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Abstract

Offline Learning from Observation (LfO) focuses on enabling agents to imitate
expert behavior using datasets that contain only expert state trajectories and separate
transition data with suboptimal actions. This setting is both practical and critical in
real-world scenarios where direct environment interaction or access to expert action
labels is costly, risky, or infeasible. Most existing LfO methods attempt to solve
this problem through state or state-action occupancy matching. They typically rely
on pretraining a discriminator to differentiate between expert and non-expert states,
which could introduce errors and instability—especially when the discriminator
is poorly trained. While recent discriminator-free methods have emerged, they
generally require substantially more data, limiting their practicality in low-data
regimes. In this paper, we propose IOSTOM (Imitation from Observation via
State Transition Occupancy Matching), a novel offline LfO algorithm designed to
overcome these limitations. Our approach formulates a learning objective based
on the joint state visitation distribution. A key distinction of IOSTOM is that it
first excludes actions entirely from the training objective. Instead, we learn an
implicit policy that models transition probabilities between states, resulting in
a more compact and stable optimization problem. To recover the expert policy,
we introduce an efficient action inference mechanism that avoids training an
inverse dynamics model. Extensive empirical evaluations across diverse offline
LfO benchmarks show that IOSTOM substantially outperforms state-of-the-art
methods, demonstrating both improved performance and data efficiency.

1 Introduction

Imitation learning is a framework in machine learning where agents learn to perform tasks by
mimicking expert demonstrations rather than learning through trial-and-error or explicit reward
signals [33| 137, [15]. This approach is particularly useful in environments where designing reward
functions is difficult or costly. Its practical relevance spans a wide range of domains, including
robotics, healthcare, and autonomous driving, where expert behavior is available but reinforcement
learning is either too risky, time-consuming, or expensive to deploy [35!46,[24]]. By leveraging expert
demonstrations, imitation learning enables faster deployment of intelligent systems and facilitates
safer exploration in complex, real-world environments.

A variant of this framework, known as Imitation from Observations or Learning from Observations
(LfO), focuses on learning policies using only state trajectories without access to the expert’s actions.
This setting presents unique challenges, such as inferring intent and disambiguating optimal behavior
from partial information, but also broadens applicability to scenarios where action data is unavailable
or hard to record. For example, in video-based learning from human demonstrations in household
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tasks (e.g., cleaning or cooking), it is often infeasible to capture the precise motor commands or
control actions, making observation-only learning a practical and valuable approach.

Recent developments in imitation learning from observations have increasingly focused on scenarios
where a limited set of expert state-only trajectories is complemented by sub-optimal state-action
demonstrations. While this setup has practical appeal, many existing methods rely on distribution-
matching frameworks that operate over complex input tuples such as (s, a, s’) or (s, s’, s”), where
s, s’ represents a state and « an action [[18},[38]]. These formulations appear to be sample-inefficient
due to the structural complexity of the inputs. Furthermore, some approaches require estimating a
discriminator to support training [27, 48], which can be unreliable in low-data or high-dimensional
settings [39]]. Other methods rely on learning an inverse dynamics model to recover unobserved
expert actions, which introduces approximation errors that may degrade the quality of the learned
policy [43,150]. To the best of our knowledge, no existing method in the LfO setting addresses all of
these limitations simultaneously.

We aim to address the aforementioned limitations in this work. Our central idea is to ignore sub-
optimal actions and instead focus on learning the transition probabilities between consecutive states,
leading to a simple and compact learning objective that only involves joint state pairs (s, s’). We then
develop an efficient method to recover the expert policy without requiring an inverse dynamics model.
Specifically, our contributions are as follows:

(i) By first disregarding sub-optimal actions in the demonstration data, we propose to learn
state-to-state transition probabilities, which can be interpreted as an implicit policy that
encapsulates the actual state-action policy. We then formulate the learning problem as
matching joint state visitation distributions and leverage convexity and Lagrangian duality
to derive a tractable joint-state Q-learning procedure. This training formulation, in addition
to being discriminator-free, is significantly simpler and more compact than prior approaches
that rely on action annotations, as it only involves consecutive state pairs (s, s’).

(i) We further introduce two novel strategies for efficiently extracting a policy from the learned
Q-function. First, we propose a Q-weighted behavior cloning (BC) approach, which is
theoretically equivalent to the standard advantage-weighted BC but offers a more compact
and stable formulation. Second, we propose a single-stage process for recovering the expert
policy without estimating an inverse dynamics model, thereby avoiding approximation errors
that could degrade policy quality.

(iii) We validate our LfO framework using state-of-the-art benchmarks, demonstrating that our
algorithm, IOSTOM, significantly outperforms existing methods. The implementation of
IOSTOM is publicly available at https://github.com/quanganh1999/I0STOM.

2 Related Work

Learning from Observations Different from Learning from Demonstrations (LfD) [37}35] using
expert state-action dataset, Learning from Observations (LfO) [45] addresses the challenge of
imitation learning when expert actions are unavailable, relying instead on state-only expert trajectories.
LfO research can be broadly distinguished into online and offline paradigms. In online LfO setting,
the agent can actively interact with the environment [44} 149]]. Recent advancement in online LfO
focuses on improving adversarial imitation learning (AIL) approaches [14}6]]. The core idea of AIL
relies on generative adversarial networks (GANSs) [11] where a generator policy learns to imitate an
expert, while a discriminator differentiates between agent-generated and expert data. In addition to
online LfO, its offline setting has also received significant interest due to practical constraints of many
real-world scenarios, where continuous interaction is costly or risky. It assumes access to state-only
expert demonstrations and an action-labeled background dataset from other interactions [50]. A
common approach trains an inverse dynamics model (IDM) on background data to infer expert actions,
then applies Behavior Cloning (BC) [43|14]. However, BC needs extensive, high-quality expert data
and can suffer from compounding errors, exacerbated by IDM inaccuracies [34]. Another line adapts
the Distribution Correction Estimation (DICE) framework [28]]. These methods (e.g., PW-DICE [48]],
SMODICE [27]], LobsDICE [[18]]) use a discriminator to estimate density ratios as pseudorewards for
downstream RL. While avoiding an explicit IDM, their success depends on discriminator quality and
RL robustness. Recently, DILO [38] bypass both IDM and discriminator learning by solving the dual
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of an occupancy matching objective, directly optimizing a utility function. This function, measuring
long-term divergence from expert visitation, is used to extract the imitation policy.

Imitation Learning via Distribution Matching: Distribution Matching objective is a powerful
tool in Reinforcement Learning (RL) that has demonstrated its effectiveness in exploration [23],
goal-conditioned RL [26, [1], and especially Imitation Learning (IL). Many popular IL methods
such as BC, GAIL [[13], and DAgger [36] can be formulated as statistical divergence minimization
problems [10]. This minimization can be performed over the state, state-action, or trajectory space,
resulting in different IL approaches [30]. The well-known DICE-family algorithms [21} 19} 18} [27]
also optimizes state or state-action visitation distribution matching problems between the learner and
expert via their dual formulations [29]]. They often require learning a discriminator to estimate the
log-ratio for distribution correction. Recently, [39]] introduce ReCOIL, a discriminator-free method
that also optimizes the duality of the state-action occupancy matching problem. This work is closely
related to our IOSTOM, as both learn a score function that assigns high values to expert samples
and low values to non-expert samples. However, IOSTOM focuses on solving the state-transition
occupancy matching problem instead of the standard state-action one to address the LfO problem.
Our setting is generally considered more challenging than the LD setting targeted by ReCOIL [17]],
mainly due to the absence of expert actions in LfO.

3 Background

Markov Decision Process. We consider a Markov Decision Process (MDP) defined by the tuple
M = (S8, A, T,R,po,7), where S denotes the set of states, A set of actions, py represents the
distribution of initial states, R : S x A — R defines the reward function for each state-action pair,
and 7 : S x A — S is the transition function, i.e., 7 (s'|s, a) is the probability of reaching state
s’ € 8§ when action a € A is taken at state s € S. The parameter y € [0, 1) is the discount factor.
In reinforcement learning (RL), the goal is to find a policy that maximizes the expected long-term
accumulated reward, i.e., max, {E(S’a),\,dw [R(s, a)]}, where d™(s,a) is the occupancy measure
(or state-action visitation distribution) of policy 7. The definitions of d™ (s, a) and other common
visitation distributions are include in Table [Tl

C State-Action . C Transition
State Distribution Distribution Joint Distribution Distribution
Notation d™(s) d™(s,a) d™(s,a,s) d™(s,s")
Support S SxA SxAxS SxS§8

Definition (1 —7)> 00 ¥ P(se =s|n) d"(s)m(als) d"(s,a)T(s'[s,a) > ,d"(s,a,s")

Table 1: Overview on different stationary distributions adapted from [50]

Offline Imitation Learning from Observations. Different from standard Imitation Learning,
Learning from observations (LfO) relaxes the requirement of action in expert dataset. In offline LfO
setting, we assume access to an expert observation-only dataset D = {s, s’} and a suboptimal
interaction dataset D; = {s, a, s’}. We also denote the respective visitation distributions of the expert
and suboptimal datasets Dy and D; as d¥ and d!. Several methods have been proposed to handle
this challenging scenario. For instance, SMODICE [27]], a state-of-the-art approach for learning
from observations (LfO), minimizes an upper bound of KL-divergence Dy [d" (s) || d¥(s)] via the
objective:
d'(s
min Egr ) [log dE((s))} + Dy [dﬂ(s, a) |l d (s, a)] .

where D denotes an f-divergence between two distributions. LobsDICE [18]] proposes a similar
formulation:

min Dgp. (d7 (s, s) || d¥(s,s")) + a Dk (d7(s,a) || d'(s,a)) ,
DILO [38]] introduces a discriminator-free approach via solving another objective:
min Dy [8d7(s, s, a') + (1-B) d' (s, ', a'), Bd®(s,8",a") + (1=B) d' (5,8, a")],

where d" (s, s',a’) = d™ (s, s')w(d’|s").



Most methods (except DILO) rely on a learned discriminator to predict distribution correction
ratios based on s or (s, s’), which can be unreliable in low-data or high-dimensional settings [39].
Although DILO is discriminator-free, it requires costly triplet samples (s, s’, s”) and a non-standard
visitation structure, which limits its sample efficiency. In contrast, our proposed method IOSTOM
is discriminator-free and only involves joint state pairs (s, s’) during learning. This leads to a
more compact representation and improved sample efficiency over prior approaches. Furthermore,
IOSTOM is the only approach directly minimizing D ;[d™ (s, s’) || d¥ (s, s)] which is the main
objective of LfO [44, [18].

