
Anytime Single-Step MAPF Planning with Anytime PIBT

Nayesha Gandotra*1, Rishi Veerapaneni*1, Muhammad Suhail Saleem1, Daniel Harabor2,
Jiaoyang Li1, Maxim Likhachev1

1 Carnegie Mellon University 2 Monash University
{nayeshag, rveerapa, msaleem2, jiaoyanl, mlikhach}@andrew.cmu.edu, daniel.harabor@monash.edu

Abstract

PIBT is a popular Multi-Agent Path Finding (MAPF) method
at the core of many state-of-the-art MAPF methods including
LaCAM, CS-PIBT, and WPPL. The main utility of PIBT is
that it is a very fast and effective single-step MAPF solver and
can return a collision-free single-step solution for hundreds
of agents in less than a millisecond. However, the main draw-
back of PIBT is that it is extremely greedy in respect to its
priorities and thus leads to poor solution quality. Additionally,
PIBT cannot use all the planning time that might be available
to it and returns the first solution it finds. We thus develop
Anytime PIBT, which quickly finds a one-step solution iden-
tically to PIBT but then continuously improves the solution
in an anytime manner. We prove that Anytime PIBT con-
verges to the optimal solution given sufficient time. We ex-
perimentally validate that Anytime PIBT can rapidly improve
single-step solution quality within milliseconds and even find
the optimal single-step action. However, we interestingly find
that improving the single-step solution quality does not have
a significant effect on full-horizon solution costs.

1 Introduction
Efficient and collision-free navigation is a fundamental chal-
lenge for teams of robots operating in shared environments
such as factory floors, warehouses, or autonomous vehicle
hubs. The field of Multi-Agent Path Finding (MAPF) devel-
ops planning algorithms that enable multiple robots to move
from their start locations to designated goals without collid-
ing with or obstructing each other.

Priority Inheritance with Backtracking (PIBT) is a pop-
ular MAPF algorithm that has gained attention due to its
simplicity, speed, and effectiveness (Okumura et al. 2022).
PIBT is a one-step, greedy algorithm that quickly determines
the next action for agents to execute and can generate a one-
step plan for hundreds of agents in less than a millisecond.
Due to its efficiency, PIBT has been integrated into various
MAPF frameworks. For example, it is used for full-horizon
planning in LaCAM (Okumura 2023b), collision-shielding
for learned local MAPF policies in CS-PIBT (Veerapaneni
et al. 2024b), and as the initial solution generator under tight
runtime constraints in WPPL (Jiang et al. 2024).

While PIBT’s greedy nature enables exceptional speed,
it also introduces a key limitation: poor solution quality.

*These authors contributed equally.

In its current form, PIBT always computes a solution as
quickly as possible (usually sub-millisecond), regardless of
the available time budget which could range to hundreds or
thousands of milliseconds. However, real-life applications
typically have longer planning times. A common paradigm
for such applications is “anytime” planning where a plan-
ner outputs an initial solution fast and then iteratively im-
proves it until it reaches the timeout, where it then returns
the best solution found. PIBT in its current form cannot do
this and cannot take advantage of additional planning time
to improve its solution.

To this extent, we propose Anytime PIBT, which quickly
finds a single-step solution identical to PIBT and then con-
tinually refines the solution improving its quality with addi-
tional planning time. Anytime PIBT achieves this by search-
ing through the all possible actions for agents in an efficient
anytime manner.

Anytime PIBT utilizes two main insights. First, we inter-
pret the single-step MAPF problem as a recursive problem
where we can employ a Depth-First Search (DFS). This al-
lows us to explore through all actions while saving interme-
diate solutions and pruning. Second, we exploit the semi-
independent structure of MAPF problems. At any given
time, not all agents interact or affect one another’s actions.
By identifying these interacting agents and grouping them,
we break the joint action space into smaller, independent
subspaces, making Anytime PIBT more efficient.

We theoretically prove that Anytime-PIBT algorithm con-
verges to the optimal single-step solution given sufficient
planning time. Additionally, we empirically evaluate its per-
formance on both small and large problem instances (rang-
ing from 20 to 1000 agents) and find that it can consis-
tently improve the single-step cost. However, Anytime PIBT
does not significantly improve full-horizon costs compared
to PIBT when used with LaCAM and LaCAM*. Still, given
the popularity of PIBT, we believe that Anytime PIBT has
potential widespread use and promising future directions.

