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Abstract

The conditional randomization test (CRT) was recently pro-
posed to test whether two random variables X and Y are con-
ditionally independent given random variables Z. The CRT
assumes that the conditional distribution of X given Z is
known under the null hypothesis and then it is compared to
the distribution of the observed samples of the original da-
ta. The aim of this paper is to develop a novel alternative of
CRT by using nearest-neighbor sampling without assuming
the exact form of the distribution of X given Z. Specifically,
we utilize the computationally efficient 1-nearest-neighbor to
approximate the conditional distribution that encodes the null
hypothesis. Then, theoretically, we show that the distribution
of the generated samples is very close to the true conditional
distribution in terms of total variation distance. Furthermore,
we take the classifier-based conditional mutual information
estimator as our test statistic. The test statistic as an empiri-
cal fundamental information theoretic quantity is able to well
capture the conditional-dependence feature. We show that our
proposed test is computationally very fast, while controlling
type I and II errors quite well. Finally, we demonstrate the
efficiency of our proposed test in both synthetic and real data
analyses.

Introduction
Conditional independence testing (CIT) has wide applica-
tions in statistics and machine learning, including causal in-
ference (Spirtes et al. 2000; Pearl 2009; Cai, Li, and Zhang
2022) and graphical models (Lauritzen 1996; Koller and
Friedman 2009) as two well-known examples. The aim of
this paper is to develop a flexible and fast method for C-
IT. Specifically, we consider two univariate continuous ran-
dom variables X and Y , and a set of random variables
Z ∈ RdZ , whose dimension dZ can potentially diverge to in-
finity, with a joint density function given by pX,Y,Z(x, y, z).
Based on n independently and identically distributed (i.i.d)
copies {(Xi, Yi, Zi) : i = 1, . . . , n} of (X,Y, Z), we are
interested in testing whether two random variables X and Y
are conditionally independent given Z; that is,

H0 : X ⊥⊥ Y |Z versus H1 : X 6⊥⊥ Y |Z,
∗Corresponding author: Ziqi Chen.
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where ⊥⊥ denotes the independence. The high dimensional-
ity of Z makes CIT challenging (Bellot and van der Schaar
2019; Shi et al. 2021). Our proposed method can be readily
extended to the scenario of multivariate X and Y .

Recently, many methods have been proposed to test con-
ditional independence. See, for example, Candes et al.
(2018), Zhang et al. (2011), Zhang et al. (2017), Bellot
and van der Schaar (2019), Strobl, Zhang, and Visweswaran
(2019), Berrett et al. (2020), Shah and Peters (2020), Shi
et al. (2021), and Zhang et al. (2022). Among them, the con-
ditional randomization test (CRT) proposed by Candes et al.
(2018) is one of the most important methods, but CRT as-
sumes that the true conditional distribution pX|Z is known.
Conditional on {Z1, . . . , Zn}, one can independently draw
X

(m)
i ∼ pX|Z=Zi

for each i across m = 1, . . . ,M such
that all X(m) := (X

(m)
1 , . . . , X

(m)
n ) are independent of

X := (X1, . . . , Xn) and Y := (Y1, . . . , Yn), where M is
the number of repetitions. Thus, under the null hypothesis
H0 : X ⊥⊥ Y |Z, we have (X(m), Y, Z)

d
= (X,Y, Z) for all

m, where d
= denotes equality in distribution. A large differ-

ence between (X(m), Y, Z) and (X,Y, Z) can be regarded
as a strong evidence against H0. Statistically, one can con-
sider a test statistic T (X,Y ,Z) and approximate its p-value
by

1 +
∑M
m=1 I(T (X(m),Y ,Z) ≥ T (X,Y ,Z))

1 +M
, (1)

where I(·) is the indicator function. Under H0, the p-value
is valid and P (p ≤ α|H0) ≤ α holds for any α ∈ (0, 1).