4 IOSTOM - Imitation Learning via State Transition Occupancy Matching

We present a novel framework for imitation learning from observations, which is structured into two
sequential stages. The first stage focuses on recovering the state-transition probabilities, denoted
as g(s’ | s), which represents the probability of transitioning to the next state s’ given the current
state s. In the second stage, we recover a policy based on the learned state transition model g(s’ | s).
The key insight behind our method is to simplify the LfO problem by initially ignoring the action
information in the dataset. By doing so, we treat the state transition model g(s’ | s) as a form of
“implicit policy” that governs the behavior of the demonstrator. This abstraction allows us to bypass
the need for explicit action labels during the early phase of learning.

4.1 Joint State Q-learning Formulation

Our approach centers on recovering the transition probability between states, denoted as g(s’ | ),
which can be viewed as an implicit policy. This transition model can be computed based on the
underlying policy and environment dynamics as: g(s' | s) = > m(a | s)T (s’ | s,a). To facilitate
training, we define the joint visitation distribution over state pairs (s, s') as:

d?(s,s') =d"(s Zd’rsa (s' | s,a),

where d™ (s, a) is the state-action visitation distribution under policy , recursively computed via the
single-step transpose Bellman equation [29]:

d™(s,a) = (1 =y)do(s)m(a | s) +~ ) d™(s',a")T(s| &', a')m(a | s),

with dy(s) denoting the initial state distribution. To support learning from observations, our goal
is to remove the dependence on actions in the visitation distribution. We introduce the following
proposition to this end:

Proposition 1. The joint visitation distribution d9(s, s") can be expressed as:
d(s,s') = (1= )do(s)g(s' | 5) +79(s" | 8) > d*(5, 5) ()

We note that the flow equality in Equation (I}) depends solely on the joint state visitation distribution
d9(s, s") and the state transition function g(s’ | s)—the two key quantities we aim to recover.
Using the flow constraints described above and following the approach in [39]], our main objective is
to minimize the divergence between two joint state visitation distributions: d s')and d5:! (s, 8),
defined as follows:

dl(s,s) =ad(s,s') + (1 —a)d (s,s'), and dZ(s,s") = ad®(s,s') + (1 — a)d!(s,s),

mix ( mix

le(

where @ € (0,1) is a mixing hyperparameter. Here, d.. (s,s’) represents a mixed visitation
distribution combining the learned state-transition behavior with that of the suboptimal dataset,

while dnb:lxl (s, s) represents a mixed distribution combining expert behavior and suboptimal behavior.

Combining thlS with the flow constraints in (T)), we formulate our learning problem as follows:

max _Df (dmzz( )”dmzm( /))

9,d>0

st d(s,s") = (1—~)do(s)g(s'|s) +vg(s Zd (3,9) 2)



The constrained problem described above is convex in d when the transition function g is fixed.
Following a similar approach to that in [39], the maximization over d can be equivalently reformulated
as an unconstrained optimization problem via Lagrangian duality. We formalize this result in the
following proposition, with the full derivation provided in the appendix.

Proposition 2. The constrained optimization problem in Equation (2)) is equivalent to the following
unconstrained max-min problem:

m?X QIE}GI?’) {a(l - 7) E(s,s')wdo [Q(S, Sl)] + E(s,s’)wdlﬁ;l [f* (’YES”Ng(»|s’) [Q(Sl, SN)] - Q(87 8/))]

- (]' - O[) E(s,s’)NdI I:’YES”NQ(-‘S/) [Q(S/v S//)] - Q(Sv S/)} }v (3)

where Q(s, s') are the Lagrange multipliers and f* denotes the convex conjugate of a chosen convex
function f.

For notational convenience, we define Q(s, g) = Eyg(.|s) [Q(s, s')]. Using this shorthand, we write
the objective function in (B)) as (See Appendix[B.3|for complete derivation):

mgaXQIgl?’) {L(Q7g) = Oé(l - 7) E(S,S’)Ndo [Q(57 S/)] + OéIE(s,s’)NdE [f* (’YQ(S/,Q) - Q(Sa S/))]

+ (L= @) Egpmar |7 (1Q(5.9) = Qls, )] }, )

where f*(t) = f*(t) — t. This formulation learns a joint-state value function Q(s, s"), where actions
are entirely ignored. While being more compact and manageable than prior formulations that rely on
(s,a,s’) oreven (s, s’,s") tuples, our approach benefits from ignoring suboptimal actions in the data.
This design helps mitigate the imbalance in offline datasets, where expert demonstrations lack action
labels, whereas suboptimal trajectories contain fully observed actions.

4.2 Extreme V-learning

Solving the maximin objective in can be done via dual optimization by alternating between
optimizing Q(s, s’) and g. Specifically, we minimize L(Q, g) over @, and then maximize it over
g with @) fixed. Following [47]], the maximization over g can be approximated by computing
max, Q(s, g) for each state s, which requires sampling from g. In offline RL, this is challenging due
to out-of-distribution (OOD) issues when querying () on unseen state transitions [23]]. To address
this, we adopt the in-sample soft estimation from [9], replacing the hard maximization with a KL-
regularized soft value: V3(s) = Eywg(.15)[Q(s, s") — Blog ZEZ,E;], where p is the behavior policy
and 3 controls the KL strength, keeping g close to u to avoid OOD samples. This is supported by the
following proposition:

Proposition 3. maxg{V(g (s)} can be approximated via the following Extreme-V objective:
min {I(V | Q) =E(_ gz [exp(eo(s, ) +w(s, o) 1]} 5)
where w(s, s") = (Q(s,s") — V(s))/B.
Using this estimate, the ()-learning objective becomes:
min L(Q, V) = a(l = 1) Egs,syna [Q(s, 8)] + 0B s 00)nar [ (FV(5) = Q(s, 57))]
+ (1= B vymar [ V() — Q(s, )] ©)
We optimize () and V jointly: @ by minimizing L(Q, V'), and V by minimizing J(V | Q). Crucially,

L(Q, V) is concave in @, and J(V | Q) is convex in V, forming a bi-concave/convex structure that
ensures stable and convergent optimization.

Proposition 4. Under any convex function f, L(Q,V) is convex in Q, and the Extreme-V loss
J(V | Q) is convex in' V.



4.3 Policy Extraction

Typically, once the () and V functions have been learned through Q-learning, a policy can be
recovered using advantage-weighted behavior cloning (AW-BC) [31]. In our context, where we
operate with an implicit policy g(s’' | s), the policy can be recovered by solving the following
optimization:

m;iX ]E(s,s’)r\/d‘{‘ix(s,s’) [exp (T(Q(S, 8/) - V(S))) 10g g(sl | 8)] ’ @)

Here, 7 > 0 is a parameter controlling the sharpness of advantage weighting. We use D! instead of

the mixed dataset Dfi’)f in (7)), as the policy 7 is extracted solely from D?. This is sufficient under
the common coverage assumption that d (s, s') > 0 whenever d”(s, s’) > 0, as adopted in prior
works [[19, 18, 27]].

A limitation of objective (7)) is that the value function V() in our setting is only an approximation
obtained via the extreme-V surrogate, which can introduce noise and bias in the computation of
advantages. To address this, we propose an alternative approach based solely on the Q-function. The
following proposition shows that this alternative objective can, in theory, recover the same optimal
implicit policy as the original advantage-weighted BC formulation.

Proposition 5. The following Q-weighted behavior cloning objective returns the same optimal
implicit policy as the original advantage-weighted BC formulation:

max B,y ar [exp (7Q(s, ) log g(s' | ). ®)

Given the learned implicit transition model g(s’ | s), existing approaches often recover the expert
policy 7(a|s) by training an inverse dynamics model (IDM), denoted as Z(a | s, s’). This is typically
done by optimizing the following objective: maxz E(, 4 s)~ar [logZ(a | s,5")], and then defining
the recovered policy as w(a | s) = >, Z(a | s,5")g(s’ | s). While intuitive, this two-step approach
has several limitations. First, decoupling the learning of g(s’ | s) and the recovery of 7(a | s)
via a separate inverse model introduces additional sources of bias. Second, training the inverse
dynamics model Z(a | s, s’) typically requires a significant amount of high-quality data. When the
offline dataset d’ contains a large proportion of low-quality or suboptimal data, the inverse model
may be inaccurate—resulting in compounding approximation errors, as also noted in learning-from-
observation (LfO) literature [18]].

To address limitations of IDM-based recovery, we propose a single-stage policy extraction method
that avoids training an inverse dynamics model. Our approach leverages the identity g(s’ | s) =
>uT(s" | s,a)m(a | s). Using this, we rewrite the Q-weighted BC objective (§) as a direct
optimization over 7:

U

max F(m) = E(s oyar [exp (1Q(s,5")) log <Z T(s' | s,a)m(a s))] .

The objective F'(7), however, involves a log-sum over actions, making it difficult to optimize directly.
We develop a tractable lower bound on this objective, which resembles a weighted behavior cloning
loss over log 7(a | ).

Proposition 6. The objective F'(r) is lower-bounded by the following surrogate function F(r), up
to an additive constant: F(m) = E, oypr [exp (1Q(s,8)) >, Z(a | s,5") logm(a | s)].

While F(r) is a lower bound of the original objective F(r), maximizing this surrogate function still
promotes the maximization of F'(7) in practice. The primary advantage of the surrogate objective
F(r) is that it contains the term Y wZ(a]| s, s")m(a | s), which can be empirically approximated
using offline samples, thus avoiding the need to learn the inverse dynamics. In particular, we can
empirically approximate F () as:

F(r) & E( a0y~ lexp (TQ(s,8')) logm(a | 5)],

where the expectation is taken over offline trajectories (s, a, s’). We note that a similar weighted
behavior cloning formulation was used in [38]], although without providing theoretical justification.
Empirically, their results demonstrate that this single-stage approach can outperform the traditional
two-step method involving inverse dynamics modeling.