2 Preliminaries and Related Work
Multi-Agent Path Finding (MAPF) involves finding
collision-free paths for a set of N agents, denoted as
i = 1, . . . , N , where each agent must travel from its start
location sstart

i to its goal location sgoal
i . In the standard

2D MAPF setup, the environment is discretized into grid

cells. Agents can move to adjacent cells in any cardinal
direction or remain stationary in their current cell. A
valid solution consists of a set of paths Π = {π1, ..., πN}
where π0

i = sstarti , πT
i = sgoali with T representing

the maximum timestep of all agents’ paths. To ensure
validity, the solution must avoid vertex collisions (when
two agents occupy the same cell at the same timestep,
i.e., πt

i = πt
j for i ̸= j) and edge collisions (when two

agents swap positions between consecutive timesteps, i.e.,
πt
i = πt+1

j ∧ πt+1
i = πt

j). The standard objective in optimal
MAPF is to find a solution Π that minimizes the total
cost |Π0:T | =

∑N
i=1 |π0:T

i | =
∑N

i=1

∑T−1
t=0 c(sti, s

t+1
i).

In this work, we assume every action to be of unit cost,
c(sti, s

t+1
i) = 1, except when an agent remains at its goal

(in which case the cost is zero).
While the above describes the standard formulation of the

full-horizon MAPF problem, this work focuses on a sim-
plified variant: the single-step MAPF problem. Here, the
objective is to determine the next single actions for agents
that minimizes the total cost for all agents to reach their
goals, under the assumption that after executing the first
action, each agent follows its individual optimal path to
the goal. The latter part ignores potential interactions with
other agents and therefore is just each agent’s individual
optimal path to the goal. We note that all performant 2D
MAPF methods compute a backward Dijkstra’s for each
agent where h∗

i (s) = c∗(s, sgoali). Thus our objective is
to compute the first action for all agents that minimizes
Π0:1 =

∑N
i=1(c(s

0
i , s

1
i) + h∗

i (s
1
i)).

2.1 PIBT
PIBT is a single-step planner that starts out by assigning
each agent a priority. It then sequentially plans agents (in de-
scending order of priority) with each agent reserving its next
action/location. If an agent Ri reserves a location that col-
lides with the single-step path of a previously planned (i.e.
higher priority) agent, Ri is not allowed to try that action
and must try its next preferred action. If Ri instead moves
into a lower priority agent Rk, the other lower priority agent
Rk is required to plan to make way for Ri (hence “inherits”
the higher priority). This priority inheritance repeats until an
action is found. If Rk cannot compute a valid action, it then
chooses to stay in place and requires Ri to reserve a dif-
ferent action. This “backtracking” behavior enables PIBT to
remain effective in congested scenarios where agents must
try out different actions.

PIBT is greedy in respect to the provided single-agent
heuristic and agent priorities, e.g., the highest priority agent
always prefers to minimize its heuristic, even if that would
delay all the other agents. Thus PIBT is not single-step opti-
mal, i.e., does not minimize |Π0:1| and can return arbitrarily
bad solutions.

2.2 PIBT in Other Methods
PIBT is popular as it is an extremely fast single-step MAPF
solver (< 1 millisecond for hundreds of agents). In partic-
ular, the LaCAM solvers, i.e., LaCAM (Okumura 2023b),

LaCAM* (Okumura 2023a), Engineering LaCAM* (Oku-
mura 2024), search over the joint configuration space and
leverage PIBT as their fast joint configuration successor gen-
erator. The different methods search over the joint space in
different manners with LaCAM using a Depth-First Search
(DFS), LaCAM* using anytime A*, and Engineering La-
CAM* employing many tools including parallelism. These
methods all rely on PIBT for its speed.

PIBT’s collision-free single-step behavior has also been
used in CS-PIBT as a smart “collision shield” for post-
processing learnt local MAPF policy predictions (Veerapa-
neni et al. 2024b). Since single-step learnt policies could
make errors and predict actions that lead to collisions, they
propose using PIBT informed by the model predictions to
produce collision-free actions.

Traffic Flow (Chen et al. 2024) improves PIBT’s perfor-
mance in Lifelong MAPF (where agents are continually as-
signed new goals) by computing heuristics online informed
by agent congestion. This decreases the greedy single-step
behavior of PIBT and was shown to improve performance.

2.3 Anytime MAPF Algorithms
Anytime algorithms find initial solutions very fast and then
improve them over time, allowing them to be queried at
“anytime” where they return the best solution found so far.
Anytime Focal search (Cohen et al. 2018) replaced the high-
level focal search of BCBS (Barer et al. 2014) with an any-
time focal search, allowing it to improve the solution quality
over time. However, it is unclear how such anytime conflict-
based methods would scale to 100s of agents where finding
an initial solution itself could take seconds.

