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Abstract
This paper describes the solution from the AML_Lab@CityU team,
who achieved second place in track 1 and track 5 (i.e., the overall
track) and third place in track 2, track 3, and track 4 in Amazon
KDD Cup 2024. We aim to construct a Large Language Model-
based framework to answer diverse and complex online shopping
questions with the multi-task and few-shot learning abilities of
LLMs. This competition is challenging because of no training data
provided, multi-task and complex online shopping questions, and
sharp limitations on inference time and GPU memory. To tackle the
above challenges, we introduce a pipeline containing three parts:
base model selection, pre-trained model quantization, and prompt
design. Our solution across all five tracks adheres to these three
steps and demonstrates robust performance. It is worth noting
that there is no fine-tuning in our solution, which broadens the
usability of our pipeline. Our code is released online1 for ease of
reproduction.

CCS Concepts
• Information systems→ Recommender systems.
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Recommender Systems, Large Language Models, Multi-Task Rec-
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Table 1: Statistics of ShopBench Dataset.

Tasks Questions Products Product Category Attributes Reviews Queries
57 20598 13300 400 1032 11200 4500

1 Amazon KDD CUP 2024
1.1 Dataset
To encourage the exploration of large language models’ capabil-
ities in multi-task online shopping scenarios, Amazon organizes
the "Multi-Task Online Shopping Challenge for LLMs." In this com-
petition, a new dataset named “ShopBench” has been introduced.
ShopBench includes 57 online shopping tasks, with over 20,000
samples collected from the real-world Amazon shopping platform
to evaluate the effectiveness of the participating teams’ solutions.
It is worth noting that all the data is in textual format, and every
question has been converted into a text-to-text generation problem.
The statistics of ShopBench are listed in Table 1.

However, the majority of the BenchShop dataset is not released
to the participants and is only used for evaluation. The competi-
tion provides a development dataset with a total of 100 samples
to help participating teams understand the problem format. In the
development set, each sample includes the following fields:
• input_field: This field contains the questions.
• output_field: This field gives the ground truth answer.
• task_type: This field demonstrates the task type for the sample,

e.g., “Retrieval”.
• task_name:This field provides the hashed task name, e.g., “task0”.
• metric: This field specifies the metric of this sample.
• track: This field specifies the track of the sample, e.g., “Shopping

Concept Understanding”.
For the test set, the samples only contain the “input_field field”

in the development set with a field named “is_multiple_choice”
specifies whether the current question is a multiple-choice question.

1.2 Tasks
There are five main types of tasks in ShopBench:
• MultipleChoice:Questions containmultiple options. Themodel

needs to choose only one option.
• Retrieval: Given a list of candidate items, the model needs to

retrieve all items that satisfy the requirement in the question.
• Ranking: Given a list of candidate items, the model needs to

re-rank all items according to the question.
1
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Table 2: Performance of Llama with different model size on
the development dataset.

Model Dtype Temperature Top_p Accuracy
Llama3-8B-Instruct bfloat16 0.0 0.9 0.4824
Llama3-70B-Instruct AWQ quantization 0.0 0.9 0.7210

Table 3: Performance comparison between Llama3-70B-awq
and Qwen2-72B-awq.

Model Track1 Track2 Track3 Track5
Llama3-70b-awq 0.8013 0.7067 0.7064 0.7545
Qwen2-72b-awq 0.8166 0.7141 0.7181 0.7685

• Named Entity Recognition: Given a piece of text and an entity
type, the model needs to extract phrases from the text as required.

• Generation: Given an instruction and a question, the model
needs to generate texts to answer the question.

1.3 Execution Environment
Amazon KDD CUP 2024 provides the hardware environment for
running the participants’ solutions. Specifically, in the second phase,
the competition offers 4 NVIDIA T4 GPUs for model inference,
with the maximum model file size capped at 200GB. In addition, the
competition imposes time limits on model inference for each track
(70 minutes, 20 minutes, 30 minutes, 20 minutes, and 140 minutes
for tracks 1-5, respectively). This is a stringent limitation, which,
based on our experience, roughly requires an average response time
of 0.6 seconds per question. Therefore, participating teams need to
consider the hardware requirements and operational efficiency of
their models in addition to performance.