5 Practical Algorithm

The common choices of f-divergence function in the literature can be KL or Pearson y2. In IOSTOM,

. . . . . . 2
we choose the x? divergence function with its convex conjugate function f*(z) = T +x. Our
objective (6) becomes (complete derivation can be found in the Appendix [B.g):

lenL(Qa V) :(1 - V)Edo(s,s’)Q(sv 5/) + fY]EswdE [V(S)} - IEs,s’NdE [Q(Sv S/)]

1
+ K e (V) = Q(s,8)°).

da
The ming —a B, oypr [Q(s, s")] term in the above objective which effectively encourages maxi-
mizing the ()-values of expert transitions can lead to unbounded growth in @, potentially resulting in
learning instability. To address this issue, we adopt a technique from [2] that constrains the expert
(Q-values, and propose the following practical Q-learning objective (with derivation in Appendix
B.9):

£(Q.V) = (1-7)Eq, [Q(s, )]+ 1 Bar [0V ()~ Q5. )]

(Q(S’S/)_IEV>21 : ©)

Finally, to estimate the term E(, ;)~q, [Q(s,s)], we sample (s, s") pairs uniformly from the offline
dataset rather than from a policy rollout. This empirical estimation, adopted in prior works [8} 38]],
helps reduce overfitting and improves the robustness of the learned policy by leveraging a diverse
range of initial transitions. We present main steps of our IOSTOM algorithm in Algorithm 1}

1
+3Eae

Algorithm 1 I0STOM

1: Input: Expert dataset D, suboptimal dataset D’

. . . 2: Initialize Q, V functions and policy networks Q4, Vi, o
In this section, we compare IOSTOM with 3: Set target network parameters ¢/

previous state-of-the-art approaches ondi- 4. ¢ v =1 9 .0 N do
verse sets of environments and tasks from 5. lo mini.

the D4RL benchmark [7], and real world ¢. # Update V using J(V, Q) in Equation ()
data. Particularly, we aim to answer the . W w— NV, j(leQd,/ )

following main questions: (Q1) Can I0S- 3 # Update Q using T.(Q, V) in Equation ©)
TOM outperform other baselines on stan- ¢ b ¢ —nVoL(Qs V;;)

dard LfO benchmarks? (Section (Q2) lO.: # Update policy via weighted BC

6 Experiments

Sample mini-batches from D and D’

Is our algorithm still robust with limited 1. w(s,s') « exp (TQy (s, 5"))
expert data? (Section[6.2) (Q3) How well  12: 0+ 0 +nVoE, , »yar [w(s,s)logma(a | s)]
IOSTOM perform when learning from ex- 13: # Update target network

perts of different dynamics? (Section[6.3) 14 ¢ — A+ (1—N)¢

(Q4) What is the performance of IOSTOM  15: end for _

on real-world instances (Section[6.4)? We ~16: Output: Imitation policy mg

also provide implementation details and additional experiments in the Appendix [C|

Baselines and experimental setup We choose three SOTA LfO methods in the literature as our
main baselines: SMODICE [27], PW-DICE [48]], and DILO [38]]. Both SMODICE and PW-DICE
require learning a discriminator. The main difference between them is that SMODICE aims to
minize the KL-divergence distance of state visitation distributions between learner and expert while
PW-DICE uses Wasserstein distance [16] instead. DILO is the recent SOTA discriminator-free
method for LfO. We train all algorithms for 1 million gradient steps with 5 random seeds and monitor

: — method score - random score . CIC :
the normalized score = 100 * expert score - Tandom score [7] during training. The average normalized score

of last 10 evaluations is used to assess the performance of different methods.

6.1 Offline IL from Observations

To answer the question (Q1), we use the same offline LfO benchmark from DILO [39] with datasets
constructed from the D4RL framework [7]. Specifically, we evaluate methods on 8 Mujoco envi-



| | LfD approaches | LfO approaches || Expert

Suboptimal Env BC BC ReCOIL SMODICE PW-DICE DILO I0STOM
Dataset (expert data) | (full dataset)
randomd+ hopper 4524140 5.641483 108.1813.98 | 106.56 1053 | 108.09 1239 | 86.35 13500 | 109.32 1 05 || 111.33
halfcheetah 2.240.01 2.2510.00 80.20+6.61 85.55 11.39 86.11 1439 91.53 10.27 93.02 10.40 88.83
expert walker2d 0.86.£0.61 091405 102.1647.19 | 107.93 1126 | 107.48 1053 | 108.31 1915 | 107.98 1o.90 || 106.92
ant 5174543 | 30.6651495 | 12674403 | 126.08 1075 | 126.89 1117 | 125.30 4o 5 | 128.19 4155 || 130.75
random-+ hopper 4841583 3.040.54 97.85417.89 | 58.30 19.96 | 75.04 11421 | 104.27 474 | 107.28 1300 || 111.33
halfcheetah -0.9310.35 2241001 76.9247 53 3.19 1182 4.02 4174 43.65 1385 88.77 11.26 88.83
few-expert | walker2d | 09841083 | 0741020 | 832321000 | 3.93 2076 | 36.11 2o10 | 108.35 4015 | 108.40 2001 | 106.92
ant 0.9113.93 35384266 67.14 18 30 6.59 16.86 99.90 1259 | 110.79 1133 | 120.09 1517 || 130.75
mediumd+ hopper 16.09+12.80 59.2543.711 88.51+16.73 55.74 1210 65.99 15.05 108.22 11,95 | 110.20 51 111.33
halfcheetah | -1.7910.22 42451042 81.1549.84 53.80 14.18 58.74 1184 88.54 1377 93.12 1032 88.83
expert walker2d 2434182 72764382 108.54 11 81 691 1071 105.41 10.33 | 86.59 11230 | 108.12 113 || 106.92
ant 0.8647.42 95.47 +10.37 120.3647.67 | 104.00 1362 | 108.14 £190 | 98.46 11.44 | 124.72 1349 || 130.75
medium hopper 7374113 46.87 4531 50.01410.36 53.50 1155 57.24 1303 96.95 1789 | 108.96 1133 || 111.33
halfcheetah | -1.154¢.06 42.2140.06 75961454 42.88 1063 27.85 +6.03 59.40 46.80 89.47 1052 88.83
few-expert walker2d 2.0210.72 70424056 | 912511763 9.08 1367 7522 4705 | 74.35 1080 | 108.15 1g.43 || 106.92
ant 104541 65 | 81632607 | 1103811006 | 88.20 1115 | 9034 1050 | 90.77 100 | 120.36 11 05 || 130.75
pen 13.95411.04 | 349441110 95.04 1448 1571 11136 | 23.39 1456 26.48 1333 82.77 1484 106.42
cloned+expert door 0224005 | 00112000 | 102754405 | 1.57 2090 | 0.07 20.1a | 9329 21505 | 102.77 1005 || 103.94
hammer | 24lis4s | 545i785 | 95771700 | 1071180 | 129 c010 | 91.80 20917 | 94.59 o5 || 125.71
pen 138351076 | 90.76:95.00 | 103725200 | 58.62 4752 | -2.56 1130 | 31.95 3743 | 95.77 2501 || 106.42
human+expert door -0.0310.05 103.7141.00 | 104701055 | 29.84 L1217 0.15 10.02 0.11 +9.40 100.77 1165 || 103.94
hammer 0.1840.14 122614485 | 125194329 | 33.28 11683 2.02 40.77 6.93 1245 93.34 1741 125.71
partial+expert |  kitchen 25450 45.511 87 6001570 | 36.67 1577 | 12.33 1535 | 23.00 19587 | 58.95 1007 || 75.0

mixed+expert | kitchen | 22135 | 421i102 | 520:10 | 48334620 | 750 4416 | 29.17 11307 | 4645 1084 || 75.0
Table 2: Average normalized return over last 10 evaluations of IOSTOM against baselines on the D4RL
suboptimal datasets with 1 expert trajectory. The mean and std are obtained over 5 random seeds. LfO methods
with avg. perf within the std-dev of the top performing LfO approach is in bold.

ronments: 4 locomotion (Hopper, HalfCheetah, Walker2d, Ant) and 4 manipulation (Pen, Door,
Hammer, Kitchen) [42]. Each task’s expert dataset contains one trajectory. Suboptimal datasets for
locomotion mix D4RL ‘random’ or ‘medium’ data with 200 (‘expert’) or 30 (‘few-expert’) expert
trajectories. For manipulation, D4RL non-expert datasets (‘mixed’ and ‘partial” for Kitchen; ‘human’
and ‘cloned’ for others) are mixed with up to 30 expert trajectories. This results in 24 diverse tasks
for comparing IOSTOM against baselines, with manipulation tasks being more challenging due to
larger state spaces. More details on environment and dataset are included in the Appendix.

Table 2] presents results for IOSTOM and baselines. We also include the results of some Learning
from Demonstration (LfD) methods such as Behavior Cloning (BC) and ReCOIL [39] to serve as the
reference upper bound of LfO methods because they have access to expert actions during learning.
We choose these two approaches as ReCOIL is the SOTA offline LfD method while BC is the most
popular IL algorithm. Their results are taken directly from ReCOIL’s paper which uses a similar
setting. As shown in Table 2] IOSTOM leads on 23/24 tasks, only marginally underperforming DILO
on ‘walker2d random+expert’ while still matching expert performance. Discriminator-based methods
(SMODICE, PW-DICE) degrade significantly with few expert examples or on high-dimensional
manipulation tasks due to discriminator overfitting. While DILO’s discriminator-free nature mitigates
this, it still struggles in ‘few-expert’ settings (e.g., ‘halfcheetah’) and ‘human+expert’ tasks where
training can diverge (see Appendix for further discussion). BC methods with access to expert actions
also exhibit poor performance on most tasks. Notably, IOSTOM’s performance is comparable to, and
sometimes surpasses, ReCOIL on locomotion tasks, showcasing its effectiveness and potential to
bridge the gap between LfD and LfO.

6.2 LfO with subsampled expert

This section focuses on benchmarking the sample efficiency of our approach (Question (Q3)). We
adapt the subsampled expert trajectory setting from LfD literature [[13}20]]) to construct a subsampled
state-only expert dataset. Specifically, expert trajectories are sub-sampled by keeping a transition
every 20 time steps (i.e. subsampling rate is 20) starting with a random offset. This process will
create incomplete expert trajectories which makes both BC and DICE method like ValueDICE [21]]
fail as shown in [51]. This setting may not be valid in case of DILO because it requires the triplet
(s,s’, ") which is equivalent to two transitions inside action-labeled expert dataset; we still adapt
the 2-transition version of the subsampling procedure only for DILO. LobsDICE also considers the
similar setting for LfO like us on locomotion tasks, but they construct D using 50 sub-sampled
expert trajectories, which means using 22 = 2.5 times of total transitions of an expert trajectory.

