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Abstract

The knowledge of protein interactions is crucial but challenging for drug discovery
applications. This work focuses on protein interface prediction, which aims to
determine whether a pair of residues from different proteins interact. Existing
data-driven methods have made significant progress in effectively learning protein
structures. Nevertheless, they overlook the conformational changes (i.e., flexibility)
within proteins upon binding, leading to poor generalization ability. In this paper,
we regard the protein flexibility as an attack on the trained model and aim to
defend against it for improved generalization. To fulfill this purpose, we propose
ATProt, an adversarial training framework for protein representations to robustly
defend against the attack of protein flexibility. ATProt can theoretically guarantee
protein representation stability under complicated protein flexibility. Experiments
on various benchmarks demonstrate that ATProt consistently improves the perfor-
mance for protein interface prediction. Moreover, our method demonstrates broad
applicability, performing the best even when provided with testing structures from
structure prediction models like ESMFold and AlphaFold2.

1 Introduction
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Figure 1: (A). The task illustration. PIP involves predicting if there is an interaction between two
residues from different proteins. (B). The task challenge. During training, the input consists of
bound structures of two proteins. However, for testing, one can only access their unbound structures.

Protein-protein interactions are important for understanding biological processes, and for the design
of novel therapies [48, 16] and drugs [47]. The protein interface refers to the surface region of a
protein where the interaction occurs. It therefore holds the key to revealing the specific interaction
mechanism and understanding protein functions. In this work, we tackle the problem of protein
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Figure 2: The impact of flexibility on results with the DB5.5 dataset [45]. (A) The testing results of
two baselines (SASNet [43], NEA [15]) and our method. ‘B-U’ represents the popular formulation,
i.e., training with bound structures and testing with unbound ones. ‘B-B’ refers to the formulation
where both training and testing are conducted with bound structures. (B) Loss trends for three method.

interface prediction (PIP) (shown in Figure 1(A)): predicting whether two residues, each from an
individual protein, interact with each other, given the separate structures of two proteins.

For years, data-driven methods based on deep learning (DL) have made significant progress in
response to this critical task by effectively learning protein structures using geometric graph neural
networks (GNN) [15, 33], 3D CNN [43], etc. Limited by the difficulty in accessing protein structure
data, they typically follow a formulation of training on bound (after binding) structures and testing
on unbound (before binding) ones, as depicted in Figure 1(B). For training, large-scale datasets like
the Database of Interacting Protein Structures (DIPS) [43] typically consist of only bound structures,
which are directly extracted from the PDB database[4]. In contrast, in the practical inference scenario,
the model cannot access the bound structures but can only be provided with unbound ones [43, 15, 33].
In this paper, we empirically find that this training (bound)-testing (unbound) formulation leaves
significant room for performance improvement. In Figure 2, exploratory experiments show that
prevailing PIP methods are sensitive to flexibility. Utilizing the bound version structures for testing
can greatly boost their performance. Based on these findings, we aim to answer the question in this
paper—how to handle the mismatch between bound and unbound structures for PIP?

Since it is usually impractical to access the protein bound structures for testing, the most intuitive
solution is to explicitly learn the mapping relationship from unbound to bound structures of proteins.
However, this is challenging due to the following two factors: (1) The amount of pairwise unbound
and bound structure data for proteins is extremely limited [10] (to our knowledge, only DB5.5 [45]).
(2) A protein’s bound structure is not unique and depends on its binding partner, so diverse training
data is necessary. To address this issue, we take a different route. We consider any potentially
complicated flexibility in a protein as an attack [29, 24], which can harm the testing performance of a
model trained on bound structures. Therefore, our core idea is to enable protein representations with
adversarial robustness, which can defend against the attacks of protein flexibility. In simple terms, for
a protein with both unbound and bound versions, the model outputs similar (stable) representations.

In this work, we take an important step forward in mitigating the impact of flexibility on PIP. We
propose ATProt, an end-to-end adversarial training (AT) framework for protein representations, to
effectively defend against protein flexibility in PIP. Inspired by the recent protein graph representation
methods [17, 53, 15], our model comprises graph-based feature extractors (encoders) for protein
graphs. Our ATProt framework does not require computationally expensive data augmentation and can
be smoothly applied to most existing protein graph encoders. Specifically, we implement differentiable
AT regularizations for various protein representation encoders. Importantly, we introduce a novel and
expressive graph encoder for protein representations and propose its theoretical regularization form for
the first time. ATProt can produce stable representations for the same protein with different structure
versions (e.g., bound, unbound, and model-generated ones). Extensive experiments on several
protein interaction benchmarks verify that our ATProt method consistently outperforms advanced PIP
methods. The results demonstrate the effectiveness of the AT regularization. Furthermore, ATProt
maintains excellent performance even when tested with structures generated by AlphaFold2 [25] and
ESMFold [32], allowing for user-friendly inference without the need for native structures.
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2 Related Work

Protein interface prediction. Protein interface prediction (PIP), a well-studied problem, focuses
on determining whether there is an interaction between amino acids from two different proteins.
Recently, a series of methods based on protein [8, 19, 17, 20, 14] or amino acid representation [39,
46] learning have achieved significant success. NEA [15] pioneers the use of protein graphs to
address PIP, where protein structure information is represented and aggregated, followed by the
dense layers. SASNet [43] considers embedding the hierarchical structures of proteins, integrating
atomic and amino acid information into a 4D-grid data, and employs 3D CNN for learning. To
further enhance performance, more fine-grained structure information modeling, specifically surface
geometry [46, 39], is introduced to effectively learn amino acid representations. Existing methods
have effectively represented proteins from various perspectives of protein information. However,
we have observed that protein flexibility, which is overlooked by most methods, poses significant
performance bottlenecks for them. We focus on this key issue of mitigating the bound-unbound
mismatch in protein structures to improve model generalization.

