Partition to Evolve: Niching-enhanced Evolution with
LLMs for Automated Algorithm Discovery

Qinglong Hu Qingfu Zhang
Department of Computer Science Department of Computer Science
City University of Hong Kong City University of Hong Kong
Hong Kong, China Hong Kong, China
ginglhu2-c@my.cityu.edu.hk gingfu.zhang@cityu.edu.hk
Abstract

Large language model-assisted Evolutionary Search (LES) has emerged as a promis-
ing approach for Automated Algorithm Discovery (AAD). While many evolution-
ary search strategies have been developed for classic optimization problems, LES
operates in abstract language spaces, presenting unique challenges for applying
these strategies effectively. To address this, we propose a general LES framework
that incorporates feature-assisted niche construction within abstract search spaces,
enabling the seamless integration of niche-based search strategies from evolution-
ary computation. Building on this framework, we introduce PartEvo (Partition to
Evolve), an LES method that combines niche collaborative search and advanced
prompting strategies to improve algorithm discovery efficiency. Experiments on
both synthetic and real-world optimization problems show that PartEvo outper-
forms human-designed baselines and surpasses prior LES methods. In particular,
on resource scheduling tasks, PartEvo generates meta-heuristics with low design
costs, achieving up to 90.1% performance improvement over widely-used baseline
algorithms, highlighting its potential for real-world applications.

1 Introduction

Algorithms are essential for solving real-world problems. As demands across domains become
increasingly diverse and complex, Automated Algorithm Discovery (AAD) has emerged as a critical
approach to improving the efficiency of algorithm development [1l]. Techniques such as genetic
programming, auto-regressive models, and reinforcement learning have successfully automated tasks
like algorithm configuration and composition [2H4]]. However, the automated generation of more
sophisticated algorithms remains an ongoing pursuit.

Recent advancements in Large Language Models (LLMs) have provided transformative tools for
algorithm generation, owing to their impressive capabilities in natural language understanding and
code generation [5]. Among these, the LLM-assisted Evolutionary Search (LES) paradigm has
shown great promise in AAD tasks. LES represents search objects (e.g., algorithms, code, heuristics)
as individuals in an evolutionary framework, where LLMs, guided by specialized prompts, act as
evolutionary operators to improve these individuals iteratively [6H9]. While early LES methods have
demonstrated the feasibility and potential of LES in AAD, they often rely on oversimplified search
mechanisms (e.g., greedy selection), which limit their efficiency.

In Evolutionary Computation (EC), search efficiency is enhanced through better exploration-
exploitation trade-offs, which can be achieved via computational resource allocation techniques
such as niching [10] and search space partitioning [11]]. It is natural to consider adapting these
established EC techniques to the LES to enhance algorithm discovery. However, applying them to
LES poses new challenges due to the fundamental shift in the nature of the search space.
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With the integration of LLMs, the search space extends beyond traditional numerical or manually
designed discrete spaces into language spaces [[12]. Unlike traditional search spaces, language spaces
lack explicit dimensionality and well-defined structures. Instead, they are implicitly shaped by
the interaction between the LLMs and the specific task context. This abstraction complicates the
adoption of advanced EC techniques. For example, in numerical domains, niches can often be defined
using distance thresholds [13]]. However, in language spaces, it is inherently challenging to compute
distances between algorithms, which hinders the application of niche-based EC techniques.

To address these challenges, we present a practical pipeline for partitioning language search spaces
and constructing niches, integrated into a general LES framework to improve search efficiency. This
framework facilitates the seamless incorporation of niche-based EC techniques into LES, enabling
more effective allocation of sampling resources (i.e., queries to LLMs) during the search process.
Critically, it also establishes a methodological blueprint for incorporating a diverse range of advanced
EC methods into future LES pipelines. Building on this foundation, we propose PartEvo, an
LES method that combines advanced prompting strategies with effective EC techniques. PartEvo
significantly improves search efficiency and excels in AAD tasks, particularly under limited sampling
budgets. Our contributions can be summarized as follows:

* A general LES framework for integrating advanced EC techniques: We propose a general
LES framework that incorporates feature-assisted abstract search space partitioning, enabling
structured (non-random) niche construction for the algorithm discovery process. This framework
allows LES to integrate niche-based EC techniques, enhancing the efficiency of sampling
resource allocation in language search spaces.

* PartEvo development: We develop PartEvo, a novel LES method that combines verbal gradients
with both local and global search strategies to discover high-performing algorithms. PartEvo
exemplifies the seamless integration of EC techniques with LES, demonstrating significant
performance and efficiency gains.

* Comprehensive evaluation: We evaluate PartEvo on AAD tasks over both synthetic and
real-world optimization problems. It consistently outperforms human-designed meta-heuristic
baselines and achieves substantial gains in algorithm discovery efficiency. Furthermore, extensive
ablation studies validate the effectiveness of feature-assisted niche construction, advanced
prompting strategies, and the integration of advanced EC techniques into LES.

2 Related works

Automated algorithm discovery Automatic algorithm discovery automates the configuration, com-
bination, or generation of algorithms tailored to specific problems, yielding significant improvements
in efficiency and scalability [14} 4, [15]. It has become possible to automatically tune hyperparameters
or combine different algorithmic components [[16,[17]. Genetic programming [[18, [19]] provides an
interpretable approach to algorithm design. Significant efforts have also been made to incorporate
machine learning techniques [20-22] 3] into the automatic algorithm design process. More recently,
pre-trained LLMs, with their extensive knowledge repositories, have shown considerable promise in
the field of automated algorithm discovery [23|24]]. However, the full potential of LLMs for effective
algorithm discovery remains largely untapped in current LES approaches.

LLM-assisted evolutionary search EC is a powerful optimization paradigm inspired by the
principles of natural evolution [25) 26]. The integration of LLMs into EC has led to significant
advancements in areas such as code generation [27, [28] and text generation [29, [30]. Moreover,
the combination of EC and LLMs, particularly through prompt engineering, has shown remarkable
potential across various domains, including scientific discovery [6l 31], algorithmic component
design [32} 133]], reward function optimization [9} 34], and neural architecture search [35]]. Recent
studies have also investigated specialized individual encoding strategies [[7] and verbal gradients
[8]] to further elicit the contextual understanding capabilities of LLMs during iterative evolutionary
processes. Building on these developments, this work introduces a general framework incorporating
niche-based EC techniques to improve the search efficiency of LES.

Niching principles Niching is a widely used strategy in optimization, designed to improve efficiency
by dividing the search space into smaller, more manageable subregions [36,|37]. It has shown strong



benefits in black-box optimization [11] and Bayesian optimization [38]]. In AutoML, partitioning
improves the construction of machine learning pipelines by reducing search time [39]. In numerical
optimization, niche-based methods are often employed to avoid convergence to local optima in
complex problems [10,40]]. Inspired by these successes, we seek to expand the concept of niching
to language search spaces, integrating it into LES-driven algorithm discovery. This enables more
structured and controllable allocation of sampling resources, leading to improved search efficiency.

3 Niching-enhanced LL.M-assisted evolutionary search

3.1 General framework

In the LES process, the language search space is inherently defined when using an LLM for a specific
task. A single search step involves selecting parent algorithms, embedding them into few-shot
prompts, and querying the LLM to generate new candidate algorithms. This can be viewed as a
sampling operation within the language search space. Thus, the LES process can be interpreted as
iterative sampling in this abstract space facilitated by the LLM. Our goal is to partition this space into
subregions (i.e., niches), enabling a structured allocation of sampling resources across the entire space
that strikes a balance between exploration and exploitation, ultimately enhancing search efficiency.

A key challenge arises from the lack of explicit representations of language search spaces. Unlike
numerical spaces, where niches can be defined via geometric or distance-based thresholds, language
spaces do not have clear dimensionality or structure. Each sampled point corresponds to a complete
text or a specific semantic expression, with no numerically defined “distance” between points. This
implicit nature complicates the analysis and partitioning, limiting the application of evolutionary
strategies that depend on structured subspaces for efficient searching.

We address this challenge by recognizing that each sampled point originates from this abstract search
space. By analyzing the sampling results, we can indirectly infer and partition the original language
space. To achieve this, we propose a feature-assisted partitioning pipeline that allows for non-random
niche construction, making it possible to incorporate niche-based EC techniques into LES.

In this framework, sampled individuals are projected into an interpretable feature space, where
clustering techniques are applied to indirectly partition the language search space. Once partitioned,
effective search strategies are designed to allocate sampling resources across niches. The key
components of the framework are as follows:

1. Population initialization: Generate an initial population of candidate algorithms. This population
can be derived from an existing database or dynamically generated during the search process.

2. Feature space projection: Project individuals to a feature space using a chosen representation.
This step connects the abstract language space with a computationally manageable space.

3. Niche construction: Apply clustering methods in the feature space to group individuals based on
similarity, thereby forming niches that serve as indirect partitions of the language search space.

4. Collaborative search: Perform iterative search using both prompt-centric operators and EC-
inspired operators, continuing until the target problem is solved. These operators enhance the
efficiency of algorithm discovery in complementary ways:

* Prompt-centric operators exploit the contextual understanding capabilities of LLMs to guide
the sampling process at the language level. By enriching few-shot prompts with additional
information (such as reflections on past samples or summaries of search trajectories), these
operators steer the LLM toward generating more promising candidate algorithms. Existing LES
methods primarily focus on this strategy [7} [8]].

» EC-inspired operators emulate established evolutionary mechanisms to maintain diversity
and ensure global search capabilities. These operators use the niche structure to select parent
individuals and apply evolutionary strategies both within and across niches. This design enables
efficient resource allocation and promotes the discovery of diverse, high-quality algorithms. The
integration of niche-aware EC operators is a core contribution of this work.

Importantly, the proposed framework is highly flexible and extensible. It allows integration with
existing LES methods or mature EC techniques to enhance intra-subregion sampling, refine LLM
prompt engineering, and improve resource allocation across subregions. Additionally, any feature



and clustering method can be utilized. In this work, we introduce PartEvo, a specific implementation
that demonstrates the effectiveness of search space partitioning in automated algorithm discovery.

3.2 PartEvo

We instantiate the general framework with Partition to Evolve (PartEvo), an LES method that
integrates niche-based collaborative search with advanced prompt design for automated algorithm
discovery. Given a problem specification as input, PartEvo outputs high-quality algorithms tailored
to the task. The overall architecture of PartEvo is shown in Fig.[I] with pseudocode and a concrete
example provided in Appendix [C]
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Figure 1: Overview of the PartEvo framework. The left section illustrates the ideal distribution and
clustering results of the algorithms within the feature space. The central part highlights PartEvo’s
main workflow. The right section provides a detailed illustration of PartEvo’s evolutionary operators.

Individual representation. PartEvo performs algorithm discovery through an evolutionary process,
representing each candidate algorithm as an individual. Each individual consists of both code
and its corresponding “thoughts”, following the design introduced in EoH [7]]. This dual-format
representation is adopted for two reasons: it leverages the LLM’s strong language understanding and
broad knowledge base, and it enables feature projection from both the algorithm’s code and its natural
language rationale. This flexibility is beneficial for subsequent feature-assisted niche construction.
Concrete examples of individuals are provided in Appendix

Population initialization. PartEvo initializes individuals in batches, iteratively constructing the
initial population to reach a target size of N. During the generation of each batch, the “thoughts”
of all previously generated individuals (if any) are embedded into the few-shot prompt to guide the
LLM, helping avoid redundant outputs. This approach encourages diversity and promotes broad
coverage of the search space. In addition, PartEvo maintains an external archive of individuals, ranked
by performance, with a fixed size E. This archive stores search trajectories and provides valuable
contextual information that helps the LLM develop a more refined understanding of the search space.

Feature-assisted niche construction PartEvo employs K-means clustering [41] to group initial
individuals based on their feature representations, thereby constructing K niches. The number of
niches K acts as a control knob, allowing users to adjust the granularity of partitioning. For a
fixed population size N, different values of K correspond to varying degrees of sampling resource
concentration, thus balancing exploration and exploitation in the search space. We explore two feature
representations as illustrative examples:

1. Code Similarity Vector: Each individual is represented by a vector capturing its similarity to all
others in the population. This captures global relationships between individuals, ensuring that
similar individuals are placed close to each other.

2. Thought Embedding: The “thoughts” of individuals are embedded into a vector space using word
embeddings, providing a semantic representation of their design rationale.



We adopt K-means to present our main experimental results due to its simplicity and transparency,
ensuring that observed performance improvements primarily reflect the effects of niche-based evo-
lution rather than complex partitioning. Additional experiments with other clustering methods are
provided in Appendix [B.8] Further details on feature projection are provided in Appendix [E]

Evolutionary operators. As illustrated in the right section of Fig.[I] PartEvo employs two types of
operators within each niche—prompt-centric and EC-inspired operators—detailed as follows:

(I) Reflection-based Evolution (RE): A subset of m individuals is selected, and the Reviewer generates
reflective feedback for each. These individuals and their corresponding feedback are provided as few-
shot prompts to the Generator, which produces m new individuals. This operator drives improvement
by guiding individuals to reflect on and revise their past designs.

(Il) Summary-based Evolution (SE): The Summarizer analyzes the external archive to assess the
overall algorithmic landscape, identifying both promising and unproductive subregions. The resulting
summary, combined with a selected subset of m individuals, is used to construct few-shot prompts that
guide the Generator in producing m new individuals. This operator facilitates informed exploration
by incorporating global knowledge of the search space. It draws inspiration from classical ideas such
as information sharing and tabu search [42].