20
This makes this setting still easy to deal with for both our approach and baselines. Therefore, we



Suboptimal Env SMODICE PW-DICE DILO I0STOM
Dataset (full) (sub) (full) (sub) (full) (sub) (full) (sub)
random+ hopper 106.56 10,53 108.33 1043 | 108.09 1039 97.35 1972 | 86.35 13500 13.25 412,95 | 109.32 £108 109.94 146
halfcheetah | 85.55 1139  78.63 4504 | 86.11 1430  37.95 4994 | 9153 1007 92.06 1029 | 93.02 1040  93.23 1924
expert walker2d | 107.93 4196 107.46 1051 | 107.48 1053 101.59 11,41 | 108.31 £0.18  41.98 43580 | 107.98 1020 108.01 1 16
ant 126.08 10,73 12413 1374 | 126.89 1117 11299 1608 | 12539 4937  30.27 4047 | 128.19 +150  126.23 1057
random+ hopper 5830 4996 5844 110.26 | 75.04 11401 4830 100.09 | 10427 1474 9252 11081 | 107.28 1390 10520 1599

halfcheetah 3.19 4182 3.06 +1.29 4.02 4174 391 4117 43.65 1385 4422 1409 | 88.77 1196 86.09,3 52

fow-expert | walker2d | 3.93 4076 478404 | 36.11 2010 2629 s1p0r | 10835 2015  33.69 4n0r | 10840 z001 10432 156
ant 6.59 16.86 6.33 4312 99.90 1259 8281 4585 | 110.79 4133 3191 4065 | 120.09 4517 123.83 1409

hopper 5574 4010 5424 1947 | 6599 4505  63.03 17024 | 10822 1195 5442 1047 | 11020 1951  109.72 192

medium |y echeetah | 53.80 1415 50.06 1157 | 5874 t1ss 6278 a0 | 88.54 s 4261 1o | 93021050 9297 sous
expert walker2d 691 1071 L77 163 10541 +0.33  82.90 11545 | 86.59 t1232 8341 1057 | 108.12 1915 108.59 1017
ant 104.00 1360 9952 4118 | 108.14 1199 110.68 1400 | 9846 1144 105734535 | 124.72 1549 124.06 11 66

medium hopper 53.50 £1.55 54.26 11.09 57.24 1303 50.51 1421 96.95 17.59 55.50 £1.33 | 108.96 +1.33 107.21 11 69

halfcheetah | 42.88 +g63  42.88 1974 | 27.85 1¢.03 11.99 1561 | 5940 1680 5353 1752 | 89.47 1082  87.45 1367
few-expert | walker2d 9.08 1367 3.05 1222 7522 1705 5295 41100 | 74351080 5455 4289 | 108.15 1943 108.45 130
ant 88201113 88804518 | 9034 1056  89.69 1293 | 90.77 £o50  90.90 1149 | 120.36 +105 117.29 4185

Table 3: Comparison of normalized returns obtained by different offline LfO methods on expert dataset with 1
expert trajectory denoted as (full) or 5 subsampled expert trajectories (subsampling rate is 20) denoted as (sub).
The mean and std are obtained over 5 random seeds. Methods on subsampled expert dataset with avg. perf
within the std-dev of the top performing method is in bold. Methods with greater than 5% performance decrease
on subsampled expert datasets are highlighted in blue.

construct D¥ from 5 subsampled trajectories only (i.e. 0.25x total transitions of an expert trajectory)
and evaluate all LfO methods on locomotion tasks with the same suboptimal dataset in Section [6.1}

Table[3|shows the comparison results on the subsampled setting. IOSTOM continues to outperform all
baselines on these challenging tasks. Furthermore, its performance does not change much compared
to using complete expert trajectory even when the total number of expert samples is reduced by 4
times. SMODICE is also robust on 12/16 tasks but its performance on ‘few-expert’ setting is still
poor. Both DILO and PW-DICE face a large drop (>5 %) on the performance of most tasks in the
scenario of less samples and incomplete trajectories.

6.3 LfO with mismatched expert

—— |OSTOM ~—— SMODICE «— DILO == PW-DICE

HalfCheetah-Short Ant-Disabled
100

80
60

40

Normalized Return

20

0.0M 0.2M 0.4M 0.6M 0.8M M 0.0M 0.2M 0.4M 0.6M 0.8M M
Gradient Steps Gradient Steps

Figure 1: Comparison results for LfO with mismatched experts

To evaluate IOSTOM performance when learning from experts of different dynamics, we adopt
SMODICE’s mismatched dynamics setting. We test on ‘HalfCheetah-Short” (halved torso) and ‘Ant-
Disabled’ (partially amputated front leg) (See Appendix H of SMODIE [27] for illustration), using
one expert trajectory from these modified agents. The suboptimal dataset remains the ‘random+expert’
data (Section [6.I) from the original agents. This setting creates a clear mismatch between expert
and interaction datasets. Figure [T] shows IOSTOM outperforming baselines on these challenging
tasks, while DILO performs worst. The poor performance of DILO can be due to the use of visitation
distribution d(s, s’, a) in its objective which matches the wrong a’ in the mismatched expert dataset.

6.4 LfO for marine navigation

We next test IOSTOM in a real-world domain, the maritime navigation problem. Our goal is to learn
IL policies that can behave like human experts (ship pilots) for navigating vessels (mainly large
tankers and cargos). These polices offer significant benefits for operational safety and efficiency.
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Figure 2: Left: Visualization of an episode from our maritime simulator. Blue vessels follows their historical
trajectory; red vessel is controlled by IL policy (destination x marker), dots denote historical trajectory of
ego vessel. Right: Comparison results on various performance metrics. Details on metrics are in the Appendix.

For instance, they can be integrated into Vessel Traffic Information Systems to provide port watch
operators with accurate short-term predictions of vessel movements, especially in congested ports
such as Singapore strait. Learned IL policies also enable to do what-if analysis such as how would
safety be affected when there is traffic surge (e.g., by simulating additional vessel arrivals and
assigning them IL policies). Prior RL-based approaches to maritime traffic management [40} 4 1] rely
on online learning, requiring costly simulator interactions and accurate simulation of vessel dynamics.
In contrast, our IL method directly learns vessel behavior from large offline datasets, offering easier
and more accurate modeling as shown in our results (see later metrics such as ADE, goal rate).

We collect a large amount of historical navigation data (~ 2 years) of vessels operating in a hotspot
region in Singpaore strait (among top 5 busiest ports) recorded in the Automatic Identification System
(AIS). We use these data with ShipNaviSim, a data-driven maritime traffic simulator [32]] to construct
a realistic environment featuring an IOSTOM-controlled ego agent (red) and log-play agents (blue)
that follow their actual trajectories, as illustrated in Figure 2] The ego agent controlled by IL policy
tries to reach the goal (‘x+”) while avoiding collisions with other log-play agents. The ego agent can
also observe past states (blue and red dots) of its and close surrounding agents (its observation space).
Because AIS data does not contain any action information, we use an inverse kinematics model
(IVM) to construct the action space and generate action for AIS data. The state-only expert dataset in
this setting is easy to obtain due to the action-free nature of AIS data. We generate the suboptimal
dataset by adding random noise action-labeled expert trajectories. Further details about environment
and dataset generation can be found in the Appendix.

We evaluate our approach in maritime navigation setting against BC, SMODICE, and DILO. Results
are shown in Figure [Z] using metrics relevant to this domain, introduced in [32]], which reflect how
well the learned agent imitates expert behavior. ADE (Average Displacement Error; lower is better)
measures how far, on average, the agent’s trajectory deviates from the expert’s. Goal reach rate
(higher is better) indicates how often the ship reaches the goal. Near-miss count captures the
number of close-quarter situations, defined as scenarios where two ships come close to each other
posing a collision risk; lower values indicate reduced collision risk, and average acceleration should
closely match that of the expert. Mean and standard deviations are over 5 seeds for each method.
Our approach outperforms across all three baselines in ADE, near-miss count, and goal reach rate,
while maintaining an acceleration profile similar to the expert. DILO is the second-best performer.
SMODICE struggles due to high-dimensional observation space—which includes nearby ships and
trajectory history; leading to a poorly trained state discriminator and worse performance than BC.

7 Conclusion

We presented [OSTOM, a discriminator-free Q-learning framework for offline imitation learning
from observations. By learning an implicit policy in the form of state-to-state transitions and matching
joint state visitation distributions, our method avoids reliance on action labels for value function
learning (Q-learning) and eliminates the need for inverse dynamics models in policy extraction.
Extensive experimental results and ablation studies demonstrate that IOSTOM achieves strong
empirical performance and improves sample efficiency compared to prior approaches.
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A Limitations and Future Work

Despite its strong empirical performance, [IOSTOM has some limitations. First, like most LfO
methods, it assumes access to high-quality consecutive state pairs (s, s’), which may not always
be available in real-world datasets. Second, we assume that actions are fully observable in the
sub-optimal dataset, which might not hold in practice. While these limitations are beyond the scope
of this work, they highlight important directions for future research.

B Missing Proofs and Derivations

B.1 Proof of Proposition I]

Proposition. The joint visitation distribution d? (s, s') can be expressed as:

d9(s,s') = (1 —7)do(s)g(s' | s) +7g(s' | s) Z (3, s) (10)

Proof. We recall that d"(s,a) = (1 — y)do(s)m(a | s) +v3_ . . d"(s',a')T (s | ',a")m(a | s).
Therefore, we have:

Zd7T s,a)T(s" | s,a)
=D (L=y)do(s)m(a | )T(s"| 5,a) + ZVT(S' | s,a) Zd”(E, a)T (s |s,a)m(a]s)

= (1= 7)do(s)g(s" | s) +7g(s' | ) Y d"(5,a)T(s | 5.a)

sa

= (L=7)do(s)g(s" | 8) +79(s" | 5) Y d*(5, ).

s

as desired. O

B.2  Proof of Proposition 2]

Proposition. The constrained optimization problem in Equation @) is equivalent to the following
unconstrained max-min problem:

mgax QIEI?’) {Oé(l - ’Y) E(s,s’)wdo [Q(S, sl)] + E(s,s’)wdlﬁ;l [f* (’YES”Ng(»Ls’) [Q(Sl, SN)] - Q(87 8/))]

- (1 - a) E(s,s’)NdI ['YES/’NgHs/) [Q(S/, SH)] - Q(Sv S/)} }7

where Q(s, s') are the Lagrange multipliers and f* denotes the convex conjugate of a chosen convex
Sfunction f.

Proof. We recall that the primal formulation in Equation ) is as follows:
max _]Df(dmu(sa S/)”dE . (s, S/))

(],dzo mix

st d(s,s) = (1—7)do(s)g(s'|s) +vg(s Zd (3, 5)
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We first apply duality on the inner maximization problem of the above formulation:

—D(d], it (s,

+aZQ(878’) ((1 —7)do(s)-9(sls) +vg(s Zd 5,5) )) (11)

= max min ol =7)Ea (915 [Q(5 )]

+ aEs snd [WZQ(SI/|S/)Q(SlaSI/)_Q(&S/) = Dy(dpia (s, )l dnin(s,8))  (12)

st

Step (TI) to (T2) is equivalent to changing the following order of summation:

ZQ(s,s'>g<s’|s>Zd<§, )

s,s’

—stsZst
—sts ZQSS |s")

s, S/ S//
By adding and subtracting another term below, (I2Z)) becomes:

= max min a(l = 7)Ea().q(1 (@5 )]

+ OEq g [729 (s"]s)QUs, s">—cz<s,s'>]

s’

+ (1 =)y yar lvzg (s"]s)Q(s",s") = Q(s, 8')]

s/’

(1 - a)Eé s/ ~dl |:YZg H|S (S SH) - Q(S, Sl)‘|

s’

= Dy(dpnia (5,8 di(5,5") (13)

mix (

We can swap maxg and ming in (I3) due to strong duality.