Several methods have been developed based on differen-
t approximations to pX|Z , since pX|Z is rarely known in
practice. For instance, Bellot and van der Schaar (2019) de-
veloped a Generative Conditional Independence Test (GC-
IT) by using Wasserstein generative adversarial network-
s (WGANs, Arjovsky, Chintala, and Bottou, 2017) to ap-
proximate pX|Z . Let p̂X|Z be an estimator of pX|Z based
on WGANs. Theoretically, as shown in Bellot and van der
Schaar (2019), the excess type I error over a desired level
α of their GCIT test is bounded by E{dTV (pX|Z , p̂X|Z)},
where dTV denotes the total variation distance. However,
Figure 1 shows that p̂X|Z approximates pX|Z very poorly in



two relatively simple simulation settings. Thus, as shown in
synthetic data analysis, the GCIT test has inflated type-I er-
rors. Recently, Shi et al. (2021) proposed to use the Sinkhorn
GANs (Genevay, Peyré, and Cuturi 2018) to approximate
pX|Z . As shown in Figure 1, we find that the Sinkhorn GAN-
s also perform poorly in the two relatively simple simulation
settings.

The choice of test statistics in CRT is crucial for achieving
adequate statistical power as well as controlling type I errors,
whereas it has not been carefully investigated. For instance,
Bellot and van der Schaar (2019) proposed to consider mul-
tiple test statistics, including the Maximum Mean Discrep-
ancy (MMD), the Pearsons correlation coefficient (PCC),
the distance correlation (DC), and the Kolmogorov-Smirnov
distance (KS), but little is known about how to appropriately
choose test statistics in different scenarios. Moreover, test s-
tatistics that solely measure the dependence between X and
Y may suffer from inflated type-I errors and/or inadequate
power under H1. We consider two scenarios, including (i) a
simple Markov chain X → Z → Y and (ii) X → Z ← Y ,
where direct arrows connecting two random variables are di-
rect causes. In both scenarios, test statistics that solely mea-
sure the dependence between X and Y increase type I er-
rors and/or lose the statistical power in testing H0 against
H1. Thus, it is required to use test statistics that can cap-
ture the conditional dependence. In this paper, we consider
the conditional mutual information (CMI) for (X,Y, Z), de-
noted as I(X;Y |Z), and its empirical version (Mukherjee,
Asnani, and Kannan 2020), since it provides a strong theo-
retical guarantee for conditional dependence relations such
that I(X;Y |Z) = 0 ⇐⇒ X ⊥⊥ Y |Z (Cover and Thomas
2012). The CMI has been widely used in causal learning
(Hlinka et al. 2013), graph models (Liang and Wang 2008),
and feature selection (Fleuret 2004). However, the empiri-
cal CMI can be computationally difficult especially for high
dimensional Z.

In this paper, we propose a novel CIT method based on
the 1-nearest-neighbor sampling strategy (NNSCIT) to sim-
ulate samples from a distribution that is approximately close
to the true density pX|Z . The nearest-neighbor sampling first
developed by Fix and Hodges (1951) has been widely used
in density estimation, classification, and regression problem-
s (Silverman 2018; Cover and Hart 1967; Devroye et al.
1994). Recently, Sen et al. (2017) used the nearest-neighbor
bootstrap procedure to generate samples from the joint dis-
tribution of (X,Y, Z) under X ⊥⊥ Y |Z. Compared with
GANs, 1-nearest-neighbor (1-NN) not only demonstrates
computational efficiency, but also exhibits superiority in ap-
proximating quality.

We make four major contributions as follows. First, we
propose to use the 1-NN method to generate samples from
the approximated conditional distribution ofX given Z. The
1-NN is computationally much more efficient than WGANs
(Bellot and van der Schaar 2019) and the Sinkhorn GANs
(Shi et al. 2021). Theoretically, we show that the distribu-
tion of samples generated from 1-NN is very close to the
true conditional distribution in terms of the total variation
distance. Second, we take I(X;Y |Z) as our test statistic
and estimate it empirically using the recent classifier-based

Algorithm 1: 1-Nearest-Neighbor sampling (1-
NN(V1,V2,n))
Input: Data sets V1 and V2, both with sample size n and
V = V1 ∪ V2 consists of 2n i.i.d. samples from pX,Z .
Output: Generate X̃ from X|Z for each Z-coordinate in
V2.

1: Let U0 = ∅.
2: for (X,Z) in V2 do
3: Go to V1 to find the sample (X̃, Z̃) such that Z̃ is the

1-nearest neighbor of Z in terms of the l2 norm.
4: U0 = U0 ∪ {X̃}.
5: end for
6: return U0

method (Mukherjee, Asnani, and Kannan 2020). Third, for
the pseudo samples X̃(m) (m = 1, . . . ,M ) generated from
1-NN, we provide insights to replace I(X̃(m);Y |Z) with
I(X̃(m);Y ) to speed up the calculation, because estima-
tions of I(X̃(m);Y |Z)s are very computationally intensive
especially for the case that the dimensionality of Z is high.
Fourth, our proposed test not only asymptotically achieves
a valid control of the type I error, but also outperforms all
competing tests in numerical studies.