(IIT) Crossover between Niches (CN): k niches are randomly selected, and one representative in-
dividual is drawn from each. These & individuals are paired with m individuals from the current
niche to form m pairs. Each pair then prompts the Generator to produce a new individual, promoting
cross-niche knowledge transfer and enhancing population diversity.

(IV) Local and Global guided Evolution (LGE): Each individual is paired with both the best-
performing individual in its niche and the global best in the population. These triplets are then
formatted as few-shot prompts to generate new individuals. This design ensures that all individuals
benefit from guidance toward high-performing regions, thus promoting faster convergence.

Operators RE and SE are classified as prompt-centric: they employ auxiliary LLMs to provide “verbal
gradients” that steer generation in semantically meaningful directions. In contrast, CN and LGE are
EC-inspired: they incorporate the principles of niche collaboration and evolutionary heuristics to
improve search efficiency. Detailed prompts for these operators are provided in Appendix

Resource allocation strategy In PartEvo, sampling resources (e.g., queries to LLMs) are distributed
evenly across niches. Within each niche, a finer-grained resource allocation is implemented through
elite-preserving probabilistic selection. The best individual in each niche is always chosen as a parent,
while the remaining parents (when m>1) are selected probabilistically based on their performance.
This strategy not only encourages the exploitation of high-performing candidates within each niche
but also ensures the exploration of less-explored subregions. Unlike greedy parent selection, which
concentrates resources solely on the best-performing individuals, PartEvo’s niche-based evolution
allows dynamic control over resource allocation, effectively balancing exploration and exploitation.
This is also the rationale behind the name Partition to Evolve.

Population management. In each iteration, the K niches independently execute the four operators,
collectively generating N+3+m+K new individuals. Each niche selects individuals using a no-
replacement roulette wheel mechanism, ensuring the total population size remains constant.

4 Experiments

This section presents PartEvo’s performance on algorithm discovery tasks. Additionally, we conduct
thorough ablation studies to assess the contributions of niching, feature-based niche construction, and
the proposed operators. The results demonstrate that PartEvo, which integrates advanced prompting
strategies with niche-based EC techniques, achieves significant improvements in search efficiency.

4.1 Experimental settings

Benchmarks. We assess PartEvo’s ability to design meta-heuristic algorithms [43] using four
benchmarks. In each case, the LES method is tasked with generating algorithms to solve the given
problem. With the same sample budget, the effectiveness of the LES method is proportional to the



quality of the solutions produced by the algorithms it designs. A brief overview of each benchmark is
provided below, with detailed descriptions in Appendix [G|

() Unimodal optimization problems (P1): This benchmark assesses the LES method’s ability to
design algorithms for problems with a single global optimum and no local optima. It evaluates the
efficiency of the generated search strategies in simple optimization landscapes.

(II) Multimodal optimization problems (P2): This benchmark focuses on problems with multiple local
optima, aiming to evaluate whether the LES-designed algorithms can avoid premature convergence
and maintain sufficient exploration of the search space.

(IIT) Task offloading in mobile edge computing systems (P3): This real-world benchmark involves
solving task offloading problems under constraints such as execution time, energy consumption,
and bandwidth [44]]. It evaluates the LES method’s ability to generate algorithms for mixed-integer
nonlinear programming (MINLP) problems with multiple real-world constraints.

(IV) Machine-level scheduling for heterogeneous plants (P4): This problem requires designing
algorithms to handle scheduling tasks across machines with different capabilities and managing
transportation of products [45]]. It tests the LES method’s ability to design algorithms that solve
high-dimensional nonlinear integer programming problems subject to complex industrial constraints.

Baselines. We compare PartEvo against three LES methods and three human-designed meta-
heuristic algorithms. The peer LES methods include Funsearch, EoH, and ReEvo.

* Funsearch [6] uses an island-based evolutionary approach to iteratively improve function quality,
with each island acting as a niche formed through random grouping. Our comparison with
Funsearch highlights that feature-assisted niche construction effectively balances exploration
and exploitation.

* EoH [[7] models algorithm discovery as a search problem in the dual space of algorithms,
represented both as code and as thought. Direct comparison with EoH demonstrates the superior
search efficiency of PartEvo, which is attributed to the integration of advanced prompt design
and niche-based EC techniques.

* ReEvo [8] introduces “verbal gradients” into the LES paradigm via genetic cues in natural
language form, enabling more focused searches within the language-based search space. A
direct comparison with ReEvo highlights the superior search efficiency achieved through the
integration of advanced EC techniques.

The human-designed meta-heuristic baselines include enhanced variants based on Genetic Algorithm,
Differential Evolution, and Particle Swarm Optimization [46-48|]. For simplicity, we refer to them
as GA, DE, and PSO in the experimental settings, with all variants tuned to provide strong human-
designed baselines. A more detailed description of these algorithms is provided in Appendix [F|
By comparing PartEvo against human-designed baselines, we provide compelling evidence of its
effectiveness in designing algorithms for both synthetic and real-world optimization problems. Such
comparisons are essential to assess whether LES methods can surpass established human expertise
and offer practical value as automated design tools.

Implementation details. We frame all benchmarks as black-box optimization tasks and provide
them to LES methods. Each LES method receives only performance feedback for the algorithms
it generates, without access to the mathematical models or instance-specific details. This prevents
the LLM from exploiting explicit knowledge of the problem to overfit or cheat. Each benchmark
includes multiple instances, split into training and testing sets. LES methods develop algorithms on
the training instances, and their performance is evaluated on the testing set. This setup allows us to
assess whether the LES methods overfit training instances, thereby mitigating potential biases arising
from fixed-pattern solutions that could inflate performance.

For all LES methods, the number of candidate algorithms sampled by LLMs is set to 500. Each
benchmark is independently solved over four runs to reduce the effect of randomness. All LES
methods utilize the pre-trained GPT-40-mini model. The resulting meta-heuristics are constrained to
30,000 candidate solution evaluations and a maximum runtime of 180 seconds. EoH and PartEvo both
use a population size of 16. Funsearch, EoH, and ReEvo follow their respective default configurations



provided by the LLM4AD platform [49]. Unless otherwise explicitly stated, all results reported for
PartEvo in this paper utilize Code Similarity as the feature for its niche construction process.

4.2 Comparative evaluations

We evaluate the ability of PartEvo, Funsearch, EoH, and ReEvo to design meta-heuristic algorithms
for identical instances. The generated algorithms are also compared against human-designed baselines.
Table[T]reports the best results across four runs on training and testing sets. Lower objective values
indicate better performance, reflecting how efficiently each designed meta-heuristic utilizes the fixed
budget of 30,000 evaluations. For reference, the Optimal column lists the known optima, representing
the minimum achievable objective values for each benchmark. Additional statistics, including mean
and standard error of the mean across runs, are provided in Table[2]and illustrated in Fig.[2]

Table 1: Best results from multiple runs on training and testing instances for each benchmark

Benchmark Instances GA PSO DE Funsearch EoH ReEvo PartEvo  Optimal
PI Training 20.293 15.569 0.052 0.418 0.000 0.000 0.000 0.000
Testing  5.686x10° 0.000 0.000 0.604 0.000 2.253 0.000 0.000

P Training 1772.61 890.99 881.44 800.25 800.00 801.32 800.00 800.00
Testing 585.58 421.76 386.50 376.36 462.08 375.57 344.62 310.00

Training 31447.05 8805.09 6541.56 10503.67  7003.53 6589.08 6471.31 -
Testing 75279.85 64414.61  58704.47  60892.32 5832720 59061.28  56876.40 -

Training ~ 5.20x10°  30980.3 25088.2  20425.0 3697.6 10630.3 2792.1 -
Testing  7.31x107  2.41x10° 2.37x10° 1.49x10° 348919 1.34x10°  14396.1 -

P3

P4

As shown in Table[T] PartEvo consistently outperforms both peer LES methods and human-designed
baselines across all benchmarks. On complex problems such as P3 and P4, it demonstrates a clear
advantage over Funsearch, EoH, and ReEvo. Notably, on P3, it is the only LES method that surpasses
the DE baseline. On the most challenging task, P4, it achieves a 90.1% reduction in manufacturing
cost compared to the best-performing DE variant.

Table 2: Average results and standard error of the mean from multiple runs on training instances

Benchmark Funsearch EoH ReEvo PartEvo
P1 6.30(£2.11) 1.43(41.40) 1.64(£1.13) 0.00(40.00)
P2 810.88(45.26) 800.36(£0.33) 804.52(£1.60) 800.01(40.01)
P3 10080.6(£226.40) 7301.9(+251.60) 7074.5(4+392.56) 6583.8(1+79.74)
P4 30094.6(£3485.37) 17679.9(£3082.57) 15345.5(£2381.9) 5171.6(+2189.14)

Table 2] presents the mean and standard error of the mean (SEM) of results across multiple runs
on training instances, complementing the data shown in Table[I] PartEvo consistently delivers the
best average performance with relatively small SEM values, indicating strong algorithm design and
stability. Overall, PartEvo outperforms peer methods across all four benchmarks.

Fig. 2] illustrates the convergence behavior of the best objective values for PartEvo, Funsearch,
EoH, and ReEvo across four runs, showing their performance over 500 samples, which reflects
the algorithm design efficiency. Colored curves show mean performance across runs, and shaded
areas denote variance. Dashed horizontal lines mark human-designed baselines. PartEvo not only
reaches superior solutions with fewer samples but also maintains the smallest variance, indicating
strong robustness and consistency. Compared to Funsearch, which also uses subpopulation, PartEvo
continues to improve throughout the search, suggesting feature-assisted niche construction more
effectively avoids local optima. When compared to ReEvo, which uses the concept of verbal gradient
but relies on a basic EC framework, PartEvo shows a higher search efficiency. This highlights that
advanced EC techniques can significantly enhance search performance and should be given equal
emphasis as prompt engineering in the design of the LES paradigm.

In summary, PartEvo achieves the fastest convergence, the lowest final objective values, and the
highest stability across runs. These results demonstrate the effectiveness of combining niche-based
evolutionary search with LLM guidance for domain-specific algorithm discovery. To control for the
influence of initialization, additional experiments using identical initial populations are conducted (see
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Figure 2: Convergence of LES methods across four runs on benchmarks (P1-P4).

Appendix[B.2). Further results on additional benchmarks are provided in Appendix[B.3] Comparative
evaluations of these LES methods with a 2000-sample budget are presented in Appendix [B.6]

4.3 Sampling similarity analysis

We assess PartEvo’s ability to balance exploration and exploitation by analyzing the similarity of
its sampled results. Table [3|reports the similarity scores for PartEvo, Funsearch, EoH, and ReEvo,
measured over the first and last 50 samples out of 500 total sampling steps. The score is measured
using CodeBLEU [50], a metric that quantifies the similarity of abstract syntax trees among sampled
individuals. The results reveal that each LES method exhibits distinctive and consistent sampling
patterns across different problem settings.

Table 3: Similarity scores of sampling results for PartEvo, Funsearch, EoH, and ReEvo

Benchmark First 50 samples Last 50 samples
Funsearch EoH ReEvo PartEvo Funsearch EoH ReEvo PartEvo
P1 0.64 0.54 0.65 0.36 0.57 058 0.71 0.70
P2 0.60 0.55  0.65 0.38 0.56 0.60 0.71 0.67
P3 0.62 0.54  0.66 0.41 0.57 0.58  0.69 0.60
P4 0.61 0.54 0.63 0.41 0.58 0.60  0.60 0.60

PartEvo exhibits substantially lower similarity scores in the early stage compared to the other LES
methods, indicating broader coverage of diverse subregions at the beginning of the search. As the
search proceeds, PartEvo’s similarity scores rise, reflecting a natural shift toward convergence, where
niches begin to share more effective and practical techniques. This dynamic adjustment highlights
PartEvo’s ability to transition from wide exploration to focused exploitation.

By contrast, Funsearch’s island-based evolution encourages exploration across multiple subpopula-
tions, but the lack of feature-assisted niche construction results in less targeted resource allocation.
EoH, which relies solely on fitness-based parent selection, maintains consistently high similarity
scores throughout the process, suggesting a bias toward exploitation with limited exploration. ReEvo,
by excessively adhering to accumulated long- and short-term experience, also produces persistently
high similarity, leading to reduced diversity.

The superior performance of PartEvo, as discussed in Subsection [d.2] underscores the benefits of its
batch initialization strategy and explicit feature-assisted niche construction. By effectively balancing



exploration and exploitation, PartEvo aligns with the ideal search paradigm: wide exploration in the
early stages followed by concentrated exploitation as the search converges.

4.4 Ablation study

We conduct a comprehensive ablation study to assess the contributions of key components in PartEvo.

Effectiveness of Niching. Table[]reports the performance of PartEvo when dividing a population of
size 16 into 1, 2, 4, and 6 niches. The number of niches, denoted as K, controls the degree of resource
distribution during the sampling process. Specifically, K =1 indicates no partitioning, where the entire
population is treated as a single niche. When K is small, resources are concentrated on individuals
with lower objective values, enabling more intensive exploitation of specific regions of the search
space. Conversely, when K is large, resources are more dispersed across the search space. Such
over-dispersion reduces the sampling intensity in promising regions, leading to diminished search
efficiency due to excessive exploration. The results in Table 4] empirically confirm this trade-off.