A more general popular approach for anytime behavior
is to use Large Neighborhood Search (LNS) (Shaw 1998)
in MAPF. LNS is a broad local search method that tries to
find better solutions by taking an existing solution, destroy-
ing part of it, and then repairing it. MAPF-LNS (Li et al.
2021) and MAPF-LNS2 (Li et al. 2022) explore different al-
gorithms for generating the initial MAPF solution, destroy-
ing, and repairing and showed significant improvement over
Anytime EECBS. Using LNS however does not have any
guarantees on reaching the optimal solution.

Anytime algorithms are particularly useful when the time
cutoff is very small. The Robot Runners competition (Chan
et al. 2024) required planning for 100s-1000s of agents in
one second. The winning team developed Windowed Paral-
lel PIBT-LNS (WPPL) which used PIBT on weighted graphs
to obtain an initial windowed solution (of length 5-15 de-
pending on the instance) and then parallel LNS to improve
the solution (Jiang et al. 2024). Planning Interleaved with
Execution (Zhang et al. 2024) improves an initial solution
(found by LaCAM*) using LNS while simultaneously exe-
cuting the current best-found path.

2.4 Disjoint Agent Groups
One core aspect of our proposed Anytime PIBT is planning
over groups of agents rather than all agents together. This
idea is inspired by two main works that utilize this idea.

Operator Decomposition (OD) (Standley 2010) uses inde-
pendence detection to iteratively divide a MAPF problem of

Recursive Subproblems

Example instance with the orange
agent having the highest priority.

Anytime PIBT

f+=0

f+=1

f+=2 Invalid

Invalid

f+=2

Store better
solutions

Prune
intermediate

solutionsDisjoint Agent Group,
Independent Subproblem

Accumulate f-values based on actions

Recurse in
PIBT's order

Figure 1: The left example shows six agents with preferred actions denoted in arrows. The orange agent with higher priority
would push back the blue agents, when an optimal single-step plan would have the orange agent move back instead. Anytime
PIBT first detects initial disjoint agent groups through an initial modified PIBT call. Then Anytime PIBT solves each group by
recursing through possible actions and agents in PIBT’s order. It stores encountered better solutions and prunes intermediate
solutions based on the accumulated penalty.

all agents into a set of smaller MAPF problems M < N
where each smaller problem contains a set of conflicting
agents. The WinC-MAPF framework formalizes this notion
and defines Disjoint Agent Groups (DJAGs) where agents
in different disjoint agent groups do not affect each other’s
solutions (Veerapaneni et al. 2024a).
Definition 1 (Disjoint Agent Groups). Given a configura-
tion transition s1:N → s′1:N , and a set of disjoint agent
groups {Gri}, we have the property that for each agent
Rj with transition sj → s′j in disjoint agent group Gri,
there cannot exist another agent in a different group Grk

that blocked Rj from picking a better path.
The main implication of DJAGs is that we can plan for

each DJAG separately (as agents in different groups do not
affect each other). We use this idea in Anytime PIBT and
detect and solve DJAGs, which significantly improves the
anytime behavior.

Additionally, finding the optimal solution for each DJAG
ensures that we find the global optimal solution (as the so-
lution for each DJAG captures interactions between agents
internally, but agents in different DJAGs do not interact with
each other). Thus, individually finding, optimizing, and re-
calculating DJAGs (if agents have new conflicts when re-
planning) guarantees eventually finding the optimal solution
(see Theorem 1).

3 Anytime PIBT
Anytime PIBT utilizes two main insights. First, as depicted
in the middle of Figure 1, we view the single-step MAPF as
a recursive problem; planning for N agents means assigning
a location for one agent and then planning for the rest N −1
agents. Given N agents, each with 5 actions, this means we
could consider all 5N options through our recursive tree. We
then save intermediate solutions in the tree, and can prune
out intermediate branches whose solution is worse than our
best found so far. We use PIBT’s priority inheritance and
backtracking to order our recursive calls. Thus, Anytime-
PIBT at its core is a DFS through the action tree that employs
standard solution saving and pruning.