1-Nearest-Neighbor Sampling
In this section, we present the 1-NN sampling algorithm, as
well as its theoretical and empirical results stating that the
distribution of the sample generated resembles closely the
true conditional distribution.

1-NN Sampling from pX|Z(x|z)
We have two data sets V1 and V2, both with sample size n,
such that V = V1 ∪ V2 consisting of 2n i.i.d. samples from
the distribution pX,Z(x, z). Given all Z coordinates in V2,
Algorithm 1 presents the procedure to generate a data set U0

consisting of n samples, which mimics samples generated
from pX|Z(x|z). Specifically, for each Z coordinate in V2,
we search the nearest neighbor (X̃, Z̃) in V1 in terms of the
Z coordinate in l2 norm and then add X̃ to U0. When V is a
set containing samples from the distribution pX,Y,Z(x, y, z),
Algorithm 1 continues to work with the Y -coordinates ig-
nored.

Theoretical Results
For a given Z coordinate in V2, we show that the distribution
of X̃ generated in Algorithm 1 is very close to the true con-
ditional distribution in terms of the total variation distance.
Before presenting our theoretical result, we first introduce
Lemma 1 of Cover and Hart (1967), which states that the
nearest neighbor of Z converges almost surely to Z as the
training size n grows to infinity.
Lemma 1. Let Z and Z1, Z2, . . . , Zn be i.i.d. random vari-
ables according to p(z). Let Z ′n be the nearest neighbor to
Z from the set {Z1, Z2, . . . , Zn}. Then Z ′n converges almost
surely to Z as n grows to infinity.



We next present several standard regularity conditions,
which have been introduced in Gao, Oh, and Viswanath
(2016), Gao, Oh, and Viswanath (2017) and Sen et al.
(2017). For the sake of simplicity, subscripts may be
dropped. For example, p(x|z) may be used in place of
pX|Z(x|z).
Smoothness assumption on p(x|z): A smoothness condi-
tion is assumed on p(x|z), which can be regarded as a gen-
eralization of the boundedness of the maximum eigenvalue
of Fisher Information matrix of x w.r.t z.
Assumption 1. For all z ∈ Rdz and all a such that
‖a− z‖2 ≤ ε1, we have 0 ≤ λmax(Ia(z)) ≤ β, where
β > 0, ‖·‖2 is the l2 norm and the generalized curvature
matrix Ia(z) = (Ia(z)ij) is defined as

Ia(z)ij = E

(
−∂

2 log p(x|z̃)
∂z̃i∂z̃j

|z̃=a
∣∣∣∣Z = z

)
=

(
∂2

∂z̃i∂z̃j

∫
log

p(x|z)
p(x|z̃)

p(x|z)dx
) ∣∣∣∣

z̃=a

.

Smoothness assumptions on p(z):
Assumption 2. The probability density function p(z) is
twice continuously differentiable, and the Hessian ma-
trix Hp(z) of the p.d.f. p(z) with respect to z satisfies
‖Hp(z)‖2≤ cdz almost everywhere, where cdz is only
dependent on dz .

Given Z, let X̃ denote the sample produced by 1-NN such
that X̃ = X ′n is the X-coordinate of the sample (X ′n, Z

′
n)

in V1 with Z ′n being the nearest neighbor of Z. There is no
doubt that X̃ ∼ p(x|Z ′n). Let p̂(x|Z) := p(x|Z ′n). For any
two distributions P1 and P2 that are defined on the same
probability space, the total variation distance between P1

and P2 is defined as dTV (P1, P2) = supA⊂Ω |P1(A) −
P2(A)|, where the supremum is taken over all measurable
subsets of the sample space Ω. We have the following theo-
rem and leave its proof in the Supplementary Materials.

Theorem 2. Under Assumptions 1 and 2, we have
dTV (p(x|Z), p(x|Z ′n)) = dTV (p(x|Z), p̂(x|Z)) = op(1),
as the sample size n in V1 goes to infinite.