Table 4: Effect of niching granularity on PartEvo performance
Benchmark K=1 K=2 K=4 K=6

P1 9.379 4.544 0.000 8.241
P2 800.00  800.01  800.00  800.11
P3 6474.07 6549.09 6471.31 6553.08
P4 13418.7 10572.0 4539.1 124272

For a population of size 16, setting K =4 achieves the best balance between exploration and ex-
ploitation, significantly improving the algorithm discovery process. When K =1, PartEvo reduces
to a strategy that selects parents solely based on fitness values, similar to EoH. While this approach
works well for simple problems (e.g., P2), where iterative refinements on any baseline algorithm can
easily reach the optimal solution, it struggles with more complex problems. In such cases, the lack
of exploration causes the search to stagnate in local optima, limiting the discovery of high-quality
algorithms. When K=6, the excessive dispersion of sampling resources results in performance
degradation, as promising subspaces fail to receive sufficient attention. These findings emphasize
the importance of niching in improving search efficiency. However, the granularity of niching must
be carefully tuned to strike an optimal balance between exploration and exploitation. Based on our
experiments, we find that for a population size of 16, K=4 achieves the best performance.

Table 5: Effect of feature usage on PartEvo performance

Benchmark Random Code Similarity Thought Embedding

P1 3.974 0.074 0.000

P2 803.92 800.42 800.00
P3 6607.99 6539.24 6598.15
P4 17872.1 6424.7 13213.8

Importance of feature-assisted niche construction. Table[5|compares the performance of PartEvo
using feature-assisted partitioning versus random partitioning for niche construction. Results are
averaged over three independent runs, each initialized with the same population. The best performance
for each benchmark is highlighted in bold, with the second-best underlined. The results demonstrate
that PartEvo consistently achieves the best or second-best performance across all benchmarks when
using Code Similarity and Thought Embedding. This suggests that these features effectively capture
the structural properties of the language space, leading to more informed partitioning. In contrast,
random partitioning, which lacks such structural guidance, performs significantly worse. These
findings emphasize the importance of meaningful features in informing partitioning strategies. A more
detailed analysis of the convergence behavior under different features is provided in Appendix [B.4]

Effectiveness of prompt-centric and EC-inspired operators. We conducted an ablation study by
systematically disabling specific operators to evaluate the effectiveness of prompt-centric and EC-



inspired operators. Table[6]reports the performance degradation (APerf) relative to the full PartEvo.
PartEvo® serves as a baseline version, retaining only crossover and mutation operations, excluding
advanced prompt and niche-based strategies. The results clearly indicate that disabling advanced
prompt engineering or niche-based collaborative search leads to significant performance drops,
with the most severe degradation occurring when both are removed simultaneously. These findings
highlight the crucial role of integrating EC-based techniques into the language space to enhance
PartEvo’s performance. Detailed ablation results for each operator are provided in Appendix [B.5|

Table 6: Performance degradation in ablation study of PartEvo
Method P1 P2 P3 P4 APerf (%)

Full PartEvo 0.074 800.00 6539.24 6424.7 0.00
w/o prompt-centric operators  1.585  800.00 6946.69 15259.2 553.74
w/o EC-inspired operators 1.288 807.37 7651.28 14324.7 451.31
PartEvo® 7.248 807.58 8524.38 17924.0  2509.76

5 Discussions and limitations

Dependency on large language models The performance of PartEvo is inherently tied to the
capabilities of the underlying LLMs. Specifically, prompt-centric operators, such as RE (Reflection)
and SE (Summarization), depend on the LLM’s ability to perform sophisticated contextual reasoning
and leverage expert knowledge in algorithm design. As LLMs continue to evolve, we anticipate
improvements in PartEvo’s algorithm discovery capabilities, a trend also evidenced by comparative
results across different LLMs (Appendix [B.7). However, it is important to highlight that the
integration of EC-inspired operators, such as CN and LGE, helps mitigate some of this dependency.
These operators enable more refined parent selection processes and use compact prompts that
capitalize on the LLM’s core strengths [S1]], reducing reliance on complex summarization abilities.

Understanding the language search space PartEvo indirectly analyzes and partitions the language
search space through feature-assisted niche construction. It treats algorithm discovery as a black-box
optimization task, iteratively sampling candidate algorithms within the language space using an
evolutionary process. A further pursuit is to enhance the understanding of the structure and landscape
of this language space. Achieving this requires more sophisticated feature mapping techniques
to better analyze and partition the space (PartEvo currently utilizes code similarity and thought
embeddings as examples). It is worth noting that PartEvo can serve as a valuable platform for
validating novel language space mapping techniques. New algorithm similarity or landscape analysis
methods can be easily integrated into the framework. As discussed in Appendix [B.4] improvements
in niche partitioning (i.e., the ability to partition the language search space effectively) will likely
lead to more stable and improved performance on specific algorithm design tasks.

For a more comprehensive analysis, including discussions on scenarios where PartEvo may not be
suitable and a systematic, qualitative comparison between LES, Genetic Programming, and Deep/Re-
inforcement Learning paradigms for Automated Algorithm Design, please refer to Appendix[A.2]

6 Conclusion

This work introduces a general Large Language Model-assisted Evolutionary Search (LES) framework
with abstract search space partitioning, enabling LES methods to effectively integrate niche-based
Evolutionary Computation (EC) techniques within language spaces. Building on this framework, we
present PartEvo, which combines advanced prompting strategies with both local and global search
methods. Applying PartEvo to four optimization benchmarks demonstrates that it yields competitive
meta-heuristic algorithms that outperform human-designed ones. Furthermore, it surpasses prior LES
methods, particularly in resource-constrained settings. Crucially, this work, using niching as a con-
crete example, proves the feasibility and significant benefits of integrating mature EC techniques into
the LES paradigm. Future work will focus on refining abstract partitioning techniques and developing
more specialized EC search strategies to further enhance the LES method’s capabilities in automating
algorithm discovery. The source code can be found in https://github.com/Qingl.2000/PartEvo.
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A Discussion: Comparison, Limitation, and Impact Statement

A.1 Comparisons with Funsearch, EoH, and ReEvo

Funsearch [6] is one of the earliest LLM-assisted Evolutionary Search (LES) methods. Prior to
this, the Algorithm Evolution using Large Language Model (AEL) [32]] explored the use of prompt
engineering to guide LLMs as evolutionary operators for searching knowledge-rich language spaces.

EoH [7]] keenly recognized that LLMs can assist in searching the code space through higher-level
thoughts. Consequently, EoH represents individuals using both code and thoughts, exploring the
coevolution of thoughts and code within an evolutionary framework, which leads to superior perfor-
mance while mitigating computational costs.

ReEvo [8] demonstrated that LLMs can provide verbal gradients through genetic cues, enabling
more directed searches within the language search space. This approach effectively implements
gradient-based search techniques in the language domain.

In terms of search strategies, Funsearch employs an island-based evolutionary approach to iteratively
improve function quality by generating multiple islands in a random manner [6]. This island
management promotes exploration and reduces the risk of premature convergence. In contrast, both
EoH and ReEvo follow a single-population evolutionary framework, focusing on leveraging the
capabilities of LLMs.

Our work introduces niche-based collaborative search mechanisms from evolutionary computation
into LES, further enhancing search efficiency within language spaces. The proposed framework
is general and can be easily integrated with existing LES approaches, with PartEvo serving as a
specific instantiation of these core ideas. PartEvo first introduces feature-assisted niche construction
to indirectly partition the language space into multiple subregions. It then defines prompt-centric
operators (RE and SE) and EC-inspired operators (CN and LGE) for algorithm discovery processes.
In the prompt-centric operators, LLMs are guided to generate promising algorithms through verbal
gradients. The EC-inspired operators incorporate principles of niche collaboration and evolutionary
heuristics to improve search efficiency. Experimental results demonstrate that the integration of
niche-based techniques significantly improves algorithm discovery efficiency by over twofold, making
LES more practical.

A.2 Additional discussion and limitation

Scenarios where PartEvo may not be suitable A key requirement for PartEvo is the continuous
validation of the generated algorithms. This requires that the problems to be solved are formulated as
mathematical models or situated within environments that can be simulated. For example, with a
sample budget of 500 and an evaluation budget of 30,000, a total of 15,000,000 evaluations would be
required to assess the objective value of the solutions. For some expensive optimization problems
(e.g., parameter optimization in computational fluid dynamics [[52]] or drug design [53]), the extensive
evaluations required by PartEvo could result in prohibitive computational costs. A promising direction
to address this is the use of surrogate models [54]] to approximate objective values, which could
accelerate the evaluation process and alleviate the computational burden. Alternatively, designing
algorithms for similar, more computationally feasible problems and then transferring these algorithms
to expensive optimization tasks may also provide an effective strategy. For large-scale problems,
employing a divide-and-conquer approach [55]] at a higher level to reduce problem complexity could
enable PartEvo to focus on solving lower-level subproblems more efficiently.

Cross-paradigm discussion The LES is an emerging paradigm for automated algorithm discov-
ery (AAD). This work primarily focuses on addressing the challenges of incorporating advanced
evolutionary computation (EC) techniques into the LES paradigm, which is complicated by its
abstract, language-based search space. Using the integration of niching techniques as a case study,
we demonstrate significant improvements in the performance, efficiency, and robustness of the LES
paradigm for AAD when successfully applying these advanced EC methods. However, the field
of AAD also includes other established paradigms, such as Genetic Programming (GP) [56]], Deep
Learning (DL) [3]], and Reinforcement Learning (RL) [4], which merit a more systematic comparison
with the LES paradigm. Incorporating insights from related works [7} 28| 57-59], we provide a
qualitative, literature-informed comparison across several key aspects in Table[7] highlighting these

15



distinctions. A comprehensive, systematic cross-paradigm comparative study is a valuable direction
for future research, and we are committed to pursuing it. Existing work has already begun to explore
such comparisons [28]], and we plan to conduct a more thorough analysis to better understand the

trade-offs between these distinct paradigms.

Table 7: A qualitative comparison of AAD paradigms

Feature LES GP DL or RL
Manual Design  Low. The framework High. Requires signif- High. Requires exten-
Cost automatically generates icant human effort to sive design of network

the algorithms based on
a high-level task descrip-
tion, requiring minimal
human effort.

define problem-specific
operators,  functions,
and grammar for the
algorithm search space.

architectures, training
pipelines, and domain-
specific datasets.

Algorithm De-
sign Efficiency

High. A new task can
be solved in hours by re-
lying on iterative LLM
inference, without the
need for model training
or fine-tuning.

High. The core pro-
cess is based solely on
evolutionary operations,
which are computation-
ally fast on a per-step ba-
sis, but can still require
many generations to find
a good algorithm.

Low. Requires exten-
sive training periods, of-
ten spanning days or
weeks, for each specific
task.

Resource High (requires LLM Low. Runs on standard High. Requires substan-

requirements inference). However, CPUs or GPUs, often tial GPU resources and
LLM inference tasks without needing high- large-scale parallel com-
can be offloaded to end hardware. putation, especially dur-
third-party providers via ing the training phase.
API calls, reducing local
hardware requirements.

Extensibility High. Leverages the Low. Generalizing to Low. Generalizing to

vast knowledge embed-
ded in LLMs, allow-
ing strong generaliza-
tion to diverse algorithm
design tasks with mini-
mal adaptation.

a new problem often re-
quires extensive manual
redesign of the grammar
and operators to build
the algorithm space for
the target problem.

a new problem neces-
sitates substantial data
collection and lengthy
retraining periods.

A.3 Extended applications

PartEvo excels at searching for feasible solutions within the language space. In this work, we utilize
PartEvo to design meta-heuristic algorithms from the ground up. In fact, any design task at the
language level can be executed using this framework, including planning [60]], strategy formulation
[61], algorithm refinement, and more. Moreover, if LLMs are extended to those with multimodal
capabilities [62], feature-assisted niche construction can still be applied within image spaces. In this
case, tasks such as industrial design and blueprint drafting could also be automated.

A.4 Impact statement

This paper advances the field of automated algorithm discovery by integrating EC-based evolutionary
techniques with Large Language Models. The proposed method enhances search efficiency within
language search spaces, offering significant potential for cost reduction and practical applications
across diverse industries. Moreover, the algorithm evolution process generates valuable data, which
can further accelerate research and development in this domain. By automating aspects of algorithm
discovery, the role of human experts may transition from adapting algorithms for specific applications
to focusing on higher-level innovation. However, this shift raises important considerations, including
potential changes in labor demands and ethical challenges related to transparency and fairness in
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Al-generated systems. We advocate for continued research to address these concerns and to promote
the responsible and equitable deployment of this technology.

B Additional experiment results

B.1 Hyperparameters for PartEvo
Unless otherwise stated, we adopt the parameters in Table [§|for PartEvo runs. The entire experiment,

including the implementation of PartEvo, EoH, and Funsearch for all four benchmarks, was developed
in Python and executed on a single CPU (Intel i9-13980HX) with 32GB of RAM.

Table 8: Hyperparameter settings for PartEvo.

Hyperparameter Parameter Description Value

K Number of niches to partition the population into 4

k Number of cooperating niches selected in the CN operator 2

m Number of parents selected in each evolution step 2

N Population size 16

E Size of external archive 40

LLM Version of LLM used in the evolutionary operators GPT-40-mini

LLM temperature  Hyperparameter controlling the randomness of LLM text generation 1

B.2 Comparative evaluations under identical initialization

To ensure a rigorous comparison of the search behaviors of PartEvo, Funsearch, and EoH, we evaluate
their performance using the same initial population. The initial population is iteratively generated by
PartEvo and then shared across all other LES methods. Each method is independently run three times
with the same initial population. The average results of these independent runs are summarized in
Table[9] Even when eliminating the randomness introduced by initialization, PartEvo consistently
outperforms the other methods across all cases. It is noteworthy that the performance of Funsearch,
EoH, and ReEvo shows significant improvement when utilizing the initial population generated by
PartEvo. This finding highlights the effectiveness of the batch initialization strategy employed by
PartEvo.

