
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ELUCIDATING THE DESIGN SPACE OF FP4 TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

The increasing computational demands of foundation models have spurred re-
search into low-precision training, with 4-bit floating-point (FP4) formats emerg-
ing as a frontier for maximizing hardware throughput. While numerous techniques
have been proposed to stabilize FP4 training, they often present isolated solutions
with varying, and not always clear, computational overheads. This paper aims to
provide a unified view of the design space of FP4 training. We introduce a com-
prehensive, quantisation gradient-based framework for microscaling quantization
that allows for a theoretical analysis of the computational costs associated with
different stabilization methods on both the forward and backward passes. Using a
simulator built on this framework, we conduct an extensive empirical study across
a wide range of machine learning tasks, including regression, image classification,
diffusion models, and language models. By systematically evaluating thousands
of combinations of techniques—such as novel gradient approximations, rounding
strategies, and scaling methods, we identify which configurations offer the most
favourable performance-to-overhead trade-off. We find that the techniques en-
abling the best trade-off involve carefully combining Hadamard transformations,
tensor scaling and stochastic rounding. We further find that using UE5M3 as a
scaling factor potentially offers a good compromise between range and precision
with manageable computational overhead.

1 INTRODUCTION

With the emergence of foundation models (Bommasani et al., 2021), the demand for computa-
tional resources has grown proportionally to the parameter count of these models, which often span
from billions to trillions of parameters. Many of these models rely on the transformer architecture
(Vaswani et al., 2017), which is ubiquitous across vision, text and video models (Khan et al., 2022).
These models tend to be compute bound by two operations: the attention mechanism (Duman-Keles
et al., 2023; Dolga et al., 2024) which tends to scale quadratically with sequence length, and the
matmul operations from the weight matrices (Corp, 2025) which are quadratic with respect to size
of the hidden dimensions.

In this paper, we conduct the first large-scale, systematic investigation of the FP4 design space.
Traditionally, machine learning training uses FP32 format which serves as the baseline with the
highest accuracy and lowest throughput. Historically, with each subsequent generation of hardware,
the precision has been halved — starting from FP16 (Micikevicius et al., 2018), FP8 (Noune et al.,
2022; Micikevicius et al., 2022; Fishman et al., 2025), and now FP4 (Tseng et al., 2025; Chen et al.,
2025; Castro et al., 2025; Hao et al., 2025; Chmiel et al., 2025; Wang et al., 2025; Yang et al., 2025;
Su et al., 2025; Li et al., 2025; Cao et al., 2025). Halving the precision often allows a doubling of the
throughput for matrix multiplication operations (Hao et al., 2025), hence with each iteration careful
adjustments need to be made to the training procedure to account for the loss of numerical accuracy.

While these works introduce new techniques to stabilize FP4 training for larger models, they all
propose different methodologies with varying computational overhead that are empirically shown
to work in isolation through simulations in BFLOAT16. However, a systematic evaluation of the
performance-overhead trade-offs has been missing. As an example, Wang et al. (2025) introduces a
quantile based pruning and gradient adjustment, both of which are shown to be useful, however both
add an additional ∼ O(n) time and memory overhead which cannot be done in low-precision and
is non-fusable. It should be further noted that the simulation procedure in Wang et al. (2025) does
not adequately quantise the scale, which their description implies is kept in high-precision – a detail

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

that can significantly impact training stability. Similarly, Tseng et al. (2025) proposes a block-wise
Hadamard transformation, which induces a ∼ O(n log l) overhead. It should be noted that none of
the aforementioned papers simulate FP4 training fully, as Wang et al. (2025) only consider quantis-
ing weights and activations and not the gradient and Tseng et al. (2025) only quantises the gradient.
Further, Cao et al. (2025); Li et al. (2025) proposes spectral decomposition techniques to handle
outliers, which consequently introduces O(nk) time and O(k2) memory, which in terms of hard-
ware acceleration is also non-fusable. It is currently not clear whether these additional overheads are
necessary in downstream implementations of low-precision matrix multiplication, as some evidence
in Chmiel et al. (2025); Yang et al. (2025) suggests that something as simple as Stochastic Rounding
(SR) is enough to stabilise FP4 training. Here l denotes block size, n denotes number of elements
in the tensor and k the low-rank projection dimension in SVD.

The goal of this work is to develop a thorough understanding of the quantisation mechanism and
how it affects the training procedure and illuminate which techniques offer a worthwhile trade-off in
terms of additional overhead vs performance benefit. We summarise the contributions of this paper
as follows:

1. We propose a quantisation gradient-based framework for FP4 quantisation, which is used
to derive the computational overhead of conceivably useful techniques (both novel and
existing ones) on the forward and backward pass of a quantised linear layer.

2. We implement the framework as a simulator 1 , running experiments of across various ma-
chine learning tasks to gain insight on which combination of techniques offer a reasonable
overhead vs. performance benefit.

We first introduce our unified, gradient-based framework in Section 2, then use it to analyze the
design space of scaling, rounding, and gradient approximation techniques in Sections 3, 4, and 5.
We survey other relevant methods in Section 6, present our extensive empirical validation in Section
7, and conclude with our key findings.

2 A COMMON FRAMEWORK FOR FP4 TRAINING

In this section, we detail what happens when we use microscaling formats to quantize a tensor
for a linear layer forward pass. Consider a tensor X ∈ Rm×n. We first define X represented in
microscaling format Rouhani et al. (2023).
Definition 1. A micro-scaled block is defined by a scalar s ∈ R and a vector P = [pi]

l
i=1 of l

elements. Each value xi can be recovered as

xi = s · pi.

The parameter l is a fixed constant known as the block size. Given a tensor X ∈ Rm×n and a block
size of l, the MX representation of X consists of a collection of tuples

{(sj ,Pj)}(m·n)//l
j=1 ,

where each tuple corresponds to a block of l elements in X.