Empirical Goodness of Fit
In this subsection, we investigate the empirical goodness-of-
fit performance of samples generated from 1-NN. We con-
sider the following two scenarios.
Scenario 1. X ∼ Uniform[0, 1] and Z are assumed to be in-
dependent, where Z is a 50-dimensional multivariate Gaus-
sian distribution with mean vector (0.7, 0.7, . . . , 0.7) and the
identity covariance matrix. The true conditional distribution
of X|Z is the same with that of X .
Scenario 2. Set X = ATf Z + ε, where the entries of Af are
randomly and uniformly sampled from [0, 1] and then nor-
malized to the unit l1 norm and Z is generated from a 50
dimensional multivariate Gaussian distribution with mean
vector (0.7, 0.7, . . . , 0.7) and the identity covariance matrix.
The noise variables ε’s are independently sampled from a
normal distribution with mean zero and variance 0.49.

Figure 1: The conditional histograms.

For each of the two models, we generate n = 1000 sam-
ples. Randomly choose 500 samples as the training dataset
V1 and the remaining as the testing dataset V2. For 1-NN, we
generate 500 pseudo samples by 1-NN(V1, V2, 500). Given
each Z coordinate in V2, we also generate pseudo samples
X̃ using the WGANs and the Sinkhorn GANs, respective-
ly. Figure 1 shows the conditional histograms of the gen-
erated samples as well as the true samples all normalized to
range [0, 1] for Scenarios 1 and 2, respectively. It is observed
that the 1-NNs fit the conditional densities reasonably well,
whereas WGANs and the Sinkhorn GANs perform poorly.
Specifically, WGANs tend to be biased towards either 0 or
1, and the Sinkhorn GANs cannot capture the feature of the
true conditional distribution.

Nearest-Neighbor Sampling Based CIT
In this section, we introduce our CIT based on the nearest-
neighbor sampling (NNSCIT) and present the pseudo code
of computing NNSCIT and its p-value in Algorithm 2.
Moreover, theoretically, we show that our proposed test
achieves a valid control of the type-I error.

The Proposed CIT Approach
Our CIT test is based on an approximation of CMI
I(X;Y |Z) = I(X;Y, Z) − I(X;Z), where I(X;Y,Z)
and I(X;Z) are, respectively, the mutual information of
(X;Y, Z) and that of (X;Z). We construct our CIT statis-
tic as a classifier-based CMI estimator (CCMI, Mukherjee,
Asnani, and Kannan, 2020) of I(X;Y |Z) given by

Î(X;Y |Z) = Î(X;Y,Z)− Î(X;Z), (2)



where Î(X;Y,Z) (or Î(X;Z)) is a classifier-based estima-
tor of I(X;Y,Z) (or I(X;Z)). By Theorem 1 in Mukherjee,
Asnani, and Kannan (2020), Î(X;Y |Z) is a consistent esti-
mator of I(X;Y |Z). Furthermore, generate samples X̃(m)

(m = 1, . . . ,M ) from 1-NN conditioned on Z, we can show
that Î(X̃(m);Y |Z)−I(X̃(m);Y |Z) converges to zero for all
m.

Without loss of generality, we discuss how to approx-
imate I(X;Z) = DKL(pX,Z(x, z)||pX(x)pZ(z)), where
pX,Z(x, z) is the joint density of (X,Z) and pX(x) and
pZ(z) are, respectively, the marginal density of X and Z.
Moreover, DKL(F ||G) =

∫
f(x) log(f(x)/g(x))dx is the

Kullback-Leibler (KL) divergence between two distribution
functions F and G, whose density functions are given by
f(x) and g(x), respectively. The Donsker-Varadhan (DV)
representation of DKL(F ||G) is given by

sup
s∈S

[Ex∼fs(x)− log{Ex∼g exp(s(x))}] , (3)

where the function class S includes all functions with finite
expectations in (3). The optimal function in (3) is given by
s∗(x) = log(f(x)/g(x)) (Belghazi et al. 2018), leading to

DKL(F ||G) = Ex∼f log

{
f(x)

g(x)

}
−log

[
Ex∼g

{
f(x)

g(x)

}]
.