Table 9: Average results from multiple runs on training and testing instances for each optimization
problem (Under identical initialization)

Problem Instances Funsearch EoH ReEvo PartEvo
P1 Training 9.769 1.846 1.572 0.074
Testing 0.879 1.646 1.013 0.023
P Training 800.09 800.98 800.00 800.00
Testing 439.31 368.95 364.19 365.20
P3 Training 7042.21 7268.22 6564.44 6539.24
Testing 57696.53 61142.93 57455.34 56753.77
P4 Training 24289.3 19152.4 11102.3 6424.7

Testing  1.67x10° 771343  79795.2  62731.4

Figure [3| presents the convergence of the best objective function values over 500 samples for PartEvo,
Funsearch, and EoH. Under the same initial population, the convergence behavior mirrors that
observed in Subsection [d.2] Notably, PartEvo achieves superior results with fewer samples.

B.3 Comparative evaluations on Online Bin Packing Benchmark

In the main paper, we established four benchmarks (P1-4) to showcase PartEvo’s design capabilities
for meta-heuristic algorithms. To provide a more comprehensive evaluation, we further assess PartEvo
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Figure 3: Convergence behavior of different LES methods using the same seed across four indepen-
dent runs on Problems P1, P2, P3, and P4

alongside peer LES methods on the Online Bin Packing Benchmark for heuristic design, as utilized
in EoH and Funsearch studies. Additionally, we compare the recent ReEvo approach on this task.

For consistency, a sample budget of 500 is applied across all methods, with a population size of 16,
conducting four independent runs for each algorithm. Table[T0|presents the fraction of excess bins
(as a percentage) relative to the lower bound (with lower values indicating better performance) for
various bin packing heuristics applied to Weibull instances.

Table 10: Average results from multiple runs on the Bin Package Benchmark (Lower is Better)
Method 1k_C100 1k_C500 5k_C100 5k_C500 10k_C100 10k_C500

First fit 5.32 4.97 4.40 4.27 4.44 4.28
Best fit 4.87 4.50 4.08 3.91 4.09 3.95
EoH 4.76 4.38 2.32 2.18 2.04 1.97
Funsearch 4.07 4.69 3.19 3.56 3.16 3.44
ReEvo 4.24 3.94 2.13 2.07 2.07 1.96
PartEvo 3.51 3.23 1.14 1.11 0.84 0.79

First Fit and Best Fit are two human-designed heuristics. All LES methods surpass these baselines.
The performance of all LES methods on the Bin Package Benchmark is consistent with the results
from the four benchmarks presented in the main paper. PartEvo achieves the best average performance,
proving its high efficiency in solving AAD tasks under limited budget constraints.

Notably, PartEvo and ReEvo outperform EoH and Funsearch, underscoring the advantages of Re-
flection and Summary. However, due to its unique EC-inspired operators (CN and LGE), PartEvo
surpasses ReEvo. This highlights that both “verbal gradient” and advanced EC techniques can
enhance search efficiency and should be equally emphasized.

B.4 Detailed feature analysis

Figure ] presents the convergence behavior of the best objective values achieved by PartEvo when
utilizing different feature sets on problems P1 and P2. Each feature set is evaluated through three
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Figure 4: Impact of partitioning features on convergence in PartEvo on P1 and P2

independent runs, all initialized with the same population. As observed, PartEvo, when augmented
with the Code Similarity and Thought Embedding features, consistently converges to high-quality
algorithms. In contrast, the use of random features (depicted by the blue curves and shaded regions)
leads to a broader range between the upper and lower envelopes, indicating greater instability in
algorithm design.

These results emphasize the critical role of feature-assisted niche construction in enhancing the
efficiency of automated algorithm discovery. Even with random partitioning, there is a chance that the
resulting niches may coincidentally align in a way that facilitates the discovery of high-performing
algorithms. This suggests that certain niche structures inherently lead to better outcomes. Notably,
Code Similarity and Thought Embedding, as employed in this work, are two viable feature mapping
strategies that markedly increase the reliability and efficiency of generating powerful algorithms with
PartEvo.

B.5 Detailed ablation study

To better understand the contributions of the four evolutionary operators in PartEvo, we conducted
a comprehensive ablation study. The average performance across multiple runs for each ablation
setting is summarized in Table[TT] Variants of PartEvo with specific operators removed are denoted
using the prefix “w/o0” (e.g., w/o RE indicates the removal of the RE operator). For clarity, we restate
the definitions of the key variants here, consistent with Subsection @ in the main text:

+ PartEvo': Removes the RE and SE operators, which utilize additional LLMs to enhance prompts
through reflection and summarization.

* PartEvo?: Removes the CN and LGE operators, which implement subspace-based collaborative
search.

* PartEvo®: A baseline version that retains only crossover and mutation operations, excluding
advanced prompt and subspace-based search strategies.

Table 11: Ablation study results on four benchmark problems.

Method P1 P2 P3 P4 APerf (%)
Full PartEvo  0.074 800.00 6539.24  6424.7 0.00
w/o RE 0.389 800.00 6915.27 8433.5 117.74
w/o SE 1.493 800.01 6610.28 13761.8 515.12
PartEvol 1.585 800.00 6946.69 15259.2 553.74
w/o CN 0.723 800.00 6547.89 11357.3 241.82
w/o LGE 0.873 800.04 6849.81 10491.9 290.98
PartEvot 1.288 807.37 7651.28 14324.7 451.31

PartEvo® 7.248 807.58 8524.38 17924.0  2509.76
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The metric APerf(%) quantifies the performance degradation relative to the full PartEvo, with larger
values indicating greater declines. As shown in Table each operator is critical to the overall
efficiency of PartEvo.

* Removing either the reflection or summarization enhancement operators (RE or SE) results in
significant performance drops (APerf=117.74% and 515.12%, respectively). The impact is even
more pronounced when both are removed (APerf=553.74%).

» Similarly, removing the subspace-based collaborative search operators (CN or LGE) leads to
substantial degradations (APerf=241.82% and 290.98%, respectively). The effect worsens when
both are excluded (APerf=451.31%).

* The baseline version (PartEvo®), which excludes all advanced operators and relies solely on
basic evolutionary operations, experiences the most severe performance degradation (APerf=
2509.76%).

These results underscore the importance of both prompt-centric and EC-inspired operators. By
integrating these two aspects, PartEvo effectively combines the strengths of LLMs and niche-based
EC techniques, demonstrating its potential as a robust LES method for automated algorithm discovery.

B.6 Comparative evaluations with an expanded sample budget

PartEvo demonstrates superior efficiency in algorithm discovery under a limited sample budget of
500 LLM queries. To further assess its potential, we expand the budget to 2000 queries and evaluate
performance on benchmarks P3 and P4. Benchmarks P1 and P2 are excluded from this analysis,
as prior results indicate that 500 queries already suffice for PartEvo, ReEvo, and EoH to design
meta-heuristics that approach optimal solutions. All four LES methods are initialized with the same
random seed for fairness, as detailed in Appendix[B.2] This experiment aims to: (i) examine whether
PartEvo’s early-stage efficiency induces premature convergence that limits long-term performance;
and (ii) investigate whether Funsearch, EoH, and ReEvo can exploit the larger budget to substantially
improve their outcomes.

Table 12: Average results from three runs on training instances for benchmark P3 and P4
Benchmark Budget Funsearch EoH ReEvo ParEvo

500* 704220  7268.21 < 6564.44  6539.23
2000 6656.7 6749.5  6506.51 6479.49

500* 24289.3 191524 11102.32  6424.6
2000 15646.1 142355 6038.45  5489.0

Average Improvement ~ 20.53% 16.40%  23.25% 7.74%

P3

P4

Each method is independently executed three times under the 2000-sample budget. Table[I2]reports
the average performance, where lower values indicate better algorithm performance. Results marked
with 500* are drawn from Table [0l

As shown in Table [T2] with an expanded budget of 2000 samples, PartEvo maintains its lead on
both benchmarks P3 and P4, consistently outperforming Funsearch, EoH, and ReEvo. On P3, its
performance improves modestly from 6539.23 to 6479.49 (0.92%), while on the more challenging
P4, it achieves a significant gain from 6424.6 to 5489.0 (14.4%). These results demonstrate that
while PartEvo is highly efficient at discovering effective algorithms early on, it does not suffer from
premature convergence. Instead, it continues to refine its search and achieve better results as more
computational budget is allocated.

Meanwhile, Funsearch, EoH, and ReEvo exhibit substantial improvements with a larger budget.
ReEvo benefits most, with an average improvement of 23.25%, followed by Funsearch (20.53%)
and EoH (16.40%). This suggests that additional queries provide these methods with much-needed
exploration capacity. Nevertheless, their performance remains far behind PartEvo. Notably, even
with 2000 queries, Funsearch (15646.1) and EoH (14235.5) perform worse than PartEvo with only
500 queries (6424.6). This finding highlights PartEvo’s remarkable efficiency in algorithm discovery,
as it achieves up to 3—4x higher effectiveness in complex problem settings with a fraction of the
computational effort.
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Figure 5: Convergence behaviors of three LES methods across three runs on benchmark P3 and P4.

Figure 3] further illustrates the convergence dynamics. On P3, PartEvo surpasses the human-designed
DE variant baseline with only 600 queries and continues to improve, while ReEvo catches up after
about 1000 queries. Funsearch and EoH converge more slowly, indicating lower search efficiency.
On P4, PartEvo again dominates the entire trajectory, discovering strong meta-heuristics as early as
500 queries and steadily improving thereafter, demonstrating resilience against local optima. ReEvo
progresses more gradually, only approaching PartEvo’s 600-query performance after nearly 1200
queries, while Funsearch and EoH show limited late-stage gains.

By the 500-query mark, PartEvo has already identified highly effective algorithms, leaving limited
room for further improvement—a pattern that explains its relatively modest 7.7% gain when the
budget increases to 2000. Importantly, this efficiency is not transient but a fundamental property of
PartEvo’s search process, making it a consistently robust choice across both constrained and generous
budgets.

Overall, these results highlight two key findings: (i) PartEvo achieves remarkable efficiency without
premature stagnation, and (ii) integrating mature EC principles into LES is crucial for sustaining
effective algorithm discovery under varying computational budgets.

B.7 Comparative evaluations with different LLMs

To investigate the influence of LLM capability on the overall performance of algorithm discovery,
we evaluate PartEvo with three different models: GPT-3.5-turbo, GPT-40-mini, and GPT-4o.
Experiments are conducted on the P4 benchmark with identical initial populations, a fixed budget of
500 samples, and three independent runs for each model. For clarity of presentation, the results of the
three runs are sorted in ascending order of performance. The outcomes are summarized in Table[T3]

Table 13: Performance comparison of PartEvo with different LLMs on the P4 benchmark.
LLM Runl Run2 Run3  Average SEM
GPT-3.5-turbo  4924.5 9200.2 132619 91289 1965.360

GPT-40-mini  4539.1 4679.5 100554 6424.7 1482.610
GPT-40 3304.6 6028.0 8187.5  5840.0 1153.466

Overall, PartEvo demonstrates the ability to generate high-performing algorithms across all tested
LLMs. As shown in Table[I3] stronger LLMs tend to yield better and more stable performance.
These findings support our discussion in Appendix[A.2] suggesting that as LLMs continue to advance,
we can expect further improvements in PartEvo’s algorithm discovery capability.

B.8 Comparative evaluations with various clustering methods

In PartEvo, clustering serves as a tool for grouping individuals within the feature space. As we
outlined in Section[3.1] PartEvo is designed to be compatible with a variety of clustering methods. We
initially chose K-Means for its simplicity, transparency, and widespread use. This deliberate choice
allows us to isolate and confirm that the observed performance improvements are primarily due to
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the effects of niche-based evolution, rather than influenced by the complexities of more advanced
clustering methods.

To further demonstrate PartEvo’s flexibility and compatibility, we conducted additional experiments
using three distinct clustering methods: K-Means, Gaussian Mixture Model (GMM), and Spectral
Clustering (SC). Each version of PartEvo was initialized with the same feature mapping and initial
population to ensure a fair comparison. Each method was run three times independently to ensure
the robustness of the results. The experimental results, comparing the performance of these PartEvo
variants against the baseline method EoH, are presented in Table 14}

Table 14: Performance comparison of PartEvo with different clustering methods
Methods P1 P2 P3 P4

EoH 1.846 800.98 7268.22 191524
PartEvo-K-means 0.074 800.42 6539.24 6424.7
PartEvo-GMM 0.048 800.10 6580.82 5423.5
PartEvo-SC 0.075 800.01 6543.54 6714.2

As the results show, all PartEvo variants consistently and significantly outperform EoH across all
four benchmarks, regardless of the specific clustering method used. On problems P1, P2, and P3, the
performance metrics for PartEvo-K-means, PartEvo-GMM, and PartEvo-SC are remarkably similar,
all achieving superior results to EoH. On the P4 problem, PartEvo-GMM shows a slight edge over
the other two PartEvo variants, but this minor difference does not change the overarching conclusion
that PartEvo, as a framework, is fundamentally superior to the baseline method.

