
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FUSING REWARDS AND PREFERENCES IN REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Dual-Feedback Actor (DFA), a reinforcement learning algorithm that
fuses both individual rewards and pairwise preferences (if available) into a single
update rule. DFA uses the policy’s log-probabilities directly to model the preference
probability, avoiding a separate reward-modeling step. Preferences can be provided
by human-annotators (at state-level or trajectory-level) or be synthesized online
from Q-values stored in an off-policy replay buffer. Under a Bradley–Terry model,
we prove that minimizing DFA’s preference loss recovers the entropy-regularized
Soft Actor-Critic (SAC) policy. Our simulation results show that DFA trained on
generated preferences matches or exceeds SAC on six control environments and
demonstrates a more stable training process. With only a semi-synthetic preference
dataset under Bradley-Terry model, our algorithm outperforms reward-modeling
reinforcement learning from human feedback (RLHF) baselines in a stochastic
GridWorld and approaches the performance of an oracle with true rewards.

1 INTRODUCTION

Over the past decade, Reinforcement Learning (RL) has achieved remarkable success across a
wide range of applications, including video games (Knox & Stone, 2008; Warnell et al., 2018),
recommendation systems (Kohli et al., 2013; Zeng et al., 2016), and autonomous driving (Kiran
et al., 2021). RL focuses on how agents make decisions while interacting with dynamic, changing
environments. At each time step, an agent chooses an action based on its current state and receives a
reward that indicates how good that action was. The goal is to learn a policy that maximizes the total
reward accumulated over time. In traditional RL, the reward function is usually manually designed
by experts to guide the agent’s behavior toward desired outcomes. However, crafting such a function
is a challenging and often ambiguous task (Ng et al., 2000).

To overcome the limitations of hand-engineered rewards, Reinforcement Learning from Human
Feedback (RLHF) has emerged as a compelling alternative, particularly in the fine-tuning of large
language models (LLMs) (Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022). RLHF
bypasses manual reward specification by inferring a reward model from human preferences over
trajectory pairs. This reward model then guides policy optimization using standard RL algorithms.
Despite its empirical successes, RLHF methods relying on reward inference, face significant practical
and theoretical challenges, including reward model misspecification, overfitting, distribution shift,
and non-identifiability of reward functions (Zhu et al., 2024; Casper et al., 2023). Moreover, the
reward inference step introduces additional complexity and often requires large volumes of annotated
data.

To simplify the pipeline and avoid reward inference, in the context of language modeling, Direct
Preference Optimization (DPO) has recently been proposed as a direct approach to exploit human
preferences (Rafailov et al., 2023). Thanks to a closed-form expression of the optimal policy under a
Bradley–Terry preference model, DPO avoids estimating the reward function. Although DPO has
shown promising results in fine-tuning large language models, its loss formulation tends to induce
deterministic policies and is susceptible to mode collapse (Azar et al., 2024; Sharifnassab et al., 2024).
Moreover, the existing theory for DPO only covers contextual bandits or MDPs with deterministic
transitions (Rafailov et al., 2023; 2024). As a result, directly applying DPO (or methods suggested in
Guo et al. (2024); Xie et al. (2024)) in general reinforcement learning settings is suboptimal, where
effective exploration is critical for policy improvement in stochastic MDPs (Zhang & Ying, 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

More recently, ZPG (Zhang & Ying, 2024) suggested an RLHF approach that does not rely on a
reward model and is designed for non-deterministic MDPs. However, as the authors acknowledged,
the algorithm lacks a strategic exploration mechanism. Furthermore, it relies on trajectory-level
preference comparisons and performs on-policy updates, hence previously collected data are not
reused.

In this work, we introduce Dual-Feedback Actor (DFA), a reinforcement learning algorithm that works
for stochastic MDPs and unifies scalar rewards and preference-based feedback into a single, principled
policy update rule. Unlike many prior approaches in RLHF that infer a separate reward model from
preferences, DFA directly incorporates preferences into the policy optimization objective using the
policy’s log-probabilities and retains Soft Actor-Critic (SAC)-style entropy-driven exploration. The
main contributions are as follows:

• Our approach offers dual compatibility with both rewards and preferences. When numerical
rewards are available, the agent updates its Q-networks and incorporates preference-based
learning by synthesizing preferences from Q-values. This dual approach allows the agent to
use reward signals while maintaining flexibility to incorporate human feedback, especially
in settings where rewards are sparse or absent.

• Our approach can be used not only in on-policy manner but also in off-policy manner, which
enables more sample-efficient learning by reusing past experiences stored in a replay buffer.
This is particularly valuable for hierarchical RL applications where sample efficiency is
needed to train the policy of each layer.

• Under the assumptions stated in Section 5, we prove that minimizing DFA’s preference loss
recovers the entropy-regularized SAC solution, formally bridging preference optimization
and entropy-regularized RL. Consequently, DFA inherits SAC’s entropy-driven exploration,
maintaining diverse action sampling even when it learns solely from preferences.

• Experimental results in Section 6 show that DFA consistently matches or outperforms both
reward-based and preference-based baselines on six control tasks and a stochastic GridWorld,
while yielding a more stable training process.

2 RELATED WORK

There are two dominant paradigms for incorporating human feedback in reinforcement learning. The
first relies on reward modeling: These methods first fit a scalar reward (or value) prediction model
from preference data and then treat this learned reward model as the surrogate reward for standard
policy optimization. This two-stage pipeline was introduced in (Christiano et al., 2017), Schoenauer
et al. (2014), and later scaled to large language models by Ziegler et al. (2019), Stiennon et al. (2020),
and Ouyang et al. (2022). The second relies on direct policy optimization: These algorithms bypass
an explicit reward model and update the policy parameters solely from preference comparisons
(Wilson et al., 2012; Busa-Fekete et al., 2014; Akrour et al., 2011).

For reward-modeling approaches, several works (Saha et al., 2023; Zhu et al., 2023; Wu & Sun, 2023)
consider linearly parameterized reward models and characterize the error bounds of the estimated
parameters, and prove that subsequent reward-based RL can tolerate small errors in rewards. Zhan
et al. (2023) extend this analysis to more general reward function classes under some conditions.
These analyses have been extended to direct policy optimization approaches in Xu et al. (2020); Chen
et al. (2022); Zhang et al. (2024).

In the context of language modeling, DPO (Rafailov et al., 2023) provides a direct approach to
aligning language models with human preferences by optimizing a policy to maximize the likelihood
of preferred responses over nonpreferred ones, eliminating the need for an explicit reward model.
SPO (Sharifnassab et al., 2024) optimizes model output directly over a preference dataset through the
natural conditional probability of the preferred responses over nonpreferred ones. Similar approaches
have also been explored in this literature (Xu et al., 2024; Ethayarajh et al., 2024; Hong et al., 2024;
Park et al., 2024; Hong et al., 2024; Meng et al., 2024; Li et al., 2025). RLHF has also been studied
in other aspects. For example, the framework in Swamy et al. (2024) casts RLHF as a two-player
zero-sum game. However, they still estimate the rewards (and subsequently apply PPO, TRPO, or
SAC) based on a constantly updated queue of recent rollouts, which can cause data staleness issues.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Recent work, Xie et al. (2024), inspired by DPO, combines DPO with optimistic exploration to
design XPO in the function approximation regime with provable convergence. ZPG (Zhang & Ying,
2024) aims to address RLHF without relying on a reward model and is designed for non-deterministic
MDPs. However, it lacks an exploration mechanism, which is essential for general RL applications.
Although previous work brought advancement in several aspects, existing algorithms are rarely
benchmarked (theoretically and experimentally) against strong reward-based baselines such as SAC.