Intuitively, microformat scaling represents partitions of a tensor with a common scale often used to
normalise the partition, where the scaled elements Pj is quantized to a lower precision. We formally
detail the quantisation procedure for one partition Xp ∈ Rl below, represented by a transformation
f :

f(Xp) =
1

sq
Q(sq ·Xp)

where the components are defined as follows:

Outer Scaling Factor (sq): This factor is a function of Xp. First, an intermediate factor s(Xp) is
computed:

s(Xp) =
FP4 max

Z(Xp)

1Codebase: Google Drive Link

2

https://drive.google.com/file/d/1bEn9zgBHoCGQf_RZUHu-h5vIuDkiP9u_/view?usp=share_link

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Here, Z : Rl → R is a scalar-valued function of the tensor Xp (e.g., the absolute maximum norm,
absmax). This factor is then quantized:

sq = q(s(Xp))

Quantization Function (Q): Q is an element-wise function that quantizes the elements of Xp.

We can now introduce the gradient with respect to an element in X:
Proposition 1. Let f(Xp) =

1
sq
Q(sq ·Xp) Then, the partial derivative of fij with respect to Xij ,

that is the diagonal of the Jacobian matrix, is given by:

∂fij
∂Xij

= Q′(sqXij) +
∂s

∂Xij

[
q′(s)

sq

(
XijQ

′(sqXij)−
1

sq
Q(sqXij)

)]
(1)

See Appendix A.7 for derivations.

In the context of a linear layer with weights W ∈ Rn×m and input data X ∈ Rb×m, the output
Y = f(X)f(W)⊤ would have the corresponding gradients:

∂L
∂X

=

(
∂L
∂Y

· f(W)

)
⊙ ∂f(X)

∂X
,

∂L
∂W

=

((
∂L
∂Y

)⊤

· f(X)

)
⊙ ∂f(W)

∂W
.

Here, L denotes the scalar loss, ⊙ the elementwise product and f(·) is a differentiable transformation
(e.g., MX decomposition or quantization-aware mapping) applied to the inputs and weights. In the
next section, we detail different choices in terms of calculating and approximating ∂L

∂X , ∂L
∂W . We

summarise the time and memory overhead of our proposed and existing techniques in Table 2.

3 TENSOR SCALING IN FP4 TRAINING

An alternative to applying block-wise scaling directly is to first normalize the entire tensor Blake
et al. (2023); Micikevicius et al. (2022); Sun et al. (2019); Peng et al. (2023). The goal of this
strategy is to improve the quantization of the scaling factors themselves. In this approach, a tensor-
wise scaling factor g is computed, used to normalize the tensor, and then multiplied back after the
block-wise quantization. While the intent is for g to cancel out, the non-linear nature of the scale
quantization function q(·) results in a distinct final transformation.

Let g = maxp {mp}, mp = Z(Xp) be the global scaling factor for a tensor X, and let U = X/g
be the globally normalized tensor. The transformation h(X) for an element Xij within a block p is
defined as hij(Xp) = g · fij(Up).

Here, f(Up) is the block-wise quantization function from Section 2 applied to the normalized block
Up. Its components are functions of Up:

1. Ideal Scale: s′p = FP4max
Z(Up)

= g · FP4max
Z(Xp)

= g · sp
2. Quantized Scale: s′q,p = q(s′p) = q(g · sp)

Substituting these gives the full forward pass expression for an element:

hij(X) =
g

q (g · sp)
Q

(
q(g · sp) ·

Xij

g

)
(2)

The gradient of this transformation accounts for both the block-wise dependencies and the global
dependency on g.
Corollary 1. Let h(X) be the quantization with intermediate global normalization. For an element
Xij in block p, the partial derivative is:

∂hij

∂Xij
=

∂fij
∂Up,ij

+
∂g

∂Xij

(
fij(Up)−Up,ij

∂fij
∂Up,ij

)
(3)

where ∂fij
∂Up,ij

is the full gradient from the first Theorem, evaluated on the normalized block Up with
its corresponding scales (s′p, s

′
q,p, k

′
p). See Appendix A.8 for derivations.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

It should be noted that g in context of the MXFP4(FP4 format with E8M0 scale) and NVFP4 (FP4
format with E4M3 scale) has overhead complexity O((m · n)//l) as opposed to O(m · n) when
computing absmax(X), since it suffices to search the scales rather than the entire tensor X.

3.1 ROUNDING AND SCALING STRATEGIES

Recent work in low-precision training has highlighted that the rounding strategy for scaling factors
can have a profound impact on model stability. For instance, Mishra et al. (2025) found that for
MXFP8 formats, rounding-to-positive-infinity improves signal propagation by reducing the number
of saturated values, given the limited range of the scaling factor. As our work considers both E4M3
(which has a limited range) and E8M0 (which has a wider range), we evaluate both round-to-nearest
(RTN) and round-to-positive-infinity in our experiments.

We note that the results in Chmiel et al. (2025) get NVFP4 to converge without any issues with
tensor scaling, as they mitigate any overflow by taking s̃p =

s′p
FP4max·E4M3max·0.5 . This pushes down

the effective range of s̃p ∈ [2/E4M3max, 2/E4M3max · g). While not completely protected from
overflow, it’s a good rule of thumb to maximize the utilised range of E4M3. We use this technique
when applying tensor scaling for NVFP4. We note that this heuristic can be extended to any scale
format beyond E4M3, as it effectively rescales the scale factor to utilise its maximum range.

Handling Zero-Valued Scales. A critical edge case is the handling of zero-valued scaling factors,
resulting in division by zero in the dequantisation. Chmiel et al. (2025) replaces any zero scale
with one, which may induce further quantisation errors as small scales are set to 1. We propose
rounding the zeros and underflows to the closest representable subnormal value in the target format
and saturate overflows to the maximum representable number. We compare the efficacy of both
approaches in our experiments.

Rounding of the weight tensor The impact of the rounding strategy has previously been demon-
strated (Chmiel et al., 2025; Fitzgibbon & Felix, 2025) to have significant impact on the stability
of LLM training in low-precision formats. The main observations for FP4 formats is to use round-
to-nearest (RTN) for the forward pass and stochastic rounding (SR) in the backwards pass (Chmiel
et al., 2025; Yang et al., 2025), specifically on the activation and gradient tensors. We follow the
quantisation procedure in Rouhani et al. (2023), which considers 6 quantisations for a forward and
backward pass in a linear layer. We benchmark against the strategy proposed by Chmiel et al. (2025)
and additionally consider SR on the activations in the forward pass as well.