Algorithm 1: Anytime PIBT
Parameters: Current states st1:N , Agent Priorities AP1:N ,
Timeout Tout

Output: πt+1
1:N

1: procedure AnytimePIBT(st1:N , AP1:N , Tout)
2: πt+1

1:N = Null, GroupQ = ∅
3: PIBTwithGrouping(s1:N , AP1:N) ▷ Populates πt+1

1:N
and GroupQ

4: π∗t+1
1:N = πt+1

1:N ▷ Current best solution
5: while !GroupQ.empty() and not timeout do
6: Gr = GroupQ.pop() ▷ Group class, see Alg 3
7: Tgroup = TimePerGroup(|Gr.AoP |,GroupQ)

8: πt+1
∀i∈Gr.AoP = Null ▷ Clear for replanning

9: AnytimePIBT-R(Gr, Gr.AoP , Null, st1:N , 0,
Tgroup) ▷ Alg 3, updates π∗t+1

i∈Gr, earlyExit, New-
Group

10: if NewGroup ̸= Gr then
11: GroupQ.removeNotDisjointWith(NewGroup)
12: GroupQ.push(NewGroup)
13: else if earlyExit then ▷ Did not finish group
14: GroupQ.push(Gr) ▷ We can revisit this later

if given enough time
15: return π∗t+1

1:N

16: function PIBTwithGrouping(st1:N , AP1:N)
17: for agent k ∈ argsort(AP1:N) do
18: if πt+1

k is Null then ▷ If no move planned
19: PIBT-Gr(k, st1:N) ▷ Alg 2, updates πt

1:N

20: function TimePerGroup(K, GroupQ)
21: totalAgentsInGroups =

∑
Gri∈GroupQ |Gri.AoP |

22: return getTimeLeft()∗K/totalAgentsInGroups

However, this recursive structure disregards the semi-
independence of agents and requires recursing through / re-
solving identical subproblems repeatedly. Thus, our second
insight is to use the concept of disjoint agent groups from

Algorithm 2: PIBT with Grouping Recursive Function, red
denotes modifications to regular PIBT
Parameters: Agent k, Current states st1:N
Globals and Side Effects: πt+1

1:N being populated, Group()
updates disjoint agent groups

1: procedure PIBT-Gr(k, st1:N)
2: for st+1

k ∈ Neighbors(stk) do ▷ Sort by
c(stk, s

t+1
k) + h∗(st+1

k)

3: if st+1
k is invalid then ▷ Ignore obstacles

4: continue
5: if ∃j s.t. πt+1

j = st+1
k or πt+1

j = stk∧πt
j = st+1

k
then ▷ Vertex or Edge collision

6: Group(k, j)
7: continue
8: πt+1

k = st+1
k

9: if ∃ agent j ̸= k with stj = st+1
k then

10: Group(k, j)
11: if PIBT-Gr(j, st1:N) then
12: return Success
13: πt+1

k =Null
14: else
15: return Success
16: return Failure

the WinC-MAPF framework (Veerapaneni et al. 2024a) and
decompose the single-step MAPF problem into smaller dis-
joint agent groups (as seen in left of Figure 1). This enables
us to scale to more agents and have better anytime perfor-
mance. Given these two insights (high-level DFS and group-
ing), we now describe Anytime PIBT using the pseudocode
in Algs 1, 2, and 3.

Initial PIBT with Grouping Call Anytime PIBT (Alg 1)
starts with a modified PIBT call (line 3) that keeps track of
agents that interact with each other and define disjoint agent
groups. The only modification to regular PIBT is that the
recursive helper PIBT call (PIBT-Gr, Alg 2) groups agent
k when its action is blocked by a higher priority agent j
(line 5) or when agent k bumps into another agent j (line
9). Agents k and j with such interactions belong to the same
group as they affect each other’s ability to pick their best
single-step path. On the flip side, agents without such inter-
actions are not in the same agent group.

Note that our grouping scheme might contain extra agents
(e.g., k bumping into j does not necessarily mean j blocks
k if they both move in the same direction). However, this is
still a valid disjoint agent group and would be fast to plan
for later on as these agents move on their optimal actions
(and thus we would find the optimal solution immediately
and would spend negligible time planning for these agents).

The “Group” function is a simple union that merges
agents that have been grouped. We highlight that grouping
is just bookkeeping and adds negligible time. Thus after the
end of the initial PIBT call, we have an initial solution iden-
tical to PIBT, as well as disjoint groups of agents. In Figure
1, this would lead the bottom three agents to be in a single
group and the green agents to not be in any group.