=max min - max ol =7)Eas).gs (@ )]

(s,8")>0

Ndhie

TE gnar [’YZQ(SIWS/)Q(S/asﬁ)_Q(Svsl) = Dy(dhnia (5,8 di(5,")

s’

- (1 - a)Es,s’NdI [VZQ(S/I|S/)Q(S/> SN) - Q(57 5/) (14)

s’

=max min a(l=7)Eaq().q10 Qs )]

+E, ot [f* (7 S o1)QU ") — Qs, >)]

s/’

(1 - a)Es s/ ~d! |:ng N|S (5 SN) - Q(S, 5/)] (15)

s’
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where f* is convex conjugate of convex f-divergence function. (T4) to (T3) can be proved by the
following equation using the interchangeability principle [5]:

=Dy (dyia (s, 8) i (5,57)

dl . (s,s')>0

mix

max B, o qr [VZQ(S"B’)Q(S',S")—Q(s,S')

s’

(5,8 y , dyi0 (5, 5')
= H(léaiiPOEs,swdi;i 4B (5, 5') (Zg [5)Q(s", 57) - Q(s’s))_f<dm(s’)>

7”” mix s’ mix

=E,, g [f* (vZ 9(s"1)Q(S, 8") — Qs m)]

s’

Finally, the objective (T3) is the unconstrained dual problem of Equation (2). O

B.3 Complete derivation of transforming objective function (3) to (@)

Oé(l - 'Y)E(S,S’)Ndo [Q<57 S/)] + IE(s,s’)NdE’Imix [f* (’YES”Ng("S/) [Q(sla SN)] - Q(S7 S/))]

- (]— - 0[) ]E(s,s’)Ndl [V]Es”wg(-\s/) [Q(S/, S”)] - Q(Sa Sl):l (16)
= Oé(l - W)E(s,s’)wdo [Q(Sa Sl)] + E(S,S’)Nd"E]i;(I [f* (’YQ(S/v g) - Q(Sv S/))]
- (1 - a) ]E(s,s’)NdI [7@(5179) - Q(& 3/)] (17

= a(l = V)E(s,5)mdo [Q(5,8)] + (s g)mar [f7 (7Q(8', 9) — Q(s,8))]
+ (1 - O‘)H‘E(s,s’)rwif [f* (’YQ(S/,Q) - Q(Sv S/))] - (1 - Oé) E(s,s’)wdf [’YQ(SIMQ) - Q(87 S/)] (18)

= a(l - ’Y)E(S,s/)m«do [Q(87 S/)] + aE(s,s’)NdE [f* (VQ(S/vg) - Q(S7 SI))]
+ (1= a)E( gymar [T (7Q(5", 9) = Q(s,8")) — (vQ(s, 9) — Q(5,5"))] (19)
= Oé(l - V)E(S,s')fvdo [Q(S, 3/)] + O‘E(s,s’)NdE [f* (’YQ(S/a g) - Q(S7 8/))]
(1= Q) Eguaear [£7(0Q(5,9) = QUs, s’))} 20)

(T6) to (I7) by deﬁning Q(s,9) =Eg g 1s) )]. (@7 to (T8) due to d2/ (s, 5') = ad® (s, s')+
(1 —a)d(s,s'). ([9) to (Z0) by defining f* (t) f (t) —t.

B.4 Proof of Proposition 3]

Proposition. max,{V{(s)} can be approximated via the following Extreme-V objective:
mm{ (V1Q) =E( o4z [exp(w(s,s)) +w(s,s') — 1]} :

where w(s, s") = (Q(s,s") — V(s))/8.

Proof. Recall that:

VQQ(S) - ES,NQHS) |:Q(S’ Sl) - Blog ,LgL((Z/ || i;] ’

which is the expected reward under transition distribution g(- | s), regularized by the KL divergence
from a reference distribution (- | s). Moreover, the problem max,, {Vé’ (s) ¢ is a classic entropy-
regularized expected reward maximization problem. The optimal solution has a closed form:

mgaX{Vé(s)} ﬁlogZu s’ | s)exp (Q(sﬂs >> . (21)

We now write the function J(V | Q) as:

1V 19)= 31 foxp (A=) QT 2Ty

For any state s, and fixed @, the function J(V | Q) is convex in V (s) because:

18



* The exponential function exp (M) is convex in V' (s),

* The linear term (Q(s, s') — V(s))/f is also convex (affine),

» The sum and non-negative weights preserve convexity.

To find the minimum of J(V | Q) with respect to V, we take the derivative with respect to V'(s) and

set it to zero:
8JV|Q Z“ 1) [_exp<¢?('>ﬁ—V(5))_H:o,

Rewriting:

St [ s)esp (L) 5 ),
We have >, (s’ | s) = 1, this gives:

;,u(s' | ) exp (Q(S’ SI)B* V(S)) =1.

Bringing the constant outside the exponential:

oo (L) St e (2520) o,

= exp (_ V;)) ST s)lexp (Q(S «))

Taking the logarithm of both sides and solving for V (s), we obtain the closed-form solution to

miny J(V]Q) as:
V*(s) ﬁlogz,us | 5) eXp(Q(Sﬂs)). (22)

Combined 1)) and (22) we get:
V*(s) = max{V{j(s)}
g

as desired. O

B.5 Proof of Propositiond]

Proposition. Under any convex function f, L(Q,V) is concave in Q, and the Extreme-V loss
J(V | Q) is convex in V.

Proof. We rewrite the objective L(Q, V') as
lenL(Q7 V) = Oé(l - 'Y) E’(s,s/)NDo [Q(57 S/)] + aE(s,s’)N'DE [f* (’yV(S/) - Q(87 S/))]
+ (1= B [ (V) = Qs )|
We now analyze the convexity of L((Q), V') with respect to (). Note the following:
* The first term, Ep, [Q(s, s')], is linear in @, and hence convex.

» The functions f* and f* are convex (as they are convex conjugates of proper convex
functions).

* The composition of a convex function with an affine function (i.e., YV (s') — Q(s, s)) is
convex in ().
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» Expectations of convex functions preserve convexity.
Therefore, each term in L(Q, V) is convex in @, and the entire objective L((Q, V') is convex in @), as
desired.
The convexity of J(V | @) in V follows directly from the discussion in the proof of Proposition (3).
O

B.6 Proof of Proposition 3|

Proposition. The following Q-weighted behavior cloning objective returns the same optimal implicit
policy as the original advantage-weighted BC formulation:

max B, o)t lexp (TQ(s,s")) log g(s" | s)]

Proof. We write the objective function as:
F(g)= ) u'(s' | 5)exp (rQ(s, ")) log g(s' | 5),
(s,8")

where 1! 98/ | 5) is the state-to-state transition probability (i.e., the implicit behavior policy) for the
dataset D*. For each fixed state s, the expression

D (s ) exp (TQ(s, ) log g(s' | 5)

is a weighted log-likelihood, where the weights p/ (s | s) exp(7Q(s, s’)) are known. Maximizing
this with respect to g(- | s) under the constraint that g(- | s) is a valid probability distribution (i.e.,
>« 9(s’ | s) = 1) leads to a standard result from maximum likelihood estimation with importance
weights. The closed-form solution is:

.l B pl(s" | s)exp (7Q(s,s"))
S = S T s exp (rQUs )

We now consider the advantage-weighted behavior cloning objective:

max Eo oyt [exp (7(Q(s,8) = V(s)) log g(s' | 5)],

In a similar fashion to soft behavior cloning, this yields the following closed-form optimal “implicit

policy™:
g**(sl | S) — IU’I(S/ | S) exXp (T(Q(S7 S/) — V(S)))
Sy (Y| s)exp (T(Q(s,y) — V(s)))

where V' (s) appears in both the numerator and denominator and thus cancels out. This simplifies the
expression and leads to:
g (s' | 5) =g (s" | 5),

indicating the equivalence between the advantage-weighted behavior cloning and the Q)-weighted
behavior cloning formulations.

O

B.7 Proof of Proposition [6]

Proposition. The objective F() is lower-bounded by the following surrogate function ﬁ(w) up to
an additive constant: F(1) = E(; oyar [exp (TQ(s,8")) >, Z(a | s,5")log(a | s)].

Proof. We write the objective function as:

F(m) = E(5,5)p! [exp (1Q(s, ")) log (Z T(s' | s,a)m(a s))] .
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Given that the logarithm function is concave, we apply Jensen’s inequality. Define:
=Y "T(5 | 5,0),
a

Then we have:

log (Z T(s'|s,a)r(a| s)) = log (Z Wﬁ(a | s)) +log A(s, s) (23)

> 2 TX(/S"S )a) logm(a | s) +log A(s, s) (24)
= ZI(a | s,s")logm(a | s)+log A(s,s). (25)

Substituting this back into the original objective yields the lower bound:

F(7) 2 E(s,5n)~pr [exp (TQ(s,8)) Y _Z(a| s,8") logm(a | s) [ +E(s s)~pr [exp (TQ(s,5')) log A(s, s')].

a

The second term is independent of 7 and can be treated as a constant during training. Therefore, we
can optimize the surrogate lower bound:

F(r) = E(s,s)~Dr [exp (1Q(s, ")) ZI(a | 5,8 )logm(a | s)] )

O
B.8 Complete Derivation of L(Q, V) using Pearson 2 divergence
We recall that the objective function L((Q), V') has the following form:
ménL(Qa V) = 04(1 - 7) E(s,s/)r\«do [Q(Sa 8/)] + O‘E(s,s’)r\sz [f* (’}/V(S/) - Q(37 SI))]
(1= B wymar [[* (V) = Qs ) (26)

where f* is the convex conjugate of divergence function f and F( ) = f*(x) — . Under Pearson
x? divergence, its convex conjugate f*(z) = %- + z and the associated f* (z) = %. The objective
([26) with Pearson x? divergence becomes:

min L(Q,V) = a(1 =) Egs,s)mdo [Q(s, )] + 0B s 5 nar YV (57) = Q(s, )]

+ TB s [V () = Qs )] + - Bgear V() — Qs )] )
S minL(Q,V) = (1= ) By [Q(5: )] + B i DV () = Q)

+ idE(S,s’)NdE [(VV(S’) )2} + (1= Q) [(ﬂ/(s’) - Q(s,s’))z} (28)
= leIlL(Q, V) = ( 7) IE(s s")~dg [Q(S’ $ )] + ESNdE [’YV( )} - IE(s,s’)fvdE [Q(57 S/)]

b By g V)~ Q)] (29)

B.9 Complete Derivation of Z(Q, V') for bounded Q-learning
The operator ming—aEs oype [Q(s, s')] in which effectively encourages maximizing the

@-values of expert transitions can lead to unbounded growth in (), potentially resulting in learning
instability. To address this issue, we adapt a technique from [2] that bounds the expert ()-values. First,
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looking at the objective Let’s define 755 (s, s') = Q(s,8") — vV (s') Vs, 5" ~ d”. The training
objective becomes:

mén L(Q,V) = (1 = 7) E(s symdo [Q(5: )] + E(s,5)mar [—76(s,8")]
+ L 6B ayar (s, )2 + (1 — ) syt [(W(s') — Qs s’))ﬂ

4o 4o
Ewnar[(WV(s') = Q(s,5))?]