These findings strongly support our claim that the PartEvo framework is compatible with various
clustering algorithms. Furthermore, they provide compelling evidence that the core advantage of our
approach lies in its niche-based evolutionary mechanism, rather than the specific complexities of any
single clustering method. This adaptability allows practitioners to select a clustering algorithm based
on the specific requirements of their application.

C An example of PartEvo in practice

To facilitate a better understanding of how PartEvo operates in practice, this section presents both the
pseudocode and a concrete application example.

C.1 Pseudocode of PartEvo

The pseudocode in Algorithm[I]outlines the overall procedure of PartEvo. Given a natural language
description of the algorithm design problem and a set of evaluation instances, PartEvo autonomously
generates customized algorithms.

Algorithm 1 Pseudocode of PartEvo

Require: Task description, training instances
1: Initialize the algorithm population
2: Construct algorithm niches via feature-assisted niche construction
3: while termination condition not met do

4: for each niche in parallel do
5: for each evolutionary operator do
6: Select parent algorithms
7: Construct few-shot prompt (parents + task description + operator-specific instructions)
8: Generate offspring algorithm via LLM
9: Evaluate offspring on training instances
10: Manage offspring at the niche level
11: end for

12: end for
13: end while
14: return Best designed algorithm so far
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In Line |1} the initial algorithm population is generated either using a batch initialization strategy with
LLMs or by loading pre-existing algorithms. In Line [2] algorithm niches are constructed based on
the initial population using feature-assisted niche construction. The process then enters an iterative
evolutionary loop (Lines [3{I3), which continues until a predefined termination condition is met, such
as reaching a maximum number of generations or achieving a target fitness threshold. Within this
loop, evolution occurs in parallel across each niche (Line[d). In each niche, designed evolutionary
operators are applied sequentially or in a random order to generate new algorithms (Lines[5j10). Each
algorithm generation step includes selecting parent algorithms, constructing prompts, generating
offspring algorithms using LLMs, evaluating the offspring, and managing the individuals at the niche
level. Finally, the best-performing algorithm is returned at Line[14]

C.2 A concrete example on benchmark P1

As an example, consider Benchmark P1, where the goal is to discover meta-heuristic algorithms for
unimodal optimization problems. PartEvo initiates the process by defining the task description and
preparing a set of training instances. The task description specifies the algorithm design problem,
guiding PartEvo in generating relevant algorithms, as depicted in Figure[T4] The training instances
serve as practice problems, providing a consistent basis for evaluating and ranking candidate algo-
rithms during the evolutionary process. These instances are representative of the problem domain and
help refine the algorithms’ effectiveness on the task. In the case of P1, the goal is to solve unimodal
optimization problems, for which standard unimodal optimization functions are chosen as the target
functions.

Subsequently, PartEvo proceeds through iterative evolutionary loops. In each loop iteration, parent
algorithms are selected, prompts are constructed, new offspring algorithms are generated by the
LLM, and these offspring algorithms are evaluated and managed. The prompt construction follows
the template described in Appendix [D} Through repeated iterations, the algorithm population gradu-
ally improves, with the best-performing algorithms emerging as specialized solutions to unimodal
optimization problems.

This workflow generalizes beyond unimodal optimization. For any benchmark or real-world applica-
tion, one only needs to specify the problem and provide representative training instances; PartEvo
will then evolve tailored algorithms accordingly.

D Prompts

This section describes the prompts employed in PartEvo. In all displayed prompts, the black
text remains fixed, while the red placeholders correspond to task-specific elements, and the blue
placeholders change throughout the evolutionary process.

Figures [6|and [7] show the prompts used by the summarizer and reviewer LLMs. The generator LLMs,
which utilize different prompts for each of the four evolutionary operators (e.g., RE, SE, CN, LGE),
are detailed in Figures [T0]to[T3] These prompts are applicable across all four optimization problem

types.

Task description prompts for the four problem types are shown in Figure Specifically, all problems
are presented as black-box optimization tasks to the LLMs. This approach ensures that PartEvo is
effective across a wide range of optimization problems.

E Feature projection

The general LES framework employs an abstract search space partitioning mechanism that projects
sampled individuals into a feature space. In this feature space, clustering is performed based on the
distances between the mapped representations, which indirectly partitions the abstract search space
into multiple subregions. PartEvo leverages two primary methods for feature mapping:

E.1 Code similarity vector

Similar individuals should exhibit comparable relative distances to all other individuals. Thus,
we construct a Code Similarity Vector (CSV) for each individual to represent its similarity to all
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You are the person responsible for recording the progress of the experts’ research. Some experts are
working on the following task:

“[Task Description Placeholder]”

Based on previous design methods, we have the following summary:

“[Previous Summary Placeholder]”

Experts have now explored an additional [Number Placeholder] algorithms to tackle this problem, ranging
from No. 1 to No. [Number Placeholder], with performance gradually declining (the smaller the objective
function value, the better the performance).

Algorithm No. 1 has an objective function value of [Value Placeholder], and its idea is:

“[Thought Placeholder]”

Algorithm No. 2 has an objective function value of [Value Placeholder], and its idea is:

“[Thought Placeholder]”

Please review the previous experiences and the current algorithms, analyzing which techniques within the
algorithms are effective in solving this problem and which are not. Finally, summarize both the effective and
ineffective techniques, and update the previous summary accordingly. Please ensure that the summary you
provide is enclosed in braces.

Figure 6: Prompt of summarizer.

An intelligent agent is currently executing the following design task:

“[Task Description Placeholder]”

The agent has designed an algorithm with the following ideas and code:

“[Thought Placeholder]”

“[Code Placeholder]”

Based on your understanding and knowledge of this design task, please provide targeted suggestions for
the current algorithm to guide the agent in improving it. Please return your final suggestions in curly braces
so that the agent can interpret your advice.

Figure 7: Prompt of reviewer.

You and a group of experts are working on a task:

“[Task Description Placeholder]”

Experts have proposed [Number Placeholder] algorithms to solve this problem. The ideas for these
algorithms are as follows:

No. 1 algorithm’s idea is: “[Thought Placeholder]”

No. 2 algorithm’s idea is: “[Thought Placeholder]”

Please create a new algorithm that differs from the existing algorithms by at least [Value Placeholder] %
First, describe your concept for the new algorithm and its main steps in as few words as possible while
ensuring clarity. The description must be enclosed in braces. Next, implement it in Python as a runnable
function named “[Function Signature Placeholder]”. This function should accept “[Value Placeholder]”
input(s): “[Input Placeholder]”. The function should return “[Value Placeholder]” output(s): “[Output
Placeholder]”. Do not include any comments in the code.

Figure 8: Prompt of generator for initiation.

others. As a result, the distances between CSVs of similar individuals should be small. Since code
is generated by LLMs, there may be many implementations of functionally equivalent code. In
constructing the CSV, we focus on both the syntactic and dataflow similarities between codes. The

process of constructing the CSV is as follows:

1. Pairwise similarity calculation: For a population of size /N, we compute the pairwise similarity
between all individuals and store the results in a similarity matrix S. Specifically, we use the
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You are an algorithm design expert. An intelligent agent is currently executing the following design task:
“[Task Description Placeholder]”

The agent has designed an algorithm with the following ideas and code:

“[Thought Placeholder]”

“[Code Placeholder]”

An expert has provided some suggestions for this algorithm. You can decide whether to incorporate the
expert’s feedback, and then create a new algorithm that differs from the given one but motivated by it. The
suggestion is: “[Reflection Placeholder]”

First, describe your concept for the new algorithm and its main steps in as few words as possible while
ensuring clarity. The description must be enclosed in braces. Next, implement it in Python as a runnable
function named “[Function Signature Placeholder]”. This function should accept “[Value Placeholder]”
input(s): “[Input Placeholder]”. The function should return “[Value Placeholder]” output(s): “[Output
Placeholder]”. You can understand the inputs and outputs based on the current algorithm’s code. Do not
include any comments in the code.

Figure 9: Prompt of generator in RE.

You are an algorithm design expert. An intelligent agent is currently executing the following design task:
“[Task Description Placeholder]”

The agent has designed an algorithm with the following ideas and code:

“[Thought Placeholder]”

“[Code Placeholder]”

Please help me create a new algorithm that is different from the given one but motivated by it.

First, describe your concept for the new algorithm and its main steps in as few words as possible while
ensuring clarity. The description must be enclosed in braces. Next, implement it in Python as a runnable
function named “[Function Signature Placeholder]”. This function should accept “[Value Placeholder]”
input(s): “[Input Placeholder]”. The function should return “[Value Placeholder]” output(s): “[Output
Placeholder]”. You can understand the inputs and outputs based on the current algorithm’s code. Do not
include any comments in the code.

Figure 10: Prompt of generator in Mutation.

You are an algorithm design expert, currently collaborating with other experts on the following task:
“[Task Description Placeholder]”

Experts have designed “[Value Placeholder]” algorithms with their corresponding codes.

The No. 1 algorithm and the corresponding code are:

“[Thought Placeholder]”

“[Code Placeholder]”

The No. 2 algorithm and the corresponding code are:

“[Thought Placeholder]”

“[Code Placeholder]”

Please take Algorithm No. 1 as the main framework and try to incorporate the characteristics of the other
algorithms into it to create a better algorithm. First, describe your concept for the new algorithm and its main
steps in as few words as possible while ensuring clarity. The description must be enclosed in braces. Next,
implement it in Python as a runnable function named “[Function Signature Placeholder]”. This function
should accept “[Value Placeholder]” input(s): “[Input Placeholder]”. The function should return “[Value
Placeholder]” output(s): “[Output Placeholder]”. You can understand the inputs and outputs based on
the current algorithm’s code. Do not include any comments in the code.

Figure 11: Prompt of generator in CN.

CodeBLEU metric [50] to evaluate the similarity between the code of two individuals. CodeBLEU
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You are an algorithm design expert, currently collaborating with other experts on the following task:
“[Task Description Placeholder]”

Currently, “[Value Placeholder]” algorithms have been explored for this problem, with their effectiveness
decreasing from No. 1 to No. “[Value Placeholder]”. The concepts for these methods are as follows. No. 1
algorithm is: “[Thought Placeholder]”

No. 2 algorithm is: “[Thought Placeholder]”

Please analyze the summary and then modify the following algorithm to create a more promising solution
for this problem. The thoughts and code for the algorithm to be modified are as follows:

“[Thought Placeholder]”

“[Code Placeholder]”

First, describe your concept for the new algorithm and its main steps in as few words as possible while
ensuring clarity. The description must be enclosed in braces. Next, implement it in Python as a runnable
function named “[Function Signature Placeholder]”. This function should accept “[Value Placeholder]”
input(s): “[Input Placeholder]”. The function should return “[Value Placeholder]” output(s): “[Output
Placeholder]”. You can understand the inputs and outputs based on the current algorithm’s code. Do not
include any comments in the code.

Figure 12: Prompt of generator in SE.

You are an algorithm design expert, currently collaborating with other experts on the following task:
“[Task Description Placeholder]”

Experts are divided into several groups, with each group responsible for the development of a specific
algorithm cluster. Each cluster incorporates different techniques while maintaining its own framework to
explore diverse algorithms.

On your algorithm cluster, after several iterations, the current algorithm (idea and the corresponding code)
is:

“[Thought Placeholder]”

“[Code Placeholder]”

During the iterations in your cluster, a better-performing algorithm appeared, and its idea and code are as
follows:

“[Thought Placeholder]”

“[Code Placeholder]”

In addition, among all the algorithms tested (including those from other clusters), the best-performing
algorithm’s idea and code are as follows:

“[Thought Placeholder]”

“[Code Placeholder]”

Using the above information and adhering to the core framework of the current algorithm, please suggest
potential improvements to enhance its performance in solving this problem. First, briefly describe your
concept for the new algorithm and its main steps. The description must be enclosed in braces. Next,
implement it in Python as a function named “[Function Signature Placeholder]”. This function should
accept “[Value Placeholder]” input(s): “[Input Placeholder]”. The function should return “[Value
Placeholder]” output(s): “[Output Placeholder]”. You can understand the inputs and outputs based on
the current algorithm’s code. Do not include any comments in the code.

Figure 13: Prompt of generator in LGE.

proposes weighted n-gram match and syntactic abstract syntax tree match to measure grammatical
correctness, and introduces semantic data-flow match to calculate logic correctness. In this work,
the similarity score between two individuals ¢ and j is computed as:

S@j =0.5- Si,j +0.5- di,j (1)

where s; ; and d; ; denote the syntax match score and dataflow match score, respectively. This
formulation ensures a balanced evaluation of both syntactic structure and semantic behavior.

26



You are tasked with solving a black-box optimization problem/Mixed-Integer Nonlinear Programming
(MINLP) problem/integer nonlinear programming (INLP) using meta-heuristic optimization algorithm.
The goal is to minimize the objective value. Please design a metaheuristic algorithm that can effectively
solve this optimization problem and return the optimal solution.

Figure 14: Prompt of specific problem.

2. Symmetrization: CodeBLEU scores are not inherently symmetric, i.e., S; ; # S; ;, which may
lead to inconsistencies in the similarity matrix. To address this, we enforce symmetry by averaging
the scores: 6ol

+
R @)

This step ensures that the similarity relationship between any two individuals is consistent and

interpretable.

S:

3. Feature representation: For each individual, the corresponding row of the similarity matrix is
used as its CSV, capturing its relative relationship with all other individuals in the population.