Algorithm 3: Anytime PIBT Recursive Function
Parameters: Group Gr, Current States st1:N , Timeout Tout

Group Class: Gr has agents Gr.AoP and best f-value
Gr.Fb (default ∞)
Globals and Side Effects: Preplanned πt:t+1

∀i/∈Gr.AoP , updates
Paths πt+1

∀i∈Gr.AoP , Best solution π∗t+1
1:N , “earlyExit” (default

True), and “NewGroup” (defaults Gr.AoP)
1: procedure AnytimePIBT-R(Gr, Current AoP , Agent

k, st1:N , Accumulated f-costs Fc, Tout)
2: if k is Null then ▷ If no particular agent to plan
3: k = AoP .top() ▷ Pick from AoP by priority
4: AoP = AoP \ k ▷ Less agents for recursive call
5: for st+1

k ∈ Neighbors(stk) do ▷ Sort by
c(stk, s

t+1
k) + h∗(st+1

k)
6: if getCurrentPlanningTime() > Tout then
7: return ▷ Time cutoff, set earlyExit to True
8: if st+1

k is invalid then
9: continue

10: if ∃j s.t. πt+1
j = st+1

k or πt+1
j = stk∧πt

j = st+1
k

then ▷ Vertex or Edge collision
11: Group(k, j) ▷ Updates NewGroup
12: continue
13: Fnext = Fc + c(stk, s

t+1
k) + h∗(st+1

k)
14: if Fnext ≥ Gr.Fb then ▷ Prune if not better
15: return
16: πt+1

k = st+1
k

17: if AoP is ∅ then ▷ If all agents planned
18: Gr.Fb = Fnext; π

∗t+1
∀i∈Gr.AoP = πt+1

∀i∈Gr.AoP
19: else
20: if ∃ agent j ̸= k with stj = st+1

k then
21: Group(k, j) ▷ Updates NewGroup
22: nextAgent = j ▷ Priority inheritance
23: else
24: nextAgent = Null
25: AnytimePIBT-R(Gr, AoP , nextAgent,

st1:N , Fnext, Tout)
26: πt+1

k =Null

3.1 Solving a Group with Anytime PIBT
After generating the groups, we then iterate through each
group and call AnytimePIBT-R (Alg 3) on the group.
AnytimePIBT-R at its core is a DFS that goes through all
agents in the group and their possible actions. We first de-
scribe it without the notion of grouping, e.g., imagine that
the group with corresponding agents to plan (AoP) contains
all agents. We will revisit grouping afterwards.

Similar to PIBT-Gr, AnytimePIBT-R starts by going
through the states for agent k (line 5) and ignores invalid
states (line 8) or states that conflict with previously planned
agents (line 10).

One main difference is that it accumulates the f-value of
all planned agents by adding the c(sk, s′) + h∗(s′) of the
chosen state to the current accumulated sum (line 13). If this
f-value is greater or equal than the current best solution’s
Fb, we can immediately prune the rest of the DFS branch
as we are guaranteed that moving future agents will only

increase the f-value (line 14). One subtlety is that we sorted
s′ by increasing c(sk, s′)+h∗(s′), and thus can prune out the
following neighbor states s′′ with larger c(sk, s′′) + h∗(s′′),
allowing us to return as opposed to continue.

If we do not prune, we update πt+1
k accordingly (line 16).

If we have finished planning for all agents, we are guaran-
teed that the accumulated f-value is smaller than Fb (since it
was not pruned before) and we thus update the best solution
and f-value (line 18).

If we have not finished planning and bump into another
agent, we choose that to be the next agent to plan (line 20)
following PIBT’s priority inheritance logic. We then recurse
(line 25) which goes through the other agents and their ac-
tion. Note if we did encounter another agent, the recursive
call will pick the next (highest priority) agent in AoP .

Finally, we reset πt+1
k and proceed to consider the next

action. We repeat this logic for all actions and therefore con-
sider all possibilities of movements for each agent.

In summary, Anytime PIBT is a DFS that systematically
goes through agents and their actions while keeping track
of f-values and saving or pruning solutions accordingly. The
ability to stop the DFS at anytime (line 6) allows Anytime
PIBT to return the best solution found at any time.

3.2 Updating Groups on the Fly

Anytime PIBT described so far searches over actions for
agents in the group while having the rest of the agents
move following their original PIBT solution. Thus, an agent
k ∈ Gr.AoP (where Gr.AoP are the agents in the k’s
group Gr) cannot conflict with an agent j /∈ Gr.AoP inside
AnytimePIBT-R, as denoted by the preplanned πt:t+1

∀i/∈Gr.AoP
in Alg 3 “Globals”. Put in other words, when planning for
Gr.AoP , the agents not in Gr.AoP are assumed to be fol-
lowing their existing paths and must be avoided.