Modelling protein flexibility. Recently, pioneer works in biology confirm that protein-protein
interaction (PPI) conforms to the “induced fit” theory [27, 38]. Specifically, proteins undergo structure
changes due to residue-level forces, and they adjust structures to achieve the best binding state. More
importantly, proteins with PPI typically undergo larger structure changes at the interface compared to
non-interface regions [10, 11, 52, 12], which will exacerbate the generalization challenge of the PIP
task. Modelling flexibility directly is challenging, whether using traditional computational or deep
learning (DL) approaches. Traditional methods often rely on finding the lowest energy state [42, 51]
or introducing an induced fit model (specifically, the elastic network model) [12, 3] to guide structure
deformations. The optimization space in these methods is vast, making them very time-consuming.
DL-based methods [10] struggle to achieve satisfactory accuracy in learning the distribution mapping
of bound-unbound states due to limited training data (i.e., 253 complexes in the DB5.5). As directly
predicting bound structures is challenging, in the context of the PIP task, we choose to eliminate the
influence of different versions of the same protein structure on the task.

3 Preliminaries

In this section, (1) we present the definition of the protein interface prediction (PIP). Then, (2) we
verify the importance of representation stability through empirical and mathematical views. Finally,
(3) we investigate to ensure protein representation stability within the adversarial training framework.

Problem definition. We are given as input two proteins P1 and P2, consisting of M and N residues,
respectively. The proteins are represented as their residue sequences and 3D structures, which are com-
posed of α-carbon atom locations of all residues. The goal of the PIP is to classify all possible pairs
of residues from separate proteins. More formally, the set of data is {(P1

i ,P2
j ), yij}1≤i≤M,1≤j≤N ,

where P1
i represents the i-th residue in protein P1 and yij ∈ {0, 1}.

3.1 The importance of protein representation stability
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Figure 3: AUC vs. repre-
sentation perturbation.

We verify the importance of stable protein representations from both empiri-
cal and theoretical perspectives. For clarity, we use the notations Xb

1,X
b
2 to

represent the native bound structures of proteins P1 and P2, while Xt
1,X

t
2

represent their structures used for testing. After using a protein graph en-
coder, we have their representations, denoted as Hb

1,H
b
2,H

t
1,H

t
2. We

denote the protein representation perturbation as ∥δ1∥p + ∥δ1∥p, where
δ1 = Ht

1 −Hb
1, δ2 = Ht

2 −Hb
2.

From an empirical perspective, in Figure 3, we quantify the test results of
the NEA method [15] under flexibility. We gradually increase the structure
change of test samples and calculate the representation perturbation. We
note that the test performance is negatively correlated with the represen-
tation perturbation caused by flexibility. Moreover, testing with bound structures yields the best
results.
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From a theoretical perspective, we draw the consistent conclusion that stable representations lead to
improved PIP results. Following [15], we model PIP as a pairwise classification problem. Specifically,
we concatenate the i-th and j-th rows of Ht

1 and Ht
2 into a vector embedding, which is then sent to

the PIP classifier f . In this case, the following proposition describes the impact of representation
perturbations on PIP results.
Proposition 3.1. For two proteins with M and N residues respectively, the classification results
obtained using bound and unbound structures are the same. This is true if N ∥δ1∥pp +M ∥δ2∥pp <

A(f, p), where A(f, p) can be a constant depending only on the PIP classifier f and the norm ∥·∥p.

We detail A(f, p) and prove Proposition 3.1 in Appendix B.1. This proposition tells that stable
protein representations (i.e., smaller ∥δ1∥p and ∥δ2∥p) under flexibility are necessary for achieving
high performance. Thus, to effectively address the structure mismatch in PIP, an intuitive idea is to
perform adversarial training for protein representation learning.

3.2 Adversarial training

Here, we introduce the concept of adversarial training (AT) [1, 6, 18, 5, 7] and establish a connection
between it and the stability of protein representations. We consider a classification task with a given
dataset D = {(xi, yi)}ni=1, consisting of K classes. We assume that the entire prediction pipeline
includes a representation model (e.g., encoder) and a classifier. The concept of adversarial training
(AT) requires the entire pipeline to perform well not only on D but also on the worst-case distribution
near D, as determined by a specific distance metric. More concretely, the AT that we primarily focus
on in this paper is the ℓp-robustness. For a given p value and a finite ϵ > 0, AT aims to train a pipeline
that can correctly classifies (x+ δ, y) for any ∥δ∥p ≤ ϵ, where (x, y) belongs to D.

Among all AT methods, Lipschitz neural networks belong to a common and effective category.
Specifically, an encoder function is considered to have Lipschitz continuity if a slight perturbation to
the input of the encoder does not significantly change its output.