E.2 Thought embedding

In PartEvo, individuals are encoded into two components: code and thought. For the thought
component, expressed in natural language, we leverage techniques from natural language processing
to perform feature projection. Specifically, we utilize pre-trained language models, such as BERT
[63], to extract high-dimensional semantic representations of the algorithmic descriptions provided
by individuals. The similarity between individuals is then determined based on the distances between
their embedding vectors. The process is as follows:

1. Text tokenization: The algorithmic description of each individual is tokenized using the BERT
tokenizer, ensuring truncation and padding to a maximum sequence length of 512 tokens.

2. Embedding extraction: The tokenized input is fed into a pre-trained BERT model, and the
hidden state of the token from the final layer is extracted as the embedding. This embedding is a
fixed-length vector capturing the semantic meaning of the input text.

3. Feature representation: The extracted embeddings are directly used as feature vectors for the
individuals.

E.3 Random features for comparison

To evaluate the effectiveness of the adopted feature projections, we also introduce random feature
vectors as a baseline. For each individual, a random vector is generated by sampling from a Gaussian
distribution with a dimensionality consistent with the other feature representations. As shown in
Table [5] the comparison with random features demonstrates that the proposed feature projections
significantly enhance the performance of PartEvo. This improvement is one of the key reasons why
PartEvo achieves higher search efficiency compared to Funsearch, which employs an island model.

F Human-designed meta-heuristic algorithms

In this work, we use human-designed meta-heuristic algorithms as baselines. Specifically, we adopt
enhanced variants of Genetic Algorithm (GA), Differential Evolution (DE), and Particle Swarm
Optimization (PSO). Detailed descriptions of these variants are provided below.

F.1 GA-variant

GA is a classical meta-heuristic optimization algorithm inspired by the process of natural selection.
It iteratively evolves a population of candidate solutions through genetic operations such as selection,
crossover, and mutation. The GA-variant used in this work incorporates several enhancements to
improve its performance and convergence behavior. These enhancements include:
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* Selection: A hybrid selection mechanism combining Roulette Wheel Selection (RWS) and
Tournament Selection (TS) is employed. TS is used as the primary selection method, with a
tournament size of 3, while RWS ensures diversity preservation.

* Crossover: Simulated Binary Crossover (SBX) is adopted as the primary crossover operator.
SBX generates offspring by simulating the distribution of genes in natural reproduction, with a
crossover rate of 0.9 and a distribution index 1 = 2. Single-point crossover is also supported as
a fallback.

* Mutation: Gaussian Mutation and Uniform Mutation are used to introduce diversity into the
population. Gaussian Mutation adds normally distributed noise to selected genes, with a mutation
rate of 0.1.

* Fitness normalization: To mitigate the effects of extreme fitness values, a normalization step is
applied to the fitness scores before selection.

« Elitism: The best solution in the current generation is preserved and directly passed to the next
generation, ensuring that the global best solution is not lost.

» Early stopping: An early stopping mechanism is implemented to terminate the algorithm if no
significant improvement in fitness is observed for 500 consecutive generations. The convergence
tolerance is set to 1076,

The GA variant is designed to balance exploration and exploitation effectively. The use of hybrid
selection and advanced crossover/mutation operators ensures that the algorithm can explore the search
space thoroughly, while elitism and early stopping mechanisms help accelerate convergence and
avoid stagnation.

F.2 DE-variant

DE is a population-based optimization algorithm that relies on mutation, crossover, and selection
operators to iteratively improve candidate solutions. The DE variant used in this work incorporates
several enhancements to improve its convergence speed, robustness, and ability to escape local optima.
These enhancements include:

¢ Adaptive mutation factor and crossover probability: The mutation factor F' and crossover
probability C'R are dynamically adjusted during the optimization process. Specifically, F' and
CR are sampled from uniform distributions in the ranges [0.5,0.8] and [0.5, 0.9], respectively,
to balance exploration and exploitation.

* Global best participation: The global best solution is incorporated into the mutation process to
guide the search towards promising regions of the solution space. This modification improves
convergence by leveraging the knowledge of the current best solution.

* Diversity maintenance: To avoid premature convergence, random perturbations are introduced
when population diversity is low. This helps the algorithm escape local optima and explore new
regions of the search space.

* Boundary handling: A reflection boundary handling strategy is used to prevent solutions from
being stuck at the boundaries of the search space. This ensures that mutated solutions remain
within valid bounds while preserving diversity.

* Early stopping: An early stopping mechanism is implemented to terminate the algorithm
when no significant improvement in fitness is observed for 500 consecutive generations. The
convergence tolerance is set to 1076,

« Parallel evaluation: For computational efficiency, the evaluation of the objective function is
parallelized when possible, particularly for computationally expensive objective functions.

The DE variant is designed to enhance the standard DE algorithm’s performance in solving complex
optimization problems. By incorporating adaptive parameters, diversity maintenance, and boundary
handling, it achieves a good balance between exploration and exploitation. The early stopping
mechanism further improves computational efficiency by avoiding unnecessary evaluations when the
algorithm has converged.
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F.3 PSO-variant

Particle Swarm Optimization (PSO) is a population-based optimization algorithm inspired by the
social behavior of bird flocks and fish schools. In PSO, particles explore the search space by updating
their positions and velocities based on their own best-known positions and the global best-known
position. The PSO variant used in this work integrates several advanced mechanisms to enhance its
convergence performance and robustness. These enhancements include:

¢ Dynamic inertia weight: The inertia weight w is linearly decreased from wyax = 0.95 to wpi, =
0.4 over the course of the optimization to balance global exploration and local exploitation.

* Simulated Annealing (SA): A simulated annealing mechanism is incorporated to probabilisti-
cally accept worse solutions during the optimization process. This helps the algorithm escape
local optima, with the acceptance probability controlled by a temperature parameter that de-
creases exponentially.

¢ Genetic Algorithm (GA) operators: Genetic algorithm-inspired operators, including crossover
and mutation, are integrated to further enhance diversity. Specifically:

— Crossover: Offspring particles are generated by combining the local best positions and the
global best position using a weighted random combination.

— Mutation: A small mutation probability (p,, = 0.02) is used to introduce random perturba-
tions to particles.

* Boundary handling: A reflection boundary handling strategy is applied to ensure particles
remain within the feasible search space. This prevents particles from being stuck at the boundaries
while maintaining diversity.

* Velocity clamping: The velocity of each particle is clamped to prevent it from exceeding the
maximum allowable velocity, which is proportional to the search space bounds.

* Hybrid fitness evaluation: The fitness of each particle is evaluated using a combination of PSO
updates, GA operators, and simulated annealing, ensuring a robust exploration of the search
space.

The PSO variant combines elements from PSO, GA, and SA, making it a hybrid algorithm that
leverages the strengths of each method. The dynamic inertia weight helps balance exploration and
exploitation, while the simulated annealing and genetic operators enhance the algorithm’s ability
to escape local optima. These modifications make the PSO variant well-suited for solving complex
optimization problems.

F.4 Comparison and analysis

To directly compare the performance of the standard and enhanced versions of GA, DE, and PSO, we
evaluated all methods on four benchmark problems (P1-P4), as summarized in Table @ In this table,
GA, DE, and PSO refer to the standard versions, while GA-variant, DE-variant, and PSO-variant
represent the enhanced versions discussed in the main text. Each algorithm was limited to a maximum
of 30,000 solution evaluations. The best results are highlighted in bold, while the second-best results
are underlined.

Table 15: Best results from multiple runs on training and testing instances for each optimization
benchmark (Lower values indicate better performance)

Problem Instances GA GA-variant DE DE-variant PSO PSO-variant  PartEvo
P1 Training ~ 5.944 x 106 523.182 15.849 0.004 118.973 16.241 0.000
Testing  6.358 x 1022 13.145 0.680 0.000 50.000 0.000 0.000

P2 Training 2485.72 2087.63 1139.32 868.40 1467.15 939.02 800.00
Testing 1.05 x 10° 542.48 516.96 365.60 2.11 x 10* 411.80 344.62

P3 Training 15661.66 52850.88 21379.04 6541.55 156817.83 10036.17 6471.31

Testing 78080.20 85629.55 77851.57 61298.43  2.89 x 10° 60464.14  56876.40

Training 2.60 x 106 1.48 x 107 91784.6 25736.4 82953.9 32594.0 2792.1
Testing 513 x 107 848 x 107 3.78 x 10° 1.72 x 10° 6.31 x 10°  2.28 x 10° 14396.1

P4
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From the table, several key observations can be made. First, the performance of different algorithms
varies significantly for each problem, highlighting the distinct behaviors of each algorithm within the
search space, which allows them to adapt to different landscapes.

Second, within each family of algorithms, the enhanced variants typically outperform the standard
versions, except for the GA variants on problems P3 and P4. This suggests that targeted algorithmic
improvements enable more effective navigation of the solution landscape. However, improper
upgrades can lead to performance degradation, underscoring the importance of thoughtful algorithm
design.

Most notably, the algorithms generated by PartEvo achieve superior performance across all bench-
mark instances. This is because PartEvo continuously explores techniques that are well-suited
to the problem during the evolutionary process, allowing the designed algorithms to efficiently
search the landscape. This demonstrates that PartEvo plays a crucial role in automating and enhanc-
ing the algorithm design process, highlighting its potential to assist human experts in developing
high-performance optimization algorithms.

G Benchmark

This section introduces the four optimization benchmarks and their specific instances used to evaluate
PartEvo. These include synthetic problems, such as unimodal and multimodal optimization problems,
as well as real-world scenarios, including task offloading in mobile edge computing systems and
machine-level scheduling for heterogeneous plants.

G.1 Unimodal optimization problem

Unimodal optimization problems feature a single global optimum with no local optima, making it
an ideal benchmark for testing basic search capabilities. Algorithms yielded by the LES framework
are evaluated on their ability to locate the global optimum in this simple scenario efficiently. This
benchmark serves as a baseline to verify PartEvo’s ability to generate algorithms with effective core
search mechanisms.

For this study, we utilize various unimodal objective functions. For some of these functions, we
introduce a shift term s. This shift increases the difficulty of optimization, preventing the LES
framework from generating algorithms with fixed outputs that could bypass the optimization process.
In the experiments, the parameter configurations for the training and testing instances are shown in
Table[T6] The mathematical formulations and key characteristics of these ten functions are outlined
as follows:

Table 16: Unimodal instance setups for the experiments

Formula Variable Range  Optimal Function Value
f1(x) [-20, 20] 0
Training Instance fa(x) [-20, 20] 0
fa(x,s = 3) [-20, 20] 0
f2(x,8 = 2.5) [-10, 10] 0
fa(x,8=05) [-10, 10] 0
f3(x,8s=0) [-10, 10] 0
Testing Instance ~ f3(x,s = 2.5) [-5, 5] 0
fa(x,s=1) [-30, 30] ~0
f5(x) [-100, 100] ~
fe(x) [-100, 100] ~0

Sphere function. The Sphere function is a well-known unimodal optimization benchmark, character-
ized by a global minimum located at the origin. It is mathematically defined as:

filx) =Y, 3)
=1

30



where x = [z1, %2, ...,2Z,] € R™ represents the decision variable in an n-dimensional space. The
function exhibits a smooth, symmetric parabolic shape, with the global minimum located at x = 0.
This simplicity makes it a fundamental benchmark for evaluating optimization algorithms.

Shifted sphere function. The Shifted Sphere function is a modified version of the Sphere function,
where the global minimum is shifted to a predefined point in the search space. This shift increases the
difficulty of the optimization process, preventing trivial solutions. It is mathematically expressed as:

n

fa(x,s) = Z(wz —s1)%, “)

i=1

where s = [s1, 82, ..., $,] € R™ represents the shift vector, and s; denotes the shift applied to the
i-th dimension.

Unimodal sinusoidal function. The Unimodal Sinusoidal function is a single-peaked benchmark,
characterized by the use of squared sine terms. It is mathematically defined as:

fa(x,s) = Z sin2(xi — 8;) 5)

This function is particularly useful for testing optimization algorithms on periodic landscapes, as its
sinusoidal nature introduces oscillatory behavior while maintaining a single global minimum, making
it a valuable benchmark for evaluating algorithm robustness.

Unimodal Gaussian function. The Unimodal Gaussian function is a smooth and symmetric bench-
mark function, characterized by a single peak. It is mathematically expressed as:

fa(x,s) = ZGXP (— (2 —:)%) (6)
i=1
here, s = [s1, S2, . .., Sp] € R™ is the shift vector that determines the location of the global minimum.

This function is often used in optimization benchmarks due to its smooth, unimodal nature and its
ability to test the precision of optimization algorithms.

Unimodal logistic function. The Unimodal Logistic function is a smooth, monotonic benchmark
function, commonly used to evaluate optimization algorithms in continuous domains. It is mathemat-
ically defined as:

- 1
=S 7
f5(x) ; Qo (7)
This function is particularly useful for testing algorithms in scenarios involving smooth, non-linear

transformations.

Unimodal exponential function. The Unimodal Exponential function is a monotonic benchmark
function characterized by exponential decay. It is mathematically expressed as:

fo(x) = Z exp(—), (®)
i=1

The global minimum of this function is asymptotically approached as each x; tends towards positive
infinity, making it a useful benchmark for testing optimization algorithms in decaying landscapes.

G.2 Multimodal optimization problem

Multimodal optimization problems introduce multiple local optima in the search space, making them
significantly more challenging. These problems evaluate the designed algorithms’ ability to balance
exploration and exploitation. Practical algorithms must avoid premature convergence to suboptimal
solutions while maintaining a robust search strategy. This benchmark tests PartEvo’s ability to address
complex optimization landscapes.