This can introduce suboptimality issues. For example it
is possible that an agent k and j are initially in different
groups. However, during the Anytime PIBT call to the group
containing k, k could consider an action that conflicts with
πt:t+1
j . This action would not be pursued (Alg 3, line 10).

Likewise, planning for j could have the same issue. This
means that our planning procedure is missing possible ac-
tions of considering both agent k and j moving informed
by each other. On the flip side, if k and j were in the same
group, a joint movement would not be pruned and instead
be considered through the recursive logic. Thus, to maintain
optimality, we must update our disjoint agent groups so that
k and j are grouped together. Note this in turn means that
their respective groups should be merged too.

We do this by keeping track of the grouped agents in
AnytimePIBT-R (line 10). However, we do not terminate
early and instead continue the current AnytimePIBT-R call
to make progress and encounter other potential agents. Then
in AnytimePIBT after AnytimePIBT-R return (Alg 1, line
9), AnytimePIBT adds a new found group (if it exists) and
removes non-disjoint groups (e.g., the old groups that just
got merged into the new group). This group (i.e., its corre-
sponding agents) will be replanned later on.

Diving Time Across Groups Given a set of groups to
solve, a naive anytime implementation would allocate Tout

to each AnytimePIBT-R grouped call and terminate once the
cumulative time exceeds Tout. However, this would priori-
tize earlier groups. Thus in Alg 1 (line 7) an additional opti-
mization is to allocate time based on the group’s size. Other
methods are possible but we found this to work well.

3.3 Theoretical Properties
Lemma 1. Given a sufficiently large timeout Tout,
AnytimePIBT-R finds the optimal single-step solution
πt+1
∀i∈Gr.AoP for agents in Gr.AoP given fixed πt:t+1

∀i/∈Gr.AoP
that should not be conflicted with.

Proof. Anytime PIBT considers all valid transitions for each
agent except those that conflict with previously planned
agents (lines 10) or are pruned (lines 14). Transitions
conflicting with previously planned agents (populated by
πt:t+1
i/∈Gr.AoP as well as agents planned in the current recur-

sive call) can be safely skipped. In respect to pruning, since
c(stk, s

t+1
k) + h(st+1

k) ≥ 0 for all possible stk, s
t+1
k and

agents k, if an intermediate call has Fc ≥ Fbest, it will
never lead to a better solution and thus can be pruned. There-
fore Anytime PIBT will eventually find the optimal single-
step solution πt+1

∀i∈Gr.AoP satisfying it does not conflict with
πt:t+1
∀i/∈Gr.AoP .

Theorem 1. Given a sufficiently large timeout Tout, Any-
time PIBT will eventually find the optimal single-step solu-
tion for all agents.

Proof. Suppose Anytime PIBT does not find the optimal
single-step solution. Then there must exist some agent k
whose chosen action is worse than its action in the optimal
solution. According to Lemma 1, AnytimePIBT-R will opti-
mally plan agents in Gr.AoP given fixed πt:t+1

∀i/∈Gr.AoP , so it
must be the case that k’s optimal action is blocked by πt:t+1

j

of some j /∈ Gr.AoP .
Since Gr.AoP is defined by a disjoint agent group, this

means that k and j are in different disjoint agent groups.
However, j would be detected in AnytimePIBT-R (Alg 3,
line 10) and k, j would be grouped together. Then, Anytime
PIBT would plan for this new group (Alg 1, line 10), which
contradicts the earlier statement of k and j being in different
disjoint agent groups. Thus, AnytimePIBT will eventually
find the optimal single-step solution.

3.4 Anytime PIBT Tiebreak
As we will see in the next section, Anytime PIBT actually
has a worse success rate than PIBT as its optimal one-step
action means that higher priority agents may not push away
lower priority agents and can get stuck. Therefore, we im-
plemented a variant where agents only consider their ac-
tions that have the best individual f-value, i.e., we search
over tiebreaking between agent’s best actions. We call this
variant Anytime PIBT Tiebreak. This does not ensure global
optimality but does retain regular PIBT properties (e.g., that
the highest priority agent will make progress towards its goal
at every step if the path to the goal is biconnected).

4 Experiments
We evaluate Anytime PIBT on using the standard MAPF
benchmark maps (Stern et al. 2019) with varying numbers of
agents and anytime cutoffs. Since Anytime PIBT is a drop in
replacement for PIBT, we also evaluate its effect in LaCAM
and LaCAM* which both internally use PIBT. All instances
were run with a 60 second cutoff time (i.e., sum of all plan-
ning times across all iterations).