3 PRELIMINARIES

In this section, we introduce the notation for RL, RLHF, and review the DPO objective (Rafailov
et al., 2023). We model the environment as a finite–horizon Markov Decision Process (MDP). An
MDP can be represented as a tuple M = ⟨S,A, P,R, γ, p0⟩, where S and A are state space and
action space, respectively. The conditional probability of transition from state s to s′ with action a
is denoted by P (s′|s, a). The probability distribution over the initial state s0 is denoted by p0(s0).
The parameter γ ∈ (0, 1) denotes the discount factor. At each time step t, r(st, at) returns the
reward of taking action at in the state st. Actions are chosen according to the policy π where
π(a|s) is the probability of taking action a for a given state s. Here, we assume that the policy is
parameterized with a vector θ ∈ Rd and use shorthand notation πθ for πθ(a|s). For a given time
horizon H , we define τ = (s0, a0, · · · , sH−1, aH−1) as a sequence of state-action pairs called a
trajectory. R(τ) is a function that returns the discounted accumulated reward of each trajectory as
follows: R(τ) :=

∑H−1
h=0 γhr(sh, ah) where γ ∈ (0, 1) is the discount factor.

Given a policy π, the state-value function and the action-value function (or Q-function) are

V π(s) = Eτ∼π

[H−1∑
t=0

γt r(st, at)
∣∣∣ s0 = s

]
, Qπ(s, a) = Eτ∼π

[H−1∑
t=0

γt r(st, at)
∣∣∣ s0 = s, a0 = a

]
.

Classical RLHF feedback setting (Christiano et al., 2017). Let M = ⟨S,A, P,R, γ, p0⟩ be the
finite-horizon MDP where the true reward r(s, a) is hidden. Hence, we ask humans to compare
trajectories and form the preference dataset

D =
{
(τ+k , τ−k)

}K

k=1
, τ+k ≻ τ−k ,

where K is the total number of pairs, and τ+k is preferred to τ−k which is denoted as τ+k ≻ τ−k . We
define a parametric function rϕ : S×A → R to approximate the latent reward. For any trajectory
τ = (s0, a0, . . . , sH−1, aH−1), we define the model return as:

Rϕ(τ) =
H−1∑
h=0

γh rϕ(sh, ah).

The parameters ϕ are learned by maximum likelihood under the Bradley–Terry model (Bradley &
Terry, 1952), which is equivalent to minimizing the following loss:

L(ϕ) = − E(τ+,τ−)∼D

[
log σ

(
Rϕ(τ

+)−Rϕ(τ
−)

)]
, σ(z) =

1

1 + e−z
.

Let r̂ϕ be the estimated reward function. Next, with r̂ϕ fixed, a policy-gradient method such as PPO
(Schulman et al., 2017) or SAC (Haarnoja et al., 2018) updates πθ to maximize

J(θ) = Eτ∼πθ

[
R̂ϕ(τ)

]
.

A well-known drawback on this two-stage pipeline is its sensitivity to noise, and any overfitting in r̂ϕ
propagates directly to the final policy updates (Casper et al., 2023).

DPO in language models (Rafailov et al., 2023) In language models, a state is the text prefix (or
prompt) x, and an action is the response y produced by the model (call it continuations). Annotators
make a choice among two full continuations (y+, y−) sampled from the same prompt, giving the
preference dataset

D =
{
(xk, y

+
k , y

−
k)

}K

k=1
, y+k ≻ y−k .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Let πref be the frozen base model (e.g. a pre-trained GPT checkpoint). For a prompt x and two
candidate continuations y+, y−, define the log-probability gap:

∆x,y+,y−(θ) =
[
log πθ(y

+ |x)− log πθ(y
− |x)

]
−

[
log πref(y

+ |x)− log πref(y
− |x)

]
.

∆x,y+,y−(θ) captures how much more the new model prefers the chosen continuation over the
rejected one, relative to the base model. DPO then minimizes

LDPO(θ) = − E(x,y+,y−)∼D

[
log σ

(
α∆x,y+,y−(θ)

)]
, σ(z) = 1

1+e−z , α > 0.

Minimizing LDPO pushes the new model toward the preferred continuation, while limiting it to the
safe behavior of πref. The absence of a separate reward model in DPO removes a major source of
overfitting or noisy evaluations of the reward modeling. However, DPO assumes a Bradley-Terry
choice model to derive its loss function, and this loss tends to produce near-deterministic models.
This reduced diversity makes DPO prone to mode collapse (Azar et al., 2024).

4 METHODS

In this section, we introduce our Dual-Feedback Actor (DFA). In order to describe the DFA algorithm,
we first introduce the state-wise feedback setting as follows:

State-wise feedback. In this setting, the annotator does not compare full trajectories. Instead, at
a given state sk, the annotator sees two actions, marks the winner a+k over the loser a−k . Then, the
following preference dataset is formed:

D =
{
(sk, a

+
k , a

−
k)

}K

k=1
, a+k ≻ a−k ,

where a+ is preferred to a− at state sk. In the subsections below, we first consider the case where
the agent learns only from state-wise human comparisons. Second, we show how to synthesize
preferences from numerical rewards when they are available. Finally, we extend DFA to trajectory-
based comparisons.

4.1 LEARNING WITH ONLY STATE-WISE PREFERENCES

Assume we have collected a set of preference comparisons

D =
{
(sk, a

+
k , a

−
k)

}K

k=1
, a+k ≻ a−k .

Unlike classical RLHF, we do not assume an underlying Bradley–Terry reward model. Instead,
we rely on the policy’s log-probabilities to model the preference probability directly. For any pair
(s, a+, a−) we define the preference probability produced by the current policy πθ as

Pθ

(
a+ ≻ a− | s

)
=

πθ(a
+ |s)α

πθ(a+ |s)α + πθ(a− |s)α
, α > 0. (1)

The exponent α controls the uncertainty assigned to the policy’s output: α→0 yields a nearly uniform
(high-entropy) choice, while α→∞ approaches a hard winner–takes–all rule.

The negative log-likelihood equation 1 gives the state-wise preference loss:

Lpref(θ) = − E(s,a+,a−)∼D

[
logPθ

(
a+ ≻ a− | s

)]
. (2)

Minimizing Lpref directly increases the probability that πθ selects the human-preferred action, without
introducing auxiliary reward networks or relying on any latent utility assumptions 1. Note that
equation 2 can be reformulated as follows:

1Eq. equation 2 is identical to the preference loss Lα
pref used in Soft Preference Optimization (SPO) (Sharif-

nassab et al., 2024). Although DFA adopts the same logistic pairwise-loss form, the similarity ends there. In SPO,
the same term is combined with a global KL regularizer DKL(πθ ∥πref), whereas here we study the stand-alone
preference part and show that, under some assumptions, it aligns the policy with the entropy–regularized RL
solution (Theorem 5.2). Moreover, SPO is in the context of LLMs and is designed for an offline setting. DFA
targets stochastic MDPs, supports off-policy replay, preserves SAC-style entropy exploration with theoretical
analysis, and unifies numeric rewards with preferences. Synthesizing preferences, as explained in Section 4.2, is
another key innovation in DFA that allows for online settings in RL.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Lpref(θ) = − E(s,a+,a−)∼D

[
log σ

(
α
(
log πθ(a

+|s)− log πθ(a
−|s)

))]
In simulated environments or settings where numerical rewards are accessible, it is possible to
synthesize preference data from these rewards or their proxies, such as Q-values. Our approach,
introduced in the next section, is particularly useful when integrating preference-based learning into
an agent’s training loop, even when direct human feedback is unavailable or insufficient. Our method
fuses numerical rewards and preference data by synthesizing preferences from numerical rewards.