We utilize ten multimodal objective functions in our study. Similar to the unimodal optimization
benchmarks, we introduce a shift term s in certain functions to increase the difficulty of optimization.
The parameter configurations for the training and testing instances are summarized in Table
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Specifically, the decision variable dimensionality for the training instances is set to 40, while that for
the testing instances is set to 50. This setup allows us to evaluate the generalization capability of the
metaheuristic algorithms generated by LESs. The mathematical formulations and key characteristics
of these functions are outlined below.

Table 17: Multimodal instance setups for the experiments

Formula Variable Range ~ Optimal Function Value
fr(x,8s=2) [-5.12,5.12] 100
Training Instance  fo(x,s = 50) [-600, 600] 200
f10(X, S = 5) [-10, 10] 500
fs(x,s =10) [-10, 10] 50
11(x) [-100, 100] 300
Testing Instance fi2(x) [-0.5,0.5] 10
f13 (X) [—10, 10] 0
Jra(x) [0, 7] -50

Modified Rastigin function. The Modified Rastrigin function is a multimodal benchmark with
numerous local minima, making it a popular choice for evaluating optimization algorithms. It is
mathematically defined as:

fr(x,8) = A-n+ Z — A cos(2m(s;))] + 100, )

where A = 10, and the search range is z; € [—5.12, 5.12]. The global minimum is located at x*=s,
with an optimal value of f(x*) = 100.

Modified Ackley function. The Modified Ackley function is a widely used multimodal benchmark
with a complex landscape. It is mathematically expressed as:

fs(x,8) = —20exp | —0.2

—exp( Zco& (2w (x —51))> +20 + e+ 50,

(10)
where e is Euler’s constant, and the search range is x; € [—32.768, 32.768]. The global minimum is
shifted to x*=s, with an optimal value of f(x*) = 50.

Modified Griewank function. The Modified Griewank function features a smooth landscape with
numerous local minima. It is mathematically defined as:

n

1
fo(x,8) = 1+mz Hcos(

The search range is z; € [—600, 600]. The global minimum is located at x*=s, with an optimal
value of f(x*) = 200.

Modified Levy function. The Modified Levy function is known for its rugged landscape and
numerous local minima. It is mathematically expressed as:

) + 200. (11)

n—1
fro(x,8) = sin® (rw1)+ Y _ [(wi = 1)% (1 + 10sin®(mw; + 1)) ] +(wn—1)* (1 + sin® (27wy,))+500,
i=1
(12)
where w; = 14 %%, and the search range is z; € [—10,10]. The global minimum is located at
x*=s;, with an optimal value of f(x*) = 500.

Modified Schaffer function N.2. The Modified Schaffer Function N.2 is a two-dimensional multi-
modal benchmark. It is mathematically expressed as:

) _ 2 2\ _
sin” ((z1 —50)% — (z2 + 50)?) 0.52 300, 13
[1+0.001 ((z1 — 50)2 + (x5 + 50)2)]

fi1(x) =
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The search range is z; € [—100, 100], and the global minimum is located at x* = [50, —50], with an
optimal value of f(x*) = 300.

Modified Weierstrass function. The Modified Weierstrass function is characterized by its fractal-like
landscape. It is mathematically expressed as:

n kmax kmax
f12(x) ZZCL COb 27rb (m1—|—05 —nZa cos 27rbk 05) + 10, (14)
i=1 k=0 k=0

where a = 0.5, b = 3, knax = 20, and the search range is z; € [—0.5, 0.5]. The global minimum is
located at x* = [0, 0, .. ., 0], with an optimal value of f(x*) = 10.

Modified Alpine function. The Modified Alpine function is a multimodal benchmark, defined as:

fis(x Z |z; sin(z;) + 0.12;] . (15)
i=1
The search range is z; € [—10, 10], and the global minimum is located at x* = [0, 0, ..., 0], with an

optimal value of f(x*) = 0.
Modified Michalewicz function. The Modified Michalewicz function is highly multimodal, defined

as: )
. 2 m
fra(x Z sin(z [Sin (Zi’ ﬂ , (16)

where m = 10, and the search range is x; € [0, 7]. The global minimum depends on the dimension-
ality, with an approximate optimal value of f(x*)~—n.

G.3 Task offloading in mobile edge computing systems

Task offloading is a well-established optimization problem in the domains of cloud and edge comput-
ing [44]. A representative system architecture is illustrated in Fig.[I3] In such systems, numerous
smart mobile devices are required to execute computation- and data-intensive applications. However,
due to physical limitations, such as restricted device size, these devices often lack sufficient computa-
tional resources and energy to process tasks independently. Task offloading addresses this limitation
by partitioning computational tasks and offloading them to high-performance servers, either at the
edge or in the cloud, for efficient processing.
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Figure 15: System architecture of a cloud-edge collaborative computing framework

The task offloading problem is inherently constrained by various practical factors, including the
characteristics of application tasks, the availability of communication channels, and the computational
capacity of edge servers [64]. Consequently, task offloading is frequently formulated as a constrained
mixed-integer non-linear programming (MINLP) problem. The objective typically involves minimiz-
ing the total system cost, maximizing data throughput, or reducing energy consumption, all while
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adhering to the imposed constraints. To tackle these complex problems, meta-heuristic algorithms
are widely employed in the literature.

In this study, we treat task offloading as a real-world optimization problem to evaluate the algorithmic
capabilities of PartEvo. The performance of the algorithms designed within LESs on this benchmark
reflects their ability to address real-world optimization problems with intricate constraints and
real-time requirements.

To this end, we implement a task offloading system model inspired by prior studies [44, 65]. The
optimization objective is to minimize the total system cost. To simulate diverse real-world scenarios,
we design multiple instances by varying the number of users, user request types, and user distributions.
The configurations of the instances used for training and testing are summarized in Table[T8]

Table 18: Configurations of task offloading instances for experiments

Instance Index Number of Users  Average Task Size (GB)

— 1 15 150

Training Instances > 30 150
3 5 50

: is 300

. 3 45 10
Testing Instances 6 20 0

7 30 200

! ) 100

G.4 Machine-Level scheduling for heterogeneous plants

Scheduling and production planning are among the most critical challenges in industrial manufac-
turing, as they directly impact the efficiency and cost-effectiveness of operations. In a complete
production supply chain, from the moment a customer places an order, every stage—ranging from
raw material procurement to the production of semi-finished components and the final assembly of
diverse products—requires meticulous scheduling and coordination. Under the paradigm of industrial
Internet, the entire supply chain can be modeled as a collaborative manufacturing and scheduling
(CMS) system, composed of multiple heterogeneous factories. The architecture of such a system is
illustrated in Figure [T
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Figure 16: Architecture of a collaborative manufacturing and scheduling system.
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The CMS framework involves four primary entities: enterprises, customers, a transportation system,
and multiple factories. Within the system, there are |P| factories, and each factory p (1<p<|P))
contains n, machines. Raw materials, semi-finished products, and finished goods are transported
among factories and delivered to customers via the transportation system. The workflow proceeds
as follows: a customer places an order with the enterprise, which then formulates a manufacturing
and scheduling plan based on the order’s requirements, including product types, quantities, and
delivery deadlines. Subsequently, the enterprise assigns production tasks to machines across different
factories and coordinates the transportation of products. Finally, the transportation system delivers
the completed products directly to customers, fulfilling the order. To minimize the overall cost
of the CMS system, it is essential to optimize the collaboration among factories, encompassing
manufacturing, transportation, and sales processes.

In this context, we use the term “product” to broadly refer to all production components, including raw
materials, semi-finished products, and finished goods. The production scheduling process consists of
several interdependent plans: (1) production plans for different factories, (2) substitution plans for
interchangeable products, (3) transportation plans for products between factories, and (4) delivery
plans specifying the number of products shipped from each factory to customers. Notably, the
factories within the CMS system exhibit heterogeneous characteristics, which introduce additional
complexities:

1. Heterogeneous manufacturing capacities: Different factories have varying production capabilities
for different products, resulting in diverse time and material costs for manufacturing the same
product.

2. Variable transportation costs: Due to differing distances between factories and between factories
and customers, transportation costs vary significantly across the system.

3. Complex product relationships: Certain products can substitute for others (e.g., a large resistor
can be replaced by two smaller resistors in series), while others may be consumed as intermediate
inputs in the production of other products. Properly managing these dependencies is critical for
cost reduction.

The objective of the scheduling process is to allocate production tasks to machines and coordinate
the inter-factory transportation of intermediate products. The goal is to minimize the combined
production and transportation costs while ensuring that all customer orders are completed within their
respective deadlines. This problem represents a large-scale combinatorial optimization challenge,
often formulated as a constrained nonlinear integer programming problem. Numerous studies have
explored the use of meta-heuristic algorithms to address such production scheduling problems.

In this study, we evaluate the performance of our proposed framework, PartEvo, on this industrial
scheduling benchmark. PartEvo is designed to generate meta-heuristics capable of addressing large-
scale, high-dimensional optimization problems with complex interdependencies. By benchmarking
PartEvo on this real-world problem, we aim to assess its ability to develop efficient and effective
scheduling strategies.

Table 19: Configurations of machine-level scheduling instances for experiments

Instance Index  Product Types Factory Number Planning Horizon

Training Instances 1 9 3 7 days
2 9 3 7 days
Testing Instances 3 9 5 7 days
4 10 3 7 days

To this end, we implement a CMS system model inspired by prior work [45]. The optimization
objective is to minimize the total cost of production and transportation. To simulate diverse real-world
scenarios, we construct multiple problem instances by varying key parameters, including the number
of product types, the number of factories, the number of production lines per factory, and the planning
horizon. The configurations of these instances, used for both training and testing, are summarized in
Table
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H Generated meta-heuristic algorithms

This section presents the highest-performing meta-heuristic algorithm generated by PartEvo across
all benchmark problems. These codes illustrate that PartEvo can design highly complex yet well-
structured algorithms. These empirically validated solutions can be readily deployed to address
analogous optimization challenges, demonstrating significant practical utility.

Meta-heuristic 1 represents the most effective algorithm generated by PartEvo for benchmark P1,
achieving an optimal fitness value of 0 on both the training and testing sets. Thought of Meta-
heuristic 1 is as follows: “The proposed algorithm is an Enhanced Hybrid Differential Evolution
(EHDE) approach. It combines principles from differential evolution and adaptive mechanisms
while incorporating niche-like exploration. The algorithm leverages multiple mutation strategies to
diversify the search space. It also includes a local refining search that periodically improves the best
individual. The key steps are: initialization of the population, evaluation of fitness, application of
multiple mutation strategies, a dynamic adaptive learning rate for perturbation, selection of the best
solutions, and a local search refinement step. The evaluation process monitors the fitness convergence
to terminate early if necessary.” Detailed code can be found in Fig.

import numpy as np
from scipy.optimize import minimize

def algo(initial_population, individual_upper, individual_lower, objective_function):
max_evaluations = 30000
evaluations = 0
num_individuals, num_dimensions = initial_population.shape
population = initial_population.copy()
best_solution = population[np.argmin([objective_function(ind) for ind in populationl])

]

while evaluations < max_evaluations:
niche_fitness = np.array([objective_function(ind) for ind in population])
best_niche_indices = np.argsort(niche_fitness) [:num_individuals // 5]

for i in range(num_individuals):
mutation_strategy = np.random.choice([’best’, ’rand’])
if mutation_strateg == ’best’:
mutation_vector = best_solution + np.random.uniform(-0.5, 0.5,
num_dimensions)
else:
indices = np.random.permutation(num_individuals) [:3]
x1, x2, x3 = population[indices]
mutation_vector = x1 + 0.5 * (x2 - x3)
mutation_vector = np.clip(mutation_vector, individual_lower, individual_upper
)
crossover_mask = np.random.rand(num_dimensions) < 0.5
trial_vector = np.where(crossover_mask, mutation_vector, population[i])
trial_vector = np.clip(trial_vector, individual_lower , individual_upper)

new_fitness = objective_function(trial_vector)
evaluations += 1

if new_fitness < niche_fitness[i]:
population[i] = trial_vector
if new_fitness < objective_function(best_solution):
best_solution = trial_vector

for idx in best_niche_indices:
local_search_candidate = minimize(objective_function, population[idx], bounds
=list(zip(individual_lower , individual_upper))) .x
new_local_fitness = objective_function(1ocal_search_candidate)
evaluations += 1

if new_local_fitness < objective_function(best_solution):
best_solution = local_search_candidate

if np.std(niche_fitness) < le-5:
break

return best_solution

Figure 17: The best PartEvo-generated Meta-heuristic for P1.
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Meta-heuristic 2 represents the most effective algorithm generated by PartEvo for benchmark P2.
It achieves an optimal fitness value of 800 on the training sets and outperforms the algorithms
generated by the peer LES method on the testing set. Thought of Meta-heuristic 2 is as follows:
This algorithm, named Enhanced Adaptive Chaotic Differential Evolution with Dynamic Local
Search and Diversity Management (EACDE-DLSDM), refines the existing EACDE framework by
incorporating enhanced chaotic initialization, strategic adjustment of mutation rates, adaptive local
search techniques, and a more robust diversity maintenance strategy. By optimizing the balance
between exploration and exploitation, the algorithm systematically updates the population based on
performance feedback, dynamically alters the local search radius based on stagnation detection, and
integrates both structured and random local searches for improved solution refinement. This approach
aims to effectively minimize the objective function while ensuring diverse and high-quality solutions
are retained throughout the optimization process.” Detailed code can be found in Fig. [T§]