Formally, the definition of Lipschitz continuity is given by:
Definition 3.1. (Lipschitz continuity in adversarial training) An encoder function ENC is said to be
C-Lipschitz continuous w.r.t. norm ∥·∥ if for any two versions of inputs x1,x2,

∥ENC(x1)− ENC(x2)∥ ≤ C ∥x1 − x2∥ . (1)

Lipschitz continuity explains the requirements of AT for a general representation learning encoder. In
the context of protein graph representation, this can be modified to become the definition below.
Definition 3.2. (Lipschitz continuity for protein representations) A protein representation encoder
Ψ(·) has C-Lipschitz continuity w.r.t. norm ∥·∥ if for any two versions of structure inputs Xt,Xb

and the invariant residue feature input F ,∥∥∥Ψ(F ,Xt)−Ψ(F ,Xb)
∥∥∥ ≤ C

∥∥∥Xt −Xb
∥∥∥ . (2)

3.3 How to ensure Lipschitz continuity for protein graph representations?

As an expressive representation, graph structured data is widely used for representing input pro-
teins [17, 22, 19], with residues acting as nodes and physical interactions as edges. Let G = (V, E) be
an undirected graph with nodes V = {1, ..., N}, edges E ⊂ V2, graph signal F ∈ RN×d and a graph
shift operator L ∈ RN×N (i.e., node connectivity). We consider any variant of the spectral GNN (e.g.,
GCN [26, 30], ChebNets [13], BWGNN [41, 40]) that follows the concept of learning filter coef-
ficients for graph convolution. By constructing the filter h(L) :=

∑K
k=0 θkL

k (θk are learnable
parameters), the protein graph representation can be defined as H =

∑K
k=0 θkL

kF := h(L)F .

Here, we extend the Definition 3.2 to the scenario of using GNN models. To achieve this, we assume
L is perturbed to become L̃ due to the protein flexibility, and introduce the key factor (GNN filter
stability constant Ch), for achieving GNN-based stable protein representations.
Definition 3.3. (GNN filter stability constant) Given a graph spectral filter h : [0, 2] 7→ [0, 1], it is
defined as Lipschitz with constant Ch > 0 if for any pair of points λ1, λ2:

|h(λ1)− h(λ2)| ≤ Ch |λ1 − λ2| , (3)
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Figure 4: The framework overview with the BernNet encoder. The whole framework contains
the stability-regularized graph encoder for stable protein representations, the cross attention layers
for communication and the final binary classifier. ATProt takes in two protein graphs as inputs, and
extracts features with the pre-defined graph encoder (BernNet is taken as an example here). The PIP
results are obtained after the learned representations have passed through the cross attention module
and classifier. The LS loss for stability regularization and classification loss LBCE jointly optimize
the model.

which introduces our main theorem below.

Theorem 3.1. (Protein graph stability with GNNs) Let the perturbation to L is finite such that∥∥∥L̃−L
∥∥∥
p
≤ ϵ. The protein graph encoder Ψ(·) is always stable with a polynomial filter h if for

some finite Ch, ∥∥∥Ψ(F ,L)−Ψ(F , L̃)
∥∥∥
p
≤ ϵCh · A(Ψ) · ∥F ∥p , (4)

where A(Ψ) is a constant determined by the model (e.g., layer number and feature dimension).

Based on Eq. 3 and Eq. 4, the lower bound of the left term in Eq. 4 is solely determined by the
maximum of Ch (denoted as C∗

h). To be more intuitive, C∗
h is equal to the maximum absolute slope

(MAS) of the filter h (the straightforward proof is in the Appendix B.2).

Therefore, we conclude the core idea for designing our ATProt framework as follows:

We can enhance the stability of protein representations by decreasing the MAS value of h.

4 Method

Overview. We propose ATProt, an end-to-end framework (illustrated in Fig. 4) to boost PIP from a
view of representation stability. Specifically, our model inputs two proteins whose structures can be
provided in various sources (e.g., native bound, native unbound, AlphaFold2, ESMFold). ATProt
incorporates a protein graph representation encoder and a targeted differentiable regularization scheme
to theoretically guarantee the representation stability. Our ATProt framework can be implemented
with at least four protein graph encoders, and we provide specific examples of these cases. Lastly,
for the PIP task, we apply a cross-attention module to facilitate communication between the protein
representations and use a simple linear classifier for final prediction.

Protein representation. We represent a protein as an undirected weighted graph G = (V, E). Each
node vi ∈ V representing one residue has a d-dimensional feature vector F i ∈ Rd (i.e., residue type)
and a 3D coordinate Xi ∈ R3 (i.e., the α-carbon atom location). Edges E = {(i, j)} are constructed
with a k-nearest-neighbor (k-NN) graph using Euclidean distance. To distinguish the edges, we
follow [17] to construct the SE(3)-invariant edge features {ei,j : ∀(i, j) ∈ E}.

The goal of ATProt. According to Definition 3.2, we aim to achieve representation stability, which
means that the perturbation in the representation caused by protein flexibility is constrained. In
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addition, it is also important to ensure the commonly encapsulated SE(3)-invariance, which means
that the representation of the protein is not affected by its rotation or translation. Formally, we
represent a single protein P consisting of N residues, with its residue-level feature matrix F ∈ RN×d

and residue-level structure X ∈ RN×3. We wish our model Ψ(·) to ensure the following property.