Our experiments aimed to answer two questions. First,
how much does Anytime PIBT improve single-step perfor-
mance compared to PIBT? Second, how much does Any-
time PIBT improve full horizon planning compared to using
PIBT (e.g., by itself or in LaCAM, LaCAM*)? Our results
find that we perform quite well in finding single-step solu-
tions and many times can find optimal single-step solutions.
Interestingly, we see that this however does not translate to
any meaningful full horizon solution quality gains.

4.1 Single-Step Solutions
Figure 2 shows an example run of Anytime PIBT with 1 sec-
ond per-timestep cutoff on map den520d with 500 agents.
At every timestep, we record and plot the initial normal-
ized f-value (blue) and the final normalized f-value after
Anytime PIBT finishes (orange). Note that the initial value
(blue) is the result of the initial PIBT call. The normalized
f-value subtracts out the lowerbound f-value (i.e., the sum
of each agent’s individual minimum f-value), so a value of
zero means that all agents are going on their individual opti-
mal action. We see that Anytime PIBT is able to consistently
improve the f-value compared to the initial (PIBT) result.

Additionally, in this scenario, Anytime PIBT never
reached the 1 second cutoff time, which means that it
was able to find the optimal single-step solution for every
timestep.

Figure 3 shows a histogram of the per-timestep across dif-
ferent Anytime PIBT deadlines in milliseconds for 25 scenes
on den520d with 500 agents. The x-axis denotes PIBT’s
f-value minus Anytime PIBT’s f-value, e.g. a change of 4
means that Anytime PIBT improved (decreased) the f-value
by 4 compared to PIBT’s initial solution. We see that Any-
time PIBT can make a non-trivial improvement with 0.1
milliseconds (red) and has more substantial single-step im-
provements within more time (purple, green). We generally
saw similar patterns in Figures 2 and 3 across the different
maps and agents with Anytime PIBT having larger impacts
on more crowded instances.

We found that grouping was a crucial part to Any-
time PIBT’s fast performance. Without grouping, Anytime
PIBT’s number of recursive calls increases exponentially
with the number of agents such that in most cases the algo-
rithm would not finish planning a single-step for 100 agents
within 1 minute. This was due to the fact that without agent
groups, finding the optimal action for an agent low in the
priority list requires recursing through all the possible ac-
tions for all the agents above it in the priority list, which
is highly inefficient if the higher agents are unrelated to the
lower one. Hence, our group logic is critical for Anytime
PIBT efficiency.

Figure 2: We visualize the per timestep normalized f-values
for 500 agents on map den520d. The normalized f-value is
the solution f-value minus the lower-bound f-value (e.g. sum
of each agent’s best action). At every timestep, we plot the
initial PIBT solution value (blue) and the solution after run-
ning Anytime PIBT for 1 second (orange).

Figure 3: We run Anytime PIBT and store the f-value im-
provements compared to PIBT’s initial solution at different
timeouts. Deadlines are in additional milliseconds to the ini-
tial PIBT call (e.g., deadline of 0 is identical to PIBT).

4.2 Full-Horizon Solutions
Figure 4 shows the performance of Anytime PIBT vs PIBT
across a variety of maps as standalone planners along as a
configuration generator in LaCAM and LaCAM*. For each
variant (standalone, in LaCAM, in LaCAM*), we compare
using PIBT, normal Anytime PIBT with a 4 or 256 ms per-
step cutoff, and Anytime PIBT Tiebreak with identical cut-
offs. We plot the mean normalized cost (total cost divided
by lower bound) for instances with a 50+% success rate.

PIBT vs Anytime PIBT Comparing PIBT and Anytime
PIBT in Fig 4a, we see that Anytime PIBT has a perfect suc-
cess rate on den520d and ht chantry, but worse performance
than PIBT on random-32-32-20 and warehouse-10-20-10-2-
1. This reveals that PIBT’s greedy nature actually helps per-
formance compared to Anytime PIBT. For example, when a
low priority agent is blocking a high priority agent in a cor-
ridor, Anytime PIBT could find the optimal single-step solu-
tion which is for both agents to wait (in deadlock), whereas
PIBT will greedily drive the higher priority agent forward.
Anytime PIBT Tiebreak, on the other hand, does not suffer
from this issue and has similar success rate as PIBT.

We additionally see that Anytime PIBT (with and without
tiebreaking) is able to have small but noticeable improve-
ment on overall solution quality. Even though this change
is small, it is possible that this is the best that a single-step
planner can do (without additional information) as the per
timestep improvements seen in Fig 3 are on the order of 1-
17 for 500 agents when the total per timestep cost is on the

(a) Standalone PIBT vs Anytime PIBT

(b) PIBT vs Anytime PIBT in LaCAM

(c) PIBT vs Anytime PIBT in LaCAM*

Figure 4: Evaluating PIBT vs Anytime PIBT

order of 500 (so we would expect only few percentage im-
provement based on this data).