4.2 SYNTHESIZING PREFERENCES FROM NUMERICAL REWARDS

We use Q-values as a proxy to create preference pairs, enabling online preference generation during
policy updates without explicitly constructing full trajectory segments. Estimating Q-values can be
done through any method in the literature, and is particularly relevant in off-policy methods such
as SAC, where a replay buffer stores past experiences as tuples (st, at, rt), where st, at, and rt are
state, action and reward at time t, respectively.

Our approach works as follows: For a batch of states {si}Ni=1 sampled from the replay buffer, we
generate two candidate actions to form preference pairs: The first action, denoted by ai, corresponds
to the action originally taken in state si as stored in the replay buffer. This action reflects the historical
behavior of the agent at the time the state was visited. The second action, denoted by a′i, is obtained
from the replay buffer by identifying the action associated with the nearest state to si (denote it with
s′i)

2. For both actions, we compute their respective Q-values. The action with the higher Q-value is
designated as the preferred action a+i , while the other is labeled as the rejected action a−i :

If Q(si, ai) > Q(si, a
′
i), then (a+i , a

−
i) = (ai, a

′
i),

else (a+i , a
−
i) = (a′i, ai).

This process effectively synthesizes preference data in the form of state-action pairs DSyn =
{(si, a+i , a

−
i)}Ni=1 for each batch. The loss in equation 2, is then calculated over the states {si}Ni=1

and using their associated preferred and rejected actions. Specifically, the loss encourages the policy
to assign higher probability to preferred actions over rejected ones, scaled by the parameter α

LSyn
pref(θ) =− E(si,a

+
i ,a−

i)∼DSyn

[
log

(
σ
(
α
(
log πθ(a

+
i |si)− log πθ(a

−
i |si)

)))]
where σ(·) is the sigmoid function. Figure 1 gives a high-level schematic of our methodology.

AGENT
πθ

ROLLOUT
/REPLAY BUFFER

POLICY UPDATE
(MIN. LPREF)

PREFERENCE
SYNTHESIZER

Interact with environment Human preferences

(s, a, r) Synthetic preferences

updated πθ

Figure 1: Data flow in DFA. The agent executes its current policy πθ and stores the transitions (may
include reward-based transitions or human-annotated preferences). If reward-based transitions are
available, the Preference Synthesizer can convert them into synthetic preference pairs. This process
can be done in either an on-policy or off-policy fashion. Both human and synthetic preferences can
be used in Policy-Update, which minimizes the preference loss Lpref and outputs an improved policy.

2In our experiments, we compute the Euclidean distance between si and all states in the buffer, select the
closest state s′i, and retrieve its corresponding action a′

i.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.3 EXTENSION OF THE LOSS TO TRAJECTORY-BASED COMPARISONS

State-wise comparisons can be easy to collect (for instance, a single frame rather than a full video
in video games) and give richer training signals, but one may prefer to rank the whole trajectories
(Christiano et al., 2017; Zhang & Ying, 2024), hence, we extend DFA to accept trajectory-level
preferences as well. For trajectory-level comparisons, we store pairs

Dtraj =
{
(τ+k , τ−k)

}K

k=1
, τ = (s1, a1, . . . , sT).

The policy assigns a likelihood to any full trajectory as follows: πθ(τ) =
∏T

t=1 πθ

(
at | st

)
. The

preference probability is the same as before, but now in terms of trajectory likelihoods:

P traj
θ

(
τ+ ≻ τ−

)
=

πθ(τ
+)α

πθ(τ+)α + πθ(τ−)α
, α > 0. (3)

The negative log-likelihood of equation 3 gives trajectory-based preference loss:

Ltraj
pref(θ) = − E(τ+,τ−)∼Dtraj

[
logP traj

θ

(
τ+ ≻ τ−

)]
. (4)

5 THEORETICAL ANALYSIS

In this section, we show that, under Bradley–Terry model on the soft optimal Q–function, minimizing
our preference loss is equivalent to recovering the optimal policy for entropy–regularized reinforce-
ment learning (Haarnoja et al., 2017). Concretely, we analyze the tabular setting for the state-wise
preferences and identify its unique minimizer. This establishes the equivalence of preference opti-
mization and entropy-regularized RL. We should emphasize that the BT model is not a requirement
of DFA Algorithm; it is only used to derive Theorem 5.2 in the following. A trajectory-wise analysis
and its connection to the state-wise analysis, is provided in Appendix B.
Assumption 5.1 (Bradley–Terry preferences on the soft-optimal Q-function). Let Q⋆ : S×A→R
be the soft-optimal state-action value function of the MDP, i.e.,

Q⋆(s, a) = max
π

E
[∞∑

t=0

γt
(
r(st, at) + λH

(
π(· |st)

)) ∣∣∣ s0 = s, a0 = a
]
,

where H(.) is the entropy function and λ is the entropy coefficient. Assume that there exists a
parameter β > 0 such that, for every s ∈ S and any a, b ∈ A,

P ⋆
(
a ≻ b | s

)
= σ

(
β [Q⋆(s, a)−Q⋆(s, b)]

)
, σ(z) =

1

1 + e−z
.

Theorem 5.2 (Preference loss recovers the optimal policy). Fix a state s ∈ S and abbreviate
Q⋆

a := Q⋆(s, a). Suppose that Theorem 5.1 holds. Under uniform sampling of ordered pairs (a, b) ∼
Unif(A2) and the tabular full-support parameterization ℓa = log π(a | s) (

∑
a e

ℓa = 1, eℓa > 0),
consider the preference loss

L(ℓ) = − 1

|A|2
∑

(a,b)∈A

P ⋆(a ≻ b | s) log σ
(
α(ℓa − ℓb)

)
, α > 0.

This loss is strictly convex on the set of full-support policies and is minimized uniquely at

π⋆(a | s) =
exp

(
β
α Q⋆

a

)∑
a′∈A

exp
(
β
α Q⋆

a′

) . (5)

Furthermore, this Gibbs distribution coincides with the global maximizer of the entropy-regularized
RL (or SAC objective) when λ = α/β:3

max
π

Eπ

[∞∑
t=0

γt
(
r(st, at) + λH(π(· | st))

)]
. (6)

3All proofs are provided in the Appendix.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 5.2 states that, when human (or synthetic) comparisons follow a Bradley-Terry model
whose latent utility equals the ground truth Q⋆, the preference loss is perfectly aligned with the
entropy-regularized control objective (Haarnoja et al., 2017). The optimizer equation 5 is soft-max
policy whose inverse temperature is the ratio β/α: The parameter β captures how consistently the
annotator prefers higher-value actions, while the parameter α adjusts the learner’s uncertainty. In
particular, setting λ = α/β recovers the SAC trade-off between exploitation (large β) and exploration
(large α) (Haarnoja et al., 2018).
Remark 5.3. If the Bradley-Terry assumption holds for any arbitrary soft state-action value function,
for instance, the current critic estimate Qk(s, a) in SAC (Haarnoja et al., 2018). Then Theorem 5.2
implies that the preference loss is minimized by

πk+1(a | s) =
exp

(
β
α Qk(s, a)

)∑
a′

exp
(
β
α Qk(s, a

′)
) .