Given Z,H = Ψ(F ,X);Z ′,H ′ = Ψ(F ,QX + g +∆X),

we have
∥∥H −H ′∥∥ ≤ C · ∥∆X∥ , (C-Lipschitz continuity)

∀Q ∈ SO(3),∀g ∈ R3,∀∆X ∈ R3×N ,∃C ∈ R.
(5)

4.1 Adversarial training regularizations for various encoders

The Fourier transform is a powerful tool in the representation of both structured [50, 26, 49, 28]
and unstructured data [9, 21, 31]. Our main focus is on employing spectral graph encoders for
representing protein graphs. These encoders adhere to the principle of utilizing a graph spectral
filter h(λ) =

∑K
k=0 θkbk(λ) to learn effective protein representations. Here, {bk}Kk=0 is the pre-

defined filter basis and {θk}Kk=0 is the learnable parameters. For graph convolution, the filter h(·)
will be applied to the whole Laplacian matrix L, which is calculated from the protein structure
data. Specifically, to construct L, we first apply a Multi-Layer Perceptron (MLP) to reduce the
dimensionality of E to 1, and incorporate the results into the edge weight matrix W :

W i,j =

{
MLPe(ei,j), (i, j) ∈ E
0, (i, j) /∈ E (6)

Then the Laplacian matrix L is obtained by L = I − D−1/2WD−1/2, where D is the degree
matrix, i.e., D = diag(

∑
j W 1,j , ...,

∑
j WN,j).

The protein graph representation can be defined as:

H =

K∑
k=0

θkbk(L)F = h(L)F , (7)

where the result of h(L) represents the graph spectral response.

In this paper, we introduce four types of top graph encoders (i.e., Simple GCN [49], Chebynet [13],
Low-pass filter [34], and BernNet [23]) along with their corresponding stability regularizations.
Case 4.1. (Simple GCN encoder [49]) The Simple GCN encoder (SGC) utilizes a spectral filter in
the monomial function form:

h(λ) = λK . (8)
Since the spectrum λ lies in [−1, 1], it is clear that the maximum absolute slope (MAS) that h(λ)
can reach is K. Therefore, the stability regularization of the SGC encoder does not involve any loss
function. We can directly constrain the size of the order K.
Case 4.2. (Chebynet encoder [13]) The Chebynet encoder utilizes a spectral filter in the polynomial
function form:

h(λ) =

K∑
k=0

θkλ
k. (9)

The stability regularization of Chebynet can be implemented by the loss function LS =
∑K

k=1 k|λk|.
Case 4.3. (Low-pass filter encoder [34]) The Low-pass filter (LPF) encoder utilizes a spectral filter
in the low-pass filter function form:

h(λ) = (1 + θλ)−1. (10)

The stability regularization of LPF can be implemented by the loss function LS = θ.
Case 4.4. (BernNet encoder [23]) The BernNet encoder utilizes Bernstein basis, the state-of-the-art
graph spectral basis, to construct the graph spectral filter:

h(λ) =

K∑
k=0

θkb
K
k (λ(l+1)) =

K∑
k=0

θk
1

2K

(
K
k

)
(2I − λ(l+1))K−k(λ(l+1))k. (11)

6



According to Theorem 3.1, the BernNet encoder easily satisfies the representation C-Lipstchiz
continuity in Eq. 4 provided that the filter h(λ) always has a finite MAS. However, in Eq. 11,
the analytical relationship between MAS and {θk}Kk=0 is intractable, suggesting the difficulty of
constraining C with a gradient descent manner. Thus, our next goal is to discover a differentiable
method for constraining the minimum of C in the training process.

The stability of the BernNet is still unclear in these four cases, prompting us to investigate its
regularization form. To the best of our knowledge, it is the first investigation of the Lipstchiz
continuity for Bernstein-based spectral filters.

4.2 Guaranteeing stability of the BernNet encoder

For clarity, we rewrite the Eq. 4 as
∥∥H −H ′∥∥ ≤ C · ∥∆X∥ = Ch · A(Ψ) · ∥∆X∥ · ∥F ∥, where,

referring to Eq. 3, A(Ψ) is determined by the model architecture hyperparameters and remains
constant. We say the overall model Ψ is of C-Lipstchiz continuity and the learned spectral filter
h(λ) =

∑K
k=0 θkb

K
k (λ) is of Ch-Lipstchiz continuity. We aim to constrain the minimum of constant

Ch (denoted as C∗
h) with {θk}Kk=0 by discovering the underlying relationship between them. Finally,

we propose an auxiliary differentiable regularization of {θk}Kk=0 to constrain C∗
h to a controllable

bound, for any ∆X .
Theorem 4.1. Given an arbitrary polynomial function f(λ) on λ ∈ [0, 2] and suppose its K-order

Bernstein polynomial is denoted as h(λ) =
∑K

k=0 f(
2k
K )

(
K
k

)
(2− λ)K−kλk. For any point pair

λ1, λ2 ∈ [0, 2], if there exists a constant Cf for |f(λ1)− f(λ2)| ≤ Cf |λ1 − λ2|, then h(λ) always
holds Cf -Lipstchiz continuity for all K ≥ 1:

|h(λ1)− h(λ2)| ≤ Cf |λ1 − λ2| . (12)

We introduce Theorem 4.1, which describes the stability relationship between the filter h(λ) and
an auxiliary function f(λ). It tells that with Berstein basis, the MSA of h(λ) will never exceed
that of the auxiliary function f(λ). Due to f( 2kK ) = θk, for all k ∈ [0,K] ∩ Z, f(λ) can be any
2-D curve passing through all points of {( 2kK , θk)}Kk=0. Therefore, the MAS of f(λ) is analytically
tractable, and we can subsequently provide the bounds for the MAS of h(λ). We have the following
proposition, which is accompanied by a detailed derivation in Appendix B.3.