Rounding of the scales We also experiment with stochastic rounding in the scaling factor as well.
We motivate this design choice with the observation that E8M0 has very large intervals between each
number, leading to potential bias, which can mitigated more effectively at the scaling factor.

4 DIFFERENTIABLE RELAXATIONS FOR QUANTIZATION

Approximating Q′(X) and q′(x) Wang et al. (2025) take ∂fij
∂Wij

≈ Q′(s · Wij). However

since Q is a quantisation function which is not differentiable, they approximate Q(x) ≈ δ
2 ·(

1 + sign
(
2x
δ − 1

)
·
∣∣ 2x
δ − 1

∣∣ 1
w

)
, with gradient Q′(x) = 1

w ·
∣∣ 2x
δ − 1

∣∣ 1
w−1

. They propose w = 5 in
their implementation. There are some potential flaws with the proposed parametrisation, as calculat-
ing power of fractionals tends to be computationally expensive and require O(w) cycles. This leads
to the overall complexity of O(nmw log2(k)), where log(k) comes from finding the interval on the
E2M1 grid to which x belongs using binary search, with k being the grid size. We thus propose an
alternative differentiable relaxation of Q(x).

Linear Spline approximation A linear spline is a continuous piecewise linear function defined over
a set of sorted knots t0, . . . , tn. These knots partition the domain into n intervals Ii = [ti, ti+1).
The function’s continuity is ensured by having the linear segments connect at the knots.

The forward and backward passes evaluate the spline and its derivative. For an input x ∈ [ti, ti+1),
the spline is a line segment, S(x) = ai(x − ti) + bi (Forward pass) with S′(x) = ai (Backward
pass). Here, bi represents the value of the spline at knot ti (i.e., S(ti)), and ai is the slope of the line
segment over the interval [ti, ti+1).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We illustrate our proposed differentiable quantization approximation and its corresponding gradient
in Fig. 1. The function is shown in Fig. 1a, and its gradient is depicted in Fig. 1b. We found that
applying the quantisation gradient in the backwards pass sometimes would mask out the gradient
entirely, hence we propose clipping Q′(x) from below to prevent multiplying the gradient with 0
(Figure 1c). The overall complexity overhead of the spline approximation is thus O(nm log2(k)).

6 4 2 0 2 4 6
Input Value (x)

6

4

2

0

2

4

6

Qu
an

tiz
ed

 V
al

ue
 (Q

(x
))

Differentiable Approximations of E2M1 Quantization
Hard Quantization (E2M1)
Baseline Approx.
Spline Approx.

(a) Approx. function Qapprox(x).
6 4 2 0 2 4 6

Input Value (x)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Gr
ad

ie
nt

 (dQ dx
)

Gradients of Differentiable Quantization Functions
Baseline Gradient (k=5)
Spline Gradient
STE (Hard Quant.)

(b) Gradient of Q′
approx(x).

6 4 2 0 2 4 6
Input Value (x)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Gr
ad

ie
nt

 (dQ dx
)

Clipped Gradients of Differentiable Quantization Functions
Baseline Gradient (k=5)
Spline Gradient
STE (Hard Quant.)

(c) Clipped Gradient of Q′
approx(x).

Figure 1: Approximations of Q(x) and their corresponding gradients, assuming ties-to-even round-
ing. We refer to Wang et al. (2025) as the baseline.
Note that we need to save the unquantised matrix X for the backwards pass to evaluate Q′(X),
adding O(mn) memory overhead.

5 GRADIENT ADJUSTMENT FOR SCALING FACTOR QUANTIZATION

The gradient adjustment techniques used for weights and activations can also be applied to the
quantization of the scaling factor q(s). However, the relatively high dynamic range required for
scaling factors introduces additional complexity. To find a decent trade-off between accuracy and
complexity, we first analyze the regions where the quantization error is most significant. We measure
this error using the relative deviation, defined as the ratio s/sq . A value of this ratio far from 1
indicates a large quantization error.

Figure 2 illustrates the quantization functions for the E4M3 and E8M0 scale formats and their cor-
responding relative deviations. The quantization function itself is shown in Fig. 2a, while the error
is plotted in Fig. 2b.

(a) Quantization functions sq = q(s). (b) Relative deviation s/sq .

Figure 2: Comparison of quantization for E4M3 and E8M0 scaling factors. Figure (a) shows the
quantization step functions. Figure (b) shows the relative deviation, which is most pronounced for
small values of the scaling factor s.

As illustrated in Fig. 2b, the largest relative deviation occurs for small-magnitude scaling factors,
especially within the first few representable values of the E4M3 scale format. Based on this obser-
vation, we can choose to apply the gradient adjustment selectively, targeting only the range where
the quantization error is highest when computing the q′(s) term.

5.1 GRADIENT ADJUSTMENT OF ABSMAX : ADJUSTING FOR Z(Xp) AND s′(Xp)

First, we establish the general relationship between the gradient of the scaling factor, ∂s
∂X , and the

gradient of the normalization function, ∂Z
∂X .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Proposition 2. Given the scaling factor s(X) = FP4 max
Z(X) , its gradient with respect to an element

Xij is given by:
∂s

∂Xij
= −FP4 max

Z(X)2
∂Z

∂Xij

See Appendix A.9 for derivations.

The following corollaries provide the specific form of this gradient for two common choices of the
normalization function Z(X).
Corollary 2. If the normalization function Z(X) is absmax, Z(X) = maxk,l |Xkl|, then the
gradient of the scaling factor is non-zero only for the element with the maximum absolute value:

∂s

∂Xij
= −FP4 max

Z(X)2
(sign(Xi∗j∗) · δii∗δjj∗) (4)

where (i∗, j∗) is the index of the maximum absolute value element and δ is the Kronecker delta. See
Appendix A.10 for derivations.
Corollary 3. If the normalization function Z(X) is the smooth LogSumExp approximation of the

max function, Z(X) = 1
β log

(∑
k,l e

β|Xkl|
)

, the gradient of the scaling factor is a dense gradient
given by:

∂s

∂Xij
= −FP4 max

Z(X)2
(softmax(β|X|)ij · sign(Xij)) (5)

See Appendix A.11 for derivations.