& minL(Q.V) = (1 = VBaye [Qs: )] + 1-a

4o

1
+ [Bumar 85,50 + B omas (5,57

A ménL(Q, V) = (1 - V)Edo(s,s’) [Q(37 8/)] + :l_iaEs,s/~dl [(’yv(sl) - Q(Sa S/))2]

da
47 [Bawmae [4r(5, )] + Eu a5 (s, )] +4] 1
S mnL(Q.V) = guin (1= 1)Bae) [Qs )] + - Burmar(W() = Qs8]
+ {Eawmar[r(s, o) 27 (30)
0 min LQ,V) = (1= ) Baygo) [Q(s,)] + B nar[0Q(',9) = Qs )
+ {Eawnas (@G5 ) — (V) +2))) G

Following [2]], the minimum of the third term in is reached when 7“5 (s,s’) = 2. This will lead to
Q(s,8') = 3720 7'2 = 125 Vs, 8’ ~ d”. Therefore, we can replace the target 7V (s') + 2 in
with fixed target ﬁ to have the following modified objective with bounded Q).

Wi £(Q.V) = (1= 1)Bayo.) [Q(5:5)] + T By mar (V) = Qs

4o
1 , 2 \?
+ ZES,S’NdE [(Q(S, s') — 1_7) ]

C Experimental and Implementation Details

Our method is implemented in JAX version 0.5.3 (with CUDA 12 capabilities). We conduct our
experiments using a computing cluster with 8 NVIDIA RTX 3090 GPUs. For each IOSTOM run,
five distinct training seeds are processed simultaneously on a shared hardware set comprising a single
GPU, 32 CPU cores, and 128 GB of RAM. This parallel execution on shared resources enables the
completion of 1 million training steps for all five seeds in about 60-90 minutes.

C.1 Mujoco tasks

We use the same offline LfO benchmark from DILO [38]], which utilizes datasets derived from
the D4RL [7] framework, and tests on Mujoco environments. The state-only expert dataset in all
tasks includes only one expert trajectory. In terms of locomotion tasks, suboptimal datasets, labeled
‘random-+expert’, ‘random-+few-expert’, ‘medium-+expert’, and ‘medium-+few-expert’, are generated
by mixing expert trajectories with lower-quality trajectories from D4RL’s ‘random-v2’ and ‘medium-
v2’ datasets, respectively. The ‘random+expert’ and ‘medium+expert’ datasets combine 200 expert
trajectories with roughly 1 million transitions from the corresponding ‘random-v2’ or ‘medium-v2’
dataset. The ‘x+few-expert’ variants are similar but incorporate only 30 expert trajectories. In
manipulation environments, all suboptimal ‘x+expert’ datasets are formed using 30 expert trajectories
mixed with the complete ‘x> D4RL dataset. We also use ‘-v0’ variant of D4RL datasets for all
manipulation tasks. Table ] gives an overview about our LfO Mujoco tasks.
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State  Action .. Suboptimal .
Task - ! Horizion uooptt Data Points
Dim Dim Dataset
Hopper 11 3 1000 random-+expert le6 random transitions + 200 expert trajectories
medium-+expert 1e6 medium transitions + 200 expert trajectories
random+few-expert  1e6 random transitions + 30 expert trajectories
medium+few-expert  1e6 medium transitions + 30 expert trajectories
Walker2d 17 6 1000 random-+expert le6 random transitions + 200 expert trajectories
medium-+expert le6 medium transitions + 200 expert trajectories
random+few-expert  1e6 random transitions + 30 expert trajectories
medium+few-expert  1e6 medium transitions + 30 expert trajectories
Halfcheetah 17 6 1000 random-+expert le6 random transitions + 200 expert trajectories
medium-+expert 1e6 medium transitions + 200 expert trajectories
random+few-expert  1e6 random transitions + 30 expert trajectories
medium+few-expert  1e6 medium transitions + 30 expert trajectories
Ant 27 8 1000 random-+expert le6 random transitions + 200 expert trajectories
medium-+expert 1e6 medium transitions + 200 expert trajectories
random+few-expert  1e6 random transitions + 30 expert trajectories
medium+few-expert  1e6 medium transitions + 30 expert trajectories
Pen 45 24 100 cloned+expert 5e6 cloned transitions + 30 expert trajectories
human+expert 5000 human transitions + 30 expert trajectories
Door 39 28 200 cloned+expert 1e6 cloned transitions + 30 expert trajectories
human+expert 6729 human transitions + 30 expert trajectories
Hammer 46 26 200 cloned+expert 1e6 cloned transitions + 30 expert trajectories
human+expert 11310 human transitions + 30 expert trajectories
Kitchen 59 9 280 partial+expert 136950 partial transitions + 1 expert trajectories
mixed+expert 136950 mixed transitions + 1 expert trajectories

Table 4: Overview of D4RL tasks and their repsective suboptimal dataset we use in LfO setting

C.2 Maritime Navigation task

The Maritime Navigation task was created using historical data from a hotspot in the Singapore
Strait, following the AIS-driven simulation paradigm adopted in recent maritime traffic simulator
ShipNaviSim [32]. We selected the area with the highest traffic density and collision risk—where
numerous ships cross paths, as shown in Figure B}—as our planning region. We collect large amount
of historical navigation data (~ 2 years) of vessels operating in this hotspot region recorded in the
Automatic Identification System (AIS) from MarineTrafﬁcﬂ The AIS data of each vessel contains two
types of information: static and dynamic. The static data contains some information like width, length,
type, and ID of vessel. Other vessel movement information like latitude, longitude, speed, heading
and course-over-ground are included in dynamic data. To generate trajectory data, we selected
tankers and cargo vessels as they represent the riskiest class due to their larger size (200-300 meters)
and lower navigational agility. All trajectories were then interpolated at 10-second intervals. The
final dataset comprises approximately 125,000 trajectories, totaling around 14 million environment
transitions. The average trajectory length in dataset is around 100-150. We used 80% of the data for
training and reserved the remaining 20% for evaluation.

The observation space is defined from the perspective of the ego agent (the vessel being controlled).
At any given time, the agent observes a historical sequence of its own trajectory and those of the
10 closest nearby ships (each over a configurable number of past steps). For the ego agent and
nearby ships, and for each historical point, the available features include the = and y coordinates,
speed v, and heading angle h. Additionally, the agent observes its goal location. Observing past
states and nearby ship information helps capture multi-ship interactions and provides context for
decision-making. For simplicity, all algorithms used the same neural network architecture to process
the observation space. We did not use any complex structures; instead, we flattened the observation
space and provided it as input to the neural network.

The action space is modeled as a straightforward, 3-dimensional continuous space. An action
is defined as (d, dy, dp), representing the changes in the = and y coordinates and the change in
heading h, respectively. The vessel’s speed at the next time step is derived from the distance traveled

(calculated from vy 1 = 4 /d2 + d% /1) divided by the time interval d7, which is set to 10 seconds.

"https://www.marinetraffic.com/
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Figure 3: The red region is used as the environment area. The gray areas indicate anchorage zones,
the green areas represent landmasses, and the arrows and regions with dark blue borders represent the
Maritime Traffic Separation Scheme (TSS). The high density of crossing points in the red area makes
it a more challenging region for navigation, providing a suitable setting for testing advanced planning
techniques.

Landmass

This is also known as a delta action space [12] and can be used for any moving object. Because action
in our environment represents the difference between some state features of current and next timestep,
we can have a simple Inverse Kinematics Model computing this difference to infer action between
two consecutive states of state-only trajectories in datasets.

Following vessel-specific metrics introduced in ShipNaviSim [32] are used to evaluate navigation
policies, comparing learned agent behavior to human expert data.

Goal-Conditioned ADE (GC-ADE) measures the average displacement between the learned policy’s
trajectory and the original historical trajectory in the 2D plane. Given 7, of length 7T}, and 7, of
length T},, GC-ADE computes the error over the minimum of the two lengths.

min(Ty,,Tp)
1
GC-ADE = — E m _ P2 m _ D)2
mln(Tm; Tp) t=1 (l‘t l‘t ) + (yt yt )

Goal Rate is the percentage of times the ego agent successfully reaches its designated goal location.
Success is defined as coming within a radius of 200 meters of the goal.

Near Miss Count represents the average number of time-steps per episode during which the ego
agent approaches another vessel within a distance of 3 cable lengths (555 meters), which is considered
a near-miss by domain experts. The ‘near-miss’ metric is interpreted broadly as a proxy for high
traffic density and increased potential for navigation risk; it does not always imply that vessels in
‘near-miss’ situation were about to collide.

C.3 Architecture and Hyperparameters

Our implementation builds upon the official implementations of ReCOIL [39]] and XQL [9]. We keep
most of their parameters and network settings as shown in Table[5] We also add Layer Normalization
[3] in V-function network to improve training stability as suggested in XQL. The regularization 3
was tuned by searching over [3, 5, 7, 10, 15, 20]. For locomotion tasks, we set 8 = 20 for standard
LfO setting, and 8 = 15 for subsampled setting. In terms of manipulation tasks, 5 = 10 works best
in most cases except ‘pen-cloned’ setting where £ is set to 3. The policy temperature 7 is often set to
3 in previous works [22,[39]. However, we find that this value results in very bad performance for
IOSTOM because we do not use advantage for updating policy. We tune 7 via via hyper-parameter
sweeps over [0.01, 0.04, 0.08, 0.1, 0.2]. 7 = 0.04 is the best-performing hyperparameter in most
tasks except for the ‘human’ Adroit and ‘mixed’ Franka Kitchen manipulation tasks, where 7 = 0.01
was used. For maritime navigation task, we set 8 = 20 and 7 = 0.04 which is similar to LfO setting
of locomotion tasks.
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Type Hyperparameter Value

Actor Network Size [256, 256]
Activation Function ReLU
Learning Rate 3e-4
Weight Decay le-3
Training Length IM steps
Batch Size 512
Optimizer Adam
Dropout Rate 0.1
LR decay schedule cosine
Critic Network Size [256, 256]
Activation Function ReLU
Learning Rate 3e-4
Training Length 1M steps
Batch Size 512
Optimizer Adam
Mixture Ratio o 0.5
Polyak Update Rate A 0.005
Discount Factor ~y 0.99