Proposition 4.1. Suppose h(λ) is approximated with Bernstein basis, i.e., h(λ) =
∑K

k=0 θkb
K
k (λ).

Denoting the MAS (minimum Lipschitz constant) of h as C∗
h, it can be upper bounded by

C∗
h ≤ max

i∈[0,K−1]∩Z
K · |θi − θi+1|. (13)

To summarize, Bernstein basis applied to our ATProt guarantees a finite MAS, and more importantly,
we can further enhance the stability of the BernNet encoder with the following objective:

LS = max
i∈[0,K−1]∩Z

|θi − θi+1|. (14)

4.3 Protein interface prediction

Given proteins P1,P2 with their initial feature F 1,F 2 and coordinates X1,X2, ATProt produces
their stable representations under respective structure perturbations.

H1 ∈ RM×d = ATProt(X1,F 1);H2 ∈ RM×d = ATProt(X2,F 2). (15)
We apply a cross-attention layer (shown in Appendix D) to enable communication between proteins
and obtain their final representations H ′

1,H ′
2. Next, we aim to predict whether pairs of inter-protein

residues belong to the interface, which involves performing pairwise binary classification. Concretely,
for each training pair of proteins, we have a set of 10NI labeled pairs

{
(([H ′

1]i, [H
′
2]i), yi)

}10NI

i=1
,

where yi ∈ {0, 1}, N I is the number of positive residue pairs and 9N I negative ones are downsam-
pled. We take the element-wise product of two residue representations and feed it to another MLP
with the Sigmoid function to compute the probability pi. Weighted cross-entropy loss is used for
training.

LI =
1

|Ytrain|
∑

yk∈Ytrain

(∑2Nk
I

i=0
−yki logpki − (1− yki )log(1− pki )

)
. (16)
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5 Experiments

5.1 Experimental setup

Datasets and processing. We evaluate our method on the complexes from Docking Benchmark
5.5 (DB5.5) [45], a gold standard dataset with high-quality, and Database of Interacting Protein
Structures (DIPS) [43], which collects 41,876 complexes mined from PDB [4]. DB5.5 only contains
253 complex structures manually curated by domain experts, which cover both native unbound and
bound structures. In comparison, DIPS has a significantly larger data size, but it only includes bound
structures of proteins. The two datasets are randomly divided into training, validation, and testing
sets with the following sizes: 203/25/25 (DB5.5) and 39,937/974/965 (DIPS).

For both datasets, we test using various versions of protein structures as inputs for PIP. To accomplish
this, we prepared three versions of the testing set for DB5.5, including native unbound structures,
structures produced by AlphaFold2, and structures produced by ESMFold. We use Native-Bound,
Native-Unbound, ESMFold, AlphaFold2 to denote these four settings respectively.

As for DIPS, since it does not have native unbound structures, we only used ESMFold to prepare
unbound structure inputs for its testing set. AlphaFold2 is not considered due to its high computational
cost for the entire testing set of DIPS.

Baselines. We compare our ATProt method with state-of-the-art conventional machine learning
method BIPSPI [36], the CNN-based methods Siamese Atomic Surfacelet Network (SASNet) [43],
Diffusion-Convolutional Neural Networks (DCNN) [2], differentiable molecular surface interaction
fingerprinting (dMaSIF) [39], and a set of GNN-based methods Deep Tensor Neural Networks
(DTNN) [37], and NEA [15].

Setup and metrics. We consider three experimental setups: (1) performing training and testing both
on the DB5.5; (2) performing training and testing both on the DIPS; and (3) performing pre-training
on the DIPS, fine-tuning on the DB5.5 and testing on the DB5.5. For our proposed ATProt method,
we consider graph encoders of Simple GCN, Chebynet, Low-pass filter and BernNet (denoted as
ATProt-SGC, ATProt-Cheby, ATProt-LPF, and ATProt-Bern, respectively).

For each complex in the testing set, assuming that the two proteins have M and N residues, re-
spectively, we test all its M × N binary classification samples and calculate the Area Under the
ROC Curve (AUC) value. Following [15], we report the median AUC score (MedAUC) across all
complexes as the final evaluation metric.

Table 1: Training and testing on the DB5.5. Mean and standard deviation values of the MedAUC
scores of all baselines, computed from three random seeds. The best performance is in bold and the
second best one is underlined. ‘SR’ means the proposed stable regularization LS .

Methods Native-Bound Native-Unbound ESMFold AlphaFold2

BIPSPI [36] 0.937 (0.008) 0.911 (0.017) 0.896 (0.008) 0.887 (0.013)
SASNet [43] 0.902 (0.007) 0.876 (0.017) 0.887 (0.025) 0.881 (0.020)
dMaSIF [39] 0.928 (0.005) 0.912 (0.009) 0.906 (0.003) 0.892 (0.012)
DTNN [37] 0.912 (0.005) 0.886 (0.007) 0.883 (0.010) 0.878 (0.021)
NEA [15] 0.916 (0.015) 0.895 (0.009) 0.902 (0.010) 0.883 (0.012)