We consider four configurations for calculating the gradients with respect to the scaling factors,
summarized in Table 1. Alongside the standard ‘Absmax‘ and ‘Softmax‘ approaches, we introduce a
‘Hybrid‘ method. This approach uses the computationally efficient ‘absmax‘ function in the forward
pass but approximates its gradient with the dense ‘softmax‘ derivative during the backward pass.
This is intended to propagate gradient information to more elements without incurring the forward-
pass cost of the LogSumExp operation.

Table 1: Gradient configurations for the block-wise scale s(X) and global scale g(X). The Straight-
Through Estimator (STE) gradient is a heuristic approximation, as detailed in the text.

Configuration Scaling Function
Z(X)

Gradient ∂s
∂Xij

Global Scaling
Function g(X)

Gradient ∂g
∂Xij

STE maxk,l |Xkl| 1 maxk,l |Xkl| 1

Absmax maxk,l |Xkl| − FP4 max
(Z(X))2 (sign(Xi∗j∗) · δii∗δjj∗) maxk,l |Xkl| sign(Xi∗j∗) · δii∗δjj∗

Softmax 1
β log

(∑
k,l e

β|Xkl|
)

− FP4 max
(Z(X))2 (softmax(β|X|)ij · sign(Xij))

1
β log

(∑
k,l e

β|Xkl|
)

softmax(β|X|)ij · sign(Xij)

Hybrid maxk,l |Xkl| − FP4 max
(Z(X))2 (softmax(β|X|)ij · sign(Xij)) maxk,l |Xkl| softmax(β|X|)ij · sign(Xij)

For any softmax-based configuration, we must either compute or save the softmax for the back-
wards pass, incurring additional time and memory complexity. For Absmax, it suffices to save the
index of the maximum value. For the STE case of ∂s

∂Xij
, we are effectively setting the entire sec-

ond term from Equation (1),
[
q′(s)
sq

(
XijQ

′(sqXij)− 1
sq
Q(sqXij)

)]
, to be equal to 1. This pro-

vides a simple alternative to completely omit the O(3mn) extra computation of this extra gradient
term, treating the complex scaling derivative as a direct pass-through. We have an ignore option
for the ∂g

∂Xij
term, which means setting the corresponding update term from Corollary 1 to zero:

∂g
∂Xij

(
fij(Up)−Up,ij

∂fij
∂Up,ij

)
= 0, skipping the extra O(4mn) work and saving memory.

6 OTHER TECHNIQUES

Optimizer centric Recently, Huang et al. (2025) proposed StableSPAM, which modifies the Adam
optimiser by bounding the momentum term with a moving average statistic. This is motivated by the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Summary of FP4 Training Techniques and Overheads. Here we assume each operation is
applied to a tensor with n elements, which can be partitioned to n/l blocks with block size l.

Technique Compute
Overhead

Additional
Memory

Fuseability Comment

Straight-Through Estimator (STE) O(1) None Yes
Baseline Q′(X)(Wang et al., 2025) O(n · w log k) O(n) No w = 5
Spline Q′(X) O(n log k) O(n) No
Stochastic Rounding (Fitzgibbon & Felix, 2025) O(n) None Yes
Stochastic Rounding Scale O(n//l) None Yes
Global Tensor Scaling (Blake et al., 2023) O(n) O(1) Yes Rescale in full prec.
Global Scaling Gradient (Corollary 1) O(3n) O(3n) No Save ex. tensor
Differentiable Scale (Absmax) O(4n) O(3n) No
Differentiable Scale (Softmax) O(4n) O(4n) No Softmax backw.
Scale Gradient Adjustment O(n) O(n//l) No Only for Diff. Scale
Outlier concentration (Hadamard) (Tseng et al., 2025) O(n · log l) None Yes On-the-fly possible
StableSPAM Optimizer (Huang et al., 2025) O(n) O(1) No
Dynamic Loss Scaling (Micikevicius et al., 2018) O(n) O(1) No Mult. each tensor
SVD techniques (Li et al., 2025; Cao et al., 2025) O(nk) O(k2) No

observation that in low precision, the gradient norms tend to explode during training, meaning more
careful normalisation of the momentum norm and bounding of large values is needed to stabilise
training. While their optimiser is primarily tailored around LLMs, we explore the impact of com-
bining StableSPAM with existing rounding and gradient adjustment based techniques for general
purpose ML workloads.

Loss scaling We consider loss scaling as a technique to propagate signal when the range of the
precision is very limited following Micikevicius et al. (2018). We implement the automated loss
scaling technique, which adjusts the loss scaling scale dynamically during training.

Outlier concentration During quantisation, outliers in high-precision may induce quantisation error
as they impact the scaling during quantisation. Recent work by Tseng et al. (2024; 2025) proposes
applying Q(HSXp) to concentrate outliers towards the median of the data. Here HS is the ran-
dom Hadamard transform applied to each block Xp of size l elements, inducing a O(mn

l l · log(l))
compute overhead. It should be noted that this operation is fusable, and can be done on-the-fly with
warp shuffle operations. We consider applying Hadamard transformation in both the forward and
backward pass and only the backward pass, akin to Tseng et al. (2024; 2025); Castro et al. (2025).

Spectral decomposition In Li et al. (2025); Cao et al. (2025), they propose to use spectral decom-
position techniques to alleviate the difficulty of quantising outliers in low-precision. This is done by
decomposing the tensor into a low-rank representation using singular value decomposition (SVD),
where the low-rank components are then quantised instead. As this is non-fusable, and has pro-
hibitive time complexity overhead O(mnk) (with k referring to a chosen lower rank), we do not
consider it for our simulations as the Hadamard transformation offers a more seamless alternative in
the pre-training setting.