This update is exactly the policy-improvement step in SAC that maximizes the entropy-regularized
objective

max
π

{
Ea∼π

[
Qk(s, a)

]
+ λH

(
π(· | s)

)}
.

Hence, as the critic converges (Qk → Q⋆), repeated minimization of the preference loss yields
the soft-optimal SAC policy. Therefore, preference learning can be viewed as performing policy
improvement in SAC, but driven solely by comparative feedback.
Remark 5.4. The assumption that (a, b) ∼ Unif(A2) in Theorem 5.2 is made for simplicity of
analysis. In practice, one can approximate this condition by drawing a mini-batch of ordered pairs at
each update and down-sampling (or re-weighting) each pair by the inverse of its frequency in the
batch; This produces a uniform sub-sampled action pairs required by the theorem.

6 EXPERIMENTAL RESULTS

In this section, we benchmark DFA against prior work. The complete code is provided in the
supplementary material. We first compare DFA with the reward-based baseline SAC (hence, we have
to synthesize preferences following Section 4.2), and then against recent preference-based methods.

6.1 COMPARISON WITH SAC VIA SYNTHETIC PREFERENCES

In this section, we evaluate the proposed algorithm (DFA) and compare it with related work on six
control tasks in MuJoCo (Todorov et al., 2012), a physics simulator known for fast and accurate
simulations in areas such as robotics, biomechanics, and graphics. Since published benchmarks (e.g.,
OpenAI SpinningUp) consistently identify SAC as the strongest baseline on many environments,
we compare DFA exclusively with SAC. We briefly explain the six environments we consider in
Appendix C.

In Figure 2, we monitor the average episode return versus system probes, which represents the
total number of environment interactions. In this experiment, DFA continually generates synthetic
preference pairs from numerical rewards following 4.2. The underlying RL settings and replay buffer
are identical to those of SAC. Both DFA and SAC run for 10×106 system probes across 5 different
random seeds. We use mini-batch size 256 for both algorithms. A new preference batch of size
N=256 is created during every gradient step. Figure 2 shows that DFA matches or exceeds SAC on
Walker2d, Hopper, Swimmer, and Humanoid. In MountainCarContinuous, we could not find SAC
settings that produced learning, a problem others have reported as well.4 DFA, in contrast, learned a
good policy on this task with the same range of hyperparameters used for the other environments.

Interestingly, DFA’s learning curves are noticeably smoother, while SAC exhibits significant fluctua-
tions. We attribute this stability to the synthesized preference pairs, which are constructed according
to Section 4.2, and appear to act as an implicit denoising regularizer. We note that reducing the
learning rate or adjusting other hyperparameters to avoid fluctuations for SAC resulted in lower
average returns, thus, we maintained the higher learning rate configuration to ensure fair comparison.

4https://github.com/rail-berkeley/softlearning/issues/76

7

https://spinningup.openai.com/en/latest/spinningup/bench.html#benchmarks-for-spinning-up-implementations
https://github.com/rail-berkeley/softlearning/issues/76

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: DFA (green) vs. SAC (blue) on the six MuJoCo control tasks. DFA matches or exceeds
SAC and shows smoother training. The solid line is the mean episode return, and the shaded region
shows an 90% confidence interval over 5 seeds.

These results confirm the claim of Theorem 5.2: once we use preference data aligned with the optimal
Q-values, numerical rewards can be dropped without losing performance. This unifies reward-free
human alignment and reward-based RL under a single log-likelihood objective.

6.2 COMPARISON WITH RM METHODS

In this section, we evaluate our DFA algorithm against traditional reward modeling approaches in
the context of learning from human preferences. While the previous section demonstrated DFA’s
effectiveness with generated preferences derived from numerical rewards, here we focus on the
more challenging scenario where only human comparative feedback is available, without access to
ground-truth rewards.

We conduct experiments in a stochastic GridWorld environment, which provides a controlled testbed
for preference-based learning (Zhang & Ying, 2024). In this environment, the agent starts at the
center of the grid and can take four actions: up, down, left, or right. The environment includes the
following aspects: (1) To build the ground play, a coin is flipped for each cell, and if heads, a reward
sampled from N (0, 1) is placed in that cell; (2) While the agent is moving, with probability 0.4,
the chosen action is reversed (e.g., ”up” becomes ”down”). Each episode has a fixed horizon of 20
steps, and the agent’s goal is to maximize the cumulative reward collected. This environment is
particularly suitable for preference-based learning evaluation as it combines stochastic dynamics with
a non-trivial reward structure that requires exploration.

To simulate human preferences, we simulate a panel of annotators who provide comparative feedback
between trajectories. Following standard practice in RLHF literature, we model the annotator’s
preference probability using the Bradley-Terry model: P (τ1 ≻ τ0) = σ(R1 −R0), where Ri is the
cumulative reward of trajectory τi and σ is the sigmoid function. For robustness, each preference
query aggregates votes from M independent annotators, and the majority vote determines the
final preference. This approach simulates the noise and variability in real human feedback while
maintaining a consistent underlying reward structure. For more implementation details, please see
Appendix C. We compare DFA against the following approaches: RM+PPO: A two-stage approach
that first learns a reward model from preference data using maximum likelihood estimation, then
optimizes a policy using Proximal Policy Optimization (PPO) with the learned reward function. ZPG
(Zhang & Ying, 2024): A state-of-the-art RLHF method which estimates the policy gradient from

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) DFA vs. RM + PPO and oracle PPO. (b) Effect of temperature α.

Figure 3: GridWorld results. (a) DFA learns faster and achieves higher rewards than reward-modeling
baselines, approaching the oracle that has access to the true reward. (b) Effect of the temperature
parameter α: a small but not too small value balances exploration and exploitation. Shaded regions
denote 90% confidence intervals across 5 random seeds.

preference differences without fitting a reward model. Oracle-PPO (upper bound): PPO directly on
the true MDP reward r (it is unavailable in practice, but gives an upper bound on the performance.).
OnlineDPO: We also include the recently-proposed OnlineDPO algorithm (Guo et al., 2024) as a
direct-preference baseline.

Figure 3a demonstrates that DFA consistently outperforms reward modeling methods and performs
comparably to Oracle-PPO, which has access to the true reward function. In this experiment, we
compare against two variants of RM+PPO: RM 1 uses 200k environment steps for training the reward
model, while RM 2 uses twice as many samples (400k steps). Despite the increased data budget for
RM 2, DFA is still converging faster, highlighting the benefits of avoiding the two-stage pipeline.
For ZPG, we used the official repository. Despite our efforts (and implementation tricks such as
normalized gradient and gradient clipping), it could not be tuned to outperform the results shown
in Figure 3a. We also re-implemented ZPG directly from the paper, closely matching the reported
hyperparameters and implementation choices; we report the best observed performance across both
implementations. In Figure 3a we use an annotator pool of M=500; runs with smaller M and more
complex environments show the same pattern and are included in Appendix C.

Figure 3b highlights the sensitivity of DFA to the parameter α. As shown in Figure 3b, setting α
too high (α = 1.0) gives almost no learning signal, while moderate values in the range 0.2−0.6
yield better results. The best result comes at α = 0.001. When α is pushed to very small values (e.g.,
10−8), performance drops again because the policy becomes overly stochastic. These results suggest
that α should be small but not too small to balance exploration and exploitation.