(4)
Following Mukherjee, Asnani, and Kannan (2020), we use
the classier two-sample principle (Lopez-Paz and Oquab
2016) to estimate the likelihood ratio L(x) = f(x)/g(x) as
follows. Specifically, we consider n i.i.d. samples {Xf

i }ni=1

with Xf
i ∼ f(x) and d i.i.d. samples {Xg

j }dj=1 with Xg
j ∼

g(x). We label yfi = 1 for allXf
i and ygj = 0 for allXg

j . One
trains a binary classifier using deep neural network on this
supervised classification task. The classifier produces pre-
dicted probability αl = Pr(y = 1|Xl) for a given sample
Xl, leading to an estimator of the likelihood ratio on Xl giv-
en by L̂(Xl) = αl/(1 − αl). Therefore, it follows from (4)
that an estimator of the KL-divergence, D̂KL(F ||G), is giv-
en by

n−1
n∑
i=1

log L̂(Xf
i )− log

d−1
d∑
j=1

L̂(Xg
j )

 .

Since mutual information is a special case of the KL diver-
gence, we obtain the estimator Î(X;Z) of I(X;Z) and that
of I(X;Y,Z).

Following the idea of CRT, the p-value of our CIT method
can be given by

p =
1 +

∑M
m=1 I

(
Î(X̃(m);Y |Z) ≥ Î(X;Y |Z)

)
1 +M

. (5)

In Lemma 3, we show that the excess type I error of the
test based on (5) is bounded by the total variation distance
between pX|Z(·|Z) and p̂X|Z(·|Z). By Theorem 2, we fur-
ther get P (p ≤ α|H0) ≤ α + o(1). Therefore, the excess
type I error of our CIT method is guaranteed to tend to zero

as n → ∞. Two binary classifications based on deep neu-
ral network should be trained to get Î(X̃(m);Y |Z) for each
m. Together with Î(X;Y |Z), 2(M + 1) binary classifica-
tion neural networks should be trained for computing the
p-value in (5). When M is large, the calculation is extreme-
ly intensive and time consuming, especially for the case that
the dimensionality of Z is high.

In (5), instead of using Î(X̃(m);Y |Z), we further pro-
pose to utilize Î(X̃(m);Y ) calculated by the method of Mes-
ner and Shalizi (2020) according to the following reasons.
First, compared with Î(X̃(m);Y |Z), Î(X̃(m);Y ) is com-
putationally very fast. Second, X̃(m) is generated from 1-
NN conditional on Z, we thus have I(X̃(m);Y |Z) = 0,
whereas X̃(m) and Y may share information via Z, that is,
I(X̃(m);Y ) ≥ I(X̃(m);Y |Z) = 0. By the consistency of
Î(X̃(m);Y |Z) and Î(X̃(m);Y ), we conclude that replacing
Î(X̃(m);Y |Z) with Î(X̃(m);Y ) can improve controlling the
probability of making type I error of our CIT method. Thus,
we propose a simple counterpart of (5) for p-value calcula-
tion as follows:

p =
1 +

∑M
m=1 I

(
Î(X̃(m);Y ) ≥ Î(X;Y |Z)

)
1 +M

. (6)

Since X̃(m)
i s are generated by the 1-NN sampling strategy,

we call our test as NNSCIT. Equation (6) lays the founda-
tion of our CIT method, whose pseudo code has been sum-
marized in Algorithm 2.

We describe how to obtain Î(X̃(m);Y ). Specifically, giv-
en i.i.d. samples {(X̃i, Yi)}ni=1 with (X̃i, Yi) ∼ pX̃,Y . Let

ρk,i/2 be the l∞-distance from point (X̃i, Yi) to its kth n-
earest neighbor. Define

nX̃,i = |{X̃j : |X̃i − X̃j | ≤ ρk,i/2 , j 6= i}|,

where |A| is the number of elements in the set A. Similarly,
define nY,i. For each i, we define

δi = ψ(k)− ψ(nX̃,i)− ψ(nY,i) + ψ(n),

where ψ(x) := d log Γ(x)/dx is the digamma function.
Therefore, we have

Î(X̃;Y ) = max

{
1

n

n∑
i=1

δi, 0

}
. (7)

It follows from Theorems 3.1 and 3.2 in Mesner and Shalizi
(2020) that Î(X̃;Y ) is a consistent estimator of I(X̃;Y ).