7 EXPERIMENTS

Experimental design and selection strategy We consider the search space in Appendix Table 10,
which totals to over 20,000 different parameter combinations, an infeasible search space for larger
models. Consequently, our strategy is to do larger sweeps for smaller models that are faster to train
and using the results to derive insights and prune the search space for larger models. We run the
experiments in the order described in Appendix Table 11.

Performance–efficiency score We define an efficiency score S(c) = G(c)
1+Ω(c) , for a configuration c,

that balances relative performance gain G(c) = (Mref − Mc)/Mref against a complexity penalty
Ω(c) =

∑
t∈Tc

wt. Here, Tc is the set of non-standard techniques used, wt their overhead points, and
the +1 ensures a well-defined score for baseline configurations. Scores are split by positive/negative
gain per format, guiding pruning toward configurations that maximize performance with minimal
added complexity (see Appendix A.6 for more details). We consider validation loss for M when we
calculate the score.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

7.1 RESULTS

Loss curves of ImageNet-100, Gaussian regression, U-net large (big diffusion) and Llama 60M,
350M and 1B are in Figure 3. For detailed results of each dataset we refer to Appendices A.2
and A.5. Based on our learnings from experiments, we present three guiding principles when train-
ing in FP4.

Figure 3: Training and validation performance curves for selected models and datasets.

1 2 3 4 5 6
tokens 1e9

3.0

3.5

4.0

4.5

5.0

Va
lid

at
io

n
M

et
ric

Performance on llama_60M

Best Loss Train Loss
Best Loss Val Metric
Best score Train Loss
Best score Val Metric
BF16 Train Loss
BF16 Val Metric
Pure NVFP4 Train Loss
Pure NVFP4 Val Metric
Pure MXFP4 Train Loss
Pure MXFP4 Val Metric

3.0

3.5

4.0

4.5

5.0

5.5

Tr
ai

ni
ng

 L
os

s

(a) Llama 60M

0.2 0.4 0.6 0.8 1.0 1.2 1.4
tokens 1e10

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Va
lid

at
io

n
M

et
ric

Performance on llama_350M

Best Loss Train Loss
Best Loss Val Metric
Best score Train Loss
Best score Val Metric
BF16 Train Loss
BF16 Val Metric
Pure NVFP4 Train Loss
Pure NVFP4 Val Metric
Pure MXFP4 Train Loss
Pure MXFP4 Val Metric

3

4

5

6

7

Tr
ai

ni
ng

 L
os

s

(b) Llama 350M

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
tokens 1e10

4

5

6

7

8

Va
lid

at
io

n
M

et
ric

Performance on llama_1B

Best Loss Train Loss
Best Loss Val Metric
Best score Train Loss
Best score Val Metric
BF16 Train Loss
BF16 Val Metric
Pure NVFP4 Train Loss
Pure NVFP4 Val Metric
Pure MXFP4 Train Loss
Pure MXFP4 Val Metric

4

5

6

7

8

9

Tr
ai

ni
ng

 L
os

s

(c) Llama 1B

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch

0

5

10

15

20

25

Va
lid

at
io

n
M

et
ric

Performance on IMAGENET100
Best Loss Train Loss
Best Loss Val Metric
Best score Train Loss
Best score Val Metric
BF16 Train Loss
BF16 Val Metric
Pure NVFP4 Train Loss
Pure NVFP4 Val Metric
Pure MXFP4 Train Loss
Pure MXFP4 Val Metric

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Tr
ai

ni
ng

 L
os

s

(d) ImageNet-100

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch

0

100

200

300

400

500

600

700

Va
lid

at
io

n
M

et
ric

Performance on gaussian_reg
Best Loss Train Loss
Best Loss Val Metric
Best score Train Loss
Best score Val Metric
BF16 Train Loss
BF16 Val Metric
Pure NVFP4 Train Loss
Pure NVFP4 Val Metric
Pure MXFP4 Train Loss
Pure MXFP4 Val Metric

0

200

400

600

800

Tr
ai

ni
ng

 L
os

s

(e) Gaussian Reg.

0 25 50 75 100 125 150 175 200
steps

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Va
lid

at
io

n
M

et
ric

Performance on big_diffusion
Best Loss Train Loss
Best Loss Val Metric
Best score Train Loss
Best score Val Metric
BF16 Train Loss
BF16 Val Metric
Pure NVFP4 Train Loss
Pure NVFP4 Val Metric
Pure MXFP4 Train Loss
Pure MXFP4 Val Metric

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

(f) Big Diffusion

Principle 1: Gradient Stability Outweighs Unbiasedness Across all our experiments (Ap-
pendix A.2) we found that none of the proposed gradient adjustment had any significant positive ef-
fect on training stability compared to STE and consequently we were unable to match the findings in
Wang et al. (2025). As a possible explanation for this, consider the absmax gradient (Corollary 2),
which is a single non-zero entry per block. This mathematically enforces a sparse, high-variance up-
date signal that may introduce high-variance, impacting momentum based optimisers such as Adam
or StableSPAM. We also observed this when experimenting with Q′(X), that adding this gradient
without lower and upper bound clipping of the relaxation (see Figure 1c) ended up masking out the
downstream signal. Consequently using STE, which offers a dense and stable update and led to
more stable training in the low-precision context.

Principle 2: Scale Representation is the Primary Bottleneck We find throughout our experiments
and ablations studies that the range of the scaling factor has a profound effect on training stability,
especially demonstrated in larger language models and the ImageNet-100 runs in Appendix Tables 3
and 4. As many of our results contradicted findings in Chmiel et al. (2025), we ran ablation studies
in Appendix A.3 investigating the additional impact of SmoothSwiGLU2 (Fishman et al., 2025)
on language models and ablating the range of E4M3 scaling, by replacing it with E8M3 in Ap-
pendix A.4. Our findings suggest that E4M3, despite applying tensor scaling, did not converge due
to its range limitation. We speculate that a potential sweet spot exists between E8M0 and E4M3.
We then experiment with UE5M3 in Appendix A.5, a format that has increased range and additional
precision and find that it indeed consistently outperforms E8M0 on language modelling. The caveat
however is that it requires tensor scaling and SR in the backwards pass to achieve this performance.
We further find throughout our experiments that NaN-handling also depends on scale format and
that although it doesn’t have a big impact, it matters.