7 CONCLUSION

Dual-Feedback Actor (DFA) unifies scalar rewards and pairwise preferences in a single loss; when
preferences follow a Bradley–Terry model on the optimal soft Q-function, this loss recovers the
entropy-regularized SAC solution, formally linking reward- and preference-based RL. Empirically,
DFA matches or exceeds SAC and outperforms reward-modeling baselines while training more
smoothly. The main limitations are the Bradley–Terry assumption, the noise inherited by synthetic
preferences from early Q estimates, and the computational cost of finding the nearest state in the
replay buffer. The future work can be investigating other assumptions and evaluating DFA on larger,
real human-in-the-loop tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds.
In Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2009.

Riad Akrour, Marc Schoenauer, and Michele Sebag. Preference-based policy learning. In Machine
Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2011,
Athens, Greece, September 5-9, 2011. Proceedings, Part I 11, pp. 12–27. Springer, 2011.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal
Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from
human preferences. In International Conference on Artificial Intelligence and Statistics, pp.
4447–4455. PMLR, 2024.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Róbert Busa-Fekete, Balázs Szörényi, Paul Weng, Weiwei Cheng, and Eyke Hüllermeier. Preference-
based reinforcement learning: evolutionary direct policy search using a preference-based racing
algorithm. Machine learning, 97:327–351, 2014.

Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open problems
and fundamental limitations of reinforcement learning from human feedback. arXiv preprint
arXiv:2307.15217, 2023.

Xiaoyu Chen, Han Zhong, Zhuoran Yang, Zhaoran Wang, and Liwei Wang. Human-in-the-loop:
Provably efficient preference-based reinforcement learning with general function approximation.
In International Conference on Machine Learning, pp. 3773–3793. PMLR, 2022.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from online
ai feedback. arXiv preprint arXiv:2402.04792, 2024.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In ICML, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. Pmlr, 2018.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691, 2024.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yogamani,
and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
transactions on intelligent transportation systems, 23(6):4909–4926, 2021.

W Bradley Knox and Peter Stone. Tamer: Training an agent manually via evaluative reinforcement.
In 2008 7th IEEE international conference on development and learning, pp. 292–297. IEEE,
2008.

Pushmeet Kohli, Mahyar Salek, and Greg Stoddard. A fast bandit algorithm for recommendation to
users with heterogenous tastes. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 27, pp. 1135–1141, 2013.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gengxu Li, Tingyu Xia, Yi Chang, and Yuan Wu. Length-controlled margin-based preference
optimization without reference model. arXiv preprint arXiv:2502.14643, 2025.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
free reward. Advances in Neural Information Processing Systems, 37:124198–124235, 2024.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,
pp. 2, 2000.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Ryan Park, Rafael Rafailov, Stefano Ermon, and Chelsea Finn. Disentangling length from quality in
direct preference optimization. arXiv preprint arXiv:2403.19159, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From R to Q*: Your language model is
secretly a Q-function. arXiv preprint arXiv:2404.12358, 2024.

Aadirupa Saha, Aldo Pacchiano, and Jonathan Lee. Dueling rl: Reinforcement learning with trajectory
preferences. In International conference on artificial intelligence and statistics, pp. 6263–6289.
PMLR, 2023.

Marc Schoenauer, Riad Akrour, Michele Sebag, and Jean-Christophe Souplet. Programming by
feedback. In International Conference on Machine Learning, pp. 1503–1511. PMLR, 2014.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Arsalan Sharifnassab, Saber Salehkaleybar, Sina Ghiassian, Surya Kanoria, and Dale Schuurmans.
Soft preference optimization: Aligning language models to expert distributions. arXiv preprint
arXiv:2405.00747, 2024.

Daniel A Spielman. Algorithms, graph theory, and linear equations in laplacian matrices. In
Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol.
I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures, pp. 2698–2722. World Scientific,
2010.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
neural information processing systems, 33:3008–3021, 2020.

Gokul Swamy, Christoph Dann, Rahul Kidambi, Zhiwei Steven Wu, and Alekh Agarwal. A minimaxi-
malist approach to reinforcement learning from human feedback. arXiv preprint arXiv:2401.04056,
2024.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Garrett Warnell, Nicholas Waytowich, Vernon Lawhern, and Peter Stone. Deep tamer: Interactive
agent shaping in high-dimensional state spaces. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. A bayesian approach for policy learning from
trajectory preference queries. Advances in neural information processing systems, 25, 2012.

Runzhe Wu and Wen Sun. Making rl with preference-based feedback efficient via randomization.
arXiv preprint arXiv:2310.14554, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and
Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q*-approximation
for sample-efficient rlhf. arXiv preprint arXiv:2405.21046, 2024.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton
Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of llm
performance in machine translation. arXiv preprint arXiv:2401.08417, 2024.

Yichong Xu, Ruosong Wang, Lin Yang, Aarti Singh, and Artur Dubrawski. Preference-based
reinforcement learning with finite-time guarantees. Advances in Neural Information Processing
Systems, 33:18784–18794, 2020.

Chunqiu Zeng, Qing Wang, Shekoofeh Mokhtari, and Tao Li. Online context-aware recommendation
with time varying multi-armed bandit. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 2025–2034, 2016.

Wenhao Zhan, Masatoshi Uehara, Wen Sun, and Jason D Lee. Provable reward-agnostic preference-
based reinforcement learning. arXiv preprint arXiv:2305.18505, 2023.

Qining Zhang and Lei Ying. Zeroth-order policy gradient for reinforcement learning from human
feedback without reward inference. arXiv preprint arXiv:2409.17401, 2024.

Qining Zhang, Honghao Wei, and Lei Ying. Reinforcement learning from human feedback with-
out reward inference: Model-free algorithm and instance-dependent analysis. arXiv preprint
arXiv:2406.07455, 2024.

Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human
feedback from pairwise or k-wise comparisons. In International Conference on Machine Learning,
pp. 43037–43067. PMLR, 2023.

Banghua Zhu, Michael I Jordan, and Jiantao Jiao. Iterative data smoothing: Mitigating reward
overfitting and overoptimization in rlhf. arXiv preprint arXiv:2401.16335, 2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOF OF THE THEOREM 5.2

Assumption A.1 (Bradley–Terry preferences on the soft-optimal Q-function). Let Q⋆ : S×A→R
be the soft-optimal state-action value function of the MDP, i.e.,

Q⋆(s, a) = max
π

E
[∞∑

t=0

γt
(
r(st, at) + λH

(
π(· |st)

))
∣∣∣ s0 = s, a0 = a

]
,

where H(.) is the entropy function and λ is the entropy coefficient. Assume that there exists a
parameter β > 0 such that, for every s ∈ S and any a, b ∈ A,

P ⋆
(
a ≻ b | s

)
= σ

(
β [Q⋆(s, a)−Q⋆(s, b)]

)
,

σ(z) =
1

1 + e−z
.

Theorem A.2 (Preference loss recovers the optimal policy). Fix a state s ∈ S and abbreviate
Q⋆

a := Q⋆(s, a). Suppose that Theorem A.1 holds. Under uniform sampling of ordered pairs (a, b) ∼
Unif(A2) and the tabular full-support parameterization ℓa = log π(a | s) (

∑
a e

ℓa = 1, eℓa > 0),
consider the preference loss

Lpref(ℓ) = − 1

|A|2
∑

(a,b)∈A

P ⋆(a ≻ b | s) log σ
(
α(ℓa − ℓb)

)
,

α > 0. (7)

This loss is strictly convex on the set of full-support policies and is minimized uniquely at

π⋆(a | s) =
exp

(
β
α Q⋆

a

)∑
a′∈A

exp
(
β
α Q⋆

a′

) . (8)

Furthermore, this Gibbs distribution coincides with the global maximizer of the entropy-regularized
RL (or SAC objective) when λ = α/β:

max
π

Eπ

[∞∑
t=0

γt
(
r(st, at) + λH(π(· | st))

)]
. (9)

Proof. Because the policy is tabular, we fix the state s, and introduce the log-policy vector ℓ =
(ℓa)a∈A. Define the policy and the Bradley–Terry probabilities as follows:

Pab(ℓ) := σ
(
α(ℓa − ℓb)

)
, P ⋆

ab := σ
(
β(Q⋆

a −Q⋆
b)
)
, a, b ∈ A.