Meta-heuristic 3 represents the most effective algorithm generated by PartEvo for benchmark P3. It
outperforms widely used DE-based hybrid algorithms. To ensure execution efficiency, it employs
multi-processing for computation. Thought of Meta-heuristic 3 is as follows: “The modified
algorithm, named Enhanced Adaptive Hybrid Differential Evolution with Self-Adjusting Local
Search (EAHDE-SALS), incorporates several key improvements over the original AHDE-SALS
framework. It utilizes advanced adaptive mechanisms that dynamically adjust both mutation and
crossover rates based on population diversity and solution success. The local search component
has been enhanced with a hybrid mechanism that combines perturbative refinement with gradient-
awareness to optimally exploit promising regions of the solution space. The memory management
system is refined to retain not just elite solutions but also a diverse set of high-performing candidates,
ensuring that exploration of the solution space remains effective and robust. The algorithm proceeds
through initial population evaluation, global search via differential evolution, localized searches,
dynamic parameter adjustments, and concludes once the evaluation limit is reached.” Detailed
implementation can be found in Fig. [19

Meta-heuristic 4 represents the most effective algorithm generated by PartEvo for benchmark
P4. It has achieved impressive results on P4, reducing costs by 90.1% on real-world scheduling
compared to human-designed DE-based algorithms. Thought of Meta-heuristic 4 is as follows:
“The proposed algorithm, named "Enhanced Adaptive Hybrid Genetic-Differential Evolution with
Enhanced Memory, Dynamic Local Search, and Novel Perturbation Scheme," aims to strike a balance
between exploration and exploitation more effectively. Key enhancements include: 1) Implementing
a novel approach for elite solution selection that emphasizes diversity, 2) Utilizing an adaptive
perturbation strategy that introduces variations to the population, drawn from both elite solutions and
randomly generated candidates, 3) Enhancing the local search process to explore the neighborhood
of elite solutions more aggressively, using a combined memory that recalls previous successful
perturbations, and 4) Integrating a cooling temperature mechanism to modulate mutation strength
dynamically. The iterative process will continue until the evaluation limit is reached, ensuring the
best-found solution is returned at the end.” Detailed implementation can be found in Fig. 20

I Licenses for used assets

Since Funsearch is not officially open-source, we conducted our experiments using the version of
Funsearch provided on the LLM4AD platform.

Table 20: Asset Usage and License Information

Type Asset License Usage
Funsearch [6]] MIT License Evaluation

Code EoH [[7] MIT License Evaluation
ReEvo [8] MIT License Evaluation

Dataset LLM4AD [49] MIT License Testing
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def logistic_map(x, r=3.99):
return r * x * (1 - x)

def algo(initial_population, individual_upper, individual_lower, objective_function):
population = initial_population.copy()
best_solution = population[0]

best_value = objective_function(best_solution)

evaluations = len(population)

max_evaluations, stagnation_count, stagnation_limit = 30000, 0O, 1500
local_search_radius = 0.1 * (individual_upper - individual_lower)
mutation_base, diversification_rate = 0.5, 0.15

while evaluations < max_evaluations:
if stagnation_count >= stagnation_limit:

diversification_count = int(len(population) * diversification_rate)
for _ in range(diversification_count):
random_solution = np.random.uniform(individual_lower , individual_upper,
size=population.shape [1])
population[np.random.randint (population.shape[0])] = random_solution
local_search_radius *= 0.5
stagnation_count = 0
chaos_map = np.zeros_like(population)
for i in range(population.shape[0]):
chaos_map[i] = logistic_map(np.random.rand())
chaos_map[i] = chaos_map[i] * (individual_upper - individual_lower) +

individual_lower
population = (population + chaos_map) / 2
for i in range(population.shape[0]):
current_solution = population[il]
current_value = objective_function(current_solution)
evaluations += 1
if current_value < best_value:

best_value = current_value
best_solution = current_solution.copy()
stagnation_count = 0
else:
stagnation_count += 1
adaptive_mutation_factor = mutation_base * (l1-best_value/(best_value + 1e-10))
for i in range(population.shape[0]):
selected_indices = np.random.choice(population.shape[0], size=3, replace=
False)
parentl, parent2 = selected_indices[:2] if objective_function(populationl[
selected_indices [0]]) < objective_function(population[selected_indices
[1]]) else selected_indices[1:3]
donor_vector = np.clip(population[parentl] + adaptive_mutation_factor*(
population[parent2]-population[il), individual_lower, individual_upper)
trial_solution = np.clip(donor_vector + np.random.normal(scale=0.1*np.std(

population), size=population.shape[1]), individual_lower,
individual_upper)

trial_value = objective_function(trial_solution)

evaluations += 1

if trial_value < best_value:

best_value = trial_value
best_solution = trial_solution.copy()
stagnation_count = 0
for i in range(population.shape[0]):

local_neighborl = population[i] + np.random.uniform(-local_search_radius,
local_search_radius, size=population.shapel[1])

local_neighbor2 = population[i] + np.random.uniform(-local_search_radius *
0.5, local_search_radius * 0.5, size=population.shapel[1])

local_neighborl = np.clip(local_neighborl, individual_lower, individual_upper
)

local_neighbor2 = np.clip(local_neighbor2, individual_lower, individual_upper
)

best_local_solution = local_neighborl if objective_function(local_neighborl)
< objective_function(local_neighbor2) else local_neighbor2

neighbor_value = objective_function(best_local_solution)

evaluations += 1
if neighbor_value < best_value:

best_value = neighbor_value
best_solution = best_local_solution.copy()
stagnation_count = 0

if evaluations % 1000 == O:

local_search_radius *= 1.05

return best_solution

Figure 18: The best PartEvo-generated Meta-heuristic for P2.
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import numpy as np
from concurrent.futures import ProcessPoolExecutor

def evaluate_solution(solution, objective_function):
return objective_function(solution)

def algo(initial_population, individual_upper, individual_lower , objective_function):
population = initial_population.copy()

num_individuals, num_variables = population.shape
evaluations = 0

best_solution = None

best_objective = float(’inf’)

memory = []

success_rate = 0.5

mutation_factor = 0.5

crossover_rate = 0.5

elite_size = int (0.1 * num_individuals)

while evaluations < 30000:
for i in range(num_individuals):

indices = list(range(num_individuals))

indices.remove (i)

a, b, ¢ = np.random.choice(indices, 3, replace=False)

mutant = np.clip(population[a] + mutation_factor * (population[b] -

population[c]), individual_lower, individual_upper)
trial = np.copy(population[il)
for j in range (num_variables):
if np.random.rand() < crossover_rate:
trial[j] = mutant[j]

f_trial = evaluate_solution(trial, objective_function)
evaluations += 1

if f_trial < best_objective:
best_objective = f_trial

best_solution = trial
f_current = evaluate_solution(population[i], objective_function)
if f_trial < f_current:

population[i] = trial

success_rate += 1
if f_trial < best_objective:
memory .append (trial)

diversity = np.std([evaluate_solution(ind, objective_function) for ind in
population])
mutation_factor = np.clip(success_rate / num_individuals, 0.1, 1.0)

1
crossover_rate np.clip(success_rate / num_individuals * 0.5, 0.1, 0.9)

success_rate = 0

if len(memory) > 10:
unique_memory = set(map(tuple, memory))
memory = sorted(list(unique_memory), key=lambda sol: evaluate_solution(sol,
objective_function)) [:10]

local_search_size = np.clip(0.1 / (1 + diversity), 0.01, 0.1)

with ProcessPoolExecutor () as executor:

results = list(executor.map(lambda mem_solution: evaluate_solution(np.clip(
mem_solution + (np.random.rand(num_variables) * 2 - 1) x*
local_search_size, individual_lower , individual_upper),
objective_function), memory))

for index, f_local in enumerate (results):
evaluations += 1
if f_local < best_objective:

best_objective = f_local
best_solution = np.clip(memory[index] + (np.random.rand(num_variables
) * 2 - 1) * local_search_size, individual_lower,

individual_upper)

elite_individuals = sorted(population, key=lambda ind: evaluate_solution(ind,
objective_function))[:elite_size]
population[-elite_size:] = elite_individuals

return best_solution

Figure 19: Meta-heuristic 3: The best PartEvo-generated Meta-heuristic for P3.
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def algo(initial_population, individual_upper, individual_lower, objective_function):
population = np.copy(initial_population)

population_size, dimensions = population.shape
eval_count, best_solution, best_fitness = 0, None, float(’inf?’)
max_evaluations,stagnation_count, max_stagnation = 30000, O, 100
elite_count = max (1, population_size // 10)
initial_temp, cooling_rate, elite_memory = 1.0, 0.95, []
def latin_hypercube_sampling(size, dimensions, lower, upper):
intervals = np.linspace(lower, upper, size + 1)
points = np.random.rand(size, dimensions)
sample = intervals[:-1] + (intervals[1:] - intervals[:-1]) * points
return np.clip(sample, lower, upper)
population = latin_hypercube_sampling(population_size, dimensions, individual_lower,
individual_upper)
fitness_values = np.array([objective_function(ind) for ind in population])
eval_count += population_size
best_solution = population[np.argmin(fitness_values)]
best_fitness = np.min(fitness_values)

elite_memory.append(best_solution)
while eval_count < max_evaluations:

selected_indices = np.argsort(fitness_values)[:elite_count]

parents = population[selected_indices]

offspring = []

temp = initial_temp * (cooling_rate ** (eval_count // population_size))

for _ in range(population_size // 2):
parentl,parent2=parents[np.random.choice (parents.shape[0], 2, replace=False)]
crossover_point = np.random.randint(l, dimensions)

childl=np.concatenate ((parentl[:crossover_point],parent2[crossover_point:]))
child2=np.concatenate ((parent2[:crossover_point],parentl[crossover_point:]))
for child in [childl, child2]:
if np.random.rand() < 0.5:
mutation_idx = np.random.randint (0, dimensions)
child [mutation_idx] = np.clip(np.random.uniform(individual_lower [
mutation_idx], individual_upper [mutation_idx]) * temp,
individual_lower [mutation_idx], individual_upper [mutation_idx])
offspring.append(np.clip(child, individual_lower, individual_upper))
offspring, local_search_steps = np.array(offspring), 5
for ind in offspring:
for _ in range(local_search_steps):
perturb_idx = np.random.randint (dimensions)
trial_solution = np.copy(ind)
trial_solution[perturb_idx] = np.clip(np.random.uniform(individual_lower [
perturb_idx], individual_upper [perturb_idx]), individual_lower[
perturb_idx], individual_upper [perturb_idx])
if objective_function(trial_solution) < objective_function(ind):
ind[:] = trial_solution
fitness_values=np.append(fitness_values,[objective_function(ind) for ind in
offspringl)
eval_count += offspring.shape [0]
combined_population = np.vstack((population, offspring))

combined_fitness = fitness_values.argsort()[:population_size]
population = combined_population[combined_fitness]
fitness_values = fitness_values[combined_fitness]
current_best_fitness = np.min(fitness_values)
if current_best_fitness < best_fitness:
best_fitness = current_best_fitness
best_solution = population[np.argmin(fitness_values)]
elite_memory.append(best_solution)
stagnation_count = 0
else:

stagnation_count += 1
if stagnation_count >= max_stagnation:

perturb_idx = np.random.randint (0, population_size)
population[perturb_idx] = np.clip(np.random.rand(dimensions) * (
individual_upper - individual_lower) + individual_lower,

individual_lower , individual_upper)
if elite_memory:

population[perturb_idx] = np.copy(elite_memory[np.random.choice(len(
elite_memory))])
stagnation_count = 0
elite_memory = list(set(map(tuple, elite_memory)))
if len(elite_memory) > elite_count:
elite_memory = elite_memory[-elite_count:]

return best_solution

Figure 20: The best PartEvo-generated Meta-heuristic for P4.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims are that integrating niche-based EC techniques into Large Lan-
guage Model-assisted Evolutionary Search (LES) can improve the efficiency of automated
algorithm discovery. We propose a LES framework that incorporates abstract search space
partitioning to enable structured niche construction. We instantiate PartEvo and conduct
comprehensive experiments to validate our claims. These are accurately conveyed in both
the abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The Limitation of the PartEvo is performed in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results. Instead, it demonstrates through
experiments that the integration of niche-based techniques into the LES method enhances
the efficiency of algorithm discovery.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The technical details of the PartEvo framework are provided in Section Sec-
tion 3] The information required to reproduce the experiments is detailed in Appendix
The prompts involved in PartEvo are thoroughly presented in Appendix [D]

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

42



(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The source code can be found in https://github.com/Qingl.2000/PartEvo.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setting, including benchmarks, baselines, and implementa-
tion details, is described in Section[d.1] The details of the four benchmarks are provided in
Appendix|[G] The hyperparameters used in the experiments are listed in Appendix [B.1]

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The average performance and standard deviation of four independent runs on
all benchmarks are provided in Section |4.2]

Guidelines:
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8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information on the computer resources needed to reproduce the experi-
ments is provided in Appendix[A.2]and [B.1]

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This paper fully complies with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: The societal impacts are discussed in Appendix[A.4]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The licenses for the existing assets are detailed in Appendix|I]
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are introduced at this time.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: This paper focuses on improving the efficiency of the LLM-assisted evolution-
ary search method for automated algorithm discovery. LLMs play a core role in algorithm
generation in this study, and we describe their usage in detail in Section[3.2] Additionally,
detailed LLM prompts are presented in Appendix

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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