2 Base Model Selection
2.1 Larger-Scale LLMs Deployment
In Phase 2, Amazon provides four T4 GPUs to process participating
teams’ solutions. Under such resource constraints, we can deploy
either a small parameter model or a quantized version of a large
parameter model. Here, we conduct experiments using Llama3-
70b-awq and Llama3-8b to illustrate the performance of these two
approaches. The corresponding results are presented in Table 2.
The results indicate that quantized versions of bigger models can
significantly enhance model performance compared to simply using
a small base model. It is also worth noting that we used the vLLM [5]
to deploy LLM and accelerate model inference.

2.2 Model Selection
We test various base models on the development dataset, includ-
ing Llama [8], Gemma [7], Mistral [4], ChatGLM [10], Llama3 [1],
Qwen [2], and Qwen2 [9]. The experiments show that Llama3 and
Qwen2 perform better. Therefore, we continue to compare the per-
formance of Llama3 and Qwen2 on the test set, which is shown in
Table 3. We can find that, with the same prompts, Qwen2 is superior
to Llama3. So, we take Qwen2 as the backbone model for further
exploration.

Table 4: Hyperparameter tuning on Qwen2-72b-awq.

Max Data Length Block_Size N_Samples Dataset Seed Group Size Accuracy
512 128 128 42 128 0.60864
128 128 128 42 128 0.61321
256 128 128 42 128 0.59657
128 256 128 42 128 0.67484
256 256 128 42 128 0.62959
128 512 128 42 128 0.64282
128 256 256 42 128 0.63509

3 Pre-trained Model Quantization
In this section, wewill introduce the pre-trainedmodel quantization
process in the pipeline. We mainly focus on the hyperparameter
tuning of LLM quantization. Our quantization implementation is
based on Activation-aware Weight Quantization (AWQ) [6] follow-
ing current work [3], which is implemented on AutoAWQ 2.

3.1 Hyperparameter Tuning
In the quantization process, the impact of hyperparameters on per-
formance is quite significant. Specifically, the following parameters
can be tuned:

• MaxData Length: This parameter controls themaximum length
of one sample to be considered. Text exceeding this length will
be truncated.

• Block Size: Controls the granularity of dividing each block.
Typically, values of 128, 256, or 512 can be selected.

• n_samples: Determines the number of samples involved in the
quantization process.

• Dataset Seed: Controls the random seed for the quantization.
• Group Size: Weight metrics will be divided into groups, with

each group containing group_size columns.

We tune the hyperparameters on the given development set (100
samples). The results are shown in Table 4. We can find that differ-
ent combinations of hyperparameters have significantly different
performance on the development dataset, with the best and worst
combinations differing by approximately 13% in accuracy.

We select the best-performing set of parameters for the test set
experiments. The experimental results are listed in Table 5. We can
see that our self-quantized model performs better on both track 1
and track 5. Additionally, it is worth noting that we also attempted
to create more data to use as the quantization dataset, but this did
not improve performance on the development dataset.

4 Prompt Design
In this section, we elaborate on methods to enhance LLM perfor-
mance across various tasks, focusing on prompt design, hyper-
parameter tuning for LLM requests, and output formatting. We
first present our overall inference structure, followed by detailed
discussions on prompt design, hyper-parameter tuning, and output
formatting techniques. Some related experimental results can be
found in Table 6.

2https://github.com/casper-hansen/AutoAWQ
2
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Table 5: Comparison experiments between Qwen2-72b quantized by Alibaba (Qwen2-72b-awq) and Qwen2-72b quantized by us
(Qwen2-72b-awq-s) on 4 tracks.