ATProt-SGC 0.925 (0.015) 0.918 (0.004) 0.909 (0.012) 0.924 (0.014)
ATProt-Cheby 0.928 (0.017) 0.922 (0.007) 0.922 (0.005) 0.924 (0.011)
ATProt-LPF 0.915 (0.017) 0.919 (0.019) 0.911 (0.009) 0.911 (0.010)
ATProt-Bern 0.932 (0.017) 0.928 (0.014) 0.929 (0.014) 0.925 (0.011)

ATProt-Bern w/o SR 0.934 (0.009) 0.901 (0.011) 0.897 (0.010) 0.901 (0.012)

Results. Table 1, 2, and Table 3 (shown in Appendix) show the model performance for PIP. We find
that our method is competitive and outperforms the majority of baseline methods with native bound
structures. Under this Native-Bound setting, although ATProt is slightly less effective than BIPSPI,
it demonstrates the ability to learn sufficiently powerful protein representations (especially with
BernNet and Chebynet). Notably, all the baselines fail significantly when using non-bound structures
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Table 2: Pre-training on the DIPS, fine-tuning on the DB5.5 and finally testing on the DB5.5.
/ indicates that the model performs better/worse than without pre-training (i.e., results in Table 1).

Methods Native-Bound Native-Unbound ESMFold AlphaFold2

BIPSPI [36] 0.945 (0.017) 0.913 (0.009) 0.907 (0.007) 0.903 (0.010)

SASNet [43] 0.916 (0.003) 0.899 (0.011) 0.900 (0.016) 0.878 (0.012)

dMaSIF [39] 0.922 (0.006) 0.903 (0.012) 0.901 (0.006) 0.910 (0.007)

DTNN [37] 0.919 (0.003) 0.893 (0.004) 0.896 (0.013) 0.898 (0.015)

NEA [15] 0.926 (0.013) 0.911 (0.009) 0.897 (0.014) 0.892 (0.014)

ATProt w/o SR 0.939 (0.013) 0.910 (0.016) 0.902 (0.011) 0.904 (0.014)

ATProt-Bern 0.939 (0.011) 0.934 (0.014) 0.937 (0.012) 0.928 (0.012)

as inputs, whereas our method maintains similar performance compared to that under Native-Bound.
As can be seen from the results of ‘ATProt-BernNet w/o SR’, the robustness to structure perturbation
is attributed to the proposed SR (stable regularization) strategy. Overall, the experiments on DB5.5
demonstrate that our method does not rely on native bound or unbound structure data for inference,
but can directly utilize structure prediction software to achieve satisfactory PIP results. From Table 2,
3, we note that although DIPS has a larger data scale than DB5.5, it is difficult to achieve better
results. However, pre-training on DIPS can improve most of the testing results on DB5.5.

In summary, all three tables show consistent performance degradation for all baselines with the
non-bound structures. In contrast, our method can defend against this bound-unbound mismatch and
achieve performance similar to, or even better than that with Native-Bound.

Benefits of representation stability. Figure 5 shows the dimensionality reduction visualization of
residue representations with t-SNE [44]. We observe that ATProt leads to a "clustering" effect in the
representations, which is the result of stability regularization. Importantly, this ultimately generates
clearer classification boundary in visualization and quantification (i.e., the Silhouette Score [35]).

Silhouette:
0.4120 

Silhouette:
0.4127 

Silhouette:
0.5457 

Figure 5: The t-SNE visualization for the last layer representations. The x and y axes of all three
subplots are uniformly scaled to (0, 1).

6 Conclusion

In this paper, we present ATProt, an end-to-end learning framework for protein interface prediction
(PIP). By highlighting the importance of protein representation stability for the PIP task, we tailor
the stability regularization for four types of spectral graph encoders, theoretically ensuring that the
ATProt framework exhibits Lipschitz continuity properties. Our method demonstrates competitive
empirical performance compared to leading deep learning-based baselines, especially when dealing
with significant bound-unbound structure gaps. Importantly, ATProt demonstrates the ability to
perform inference in native-structure free scenarios.

Limitations. To present a clear and focused issue, we do not incorporate adversarial training-based
classifiers into our framework. However, it is expected that their inclusion could further enhance the
performance of ATProt, as they have shown promising results in the field of computer vision.
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Supplementary of “Towards Stable Representations for Protein
Interface Prediction”

A Representing proteins with graph data

Let G = (V, E) be an undirected graph with nodes V = {1, ..., N}, edges E ⊂ V2, graph signal
F ∈ RN×d and a graph shift operator L ∈ RN×N (i.e., node connectivity). We construct edges with
the k-nearest neighbor (k-NN) algorithm and each node in G is connected to the 10 closest nodes
within a physical distance of less than 30 Å. The edge attributes are distances between α-carbon
atoms encoded with Gaussian basis functions. The nodes have two kinds of attributes: the one-hot
encoding of amino acid type and the surface-aware features at the residue level. The latter is defined
by [17] to distinguish residues closer to the protein surface from those in the interior. Notably, we
do not introduce any biochemically related attributes of atoms or amino acids featurization. Instead,
protein graphs are constructed solely using their α-carbon coordinates.

B Proofs of main propositions

B.1 Proof of Proposition 3.1

Assuming we model the protein interface prediction as a pairwise classification problem. Basically,
this proposition provides a perturbation radius, within which if the perturbations of two protein
representations fall, the predicted correspondences of all pairs of inter-protein residues will be robust.