Principle 3: The Performance-Overhead Frontier is Sparse From our sweeps over thousands of
configurations, we find that only a handful of techniques such as Hadamard transforms, tensor scal-

2This operation adds an approximate ∼ O(n) non-fusable overhead due to additional absmax normalisa-
tion.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

ing, stochastic rounding and optimiser choice provide a consistent, positive return on their computa-
tional overhead. We illustrate this in Pareto-frontier plots in Figure 4 for each dataset and Appendix
Figure 10 for the UE5M3 experiments. We overall observe that less complex configurations achieve
better scores, and adding complexity yields diminishing returns. One can achieve lower loss, but
often at a significant cost with respect to increased overhead, as observed in classification tasks.

Figure 4: Pareto-frontier plots for each dataset, Ω(c) on the x-axis and S(c) on the y-axis. S(c) = 0
implies the configuration c matches BFLOAT16 performance.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Complexity Points

8

7

6

5

4

3

2

1

0

Sc
or

e
(H

ig
he

r i
s B

et
te

r)

Neg (E8M0)Neg (E4M3)
Loss (E8M0)Loss (E4M3)

BFLOAT16 Baseline

Pure FP4 (E4M3)

Pure FP4 (E8M0)

Complexity vs. Score for llama_60M

Legend
E4M3
E8M0

Best Score (Pos)
Best Score (Neg)

Best Loss Pure FP4 Score

(a) Llama 60M

0.0 0.5 1.0 1.5 2.0 2.5
Complexity Points

2.5

2.0

1.5

1.0

0.5

0.0

Sc
or

e
(H

ig
he

r i
s B

et
te

r)

Neg (E8M0)

Neg (E4M3)

Loss (E8M0)

Loss (E4M3)

BFLOAT16 Baseline

Pure FP4 (E4M3)

Pure FP4 (E8M0)

Complexity vs. Score for llama_350M

Legend
E4M3
E8M0

Best Score (Pos)
Best Score (Neg)

Best Loss Pure FP4 Score

(b) Llama 350M

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Complexity Points

1.0

0.8

0.6

0.4

0.2

0.0

Sc
or

e
(H

ig
he

r i
s B

et
te

r)

Neg (E8M0)

Neg (E4M3)

Loss (E8M0)

Loss (E4M3)

BFLOAT16 Baseline

Pure FP4 (E4M3)

Pure FP4 (E8M0)

Complexity vs. Score for llama_1B

Legend
E4M3
E8M0

Best Score (Pos)
Best Score (Neg)

Best Loss Pure FP4 Score

(c) Llama 1B

0 2 4 6 8
Complexity Points

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Sc
or

e
(H

ig
he

r i
s B

et
te

r)

Pos (E4M3)Pos (E8M0)

Neg (E4M3)
Neg (E8M0)

Loss (E4M3) Loss (E8M0)
BFLOAT16 Baseline

Pure FP4 (E4M3)

Pure FP4 (E8M0)

Complexity vs. Score for IMAGENET100

Legend
E4M3
E8M0

Best Score (Pos)
Best Score (Neg)

Best Loss Pure FP4 Score

(d) ImageNet-100

0 2 4 6 8 10 12
Complexity Points

175000

150000

125000

100000

75000

50000

25000

0

Sc
or

e
(H

ig
he

r i
s B

et
te

r)

Neg (E4M3)Neg (E8M0)

Loss (E4M3)
Loss (E8M0)

BFLOAT16 BaselinePure FP4 (E4M3)Pure FP4 (E8M0)

Complexity vs. Score for gaussian_reg

Legend
E4M3
E8M0

Best Score (Pos)
Best Score (Neg)

Best Loss Pure FP4 Score

(e) Gaussian Reg.

0.0 0.5 1.0 1.5 2.0
Complexity Points

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Sc
or

e
(H

ig
he

r i
s B

et
te

r)

Pos (E4M3)

Pos (E8M0)

Neg (E4M3)

Neg (E8M0)

Loss (E4M3)

Loss (E8M0)

BFLOAT16 Baseline

Pure FP4 (E4M3)
Pure FP4 (E8M0)

Complexity vs. Score for big_diffusion

Legend
E4M3
E8M0

Best Score (Pos)
Best Score (Neg)

Best Loss Pure FP4 Score

(f) Big Diffusion

0 1 2 3 4 5
Complexity Points

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Sc
or

e
(H

ig
he

r i
s B

et
te

r)

Pos (E4M3)Pos (E8M0)

Neg (E4M3) Neg (E8M0) Loss (E4M3)Loss (E8M0)
BFLOAT16 Baseline

Pure FP4 (E4M3)
Pure FP4 (E8M0)

Complexity vs. Score for small_diffusion

Legend
E4M3
E8M0

Best Score (Pos)
Best Score (Neg)

Best Loss Pure FP4 Score

(g) Small Diffusion

0 2 4 6 8 10 12
Complexity Points

1400

1200

1000

800

600

400

200

0

Sc
or

e
(H

ig
he

r i
s B

et
te

r)

Pos (E4M3)Pos (E8M0)

Neg (E4M3) Neg (E8M0)Loss (E4M3)Loss (E8M0)
BFLOAT16 Baseline

Pure FP4 (E4M3)

Pure FP4 (E8M0)

Complexity vs. Score for MNIST

Legend
E4M3
E8M0

Best Score (Pos)
Best Score (Neg)

Best Loss Pure FP4 Score

(h) MNIST

0 2 4 6 8 10 12
Complexity Points

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Sc
or

e
(H

ig
he

r i
s B

et
te

r)

Pos (E4M3) Pos (E8M0)

Neg (E4M3)Neg (E8M0) Loss (E4M3)Loss (E8M0)
BFLOAT16 Baseline

Pure FP4 (E4M3)