Table 5: Hyperparameters of IOSTOM

C.4 Baseslines

To evaluate the performance of our approach, we conduct comparative evaluations against three
established state-of-the-art (SOTA) techniques: SMODICE [27], PW-DICE [48]], and DILO [38]].
The SMODICE and PW-DICE algorithms both operate by training a discriminator to guide the
learned policy. Their fundamental difference lies in the divergence measure employed: SMODICE
seeks to minimize the KL-divergence between the state occupancies of the learner and the expert,
while PW-DICE alternatively uses the Wasserstein distance for this alignment. DILO offers a
distinct, more recent SOTA paradigm for LfO, notable for its discriminator-free learning process.
For all comparative methods, we utilize the publicly accessible codebases provided by their authors.
To ensure fair comparisons, we use the hyperparameter settings recommended in their original
publications or the default configurations within their code. The only exception is DILO where we
can not reproduce consistent results as reported in the paper using their default parameters. After some
tuning effort, we find that using Layer Normalization [3]] can help to improve DILO performance.
However, the training still diverges in some tasks as shown in Figures @ and[3]

—— DILO (reproduce) === DILO (paper)

HalfCheetah-v2 (‘'random+few-expert' task) HalfCheetah-v2 ('medium+few-expert' task)
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Figure 4: Training divergence of DILO on locomotion tasks
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Door-v0 (‘human+expert' task)
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Figure 5: Training divergence of DILO on manipulation tasks

D Additional Experiments

D.1 Comparison with LobsDICE

0.8M

Suboptimal Dataset | Env | PW-DICE | LobsDICE | IOSTOM
random+expert hopper 108.09 41939 | 99.64 1501 | 109.32 11 g
halfcheetah 86.11 1439 80.76 1317 93.02 10.40
walker2d 107.48 +0.53 107.54 +0.13 107.98 +0.20
ant 126.89 117 | 122.65 1072 | 128.19 41 59
random+few-expert hopper 75.04 11491 | 7425 41103 | 107.28 1390
halfcheetah 4.02 4174 11.61 1566 88.77 +1.96
walker2d 36.11 +9.19 101.29 +5.53 108.40 +0.21
ant 99.90 +92.59 93.84 +7.51 120.09 +5.17
medium-+expert hopper 65.99 1505 7443 1508 | 110.20 1g.51
halfcheetah 58.74 +1.84 71.09 +3.76 93.12 +0.32
walker2d 105.41 +0.33 103.34 +2.11 108.12 +0.13
ant 108.14 +1.90 114.96 +4.05 124.72 +3.49
medium-+few-expert hopper 57.24 1303 67.00 +6.43 | 108.96 1 33
halfcheetah 27.85 +6.03 44.76 +3.94 89.47 4+0.82
walker2d 75.22 +7.05 95.39 +5.22 108.15 +0.43
ant 90.34 +2.56 95.33 +1.08 120.36 +1.25
cloned-+expert pen 23.39 1456 29.83 14509 82.77 1484
door 0.07 +0.14 0.02 +0.00 102.77 +0.96
hammer 1.29 10.12 0.55 40.19 94.59 14 39
human-+expert pen -2.56 +1.30 42.09 1508 95.77 +5.91
door 0.15 +0.02 10.98 +9.71 100.77 +1.68
hammer 2.02 +0.77 17.06 +13.44 93.34 +7.41
partial+expert ‘ kitchen ‘ 12.33 4538 ‘ 40.33 1904 ‘ 58.95 5 o7
mixed+expert ‘ kitchen ‘ 7.50 +4.16 ‘ 45.67 1975 ‘ 46.45 g4

Table 6: Average normalized return over last 10 evaluations of IOSTOM against LobsDICE and
PW-DICE on the D4RL suboptimal datasets with 1 expert trajectory. The mean and std are obtained
over 5 random seeds. LfO methods with avg. perf within the std-dev of the top performing LfO
approach is in bold.

To further strengthen our empirical study, we additionally include a comparison against LobsDICE
[L8], alongside PW-DICE and our method IOSTOM), under the same experimental settings. Al-
though previous work [48] has suggested that PW-DICE generally outperforms LobsDICE on the
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DA4RL “random+expert” benchmark, we perform a direct comparison here for completeness and to
ensure a fair evaluation across representative DICE-based baselines.

The corresponding results are reported in Table [6f We observe that IOSTOM consistently and
substantially outperforms LobsDICE across all tasks and dataset regimes. As is common among DICE-
based methods, LobsDICE exhibits degraded performance in the “few-expert” and manipulation tasks,
whereas IOSTOM remains robust. Our findings also confirm that PW-DICE surpasses LobsDICE in
the “random+expert” setting, but PW-DICE becomes unstable and underperforms in several other
configurations, illustrating the general sensitivity of discriminator-based approaches. In contrast,
IOSTOM achieves both stronger performance and greater robustness, reinforcing the benefits of its
stable, discriminator-free formulation.

D.2 Sensitivity to Subsampling of Low-Quality Data

Suboptimal Dataset | Env | IOSTOM(full) | IOSTOM(sub5) | IOSTOM(sub20)
random-+expert hopper 109.32 11 08 110.24 63 110.66 +9.16
halfcheetah 93.02 +0.40 90.81 +2.10 85.59 +5.09
walker2d 107.98 +0.20 107.91 +0.16 107.53 +0.11
ant 128.19 +1.52 127.26 +92.48 127.30 +1.37
random-+few-expert hopper 107.28 4392 108.99 1 9.76 109.34 11 62
halfcheetah 88.77 £1.96 86.62 11 98 80.49 1541
walker2d 108.40 +0.21 108.13 +0.29 107.78 +0.22
ant 120.09 +5.17 119.63 +92.40 105.98 +7.03
medium+expert hopper 110.20 4951 109.89 .22 109.58 1118
halfcheetah 93.12 +0.32 91.07 +1.72 76.30 +13.56
walker2d 108.12 +0.13 108.31 +0.21 108.03 +0.15
ant 124.72 13.49 127.71 19,79 128.61 19.71
medium+few-expert hopper 108.96 +1.33 109.68 +0.56 108.20 +0.83
halfcheetah 89.47 +0.82 90.20 +1.94 77.65 +11.48
walker2d 108.15 +0.43 107.88 4+0.83 107.39 +0.92
ant 120.36 +1.25 118.23 +5.04 102.14 +7.26

Table 7: Average normalized return over the last 10 evaluations of IOSTOM under different sub-
sampling rates of low-quality data (sub5 and sub20) on the D4RL suboptimal datasets with 1 expert
trajectory. Performance drops exceeding 5% relative to IOSTOM(full) are shown in bold.

To assess the sensitivity of our method to the amount of available low-quality data, we conducted
additional experiments where the random (or medium-quality) portion of the dataset was subsampled
to only 20% and 5% of its original size. These two variants are denoted as IOSTOM(sub5) and
10STOM(sub20), while the original version is referred to as IOSTOM(full). The corresponding
results are summarized in Table[/} Performance drops exceeding 5% relative to IOSTOM(full) are
highlighted in bold.

When reducing the low-quality data to 20% (IOSTOM(sub5)), our method exhibits strong robustness:
across all tasks and datasets, performance remains very close to IOSTOM(full), with no significant
degradation observed. However, when the low-quality portion is aggressively reduced to just 5%
(IOSTOM(sub20)), we observe a more noticeable performance decline — up to 18% on some tasks,
particularly in halfcheetah and ant. Nonetheless, IOSTOM still achieves robust performance on 10
out of 16 tasks, even under this extremely limited data regime.

D.3 Comparison with other variants of IOSTOM

To validate our algorithmic designs, we compare IOSTOM with other variants: IOSTOM-IDM
(Using Inverse Dynamics Model), IOSTOM-Adv (Using advantage instead of Q to update policy),
and [OSTOM-IQL (Using Implicit Q Learning [22] objective to train V-function network). Table
[§]shows these comparison results. Overall, IOSTOM has the best performance on 17/24 tasks and
consistently produces high-quality results compared to other variants. IOSTOM-IQL is the second
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Suboptimal ‘ Env ‘IOSTOM-ADV 10STOM-IDM IOSTOM-IQL‘ 10STOM H Expert

Dataset

random+ hopper 55.93 16.67 97.06 14.57 109.74 o026 | 109.32 1108 || 111.33
halfcheetah 6.43 +2.51 80.53 +3.40 92.82 +0.71 93.02 +0.40 88.83
expert walker2d 104.20 +4.07 79.70 1+29.28 108.43 1914 | 107.98 1920 || 106.92
ant 120.13 1365 128.99 1311 128.71 13,73 128.19 14 50 130.75
random+ hopper 20.47 +10.26 50.63 +32.03 106.59 +3.05 107.28 +3.92 111.33
halfcheetah 2.13 40.11 68.79 44.26 86.44 +1.55 88.77 +1.26 88.83
few—expert walker2d 8.38 +92.84 69.11 +923.28 108.37 +0.05 108.40 +0.21 106.92
ant 41.18 +12.90 123.86 +1.97 125.15 +4.50 120.09 +5.17 130.75
medium+ hopper 53.46 +13.16 97.62 +7.42 110.71 +0.35 110.20 4+0.51 111.33
halfcheetah 49.00 +3.44 85.21 +1.86 91.45 +1.49 93.12 +0.32 88.83
cxpert walker2d 85.96 +21.33 94.90 +929.34 108.45 +0.17 108.12 +0.13 106.92
ant 118.74 +4.55 128.32 40.64 124.66 +4.62 124.72 +3.49 130.75
medium hopper 42.79 +2.36 68.32 +17.89 106.02 +3.31 108.96 +1.33 111.33
halfcheetah 42.31 +0.60 76.48 +5.57 78.18 +2.24 89.47 4+0.82 88.83
fCW—CXpCl’t walker2d 74.16 +2.14 107.89 +0.28 108.38 +0.16 108.15 40.43 106.92
ant 99.89 +1.92 121.80 +1.78 121.64 +2.35 120.36 +1.25 130.75
pen 41.65 +5.42 63.39 +11.46 10.54 +1.51 82.77 +4.84 106.42
cloned+expert door 13.87 +8.26 18.68 +12.44 32.25 +13.03 102.77 4+0.96 103.94
hammer 11.77 +16.66 47.83 +8.43 57.04 +6.34 94.59 4+9.39 125.71
pen 92.73 +3.73 81.72 45.13 95.26 +10.16 95.77 +8.91 106.42
human+expert door 95.08 +1.90 78.50 4+20.55 99.47 +3.67 100.77 +1.68 103.94
hammer 88.23 1572 82.12 11851 68.32 113.66 93.34 741 125.71

partial+expert ‘ kitchen ‘ 56.08 +0.29 ‘ 66.30 1+5.70 ‘ 57.75 1200 ‘ 58.95 1597 H 75.0
mixed+expert ‘ kitchen ‘ 49.42 +0.58 ‘ 28.95 +10.62 ‘ 47.92 +1.23 ‘ 46.45 +0.84 H 75.0

Table 8: Average normalized return over last 10 evaluations of IOSTOM against other variants on the D4RL
suboptimal datasets with 1 expert trajectory. The mean and std are obtained over 5 random seeds. LfO methods
with avg. perf within the std-dev of the top performing LfO approach is in bold.

best method, but its performance is still significantly worse than IOSTOM on ‘cloned’ tasks. The
results in ‘few-expert’ setting of [IOSTOM-IDM is very bad compared to ‘expert’ setting which clearly
shows the weakness of training Inverse Dynamics Model with low-quality data. IOSTOM-ADV has
the worst performance in most tasks.