First, we reformulate the loss of the theorem. For this purpose, we consider two cases:

1. When a = b: In this case the two logits coincide, so P ⋆
aa = Paa = σ(0) = 1

2 ; hence in this
case each summand equals − 1

2 log
1
2 = log 2

2 . Summing over the |A| therefore contributes
the constant |A| log 2

2 |A|2 in the loss.

2. For any two different actions a ̸= b the ordered pairs (a, b) and (b, a) both appear. Because
σ(z) + σ(−z) = 1, we have the identities Pba = 1 − Pab and P ⋆

ba = 1 − P ⋆
ab. Grouping

those two ordered terms gives the compact expression

L(ℓ) := − 1

|A|2
∑

{a,b}∈A,a̸=b

[
P ⋆
ab logPab(ℓ) + P ⋆

ba logPba(ℓ)
]

(10)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Therefore, Lpref =
|A| log 2
2 |A|2 + L. Since the additive constant is not used in the optimization, it can be

discarded. Therefore, we may optimize L instead of Lpref.

Now we characterize the stationary points. For this purpose, we compute the partial derivative of L
with respect to the ℓk, ∂L

∂ℓk
. Based on Lemma A.3 only the terms that contain k depend on ℓk, so

∂L
∂ℓk

= − α

|A|2
∑
b̸=k

[
P ⋆
kb − Pkb(ℓ)

]
. (11)

A stationary point satisfies
∑

b̸=k(Pkb − P ⋆
kb) = 0 for every k.

Set
ℓa = c+

β

α
Q∗

a, ∀a ∈ A (12)

Then for every a, b,

Pab(ℓ) = σ
(
α(ℓa − ℓb)

)
= σ

(
β(Q∗

a −Q∗
b)
)
= P ∗

ab,

and equation 11 is equal to zero with ℓa = c+ β
αQ

∗
a.

Now using
∑

a e
ℓa = 1 with equation 12 gives

ec =
(∑

a

exp
(
β
αQ

⋆
a

))−1

.

Hence, the stationary point is as follows:

π⋆(a | s) =
exp(βαQ

⋆
a)∑

a′∈A
exp(βαQ

⋆
a′)

. (13)

If we write the KKT conditions of the loss and derive the value of the Lagrange multiplier λ, λ will
be zero. Hence, the above stationary point is valid. See Lemma A.4 for the details.

Computing Hessian: To compute the Hessian we define wab as follows:

wab := Pab(ℓ)Pba(ℓ) = Pab(ℓ)
[
1− Pab(ℓ)

]
> 0.

Using
∂Pab

∂ℓa
= +αwab,

∂Pab

∂ℓb
= −αwab.

Now, if we differentiate equation 11 once more. For (i ̸= j):

∂2Lp

∂ℓj ∂ℓi
= − α

|A|2
[
αwij

]
= − α2

|A|2
wij .

For (i = j):
∂2Lp

∂ℓ2i
= − α

|A|2
∑
b̸=i

(−αwib) =
α2

|A|2
∑
b̸=i

wib.

Now using the above derivations, we write the matrix form of Hessian.

H =
α2

|A|2
(
D−W

) Wij = wij (i ̸= j), Wii = 0,

Dii =
∑
b̸=i

wib.

To prove that L is strictly convex, we should prove that H (or L) is positive-definite. The matrix
L = D−W is a weighted graph Laplacian of the complete graph on A as its off–diagonal entries
are negative, diagonals are positive, and each row sums to zero(Spielman, 2010).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

For a matrix L to be positive definite, we should have for any v ∈ R|A|, v⊤Lv > 0. In our case, one
has

v⊤Lv =
1

2

∑
i,j

wij(vi − vj)
2. (14)

Identity equation 14 follows from expanding v⊤(D −W)v and re-grouping terms (see Spielman
(2010) for more details). Because every weight wij > 0, the RHS is non-negative, hence it is always
equal to or bigger than zero. Therefore L is positive-semidifinite (L ⪰ 0) and equals to zero iff

v1 = · · · = v|A|.

In other words, only subspace span{1} = { a1 : a ∈ R, a ̸= 0}, whose members have all coordinates
equal (v1 = · · · = v|A|) makes v⊤Lv equal to zero. Now, we prove that given the constraint imposed
on our problem, v⊤Lv cannot be equal to zero.

In general unconstrained optimization, v in v⊤Lv, shows all possible directions in R|A|. In our case,
the optimization is constrained, and the function L is restricted to a constraint set C (the probability
simplex:

∑
a∈A eℓa − 1 = 0), hence the condition v⊤H v ≥ 0 is only required for vectors v in the

tangent space of C at ℓ. This is because the tangent space of a convex set C at any v ∈ C is the set of
feasible directions within C (Absil et al., 2009).

The parameter set of the H (or accordingly L) is

E :=
{
ℓ ∈ R|A| :

∑
a

eℓa = 1, eℓa > 0
}

We define g(ℓ) =
∑

a∈A eℓa − 1 = 0 and its gradient ∇g(ℓ) = eℓ := (eℓ1 , . . . , eℓ|A|)⊤ > 0.
A displacement v ∈ R|A| is feasible iff it is in the tangent space (denote it with TℓE) that is
∇g(ℓ) · v = 0. Hence,

eℓ · v = 0.

Now consider a vector in span{1}. For any v = a1 with a ̸= 0,

eℓ · v = a eℓ · 1 = a
∑
b∈A

eℓb = a ̸= 0.

Hence, v /∈ TℓE . Hence, for every feasible v ̸= 0,

v⊤Lv > 0 =⇒ v⊤Hv =
α2

|A|2
v⊤Lv > 0.

Thus, the Hessian is positive–definite along all feasible directions, which establishes the strict
convexity of the preference loss on the full support tabular policy.

Another way to proof the uniqueness of the solution: Assume, for contradiction, that there exists
another log–policy vector ℓ̃ ∈ E that also satisfies the stationarity system

∑
b̸=k(Pkb −P ⋆

kb) = 0, ∀k
and the normalization

∑
a e

ℓ̃a = 1. For every ordered pair (k, j) the argument leading to equation ??
then gives Pkj(ℓ̃) = P ⋆

kj as well. Because σ is strictly increasing, this implies

ℓ̃k − ℓ̃j = ℓk − ℓj , ∀k, j ∈ A,

hence ℓ̃ = ℓ+ δ1 for some δ ∈ R \ {0}. But then∑
a

eℓ̃a = eδ
∑
a

eℓa = eδ ̸= 1,

contradicting the constraint that every feasible ℓ must satisfy
∑

a e
ℓa = 1. Therefore δ = 0 and

ℓ̃ = ℓ, proving that the stationary point is unique.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Connection with soft actor-critic: For the same fixed state consider

Jτ (π) := Ea∼π[Q
⋆
a] + τH(π), H(π) := −

∑
a

π(a) log π(a).

Introducing a Lagrange multiplier λ for
∑

a π(a) = 1 gives Q⋆
a − τ(log π(a) + 1)− λ = 0, hence

π(a)∝exp(Q⋆
a/τ). Normalization produces

πSAC(a | s) = exp(Q⋆
a/τ)∑

a′ exp(Q⋆
a′/τ)

.

