss to make
the meta-learner focus more on selected domain-
independent indicators.

When creating the domain-independent lexi-
con, we followed the similar scenario in prior
work (Misra and Walker, 2013), which proved
domain-independent words/phrases in cue words,
agreement words, denial words, and hedge
words categories are all crucial to cross-domain
(dis)agreement identification. We manually in-
spected 695 disagreements and 141 agreements



Category Examples

so, oh, well, just, and, because,
though, as well, if, then, thus,
unless, seems, also, you, uh

yes, correct, agree, accept,
support, true, like, good, exactly,
ok, right, clear, sure, thanks,
believe, of course, make sense
no, not, never, nothing, however,
but, doesn’t, don’t, isn’t, yet,
none, hate, false, wrong, doubt,
disagree, how can, I don’t think
maybe, probably, would, could,
rather, although, really, actually,
wondering, possibly, essentially,
anyway, somewhat, I suppose

Cue words (48)

Agreement (145)

Denial (278)

Hedge (25)

Table 1: Examples of selected domain-invariant features

from the ten domains in IAC dev set, and se-
lected the words/phrases belonging to discourse
markers associated with stating a personal opinion
(cue words), agreement markers expressing support
(agreement words), denial markers showing rejec-
tion/negation (denial words), and hedges that delib-
erately vague/soften a claim (hedge words), which
are important for human to identify agree/disagree.
Besides, in order to provide better generaliza-
tion, we generalized the selected phrases, e.g., [
don’t think would also result in I don’t see being
added into the lexicon (Misra and Walker, 2013).
Table 1 listed examples of our selected domain-
independent words/phrases.

To make the meta-learner focus more on the
domain-independent features, we designed a regu-
larization loss to maximize the model’s attention
on selected domain-invariant words. For an in-
stance consisting of n words, the model’s attention
on the I*" word is designed as L2 norm of the gradi-
ent of model output (relation scores) wrt [t word’s
embedding. Thus, model’s attention on the words
in a query instance e, is:

7= -

8th aT‘tqH H
wzq b )

87"tq
Sl i i) @

where (wig, wag, - .., Wnq) € €q and y, = t.
Similarly, the attention on the words in a support
example 32, is:

— 8rtq artq 8th
gsk:(HawltH7|’aw tH?"'?Haw
Sy 2Sk

) @

t
nsk

where (wlsz, Wogt 5 - - ,wnsz) € s!. Bigger gradi-
ent value means more influence on the model out-

put, and thus means more model attention. Then,
we used an indicator I(wy,ws,...,w,) to show
whether the word belongs to our selected domain-
independent words set, which is a vector consisting
of value 0 or 1. Finally, our regularization loss
is designed as the dot product of gradient vector
(model attention) and indicator vector:

where y, = t. Note that we added the regulariza-
tion loss on both query and support examples in a
training task. The total objective loss will be:

Ltotal = LMSE + A x LTeg (10)

where )\ is a hyper-parameter.

3.3 Meta-training Task Augmentation

In our previous episodic training process, we treat
the entire training dataset as tasks, meaning sup-
port set and query set are sampled from the entire
training dataset for each single training task, which
is also the common approach used by previous pa-
pers (Murty et al., 2021). This brings us two major
problems: one is meta-learning actually needs a
well-defined task distribution from which a large
number of diverse tasks can be sampled to train
the meta-learner, another one is the entire training
dataset consisting of various domains data is also
heterogeneous. Thus, sampling support & query
from the entire training dataset not only limited the
diversity of meta-training tasks, but also resulted in
support & query examples are heterogeneous with
each other, making the meta-learner harder to foster
the ability of quickly adapting to new domains.
For these reasons, we proposed to augment the
task distribution by decomposing the entire training
dataset into several sub-datasets based on domain-
specific information and sampling support & query
from the same sub-dataset to form training tasks.
To be detailed, for the dataset having ground-truth
domain labels, we grouped all the pairs by true
domain labels to form distinct training domains as
sub-datasets. But for the dataset without domain
labels, we made use of sentences in discussion
titles which mainly contains domain-specific fea-
ture to cluster the dataset into several clusters. K-
means algorithm (MacQueen, 1967) is applied on



the discussion title’s [CLS] token embedding from
pre-trained BERT, and the number of clusters is se-
lected by elbow method (Joshi and Nalwade, 2013).
In this way, training tasks are created by sampling
support & query from the same sub-datasets, and
ideally the same training domain.