Formally, we apply the model Ψ to obtain d-dimensional protein representations H1 = Ψ(P1) ∈
RM×d,H2 = Ψ(P2) ∈ RN×d. The i-th row of H1 and j-th row of H2 are concatenated into
x(ij) ∈ R2d, which is the pairwise residue representations. We then use a neural network f to
calculate the probability of the presence of residue correspondence, and define the classifier as
g(x(ij)) := arg maxkfk(x

(ij)). Assuming that the structure changes of two proteins cause perturba-
tions δ1, δ2 on H1 and H2, respectively, the interface prediction robustness can be determined by
the following proposition. First, we rewrite Proposition 3.1 into a more formal expression.
Proposition B.1. For all i ∈ [1,M ] ∩ Z and j ∈ [1, N ] ∩ Z, the interface classifier g is provably
robust for arbitrary x(ij) (i.e., g is robust for all residue pairs of P1 and P2) if N ∥δ1∥pp+M ∥δ2∥pp <

A(f, p), where A(f, p) can be a constant depending only on f and the norm ∥·∥p.

Proof. . We denote x as a variable for convenience to represent the pairwise residue representation.
Let g(x) = y. Suppose there exists a perturbation δ such that g(x+ δ) ̸= g(x) and fj(x+ δ) ≥
fy(x+ δ) for some j ̸= y. We first prove that ∥δ∥p ≥

p√2
2C · margin(f(x)), where C is the lipschitz

constant of f , margin(f(x)) is the margin between the largest and second runner-up output logits.
Define z′ = f(x + δ), then z′y ≤ z′j . The difference between outputs z and f(x) can be lower
bounded by

∥z′ − f(x)∥p ≥
∥∥(z′y, z′j)T − ([fy(x), fj(x)])

T
∥∥ = (|z′y − fy(x)|p + |z′j − fj(x)|p)

1
p (17)

In the above equation, we utilize the fact that setting certain elements of a vector to zero can only
decrease its p-norm. Let us now consider the following optimization problem:

min
z′

|z′y − fy(x)|p + |z′j − fj(x)|p s.t. z′y ≤ z′j (18)

When z′y = z′j = (fy(x) + fj(x))/2, we have the minimum of (2) and the update for (11):

∥z′ − f(x)∥p ≥
∥∥(z′y, z′j)T − ([fy(x), fj(x)])

T
∥∥ ≥

p
√
2

2
(fy(x)− fj(x)) (19)

14



According to the Lipschitz constant of f , we have

∥z′ − f(x)∥p ≤ C ∥δ∥p (20)

Considering (3) and (4), we have the initial conclusion as follows

∥δ∥pp ≥

(
p
√
2

2C
· margin(f(x))

)p

(21)

Then we consider the complete residue pair representation set {x(ij)}i∈[1,M ]∩Z,j∈[1,N ]∩Z.

M∑
i=1

N∑
j=1

∥∥∥δ(ij)∥∥∥p
p
≥

M∑
i=1

N∑
j=1

(
p
√
2

2C
· margin(f(x(ij)))

)p

(22)

We denote the perturbations on protein representations H1 and H2 as δ1 and δ2, respectively. δ(ij)

is actually the concatenation of the i-th row of δ1 and the i-th row of δ2, i.e., δ(ij) = AGG(δ1, δ2).
Thus the left term of (6) is equal to N ∥δ1∥pp +M ∥δ2∥pp. Finally, we conclude the proof:

N ∥δ1∥pp +M ∥δ2∥pp ≥
M∑
i=1

N∑
j=1

(
p
√
2

2C
· margin(f(x(ij)))

)p

= MN

(
p
√
2

2C
· margin∗(f(x))

)p

(23)
where margin∗(f(x)) is the average value of all margins w.r.t the MN concatenated residue repre-
sentations.

B.2 Proof of the statement after Theorem 3.1 that C∗
h is equal to the MAS.

Proof. We prove this based on the definition of graph Lipschitz filter, which is continuously differen-
tiable due to the polynomial approximation.

Let Ch be the Lipschitz constant of h, and let u(λ) = |h′(λ)|. We want to show that Ch is minimized
when Ch = supλ u(λ).

Suppose there exist λ1 and λ2 such that |λ1 − λ2| > 0 and |h(λ1)− h(λ2)| > Ch|λ1 − λ2|. Then,
by the mean value theorem, there exists λ3 between λ1 and λ2 such that |h′(λ3)| > Ch. But this
contradicts the assumption that Ch is the Lipschitz constant of h. Therefore, Ch must be greater than
or equal to supλ u(λ).

To show that Ch is minimized when Ch = supλ u(λ), suppose there exists a Lipschitz constant C ′
h

such that C ′
h < supλ u(λ). Then, for any λ1 and λ2, we have

|h(λ1)− h(λ2)| ≤ C ′
h|λ1 − λ2|

< sup
λ

u(λ)|λ1 − λ2|

≤ |h′(λ3)||λ1 − λ2|

(24)

where λ3 is some point between λ1 and λ2. But this contradicts the definition of u(λ) as the maximum
of |h′(λ)|. Therefore, Ch must be equal to supλ u(λ).

Thus, we have shown that Ch is minimized when Ch = supλ u(λ), as desired. For readability,
we denote the minimum of Ch as C∗

h and supλ u(λ) as the MAS (maximum absolute slope) of h,
respectively.

B.3 Proof of Proposition 4.1

We start the analysis with the unique stability-preservation property of the Bernstein basis shown in
Theorem 4.1. Simply put, during Bernstein polynomial approximation, the outcome polynomial h(λ)
is at least as stable as the target function f(λ). This is crucial as it tells that the MAS of an exact
function f(λ) can always serve as an upper bound for C∗

h.
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Figure 6: The way to find upper bound of C∗
h, a case to explain Proposition 4.1.