Track Model Generation Multi-Choice NER Ranking Retrieval Overall

1 Qwen2-72b-awq 0.6914 0.8456 0.6764 - 0.8296 0.7970
Qwen2-72b-awq-s 0.6969 0.8453 0.7096 - 0.8226 0.7985

2 Qwen2-72b-awq - 0.7619 - - 0.6165 0.7438
Qwen2-72b-awq-s - 0.7540 - - 0.5977 0.7345

3 Qwen2-72b-awq 0.7259 0.8632 0.8071 - 0.8246 0.8199
Qwen2-72b-awq-s 0.7236 0.8617 0.8051 - 0.8259 0.8186

5 Qwen2-72b-awq 0.6465 0.7953 0.7449 0.8372 0.8034 0.7657
Qwen2-72b-awq-s 0.6508 0.7976 0.7474 0.8334 0.8076 0.7685

Table 6: Experimental results for Prompt Design. “Qwen2-72b-awq” and “Qwen2-72b-awq-s” are the Qwen2 model quantized by
Alibaba and by us. “Instruction(Tips)” describes whether the prompt includes text about tips. “Sub-task Division” represents
the way to divide sub-tasks (“No” means without dividing, “Multi-Choices” means dividing all questions into Multi-Choices
and Not-Multi-Choices, “All” means dividing all questions into multi-choice, NER, ranking, retrieval, and generation five
categories). “Exemplar” demonstrates what types of examples are used in the prompt. “Param Tuning” represents whether we
tune the parameters mentioned in Section 4.4.

Track Model Instruction (Tips) Sub-task Division Exemplar Param Tuning Generation Multi-Choice NER Ranking Retreival Overall
2 Qwen2-72b-awq No No Fixed No - 0.7486 - - 0.4624 0.7128
2 Qwen2-72b-awq Yes No Fixed No - 0.7402 - - 0.5313 0.7141
5 Qwen2-72b-awq Yes No Fixed No 0.5094 0.7561 0.1236 0.7158 0.6468 0.6763
5 Qwen2-72b-awq Yes Multi-Choices Fixed No 0.6544 0.7954 0.7430 0.8339 0.8083 0.7679
5 Qwen2-72b-awq-s Yes Multi-Choices Fixed No 0.6521 0.7977 0.7474 0.8235 0.8045 0.7680
5 Qwen2-72b-awq-s Yes All Fixed No 0.6509 0.7977 0.7474 0.8334 0.8077 0.7685
5 Qwen2-72b-awq-s Yes All Fixed+Dynamic No 0.6509 0.8131 0.7474 0.8334 0.8066 0.7776
5 Qwen2-72b-awq-s Yes All Fixed+Dynamic Yes 0.6627 0.8132 0.8272 0.8360 0.8054 0.7815

Params: max_model_len

Model Initialization (vllm)

Instruction

Prompt Design

Exemplar Selection

Fixed Exemplars

Dynamic Exemplars

Sub-task Division
Params: top_P, temperature, 

max_tokens, logprobs

Request Making

Output Fromatting

Multiple Choice QAs

Other QAs

Figure 1: The overall inference structure.

4.1 Overall Inference Structure
As illustrated in Figure 1, the inference phase consists of four main
stages: model initialization, prompt design, request making, and out-
put formatting. The model initialization and request making stages
primarily utilize functions from the vLLM for LLM initialization
and reasoning, emphasizing hyper-parameter tuning. Conversely,
the prompt design phase focuses on identifying various tasks and
crafting prompts for performance enhancement, while the output
formatting phase aims to refine the LLM’s output to improve re-
sponse effectiveness.

Figure 2: An example of the instruction.

4.2 Instruction Design
We find that few-shot in-context learning is highly effective under
constraints of limited reasoning time and training samples, espe-
cially when our computing resources are scarce. Thus, our prompts
primarily consist of instructions detailing task requirements and
relevant exemplars. An example instruction is shown in Figure 2.
Typically, the instruction content directly explains task and output
requirements without a fixed format. The core concept here is to
provide the LLM with "tips" within the instruction, as suggested
by some people on the internet 3. Experiments demonstrate that
these tips consistently enhance performance across various tracks,
though the degree of improvement varies.

3https://minimaxir.com/2024/02/chatgpt-tips-analysis/
3
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Table 7: Experimental results for dynamic exemplars

Model Generation Multi-Choice NER Ranking Retrieval Overall
Base 0.6508 0.7976 0.7474 0.8334 0.8076 0.7685

Dynamic_1 - - - - - Timeout
Dynamic_3 0.6508 0.8098 0.7474 0.8334 0.8076 0.7756
Dynamic_4 0.6508 0.8131 0.7474 0.8334 0.8076 0.7776

4.3 Exemplar Selection
Exemplars play a critical role in few-shot learning. This section
outlines our strategy for exemplar selection.