4 Experiments

4.1 Datasets

Internet Argument Corpus (IAC) (Walker et al.,
2012) annotated Q-R pair from the website 4fo-
rums.com with (dis)agreement scores from -5 to
5, with -5 as strongly disagree and 5 as strongly
agree. We transformed the average score into
(dis)agreement label as previous paper did (Wang
and Cardie, 2016)(Misra and Walker, 2013): [-5,-1]
as Disagreement, (-1,1) as Neutral, [1,5] as Agree-
ment. Also, pairs in [AC have human-annotated do-
main labels in a total of ten domains. Train/dev/test
are split in the ratio of 7:1:2 within each domain.
To evaluate the meta-learner’s generalization ability
among different domains in the same dataset, we
did experiments of both 2-way and 3-way classifica-
tion within IAC and selected Evolution, Gun Con-
trol, Gay Marriage as testing domain. While test-
ing on Evolution, for example, the training dataset
Dirain 18 all the other domains in IAC exclude Evo-
lution, and the support set Dyest— support 1S sampled
from Evolution train set. The statistics of the test
set from these three domains are listed in Table 2.
When augmenting meta-training tasks, we divided
Dirain by golden domain label.

Agreement by Create Debaters (ABCD) dataset
(Rosenthal and McKeown, 2015) collected Q-R
pair from another website createdebate.com. The
(dis)agreement label is derived in this way: if the
side labels of Response and Quote are the same, the
relation is Agreement, if different, the relation is
Disagreement, and when the author is the same for
both posts or Response is directly replying to the
discussion title, the relation is Neutral. To evaluate
the model’s generalization ability among different
datasets, we did experiment using ABCD as train-
ing dataset Dy,.q;, and also chose Evolution, Gun
Control, Gay Marriage in IAC as testing domain
Diest. Since the relation between two different
users’ posts can only be Agreement or Disagree-
ment in ABCD, we can only conduct 2-way clas-
sification generalizing from ABCD to IAC. Also,
when augmenting meta-training tasks, we clustered
the discussion titles in ABCD with K-means and

Domain Agree | Neutral | Disagree
Evolution 91 202 522
Gun Control 49 110 234
Gay Marriage 24 46 102

Table 2: Statistics of test sets in IAC

Dataset | Thread | Pairs | Agree | Neutral | Disagree
ABCD | 10468 | 128343 | 28111 | 60128 40104
IAC 1806 9980 1113 2712 6155

Table 3: Statistics of ABCD and IAC datasets

selected five as the number of clusters by elbow
method. Table 3 summarized statistics of the two
datasets we used in this paper.

4.2 Experimental Setting

Implementation Details: To evaluate proposed
meta-learning approaches, we tested our models on
a new domain within the same dataset as well as
on a new dataset. The number of support examples
per class K is set to 5, and the query set size N
is set to 15 in each meta-training task. The A in
equation (10) is set to 1. Learning rate is set to 2e-5.
For 2-way and 3-way classification within IAC, we
trained the model from epoch 1 to 10 and selected
the best one. For 2-way classification generalizing
from ABCD to IAC, the number of epoch is 2.
Evaluation The testing task in the new domain
consists of a support set Diest—support and a real
test set Diesi—query to evaluate the prediction re-
sults on. Here, we used F1 score for each class
and macro Precision/Recall/F1 score as evaluation
metrics. To control for variations across different
support sets, we sampled 50 random support sets
for each testing task, and report the average results
on these support sets.

Baseline Conventional transfer learning which
trained a supervised model on the dataset with
richer labeling resource and then fine tuned on the
few provided labeled examples in a new domain
is commonly used previously. To train a super-
vised model on the training dataset Dy, 4, We also
used the same instance embedding as in the meta-
learning models, then add a classification layer on
top of it and activated by a softmax layer to output
the probability for each class. The loss in super-
vised model is the classical cross-entropy classifi-
cation loss. Then we fine tuned it on the support
set Dyest—support 1N the new testing domain, and
also reported the average results on 50 randomly
sampled support sets.