Pure FP4 (E8M0)

Complexity vs. Score for CIFAR10

Legend
E4M3
E8M0

Best Score (Pos)
Best Score (Neg)

Best Loss Pure FP4 Score

(i) CIFAR-10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Complexity Points

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00
Sc

or
e

(H
ig

he
r i

s B
et

te
r)

Neg (E4M3)Neg (E8M0)
Loss (E4M3)

Loss (E8M0)

BFLOAT16 Baseline

Pure FP4 (E4M3)

Pure FP4 (E8M0)

Complexity vs. Score for llama_9M

Legend
E4M3
E8M0

Best Score (Pos)
Best Score (Neg)

Best Loss Pure FP4 Score

(j) Llama 9M

Conclusion and further work We propose a novel framework for deriving the exact gradient up-
dates for a linear layer under micro-scaling quantisation. While differentiable absmax gradients
and quantisation gradients provided a benefit on smaller classification tasks, we found they offered
no improvement or were detrimental for larger diffusion and language models, suggesting they can
often be omitted to reduce overhead without sacrificing performance in these domains. Stochastic
rounding of the scale showed little success beyond small models. We further find that the range of
NVFP4 hampers its performance on language models, and that the format might require additional
overhead inducing adjustments beyond what is presented in Chmiel et al. (2025) for language mod-
els up to 1B. We find that UE5M3 scale yields better results than MXFP4, offering a compromise
between range and precision, however requiring tensor scaling and SR to work for LLM training,
introducing, albeit manageable, overhead. For further research on hardware supporting FP4 training,
we’d recommend starting out with MXFP4 and implementing fusable operations such as Hadamard
transformation, SR, Tensor scaling, being mindful of NaN-handling, carefully selecting the opti-
miser and finally exploring different scaling formats such as UE5M3. Finally, our work highlights
that FP4 training dynamics may not be consistent across model scales, and leave this critical direc-
tion for further research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Reproducibility statement We provide the entire codebase in this Google Drive Link. One can
use uv applied to the .pytoml file to reproduce the environment. Our code will run on commonly
available hardware compatible with PyTorch. We’ve only used open-source datasets and included
the download scripts in the codebase. We’ve ensured to fix all the seeds for all our runs (defined in
the code), to hopefully provide total consistent and reproducible runs.

REFERENCES

Charlie Blake, Douglas Orr, and Carlo Luschi. Unit scaling: Out-of-the-box low-precision training,
2023. URL https://arxiv.org/abs/2303.11257.

Rishi Bommasani et al. On the opportunities and risks of foundation models, 2021. URL https:
//arxiv.org/abs/2108.07258.

Hengjie Cao, Mengyi Chen, Yifeng Yang, Ruijun Huang, Fang Dong, Jixian Zhou, Anrui Chen,
Mingzhi Dong, Yujiang Wang, Jinlong Hou, Yuan Cheng, Fan Wu, Fan Yang, Tun Lu, Ning Gu,
and Li Shang. Metis: Training large language models with advanced low-bit quantization, 2025.
URL https://arxiv.org/abs/2509.00404.

Roberto L. Castro, Andrei Panferov, Soroush Tabesh, Oliver Sieberling, Jiale Chen, Mahdi Nikdan,
Saleh Ashkboos, and Dan Alistarh. Quartet: Native fp4 training can be optimal for large language
models, 2025. URL https://arxiv.org/abs/2505.14669.

Yuxiang Chen, Haocheng Xi, Jun Zhu, and Jianfei Chen. Oscillation-reduced mxfp4 training for
vision transformers, 2025. URL https://arxiv.org/abs/2502.20853.

Brian Chmiel, Maxim Fishman, Ron Banner, and Daniel Soudry. Fp4 all the way: Fully quantized
training of llms, 2025. URL https://arxiv.org/abs/2505.19115.

Eleks Corp. How llms think: Understanding the power of attention mechanisms, 2025. URL
https://eleks.com/blog/how-llms-think/.

Rares Dolga et al. Latte: Latent attention for linear time transformers, 2024. URL https://
arxiv.org/abs/2402.17512.

Furkan Duman-Keles et al. On the computational complexity of self-attention. 2023. arXiv preprint
arXiv:2301.xxxxx.

Maxim Fishman, Brian Chmiel, Ron Banner, and Daniel Soudry. Scaling fp8 training to trillion-
token llms, 2025. URL https://arxiv.org/abs/2409.12517.

Andrew Fitzgibbon and Stephen Felix. On stochastic rounding with few random bits, 2025. URL
https://arxiv.org/abs/2504.20634.

Zhiwei Hao, Jianyuan Guo, Li Shen, Yong Luo, Han Hu, Guoxia Wang, Dianhai Yu, Yonggang
Wen, and Dacheng Tao. Low-precision training of large language models: Methods, challenges,
and opportunities, 2025. URL https://arxiv.org/abs/2505.01043.

Tianjin Huang, Haotian Hu, Zhenyu Zhang, Gaojie Jin, Xiang Li, Li Shen, Tianlong Chen, Lu Liu,
Qingsong Wen, Zhangyang Wang, and Shiwei Liu. Stable-spam: How to train in 4-bit more stably
than 16-bit adam, 2025. URL https://arxiv.org/abs/2502.17055.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and
Mubarak Shah. Transformers in vision: A survey. ACM Computing Surveys, 54(10s):1–41,
January 2022. ISSN 1557-7341. doi: 10.1145/3505244. URL http://dx.doi.org/10.
1145/3505244.

Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Xiuyu Li, Junxian Guo, Enze Xie, Chenlin Meng,
Jun-Yan Zhu, and Song Han. Svdquant: Absorbing outliers by low-rank components for 4-bit
diffusion models, 2025. URL https://arxiv.org/abs/2411.05007.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training, 2018. URL https://arxiv.org/abs/1710.03740.