Choosing τ = α/β recovers equation 13, so the minimizer of L coincides with the soft actor-critic
solution with temperature τ = α/β.

Lemma A.3 (Gradient of the unordered-pair preference loss). Let

L(ℓ) := − 1

|A|2
∑

{a,b}∈A,a̸=b

[
P ⋆
ab logPab(ℓ) + P ⋆

ba logPba(ℓ)
]
,

where P ⋆
ab, Pab(ℓ) and ℓ are defined in Theorem A.2. Then, for every action k ∈ A,

∂L
∂ℓk

= − α

|A|2
∑
b̸=k

[
P ⋆
kb − Pkb(ℓ)

]
. (15)

Proof. For each unordered pair {a, b}, define

gab(ℓ) := P ⋆
ab logPab(ℓ) + P ⋆

ba logPba(ℓ).

Because
d

dz
log σ(z) = 1− σ(z) and ∂(ℓa − ℓb)/∂ℓk = 1{k = a} − 1{k = b},

∂

∂ℓk
logPab = α(1− Pab)

[
1{k = a} − 1{k = b}

]
,

∂

∂ℓk
logPba = αPab

[
1{k = b} − 1{k = a}

]
.

Since P ⋆
ba = 1− P ⋆

ab and Pba = 1− Pab,

∂gab
∂ℓk

= α(1{k = a} − 1{k = b})
[
P ⋆
ab − Pab

]
. (16)

Insert equation 16 into the loss and sum over all unordered pairs that contain k:

∂L
∂ℓk

= − α

|A|2
∑
{a,b}

(1{k = a} − 1{k = b})
[
P ⋆
ab − Pab

]
.

If k = a (and b > k) the indicator equals +1; if k = b (with a < k) it equals −1. Using again the
symmetry P ⋆

ak = 1 − P ⋆
ka and Pak = 1 − Pka, the negative sign flips the difference so that both

cases contribute the same quantity P ⋆
kb − Pkb. Hence

∂L
∂ℓk

= − α

|A|2
∑
b̸=k

[
P ⋆
kb − Pkb(ℓ)

]
,

completing the proof.

Lemma A.4 (The KKT multiplier). Consider the constrained minimization of the unordered-pair
preference loss

min
ℓ∈R|A|

L(ℓ) s.t. g(ℓ) :=
∑
a∈A

eℓa − 1 = 0,

with L defined in equation 10. Let λ ∈ R be the Lagrange multiplier associated with the normalization
constraint. At every KKT point (ℓ, λ) one necessarily has

λ = 0.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. The KKT stationarity condition for each action k ∈ A is

− α

|A|2
∑
b̸=k

[
P ⋆
kb − Pkb(ℓ)

]
+ λ eℓk = 0. (16)

Summing equation 16 over all k gives

− α

|A|2
∑
k

∑
b̸=k

[
P ⋆
kb − Pkb(ℓ)

]
+ λ

∑
k

eℓk = 0. (17)

Because the log–policy variables satisfy the equality constraint
∑

k e
ℓk = 1, the second term in

equation 17 sums to λ.

Rewrite the double sum by grouping every ordered pair (k, b) with its reverse (b, k):∑
k

∑
b̸=k

[
P ⋆
kb − Pkb

]
=

∑
k,b∈A
k<b

[
(P ⋆

kb − Pkb) + (P ⋆
bk − Pbk)

]
.

Using the fact that P ⋆
kb + P ⋆

bk = 1 and Pkb + Pbk = 1, each term in the bracket equals to 1− 1 = 0.
Therefore, the entire double sum is zero, and we can imply that λ = 0.

B TRAJECTORY–LEVEL ANALYSIS OF DFA

Let TH be the (finite) set of all length–H trajectories τ = (s0, a0, . . . , sH−1, aH−1) that can be
generated by the MDP.

Assumption B.1 (Trajectory-level Bradley–Terry model). Let

G⋆(τ) :=

H−1∑
t=0

γt r(st, at)

be the return of trajectory τ . There exists β > 0 such that for every pair τ1, τ2 ∈ TH

P ⋆
(
τ1 ≻ τ2

)
= σ

(
β [G⋆(τ1)−G⋆(τ2)]

)
, σ(z) = 1

1+e−z .

B.1 TRAJECTORY PREFERENCE LOSS

Parameterise a trajectory-tabular policy by one log-likelihood per path, Lτ = log πθ(τ), subject to
the simplex constraint

∑
τ∈TH

eLτ = 1, eLτ > 0. For ordered trajectory pairs sampled uniformly
from T 2

H define the loss

Ltraj(L) := − 1

|TH |2
∑

τ1,τ2∈TH

P ⋆(τ1≻τ2) log σ
(
α[Lτ1 − Lτ2]

)
, (18)

with parameter α > 0.

Theorem B.2 (Optimal policy for trajectory loss). Assume Theorem B.1 and uniform sampling
of ordered trajectory pairs. The loss equation 18 is strictly convex on the probability simplex
{L :

∑
τ e

Lτ = 1} and attains its unique minimum at the Gibbs distribution

π⋆(τ) =
exp

(
β
α G⋆(τ)

)∑
τ ′∈TH

exp
(
β
α G⋆(τ ′)

) . (19)

The proof is similar to the proof of Theorem 5.2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.2 CONNECTION BETWEEN THE STATE-WISE AND TRAJECTORY-WISE OPTIMA

We adopt the standard soft Bellman optimality equations (See Haarnoja et al. (2017) for the proofs):

Q⋆(s, a) = r(s, a) + γ Es′∼P (·|s,a)
[
V ⋆(s′)

]
, (20)

V ⋆(s) = α/β log
∑
a′∈A

exp
(

β
αQ

⋆(s, a′)
)
. (21)

Let α, β > 0 be the preference and BT-scale parameters. The optimal (state-wise) policy can be
written equivalently as

πst(a | s) =
exp

(
β
αQ

⋆(s, a)
)∑

a′ exp
(
β
αQ

⋆(s, a′)
) = exp

(
β
α

(
Q⋆(s, a)− V ⋆(s)

))
. (22)

Consider a finite-horizon trajectory τ = (s0, a0, . . . , sH−1, aH−1) generated by the deterministic
dynamics st+1 = f(st, at), with fixed initial state s0 and terminal boundary condition V ⋆(sH) = 0.
Define the trajectory probability induced by the state-wise policy,

πtraj(τ) :=

H−1∏
t=0

πst(at | st). (23)

Taking logs and using equation 22,

log πtraj(τ) =
β

α

H−1∑
t=0

(
Q⋆(st, at)− V ⋆(st)

)
. (24)

Under the assumptions γ = 1 and deterministic transitions, the soft Bellman equation equation 20
reduces to

Q⋆(st, at) = rt + V ⋆(st+1), (25)
hence

Q⋆(st, at)− V ⋆(st) = rt + V ⋆(st+1)− V ⋆(st). (26)
Summing over t = 0, . . . , H − 1 telescopes the value terms:

H−1∑
t=0

(
Q⋆(st, at)− V ⋆(st)

)
=

H−1∑
t=0

rt + V ⋆(sH)− V ⋆(s0) =

H−1∑
t=0

rt − V ⋆(s0). (27)

Combining equation 24 and equation 27 gives

log πtraj(τ) =
β

α

(H−1∑
t=0

rt − V ⋆(s0)
)
. (28)

Therefore, under these conditions, for any trajectory τ starting from a fixed s0 we have

πtraj(τ) = exp
(

β
α

(
G(τ)− V ⋆(s0)

))
= C(s0) exp

(
β
α G(τ)

)
∝ exp

(
β
α G(τ)

)
,

where G(τ) =
∑H−1

t=0 rt and C(s0) = exp
(
− β

αV
⋆(s0)

)
depends only on the common start state.