Test Domain Evolution Gun Control Gay Marriage
Model A D Macro A D Macro A D Macro
Fl1 P R Fl1 Fl1 P R Fl1 Fl1 P R Fl1

Supervised 714 819 80.8 726 76.7 | 752 788 774 767 77.0| 87.1 894 889 876 88.2
Fine Tune 779 776 785 770 777 | 760 774 773 762 76.7 | 86.1 867 86.7 862 86.4
Meta 76.6 836 823 779 80.1| 809 80.0 80.5 804 804 | 91.7 93.1 93.1 91.7 924
Meta + reg 79.0 853 84.6 79.7 82.1 || 81.4 83.0 823 82.1 822 93.6 945 945 937 94.1
Meta + aug 80.0 84.4 83.1 813 822 | 84.8 82.1 84.0 829 834 | 937 946 94.6 937 942
Meta + aug + reg || 81.0 853 843 821 83.2 | 853 832 847 839 843 | 958 963 963 959 96.1

Table 4: Results of 2-way classification when training on other domains exclude test domain within IAC (A:
Agreement, D: Disagreement, P; Precision, R: Recall, F1: F1 score)

Test Domain Evolution Gun Control Gay Marriage
Model A N D Macro A N D Macro A N D Macro
F1 P R F1 F1 P R F1 F1 P R F1

Supervised 504 49.1 556 549 485 51.7| 523 364 520 482 456 469 || 663 50.8 578 627 539 583
Fine Tune 544 475 568 552 505 5291 562 382 51.8 49.6 47.8 487 | 66.0 51.8 586 61.8 558 588
Meta 614 51.1 566 60.0 52.6 564 | 56.1 47.1 537 557 489 523 69.1 544 638 645 604 624
Meta + reg 635 502 61.8 60.1 569 585 | 592 498 53.0 574 505 540 | 706 59.1 656 664 638 65.1
Meta + aug 64.0 525 620 60.6 584 5951 589 462 577 567 519 543 | 773 448 673 63.1 63.1 63.1
Meta + aug +reg || 64.3 539 64.7 62.6 594 61.0 | 60.8 47.7 572 584 52.0 552 | 784 567 64.1 673 654 664

Table 5: Results of 3-way classification when training on other domains exclude test domain within IAC (A:
Agreement, N: Neutral, D: Disagreement, P; Precision, R: Recall, F1: F1 score)

4.3 Results

Experimental results are summarized in Table 4-6.
For the baseline methods, we reported the super-
vised model’s performance before and after fine
tuning in the first (Supervised) and second (Fine
Tune) row. For our meta-learning approaches, we
reported the performance of basic meta-learning
model (Meta), only adding the lexicon based regu-
larization loss (Meta + reg), only with task augmen-
tation (Meta + aug), and task augmentation together
with regularization loss (Meta + aug + reg).

Table 4-5 shows the experiments generalizing
among domains within the same dataset, we can
observe that fine tuning on the few labeled exam-
ples can bring us F1 score improvement in most
cases, but sometime it will lower the performance.
As analyzed in (Zhang et al., 2017), it is due to the
overfitting problem for transfer learning without
large amount of training data, so that the model sim-
ply memorize the labeled samples and fail to learn
generalizable features for new domains. In com-
parison, under both 2-way and 3-way classification,
the basic meta-learning model can outperform fine
tuning baseline by 2.4% to 6% in macro F1 score
across all the three testing domains consistently.
The meta-learning with lexicon based regulariza-
tion and task augmentation can further enhance
the domain adaptation ability, resulting in 2.9% to
4.6% increase in F1 score compared to the basic
meta-learner, in accompany with improvement in

both Precision and Recall.

Table 6 evaluates the models’ ability to general-
ize across different datasets. Since the Q-R pairs in
ABCD and IAC are collected from different web-
site sources, the distribution of data points in Dy;qin
and D, are distinct with each other, making this
experiment setting more difficult. Similar to the
experiments within the same dataset, fine tuning
also has the problem of overfitting and received a
poor performance under Evolution and Gun Con-
trol domain. The basic meta-learning model shows
better performance than fine tuning baseline across
all the testing domains, with 1.8% to 2.6% increase
in macro F1 score. After training with lexicon
based regularization & task augmentation, the per-
formance was further increased by 2.6% to 6.5% in
macro F1 score, with improvement in both Preci-
sion and Recall. The above results indicate that the
basic meta-learner can achieve better adaptation
performance, while incorporating lexicon based
regularization loss and task augmentation together
can further boost meta-learner’s domain general-
ization ability.