10

https://drive.google.com/file/d/1bEn9zgBHoCGQf_RZUHu-h5vIuDkiP9u_/view?usp=share_link
https://arxiv.org/abs/2303.11257
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2509.00404
https://arxiv.org/abs/2505.14669
https://arxiv.org/abs/2502.20853
https://arxiv.org/abs/2505.19115
https://eleks.com/blog/how-llms-think/
https://arxiv.org/abs/2402.17512
https://arxiv.org/abs/2402.17512
https://arxiv.org/abs/2409.12517
https://arxiv.org/abs/2504.20634
https://arxiv.org/abs/2505.01043
https://arxiv.org/abs/2502.17055
http://dx.doi.org/10.1145/3505244
http://dx.doi.org/10.1145/3505244
https://arxiv.org/abs/2411.05007
https://arxiv.org/abs/1710.03740

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard Grisen-
thwaite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, Naveen Mellempudi,
Stuart Oberman, Mohammad Shoeybi, Michael Siu, and Hao Wu. Fp8 formats for deep learning,
2022. URL https://arxiv.org/abs/2209.05433.

Asit Mishra, Dusan Stosic, and Simon Layton. Recipes for pre-training llms with mxfp8, 2025.
URL https://arxiv.org/abs/2506.08027.

Badreddine Noune, Philip Jones, Daniel Justus, Dominic Masters, and Carlo Luschi. 8-bit numerical
formats for deep neural networks, 2022. URL https://arxiv.org/abs/2206.02915.

Houwen Peng, Kan Wu, Yixuan Wei, Guoshuai Zhao, Yuxiang Yang, Ze Liu, Yifan Xiong, Ziyue
Yang, Bolin Ni, Jingcheng Hu, Ruihang Li, Miaosen Zhang, Chen Li, Jia Ning, Ruizhe Wang,
Zheng Zhang, Shuguang Liu, Joe Chau, Han Hu, and Peng Cheng. Fp8-lm: Training fp8 large
language models, 2023. URL https://arxiv.org/abs/2310.18313.

Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Khodamoradi, Summer
Deng, Dhruv Choudhary, Marius Cornea, Eric Dellinger, Kristof Denolf, Stosic Dusan, Ven-
mugil Elango, Maximilian Golub, Alexander Heinecke, Phil James-Roxby, Dharmesh Jani, Gau-
rav Kolhe, Martin Langhammer, Ada Li, Levi Melnick, Maral Mesmakhosroshahi, Andres Ro-
driguez, Michael Schulte, Rasoul Shafipour, Lei Shao, Michael Siu, Pradeep Dubey, Paulius Mi-
cikevicius, Maxim Naumov, Colin Verrilli, Ralph Wittig, Doug Burger, and Eric Chung. Mi-
croscaling data formats for deep learning, 2023. URL https://arxiv.org/abs/2310.
10537.

Huangyuan Su, Mujin Kwun, Stephanie Gil, Sham Kakade, and Nikhil Anand. Characterization
and mitigation of training instabilities in microscaling formats, 2025. URL https://arxiv.
org/abs/2506.20752.

Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijay-
alakshmi (Viji) Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan. Hy-
brid 8-bit floating point (hfp8) training and inference for deep neural networks. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/65fc9fb4897a89789352e211ca2d398f-Paper.pdf.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#: Even
better llm quantization with hadamard incoherence and lattice codebooks, 2024. URL https:
//arxiv.org/abs/2402.04396.

Albert Tseng, Tao Yu, and Youngsuk Park. Training llms with mxfp4, 2025. URL https://
arxiv.org/abs/2502.20586.

Ashish Vaswani et al. Attention is all you need. In Advances in Neural Information Processing
Systems, 2017.

Ruizhe Wang, Yeyun Gong, Xiao Liu, Guoshuai Zhao, Ziyue Yang, Baining Guo, Zhengjun Zha,
and Peng Cheng. Optimizing large language model training using fp4 quantization, 2025. URL
https://arxiv.org/abs/2501.17116.

Hanmei Yang, Summer Deng, Amit Nagpal, Maxim Naumov, Mohammad Janani, Tongping
Liu, and Hui Guan. An Empirical Study of Microscaling Formats for Low-Precision LLM
Training . In 2025 IEEE 32nd Symposium on Computer Arithmetic (ARITH), pp. 1–8, Los
Alamitos, CA, USA, May 2025. IEEE Computer Society. doi: 10.1109/ARITH64983.2025.
00011. URL https://doi.ieeecomputersociety.org/10.1109/ARITH64983.
2025.00011.

Jiecheng Zhou, Ding Tang, Rong Fu, Boni Hu, Haoran Xu, Yi Wang, Zhilin Pei, Zhongling Su,
Liang Liu, Xingcheng Zhang, and Weiming Zhang. Towards efficient pre-training: Exploring fp4
precision in large language models, 2025. URL https://arxiv.org/abs/2502.11458.

11

https://arxiv.org/abs/2209.05433
https://arxiv.org/abs/2506.08027
https://arxiv.org/abs/2206.02915
https://arxiv.org/abs/2310.18313
https://arxiv.org/abs/2310.10537
https://arxiv.org/abs/2310.10537
https://arxiv.org/abs/2506.20752
https://arxiv.org/abs/2506.20752
https://proceedings.neurips.cc/paper_files/paper/2019/file/65fc9fb4897a89789352e211ca2d398f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/65fc9fb4897a89789352e211ca2d398f-Paper.pdf
https://arxiv.org/abs/2402.04396
https://arxiv.org/abs/2402.04396
https://arxiv.org/abs/2502.20586
https://arxiv.org/abs/2502.20586
https://arxiv.org/abs/2501.17116
https://doi.ieeecomputersociety.org/10.1109/ARITH64983.2025.00011
https://doi.ieeecomputersociety.org/10.1109/ARITH64983.2025.00011
https://arxiv.org/abs/2502.11458

	Introduction
	A common framework for FP4 training
	Tensor scaling in FP4 training
	Rounding and Scaling Strategies

	Differentiable Relaxations for Quantization
	Gradient Adjustment for Scaling Factor Quantization
	Gradient adjustment of absmax: Adjusting for Z(Xp) and s'(Xp)

	Other techniques
	Experiments
	Results