This establishes that the trajectory probabilities induced by the state-wise soft-optimal policy are
proportional to exp

(
(β/α)G(τ)

)
(for fixed s0), completing the connection between the state-wise

and trajectory-wise formulations.

Moreover, for any two trajectories τ+, τ− with the same s0,

α
[
log πtraj(τ

+)− log πtraj(τ
−)

]
= β

[
G(τ+)−G(τ−)

]
,

so the DFA trajectory-level preference computed from πtraj reduces exactly to the Bradley–Terry
model over undiscounted returns:

Pθ(τ
+ ≻ τ−) = σ

(
β [G(τ+)−G(τ−)]

)
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 4: GridWorld results with size 10*10. (M = 500)

C EXPERIMENTS

Walker is a planar biped with four actuated joints that must walk without tipping over; Hopper is
a one-leg, three-joint robot that learns to hop forward; Humanoid is a 17-joint 3D figure that must
walk quickly while remaining upright; Swimmer is a three-link snake that propels itself through a
viscous medium; Inverted Pendulum tasks a cart with balancing an upright pole; and MountainCar
Continuous challenges a car trapped between two hills to climb the right hill by building momentum.

For GridWorld game, the grid is 5*5, where the agent starts at position 2*2. All methods use a tabular
softmax policy parameterization, where each state-action pair has a corresponding logit parameter.
For the reward model in RM+PPO, we use a simple tabular representation that assigns a value to each
state-action pair. All methods are trained for the same number of environment interactions to ensure
fair comparison. We use Adam optimizer with learning rate 3× 10−2 across all methods.

Below we illustrate the results for more complex environments and different numbers of M mentioned
in Section 6. We run the algorithms for 5 different seeds {3, 1, 14, 4, 50}. We considered the default
gym horizon for all environments.

Figure 7 shows the performance of DFA on Humanoid environments compared with OraclePPO and
RM methods. For the panel query, with used M=10. For the RM method, we spent 2000 system
probes for the reward model training. In tasks whose rewards are easy to model, the performance gap
between RM and Oracle PPO is typically small; we therefore chose Humanoid, where the reward is
harder to model than in the other environments.

We utilized a Linux server with Intel Xeon CPU E5-2680 v3 (24 cores) operating at 2.50GHz with
377 GB DDR4 of memory and Nvidia Titan X Pascal GPU. The computation was distributed over 48
threads to ensure a relatively efficient run time. In our control-task experiments, DFA required more
wall-clock time than SAC. For example, in the Pendulum, running 10 million system probes took 8
hours (on average) with DFA compared to 6.5 hours with SAC. In the Swimmer environment, SAC
completed in 8 hours, while DFA took 9 hours. Although DFA generally requires more wall-clock
time per step, in some environments (e.g., MountainCar, Swimmer) it converges in fewer steps. As a
result, the increased per-step runtime does not significantly impact its overall efficiency.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 5: GridWorld results with size 20*20(M = 100).

Figure 6: GridWorld results with size 20× 20(M = 1).

For hyperparameter tuning, we performed a grid search, systematically exploring a predefined range
of values for each parameter. In the following tables, we provide the fine-tuned parameters for each
algorithm and method. Batch sizes are considered the same for all algorithms. The discount factor is
also set to 0.99 for all the runs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 1: Default hyper-parameters for all algorithms used in the 5× 5 GridWorld experiments

Algorithm Hyper-parameter Value

ZPG

T (iterations) 1000000
N (pairs / iter) 1 - 10
M (votes / query) 1000
µ (perturbation radius) 0.1
α (learning-rate) 0.05
trim (prob. clip) 10−2

RM-PPO

traj pairs (pretaining) 5000
ppo iters 1000
βKL 0.1
γ (discount) 1.0
λ (GAE) 0.95

DFA (on-policy) α (temperature) 1× 10−3 − 1× 10−6

Npairs/iter 1
iters 100000

Oracle-PPO

ppo iters 100000
βKL 0.1
γ (discount) 1.0
λ (GAE) 0.95

Table 2: Hyper-parameters for SAC and DFA across all evaluated environments

Alg. Hyper-parameter Walker2d Hopper Swimmer Humanoid MountainCarC Pendulum

SAC

Hidden layer size 64 64 64 64 64 64
Policy learning-rate 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Q learning-rate 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Batch size 256 256 256 256 256 256
Replay-buffer capacity 20 000 20 000 20 000 20 000 20 000 20 000
Entropy temperature λ 0.1 0.2 0.01 0.01 0.1 0.2
Discount factor γ 0.99 0.99 0.99 0.99 0.99 0.99
Soft-update coefficient τ 0.1 0.005 0.1 0.1 0.01 0.005
parallel envs Nenv 32 32 32 32 32 32
Training episodes 50 000 50 000 50 000 50 000 50 000 50 000

DFA

Hidden layer size 64 64 64 64 64 64
Policy learning-rate 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Q learning-rate 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Batch size 256 256 256 256 256 256
Replay-buffer capacity 20 000 20 000 20 000 20 000 20 000 20 000
Entropy temperature λ 0.01 0.1 0.01 0.01 0.01 0.01
Temperature α 0.2 0.2 0.3 0.2 0.4 0.2
Discount factor γ 0.99 0.99 0.99 0.99 0.99 0.99
Soft-update coefficient τ 0.1 0.005 0.1 0.1 0.01 0.005
parallel envs Nenv 32 32 32 32 32 32
Training episodes 50 000 50 000 50 000 50 000 50 000 50 000

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 7: Humanoid results with horizon 1000.

D BROADER IMPACTS

DFA aims to make reinforcement learning from human feedback more sample-efficient by blending
numeric rewards with pairwise preferences. Positive impacts include lowering annotation costs,
enabling faster prototyping of assistive robots, and providing a simple baseline for preference-centric
alignment research. However, the method also amplifies whatever biases or inconsistencies are
present in the collected preferences: if early Q estimates or human labels encode unfair or unsafe
behavior, DFA may reinforce those patterns more quickly than reward-only training. Because DFA
can learn from very small amounts of feedback, malicious or accidental injection of adversarial
comparisons could steer policies toward harmful objectives—especially in safety-critical domains
such as autonomous driving or content recommendation. The work uses only simulated environments
and involves no personal data; nevertheless, broader deployment should respect fairness guidelines
and, when real users provide feedback, comply with relevant privacy regulations.

E USE OF LARGE LANGUAGE MODELS

We used Large Language Models (LLMs) to aid or polish the manuscript text. Specifically, LLMs
were used to improve grammar, phrasing, and clarity of exposition; they were also used for code
debugging.

22

	Introduction
	Related Work
	Preliminaries
	Methods
	Learning with Only State‐wise Preferences
	Synthesizing Preferences from Numerical Rewards
	Extension of the Loss to Trajectory-based Comparisons

	Theoretical Analysis
	Experimental Results
	Comparison with SAC via Synthetic Preferences
	Comparison with RM Methods

	Conclusion
	Proof of the Theorem 5.2
	Trajectory–Level Analysis of DFA
	Trajectory preference loss
	Connection between the State-wise and Trajectory-wise Optima

	Experiments
	Broader Impacts
	Use of Large Language Models