Finally, we discuss why we cannot replace Î(X;Y |Z) by
Î(X;Y ) in (6). One may think of approximating p-value as
follows:

p =
1 +

∑M
m=1 I

{
Î(X̃(m);Y ) ≥ Î(X;Y )

}
1 +M

, (8)

which results in another CRT test. Let ĉα be the upper α
quantile of the distribution of Î(X̃(m);Y ). Given signifi-
cance level α, the rejection regions of (6) and (8) are given



Algorithm 2: Nearest-Neighbor sampling based conditional
independence test (NNSCIT)
Input: Data-set U of n i.i.d. samples from pX,Y,Z .
Parameter: The number of repetitions M ; the neighbor or-
der k in MI estimation; the significance level α.
Output: Accept H0 : X ⊥⊥ Y |Z or H1 : X 6⊥⊥
Y |Z.

1: Randomly divide U into two disjoint parts: U1 :=
{Xtrain, Ytrain, Ztrain} with sample size n − bn/3c
and U2 := {Xtest, Ytest, Ztest} with sample size
bn/3c.

2: m = 1.
3: while m ≤M do
4: Randomly taking bn/3c samples from U1 to obtain

V1.
5: Produce Um0 := {X̃(m)} using 1-NN(V1,U2, bn/3c)

in Algorithm 1.
6: Compute I(m) := Î({X̃(m)}; {Ytest}) according to

Equ. (7).
7: m = m+ 1.
8: end while
9: Compute I := Î({Xtest}; {Ytest}|{Ztest}) according

to Equ. (2).

10: Compute p-value: p :=
1+

∑M
m=1 I{I

(m)≥I}
1+M .

11: if p ≥ α then
12: Accept H0 : X ⊥⊥ Y |Z.
13: else
14: Accept H1 : X 6⊥⊥ Y |Z.
15: end if

by {Î(X;Y |Z) > ĉα} and {Î(X;Y ) > ĉα}, respective-
ly. Under H1, I(X;Y |Z) should deviate from zero. Intu-
itively, the test with rejection region {Î(X;Y |Z) > ĉα} is
more likely to accept H1 than that with {Î(X;Y ) > ĉα}.
For example, consider X → Z ← Y . This relation indi-
cates X 6⊥⊥ Y |Z (H1 holds), but X and Y may be inde-
pendent. Therefore, the rejection region {Î(X;Y |Z) > ĉα}
could detect H1, but {Î(X;Y ) > ĉα} may fail to do so.
That is, the test using (6) is generally more powerful than
that using (8) under H1. Consider another special case when
X ⊥⊥ Z, we obtain I(X;Y |Z) ≥ I(X;Y ). By the consis-
tency of Î(X;Y |Z) and Î(X;Y ), replacing Î(X;Y ) in (8)
with Î(X;Y |Z) will increase the power under H1. That is,
(6) endows more power than (8) underH1. We can reach the
same conclusion for Y ⊥⊥ Z.

Theoretical Results
In this subsection, we present theoretical results of our
NNSCIT based on (5) and (6). We introduce the fol-
lowing notation. Without loss of generality, let U2 :=
{(X1, Y1, Z1), . . . , (Xn1 , Yn1 , Zn1)} in Algorithm 2 with
n1 = bn/3c, where bxc is the largest integer not greater
than x. We define X := (X1, X2, . . . , Xn1), Y :=
(Y1, Y2, . . . , Yn1), and Z := (Z1, Z2, . . . , Zn1). Denote
P (·|Z) := p(·|Z1)×. . .×p(·|Zn1

) and P̂ (·|Z) := p̂(·|Z1)×

. . . × p̂(·|Zn1
). Assume that X̃(m) := (X̃

(m)
1 , . . . , X̃

(m)
n1 )

is sampled according to P̂ (·|Z) for m = 1, . . . ,M .
Let T (X,Y ,Z) := Î(X;Y |Z) and T (X̃(1),Y ,Z) :=

Î(X̃(1);Y |Z), . . . , T (X̃(M),Y ,Z) := Î(X̃(M);Y |Z).
Let X̃F be an additional copy sampled from P̂ (·|Z)

and independently of Y and of X, X̃(1), . . . , X̃(M). Un-
der H0: X ⊥⊥ Y |Z, conditionally on Y and Z, X

and (X̃(1), . . . , X̃(M)) are independent, and X̃F and
(X̃(1), . . . , X̃(M)) are independent. Thus, we have

dTV {((X, X̃(1), . . . , X̃(M))|Y ,Z),

((X̃F , X̃
(1), . . . , X̃(M))|Y ,Z)}

= dTV {(X|Y ,Z), (X̃F |Y ,Z)} = dTV {P (·|Z), P̂ (·|Z)}.
Define a set Aα as

Aα :=
{

(x, x̃(1), . . . , x̃(M)) :

1 +
∑M
m=1 I{T (x̃(m),Y ,Z) ≥ T (x,Y ,Z)}

1 +M
≤ α

}
.