4.4 Ablation Study

Effectiveness of lexicon based regularization loss
Comparing Meta + reg with Meta, the results
show making meta-learner focus more on domain-
independent features through lexicon based regular-
ization can generate better performance across all



Test Domain Evolution Gun Control Gay Marriage
Model A D Macro A D Macro A D Macro
Fl1 P R Fl1 Fl1 P R Fl1 Fl1 P R Fl1

Supervised 77.1 823 80.6 78.8 79.7| 768 76.8 768 76.8 76.8| 84.1 835 839 838 83.8
Fine Tune 77.0 81.5 80.1 784 792 | 76.6 765 769 762 765 | 84.8 86.1 858 851 854
Meta 79.7 822 812 80.8 81.0| 8.8 774 79.5 786 79.1 || 86.4 88.1 87.6 87.1 873
Meta + reg 81.3 84.6 835 825 83.0| 80.7 819 814 81.3 813 | 8.2 889 89.1 89.0 89.0
Meta + aug 80.7 842 83.0 819 824 8.1 788 8l.1 799 805 | 90.0 90.8 90.6 903 90.4
Meta + aug + reg || 82.8 859 849 837 843 | 823 81.1 818 81.6 817 || 93.3 943 943 933 93.8

Table 6: Results of 2-way classification when training on ABCD and testing on domains in IAC (A: Agreement, D:

Disagreement, P; Precision, R: Recall, F1: F1 score)
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Figure 2: Change of model attention on selected domain-independent words after lexicon based regularization loss

the testing domains, in both Precision and Recall,
resulting in 0.9% to 3.4% macro F1 increase.
Effectiveness of task augmentation Comparing
Meta + aug with Meta, we can see task augmenta-
tion will also bring us improvement, ranging from
0.7% to 3.1% F1 score raise, in terms of both Pre-
cision and Recall.

In addition, combing the regularization loss and
task augmentation together will generate the most
improvement wrt the basic meta-learner, with 2.6%
to 6.5% increase in macro F1 score. Meta + aug
+ reg can outperform the fine tuning baseline by a
total number of 5.1% to 9.7% F1 score.

4.5 Analysis

We found that after training with additional regu-
larization loss on seen domains, the meta-learner
will indeed focus more on our selected domain-
independent words in unseen domains during test-
ing. Take 2-way classification within IAC dataset
as an example, the average of model attentions
on our selected domain-independent words was in-
creased by 0.6%, 0.7%, 1.2% when testing on Evo-
lution, Gun Control, Gay Marriage domain respec-
tively. This observation is also valid on other exper-
iments: the lexicon based regularization loss will in-
crease the model attention on domain-independent
words from 0.4% to 1.2%, thus can indeed make
meta-learner focus more on them.

We also analyzed the model attention on each
single domain-independent word before and after
adding the regularization loss. Figure 2 shows
some examples in the experiment of 2-way classifi-
cation within IAC while testing on Gay Marriage
domain. We can observe that the additional regular-
ization loss can help some (dis)agreement related
words like "so", "because", "though", "agree", "no",
"disagree", "yet", "don’t", "didn’t", "actually", "per-
haps" seize more model attention on them and thus
generate better results. There are also few words
receiving less attention, like "still", "also", "seri-
ously", we can interpret this as these words are

actually weaker indicators for meta-learner.

non

5 Conclusion

In this paper, we developed a metric-based meta-
learning model for few-shot (dis)agreement iden-
tification problem. To enhance the meta-learner’s
domain generalization, we firstly manually created
a lexicon of domain-independent (dis)agreement
indicators and designed a lexicon based regular-
ization loss, secondly augmented task distribution
by decomposing the entire dataset into different
training domains based on domain-specific info to
form diverse types of meta-training tasks. In the
future work, we plan to refine the manually created
lexicon and replace some weak words/phrases with
stronger indicators.
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