4.3.1 Sub-task Division. Selecting appropriate samples for differ-
ent tasks is crucial in few-shot learning. A straightforward approach
involves dividing tasks into sub-tasks (e.g., generation, multiple se-
lection, retrieval) and providing subtask-specific exemplars during
inference. We identified fixed patterns (i.e., commonly used words
or strings) in the provided training samples to classify different
subtasks and designed exemplars accordingly.

4.3.2 Fixed Exemplars. For each subtask, we selected exemplars
from the related category in the training set. However, not all sub-
tasks perform best with category-specific exemplars. Experiments
revealed that using diverse exemplars from different subtasks can
yield better results, particularly for tasks involving retrieval and
generation questions. This may be because the diversity of exem-
plars helps maintain output diversity in tasks that generate new
content.

4.3.3 Dynamic Exemplars. Our approach incorporates dynamic
exemplars into prompt construction. Traditionally, examples within
prompts are fixed and unchangeable, and our goal is to address
this limitation. During the shopBench benchmark, batches of ques-
tions exhibit unique distributions due to varying problem types.
To address this, we propose a dynamic sampler that incorporates
different examples in our prompts to enhance performance.

For each batch request, we store the first instance, including its
problem formulation and the model-generated answer. In subse-
quent batch requests, we append this example to the end of the
prompt, completing the dynamic examples for each batch request.
We implemented this strategy in tracks 1, 4, and 5 for multiple-
choice questions and verified its effectiveness.

Table 7 shows the experimental results for dynamic exemplars
on track 5 to give a comprehensive analysis. It is worth noting that
we only use this technique on multiple-choice questions due to
time limitations. There are four variants in this experiment:
• Base: This variant does not contain dynamic exemplars.
• Dynamic_1: This variant uses the dynamic exemplars technique,

and the dynamic exemplar is updated each batch.
• Dynamic_3: Same as Dynamic_1, except the dynamic exemplar

updating frequency occurs every three batches.
• Dynamic_4: Same as Dynamic_1 except the dynamic exemplar

updating frequency occurs every four batches.
From Table 7, we can draw the following conclusions: (1) From Dy-
namic_1, we know that updating the dynamic exemplar for every
batch is very time-consuming and cannot complete the inference
task within the allotted time in track 5. Therefore, we try to reduce
the inference time by updating the dynamic exemplar at intervals

of multiple batches. (2) By comparing Base and Dynamic_3, we find
that using dynamic exemplars can effectively improve the accuracy
of multiple-choice questions (from 0.7976 to 0.8098), demonstrat-
ing the effectiveness of dynamic exemplars. The reason for this
improvement is that there is a distribution difference between the
examples in the development set and the real test set questions, and
the dynamic exemplar helps to mitigate this gap. (3) By compar-
ing Dynamic_3 and Dynamic_4, we find that Dynamic_4 achieves
better results. A possible reason for this improvement is the ran-
domness in the arrangement of questions in the test set.

4.4 Hyper-parameters Tuning
Weprimarily tested the impact of different hyper-parameters (shown
in Figure 1) on Track 5, as Track 5 comprehensively includes all
types of questions and tasks. Specifically, we mainly fine-tune the
following hyper-parameters:
• MaxContext Length (max_model_len in vLLM): This param-

eter controls the model context length. Increasing this parameter
from 4096 to 8192 can obtain better performance while increasing
it from 8192 to 12288 cannot gain improvement continuously.

• Max New Tokens (max_tokens in vLLM): Controls the max-
imum number of tokens to generate per output sequence. For
Multiple-Choice Questions (MCQ), NER, ranking, and retrieval
questions, large values (e.g., 50) can lead to redundancy outputs.
So, in track 5, we set the max_tokens in MCQ to be 1, NER and
ranking to 15, retrieval to 10, and generation to 65.

• Temperature: Controls the randomness of the sampling. To
ensure the reproducibility, we set it to 0.

• top_p: Controls the cumulative probability of the top tokens to
consider. We set it to 0.9.

4.5 Output Formatting
To ensure the output is more standardized and accurate, we apply
the following rules to filter and modify the answers:
• For multiple-choice questions, we verify if the generated token

is a valid option. If not, a default option will be chosen.
• For non-multiple-choice questions, we check if the generated

text contains any unnecessary information, such as the word
"question" at the beginning or trailing spaces at the end.