Then, we have

P (p ≤ α|Y ,Z) = P{(X, X̃(1), . . . , X̃(M)) ∈ Aα|Y ,Z}

≤ dTV {((X, X̃(1), . . . , X̃(M))|Y ,Z),

((X̃F , X̃
(1), . . . , X̃(M))|Y ,Z)}

+ P{(X̃F , X̃
(1), . . . , X̃(M)) ∈ Aα|Y ,Z}

= dTV {P (·|Z), P̂ (·|Z)}

+ P{(X̃F , X̃
(1), . . . , X̃(M)) ∈ Aα|Y ,Z}.

Conditioning on Y and Z, X̃F , X̃
(1), . . . , X̃(M)

are identically distributed and thus exchangeable, so
P{(X̃F , X̃

(1), . . . , X̃(M)) ∈ Aα|Y ,Z} ≤ α holds and
we obtain the following result.
Lemma 3. Assume that H0 : X ⊥⊥ Y |Z is true, for any
desired significance level α ∈ (0, 1), the type I error of test
(5) satisfies

P (p ≤ α|Y ,Z) ≤ α+ dTV {P (·|Z), P̂ (·|Z)}. (9)

An immediate implication of Lemma 3 is that the type I
error rate holds unconditionally as follows:

P (p ≤ α|H0) ≤ α+ E[dTV {P (·|Z), P̂ (·|Z)}].
Furthermore, for any given test statistic T (· · · ), we can com-
pute the p-value via (1) by replacing X(m) with the 1-NN
sample X̃(m). The resulting test also enjoys (9) by similar
arguments.

Under H0, I(X̃(m);Y ) ≥ I(X̃(m);Y |Z). Denote the p
values in (5) and (6) as p and p∗, respectively. With the con-
sistency of Î(X̃(m);Y |Z) and Î(X̃(m);Y ), we obtain the
following main result.
Theorem 4. Assume that H0 holds, we have

P (p∗ ≤ α|H0)− α ≤ P (p ≤ α|H0)− α
≤ E[dTV {P (·|Z), P̂ (·|Z)}].



Figure 2: The empirical type-I error rate of various tests under H0.

dZ GCIT CCIT RCIT KCIT CMIknn DGCIT NNSCIT
5 0.11 0.36 0.53 0.72 0.03 0.50 0.01

10 0.48 0.22 0.82 0.84 0.06 0.86 0.05
15 0.87 0.21 0.85 0.93 0.15 0.91 0.05
20 0.93 0.25 0.90 0.98 0.05 0.97 0.07

Table 1: The empirical type-I error rate of various tests for Example 1.

Theorem 4 has three important implications. First, the ex-
cess type I error over a desired level α ∈ (0, 1) of the test
(6) is bounded by E{dTV (P̂ (·|Z), P (·|Z))}. Second, our
proposed method outperforms CRT (5) in controlling type I
error. Third, by Theorem 2, we get

P (p∗ ≤ α|H0) ≤ α+ o(1).

Thus, the excess type I error of our NNSCIT is guaranteed
to be small.

Performance Evaluation
In this section, we examine the finite sample performance of
our NNSCIT by using the synthetic datasets. We compare
NNSCIT with GCIT (Bellot and van der Schaar 2019), the
classifier-based CI test (CCIT) (Sen et al. 2017), the kernel-
based CI test (KCIT) (Zhang et al. 2011), RCIT (Strob-
l, Zhang, and Visweswaran 2019), the CMI-based CI test
(CMIknn) (Runge 2018), and DGCIT (Shi et al. 2021). We
leave some additional simulation studies and the real data
analysis in the Supplementary Materials. The source code
of NNSCIT is available at https://github.com/LeeShuai-
kenwitch/NNSCIT.