The relationship between f(λ) and {θk}Kk=0. Setting the polynomial order to K, our model learns
a set of K + 1 weights {θk}Kk=0 that acts as the coefficients for polynomial approximation, such
that f( 2kK ) = θk, for all k ∈ [0,K] ∩ Z. Put differently, any 2-D curve passing through all points of
(0/K, θ0), (2/K, θ1).., (2K/K, θK) can be regarded as a possible version of f(λ) for polynomial
approximation. Consequently, given any set of {θk}Kk=0, the stability of h(λ) is not worse than the
most stable version among all possible f(λ).

Formally, we naturally extend the Theorem 4.1 to the following proposition, which provides a
theoretical upper bound for C∗

h of h(λ), directly using the learnable coefficients {θk}Kk=0.

As h is at least as stable as the most stable f , the MAS of h can be upper bounded by the minimum
MAS among all possible f functions, which is infinitely close to the MAS of the broken line passing
through points {(k/K, θk)}Kk=0. Figure 6 helps to better understand Proposition 4.1. For example, let
us set K to 1, any curve passing through (0, θ0) and (2, θ1) can be a version of f . Out of all possible
f versions, the line segment directly connecting two points has the minimum MAS (i.e., |θ0−θ1|

2 ).

We have introduced in the main text the relationship between f(λ) and {θ}Kk=0. Based on this, the
proof of Proposition 3.2 is equivalent to proving the following lemma.
Lemma B.1. Given K + 1 points (0, θ0), ( 2

K , θ1), . . . , ( 2KK , θK), suppose there are infinitely many
functions f(λ) that pass through these K + 1 points. The maximum absolute slope (MAS) of any
version of a function f(λ) is not less than the MAS of the piecewise linear function passing through
these K + 1 points.

Proof. Let fbroken(λ) be the piecewise linear function passing through the given K + 1 points. The
slope of fbroken(λ) between two consecutive points ( 2iK , θi) and ( 2(i+1)

K , θi+1) is given by:

mi =
θi+1 − θi
2(i+1)

K − 2i
K

=
θi+1 − θi

2
K

(25)

The MAS of fbroken(λ) is the maximum of the absolute values of these slopes:
MASbroken = max

0≤i≤K−1
|mi| (26)

Now, consider any function f(λ) that passes through the K + 1 points. Since f(λ) is differentiable,
by the mean value theorem, for each interval

[
2i
K , 2(i+1)

K

]
, there exists a point λi such that:

f ′(λi) =
f
(

2(i+1)
K

)
− f

(
2i
K

)
2(i+1)

K − 2i
K

=
θi+1 − θi

2
K

= mi (27)

Since f(λ) passes through all the given points, we have:
MASf ≥ max

0≤i≤K−1
|f ′(λi)| = max

0≤i≤K−1
|mi| = MASbroken (28)

Thus, the MAS of any function f(λ) satisfying the conditions is greater than or equal to the MAS of
the piecewise linear function fbroken(λ) passing through the points.
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C Results on DIPS

Table 3 shows the results on DIPS. Kindly note that we train and test all methods both on the DIPS
dataset.

Table 3: Training and testing on DIPS.
Methods Native-Bound ESMFold

BIPSPI [36] 0.891 (0.003) 0.883 (0.012)

SASNet [43] 0.895 (0.002) 0.878 (0.013)

dMaSIF [39] 0.909 (0.012) 0.885 (0.004)

DTNN [37] 0.902 (0.009) 0.870 (0.014)

NEA [15] 0.911 (0.015) 0.875 (0.009)

Ours w/o SR 0.909 (0.013) 0.882 (0.013)

Ours 0.909 (0.007) 0.906 (0.007)

D The cross-attention layer used

H ′
1 = softmax

(
(H1WQ)(H2WK)T√

d

)
(H2W V ) , (29)

H ′
2 = softmax

(
(H2WQ)(H1WK)T√

d

)
(H1W V ) . (30)

E Hyper-parameters

The training process takes around 0.5 hours with 1 Nvidia 4090 GPUs with 24GB RAM. The
hyper-parameters used in this paper are listed in the following table.

Hyperparameters Values
Graph node degree (k-NN) 10
Filter coefficient number for BernNet 10
Dimension of MLPe in Eq. 5 27, 1
Number of layers in BernNet 3
Dropout rate 0.2
Number of attention head 4
Weight of loss LI 1.0
Weight of loss LS with BernNet 0.35
Batch size 4
Learning rate 3× 10−4

Optimizer Adam

Table 4: Hyperparameter choices of ATPROT.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions are included in the abstract and the introduction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 6.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: See Section B.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section 5

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided in https://github.com/ATProt/ATProt.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 5.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In our experiments, we report the mean and standard deviation of three random
seeds.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section Appendix E.

9. Code Of Ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research conducted in the paper conforms with the NeurIPS Code of
Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are some potential societal consequences of our work, none of which we
feel must be specifically highlighted here.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no safety risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The materials in this paper are used with permission and properly cited. The
Database of Interacting Protein Structures (DIPS) is under the MIT License. DB 5.5 is under
a Creative Commons Attribution 4.0 International License

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The developed code is provided in https://github.com/ATProt/ATProt.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
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