D.4 o« Ablation

Suboptimal Dataset | Env | =01 | a=03 |a=05@u) | a=07 | a=09 | gapworst(%) | gapicsauit(%)
random+expert hopper 109.72 40.84 | 110.21 40,68 | 109.32 1108 | 109.19 4921 | 110.29 4064 1.00 0.88
halfcheetah | 93.09 1022 | 92.90 1031 93.02 10.40 92.99 410.08 92.89 40.18 0.21 0.08
walker2d 107.82 +0.23 | 107.97 10,08 | 107.98 1020 108.16 +0.17 | 108.38 1.6 0.52 0.37
ant 128.37 11.89 | 126.67 1059 | 128.19 1150 | 12578 4300 | 127.30 1155 2.02 0.14
random-+few-expert hopper 107.41 4197 | 108.59 1504 | 107.28 1390 104.75 1336 | 107.25 1411 3.54 1.21
halfcheetah | 87.29 1073 | 87.52 1211 88.77 11.26 88.42 1100 86.61 1184 2.43 0.00
walker2d | 108.09 1094 | 10821 1006 | 108.40 1001 | 108.45 1010 | 108.24 1014 0.33 0.05
ant 12543 1077 | 121.19 4009 | 120.09 4517 122.18 11,90 | 123.46 4117 4.26 4.26
medium+expert hopper 109.79 1995 | 110.44 1051 110.20 1051 110.30 £0.54 | 110.61 ¢ 07 0.74 0.37
halfcheetah | 93.16 1019 | 92.82 1032 93.12 1032 93.00 +0.23 92.68 10.17 0.52 0.04
walker2d 107.54 +9.45 | 107.96 1012 | 108.12 1413 107.28 1144 | 108.22 1 o7 0.87 0.09
ant 129.00 159 | 12491 4056 | 124.72 1349 | 12552 4296 | 127.86 42.90 3.32 332
medium+few-expert hopper 107.95 +1.79 | 110.08 +1 15 | 108.96 11 33 106.99 1403 | 104.34 1555 5.21 1.02
halfcheetah | 87.98 1117 | 87.79 41.77 89.47 1052 88.66 +1.31 89.17 10.60 1.88 0.00
walker2d | 108.15 £o31 | 108.24 1933 | 108.15 1943 | 108.16 1020 | 108.47 1(.22 0.30 0.30
ant 12044 1157 | 11936 1184 | 120.36 1125 119.12 1o58 | 122.32 4073 2.62 1.60
cloned+expert pen 50.08 11730 | 72.62 1745 82.77 1484 73.96 1558 76.37 16.50 39.49 0.00
door 102.68 +o.63 | 103.79 1063 | 102.77 10.06 102.65 £1.37 | 103.64 +0.92 1.10 0.98
hammer 101.98 1488 | 110.07 1729 | 94.59 1939 | 105.58 11235 | 106.81 1294 14.06 14.06
human+expert pen 95.75 1718 96.68 +4.83 95.77 +8.01 98.29 1511 97.74 1511 2.58 2.56
door 10041 1385 | 100.94 1565 | 100.77 1168 99.99 4231 101.13 4 o7 1.13 0.36
hammer 95.24 1579 101.71 1497 9334 174 101.04 1636 | 103.79 1550 10.07 10.07
partial+expert | kitchen | 64.00 1766 | 61.83 1135 | 58954207 | 61.33 1413 | 60.08 1301 | 7.89 | 7.89
mixed+expert | Kitchen | 45.25 455 | 4542 1405 | 46451081 | 45084113 | 45334001 | 295 | 0.00
Average ‘ ‘ ‘ ‘ ‘ ‘ ‘ 4.54 ‘ 2.07

Table 9: Average normalized return over last 10 evaluations of IOSTOM with different o« values on
the D4RL suboptimal datasets with 1 expert trajectory. Method with the best avg. perf is in bold.
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This section presents an ablation study to evaluate the impact of the hyperparameter oo on IOSTOM’s
performance. Table[D.4]reports performance for each setting, with the best-performing o for each task
highlighted in bold. We also include two additional metrics: gap,orst, representing the percentage
gap between the best and worst o, and gapge fqui¢, indicating the gap between the best-performing «
and our default setting of o = 0.5.

According to the table, the average gapors¢ value across all tasks is just 4.54%, which is relatively
small. This indicates that IOSTOM’s performance is not highly sensitive to the choice of «. Further-
more, the average performance gap between the task-specific optimal o and our default choice of
a = 0.5 is even smaller at 2.07%. The gapgefqui¢ value is also under 5% in all but 3 of 24 tasks.
This confirms that & = 0.5 is a robust and effective hyperparameter choice, consistently providing
near-optimal performance.

D.5 [ Ablation

Suboptimal Env B=3 B=5 B=10 /=15 £8=20 Expert
Dataset

randoma hopper 1372 4350 | 556 1116 | 41.39 13015 | 110.36 4046 | 109.32 110 || 11133

halfcheetah 52.40 +11.29 92.64 +0.90 93.10 +0.25 93.18 +0.35 93.02 +0.40 88.83

expert walker2d 1.18 4+0.29 60.97 +39.06 | 6.75 +14.23 107.67 10.14 | 107.98 1450 || 106.92

ant 11894 4760 | 126.17 4006 | 128.02 1501 | 12820 1550 | 128.19 1150 || 130.75

random+ hopper 10.68 356 | 6.10 to76 | 35.94 11577 | 10230 1512 | 107.28 139> || 111.33

halfcheetah | 2.24 1901 220 1005 | 8337 2008 | 85201161 | 8877 £126 | 88.83

few—expert walker2d 1.20 +0.24 11.65 +3.33 29.87 +31.90 108.21 +0.41 108.40 +0.21 106.92

ant 4572 41595 | 97.42 11416 | 12528 4305 | 122.76 4364 | 120.09 1517 || 130.75

medium+ hopper 31.99 +24.17 61.48 +19.37 109.97 +0.42 110.02 +1.00 110.20 +0.51 111.33

halfcheetah | 43.20 1947 54.63 1+3.08 92.63 +0.21 92.96 +0.29 93.12 40.32 88.83

expert walker2d 71.70 +4.56 107.83 4+0.75 108.31 40.27 108.28 40.12 108.12 +0.13 106.92

ant 98.70 +1.81 102.01 +2.96 121.86 +2.49 124.12 +2.93 124.72 +3.49 130.75

medium hopper 46.86 +3.74 61.88 +22.27 105.83 +4.07 106.80 +2.29 108.96 +1.33 111.33

halfcheetah 42.85 +0.27 43.17 +0.12 49.01 +1.15 83.52 +1.72 89.47 +0.82 88.83
few-expert walker2d 66.58 11.99 69.35 1658 | 108.33 4028 | 108.46 1013 | 108.15 1g43 || 106.92
ant 92.15 +1.80 94.62 +3.44 98.59 +1.67 111.45 +3.09 120.36 +1.25 130.75

pen 82.77 1484 56.05 1+7.20 11.30 42,64 10.33 4207 10.13 42,90 106.42
cloned+experl door 40.58 +55.52 80.99 +45.33 102.77 4+0.96 100.08 +2.59 86.06 +6.14 103.94
hammer 88.63 13304 | 94.88 11651 | 94.59 1939 | 100.59 11060 | 90.27 115870 || 125.71

pen 99.27 +5.22 101.27 +6.45 95.77 +8.91 96.14 +7.88 99.96 +13.06 106.42
human+expert door 99.90 4+1.90 | 102.22 1140 | 100.77 £168 | 9943 1236 | 101.22 1595 || 103.94
hammer | 87.11 41608 | 102.10 11565 | 93.34 1741 | 9737 11550 | 93.39 1770 | 125.71

partialtexpert | kitchen | 49.80 11451 | 6110 1501 | 5775 1200 | 6300 1555 | 5970 1505 | 750
mixed+expert‘ kitchen ‘ 46.75 1163 ‘ 45.80 1265 ‘ 47.92 1153 ‘ 46.85 +1.80 ‘ 45.40 1384 H 75.0

Table 10: Average normalized return over last 10 evaluations of IOSTOM with different 5 values on
the D4RL suboptimal datasets with 1 expert trajectory. Method with the best avg. perf is in bold.

This section presents an ablation study to evaluate the impact of the hyperparameter 5 on IOSTOM’s
performance. Table [I0]summarizes these results. For locomotion tasks (e.g., Hopper, HalfCheetah,
Walker2d, Ant), higher /3 values, typically 15 or 20, generally yield superior scores compared to lower
values such as 3 or 5. Conversely, for manipulation tasks (e.g., Pen, Door, Hammer, Kitchen), optimal
performance is often achieved with /3 values of 5 or 10. However, the performance differences across
various [ settings for these tasks are less pronounced. The only exception is the ‘pen’ environment
within the ‘cloned+expert’ dataset, where decreasing 3 leads to improved results, with 5 = 3
achieving the highest score.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:[Yes]

Justification: Our main claims made in the abstract and introduction precisely reflect our
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are included in the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The proofs for all propositions are included in the Appendix. All assumptions
are clearly stated in both the main text and the proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The source-code of our algorithm, along with environment details and exact
commands to run are included in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The D4RL datasets is publicly available. We have submitted source code
with detailed instructions. We can not publish the AIS data we used in Section[6.4due to a
confidential agreement with a third-party data provider.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All experimental details are described in the main paper and Appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have reported the mean and std of results obtained by running with 5
different random sets in the all experimental sections of main paper. In the code, we provide
scripts for generating all training curves constructed from mean scores and shaded by
standard error.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have shown all these information in our Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: I confirm that my paper conforms to the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper provides a general offline imitation learning algorithm that only
tests on the simulated environments. As such, we do not foresee any direct societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

12.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work has no risk for misuse because we do not release any dataset or
pretrained model.

Guidelines:

The answer NA means that the paper poses no such risks.

Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

The answer NA means that the paper does not use existing assets.
The authors should cite the original paper that produced the code package or dataset.

The authors should state which version of the asset is used and, if possible, include a
URL.

The name of the license (e.g., CC-BY 4.0) should be included for each asset.

For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our source code is submitted alongside the paper, accompanied by sufficient
instructions.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not conduct any crowdsourcing experiment and research with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not conduct any experiment related to human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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