Performances on Synthetic Dataset
The synthetic data sets are generated by using the post non-
linear model similar to those in Zhang et al. (2011); Doran

et al. (2014); and Bellot and van der Schaar (2019). Specifi-
cally, we define (X,Y, Z) under H0 and H1 as follows:

H0 : X = f(ATf Z + εf ), Y = g(ATg Z + εg),

H1 : Y = h(AThZ + bX) + εh.

The entries of Af and Ag are randomly and uniformly sam-
pled from [0, 1] and then normalized to the unit l1 norm.
The entries of Ah are sampled from a standard normal dis-
tribution and b is set to 2. The noise variables εf , εg and εh
are independently sampled from a normal distribution with
mean zero and variance 0.49. The significance level is set
at α = 0.05 and the sample size is fixed at n = 1000. Set
M = 500 and k = 3. Consider the following four scenarios:
Scenario I. Set f , g and h to be the identity functions,

inducing linear dependencies, Z ∼ N(0.7, 1), and X ∼
N(0, 1) under H1.
Scenario II. Set f , g and h as in Scenario I, but use a

Laplace distribution to generate Z.
Scenario III. Set f , g and h as in Scenario I, but use

Uniform[−2.5, 2.5] to generate Z.
Scenario IV. Set f , g and h to be randomly sampled from{
x2, x3, tanh(x), cos(x)

}
. Set Z ∼ N(0, 1), and X ∼

N(0, 1) under H1.
We vary the dimension of Z as dZ = 30, 40, 50, 60, 70,

80, 90, 100, 110, and 120. Figures 2 and 3 include the type-



Figure 3: The empirical power of various tests under H1.

dZ GCIT CCIT RCIT KCIT CMIknn DGCIT NNSCIT
5 0.37 1 0.03 0.02 1 0.78 1

10 0.53 1 0.04 0.10 1 0.82 1
15 0.55 1 0.05 0.14 1 0.79 1
20 0.63 1 0.07 0.16 1 0.88 1

Table 2: The empirical power of various tests for Example 2.

I error rates under H0 and powers under H1, respectively,
over 300 data replications. Additional simulation results for
dZ = 5, 10, 15, 20, and 25 can be found in the Supplemen-
tary Materials (Figures 1 and 2).

We have the following observations. First, our test con-
trols type I error very well under H0, while achieves high
power under H1. Second, CMIknn has satisfactory perfor-
mances in controlling type-I error, but under H1, it loses
power in almost all scenarios. Third, although DGCIT and
KCIT have adequate power under H1, they have inflated
type-I errors in some cases, especially when dZ is less than
30. Fourth, GCIT, CCIT and RCIT cannot control type-I er-
rors in some cases, especially when dZ is less than 30. More-
over, under H1, GCIT, CCIT and RCIT lose some power in
almost all scenarios.

Figure 4 in the Supplementary Materials reports the run
times as a function of dZ for a single CIT with data gener-
ated under Scenario II. Other scenarios show similar per-
formance. Our NNSCIT is computationally very efficien-
t. In contrast, CCIT, CMIknn and DGCIT are very time-
consuming and are prohibitive in practice.

Performances on Two Examples
As discussed in the Introduction, we evaluate the perfor-
mances of our method in the following two examples. The

details of data generation mechanisms are presented in the
Supplementary Materials.
Example 1. X → Z → Y . In this case, H0 holds, but there
is a strong dependence between X and Y . Table 1 reports
the type-I error rates. Our NNSCIT controls type-I error very
well, but GCIT, CCIT, RCIT, KCIT and DGCIT break down
as their type-I errors are very large.
Example 2. X → Z ← Y . In this case, H1 holds, but X
and Y are independent. Table 2 reports the powers of dif-
ferent methods. Our method achieves power as high as 1.
In contrast, RCIT and KCIT have power less than 0.2 and
GCIT and DGCIT also lose some power.

Conclusion

In this paper, we propose a novel and fast NNSCIT. We use
the 1-NN sampling strategy to approximate the condition-
al distribution X|Z. Compared with GANs, 1-NN not only
has computational efficiency, but also exhibits advantage in
approximation accuracy. We take the classifier-based condi-
tional mutual information (CCMI) estimator as our test s-
tatistic, which captures the conditional-dependence feature
very well. We show that our NNSCIT has three notable fea-
tures, including controlling type-I error well, achieving high
power under H1, and being computationally efficient.
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