5 Efficiency
In this section, we discuss the efficiency problem we encountered
during this competition, which mainly includes the following four
parts: Reasoning time for different models, the impact of the length
of max token in generation tasks, the influence of prompt length
on efficiency, and the influence of max model length to efficiency.

5.1 Efficiency of models
In Figure 3 (a), we present the time consumption for each track
within our experiment. During the experiment, we selected different
quantized versions of backbone LLMs such as Llama3 and Qwen2.
We observed that due to the varying question distributions across
tracks, the inference times also varied. Notably, in track 4, we en-
countered a severe time limit issue. Specifically, we faced a dilemma:
while Llama3’s reasoning speedwas nearly 10% faster thanQwen2’s,

4
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Figure 3: (a) The ratio of time we spend on each track to the
total time limit. (b) Generation task scores corresponding to
different max tokens in track 4.

Qwen2 generated better results with the same prompts. We could
use longer prompts to improve in-context learning ability, but this
was not feasible given the time constraints. Consequently, we de-
signed two approaches: the first utilized Llama’s method with more
shot prompts, and the second employed Qwen2’s method with
fewer shot prompts. After extensive experimentation and evalua-
tion, we chose Qwen2’s method, achieving a total score of 0.715 in
track 4, which placed third in the leaderboard.

5.2 Max Token Influence in Generation Task
Except for Track 2, the remaining four tracks generated questions
based on the provided examples, including tasks such as title gener-
ation, keyphrase extraction, product explanation, and translation. A
key finding of this study is that a larger number of tokens in the gen-
eration task correlates with a higher score. The results, illustrated
in Figure 3 (b), indicate that setting the maximum token count to 50
in Track 4 yields the highest scores. This correlation is logical as a
higher token count encompasses more useful information, thereby
enhancing metrics such as “sent-transformer” and “bleu”. However,
a higher token count can lead to timeout issues. Therefore, within
the given time limit, we experimented with different settings for
different tracks: 40 for Track 1, and 100 for Track 2, 50 for Track 4,
and 65 tokens for Track 5.

5.3 Prompt Length Influence to efficiency
As shown in Section 4.3, we include a few-shot examples strategy
within our prompts to guide the model toward generating more
reasonable outputs. Our key finding is that selecting a higher num-
ber of relevant examples consistently enhances performance across
tracks. However, due to time constraints, we must carefully choose
the number of examples included in our prompts. Taking Track 4 as
an example, we use different few-shot prompts for various problem
types. In our results, we selected 4 examples for the multiple-choice
prompt, 3 examples for the ranking problem prompt, and 6 exam-
ples for the generation prompts. This decision balances the number
of examples with the “max new tokens” parameter, as previously
discussed. Although more examples could further enhance results,
we are constrained by the significant time limitations in this track
and therefore cannot add more.

6 Discussion
There are a few takeaway notes in our solution: (1) Under the same
hardware conditions, the quantized version of the larger model
(Llama3-70b-awq) performs significantly better than the smaller
base model (Llama3-8b). (2) The choice of quantization parameters
affects model performance, but the extent of this impact requires
further experimentation. (3) Prompts have a substantial impact on
model performance. Using targeted prompt templates for specific
tasks and employing tips to motivate the model can yield consistent
benefits. (4) Dynamic exemplars can effectively mitigate the issue
of distribution discrepancies between the validation set and the test
set, thereby improving themodel’s accuracy in answering questions.
(5) Output formatting can effectively standardize the output and
improve the QA performance.

7 Conclusion
Amazon KDD CUP 2024 focuses on leveraging the capabilities of
large language models to assist multi-task online shopping services.
In this paper, we present the solutions that achieve second place in
tracks 1 and 5 and third place in tracks 2, 3, and 4. Our approach
comprises three components: base model selection, pre-trained
model quantization, and prompt design. We select Qwen2-72b as
our base model and employ AWQ quantization to ensure the model
meets hardware and inference efficiency constraints. In addition,
we use techniques such as instruction design, exemplar selection,
hyper-parameter tuning, and output formatting to achieve leading
performance.
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