Anytime PIBT in LaCAM(*) We first focus on LaCAM
results (Fig 4b). We observe that the solution quality are

again slightly better with Anytime PIBT, especially with
Tiebreaking. However, performance is noticeable worse in
warehouse-10-20-10-2-1. We hypothesize this occurs as
more agents are stuck in deadlock and accumulate cost with
Anytime PIBT as the action generator (which is reflected in
the standalone Anytime PIBT performance).

We now focus on LaCAM* results (Fig 4c). Since La-
CAM* is an anytime solver, using Anytime PIBT as a con-
figuration generator means that we now tradeoff evaluating
many “poorer” quality high-level nodes or evaluating fewer
“higher” quality high-level nodes. For example, with a 60
second timeout and assuming the configuration generator
takes a full 256 milliseconds per call, LaCAM* would gen-
erate at most 60/0.256 = 234 high-level nodes. LACAM*
with a 4 millisecond timeout could generate 15,000 nodes
instead. This discrepency explains why increasing the Any-
time PIBT cutoff decreases the success rate in the more con-
gested instances (e.g., ht chantry). Looking closely at the
cost, Anytime PIBT does decrease the cost slightly for the
first three maps and marginally increases it for the last. How-
ever, overall the change in cost is small.

The overall lack of performance gain of Anytime PIBT
in LaCAM and LaCAM* was quite unexpected, and im-
plies a large gap between single-step solvers and the La-
CAM methods. In particular, since LaCAM is very depen-
dent on its single-step configuration generator, common in-
tuition would think that improving the single-step action
configuration would improve overall performance. Instead,
even though Anytime PIBT consistently increases single-
step performances over PIBT (Section 4.1), this does not
translate to gains with the LaCAM methods.

5 Conclusion and Future Work
PIBT is an extremely fast, scalable, and popular single-step
solver. However, PIBT’s speed comes at the expense of so-
lution quality. An ideal anytime single-step solver would be
as fast as PIBT but improve its solution over time. Anytime
PIBT does exactly this.

Anytime PIBT interprets single-step MAPF as a recur-
sive problem and therefore uses an anytime DFS to search
through agents’ actions. Anytime PIBT is able to save inter-
mediate solutions and efficiently prune branches. Addition-
ally, Anytime PIBT utilizes disjoint agent groups to decom-
pose the entire recursive problem into smaller problems, and
is able to dynamically update groups and eventually find the
optimal single-step solution.

Experimentally, we find that Anytime PIBT is indeed
able to improve single-step costs with milliseconds, and can
even find the optimal single-step solution in many instances.
However, counterintuitively these single-step improvements
do not manifest themselves in full-horizon solutions when
using Anytime PIBT inside LaCAM or LaCAM*. Still, we
believe that Anytime PIBT is important as the first efficient
anytime and eventually optimal single-step algorithm and
see several avenues for future work.

Anytime PIBT and OD: One interesting observation to
OD (Standley 2010) is that Anytime PIBT could interpreted
as an anytime version of OD that uses a depth first search and
priority inheritance instead of an A* search. This perspective

interprets a single recursive call of PIBT as generating an in-
termediate OD state moving only a single agent. PIBT itself
is then searching using OD and a greedy depth first search,
and is intelligently picking the next agent to expand using
priority inheritance. Anytime PIBT’s disjoint agent groups
could also be interpreted as a version of OD’s independence
detection. The connection between OD and PIBT has not
been described before and future work could benefit by fur-
ther exploring this perspective. In particular, OD uses A*,
PIBT uses DFS, while Anytime PIBT uses anytime DFS
with pruning. It is possible that a different search algorithm
using this perspective could be promising work.

Integration with group cost functions: MAPF algo-
rithms like CBS (Sharon et al. 2015) and PIBT (and there-
fore methods that build off them like EECBS (Li, Ruml, and
Koenig 2021) and LaCAM*) only natively support individ-
ual agent costs. Thus, incorporating a cost that is a function
of the configuration of several agents (e.g., a formation cost)
is not easily feasible in their frameworks. Since Anytime
PIBT efficiently searches the joint configuration, it would be
possible to modify Anytime PIBT to incorporate and search
over these group costs.

Single-Step Cost vs Full-Horizon: As seen in our ex-
perimental results, although we obtain single-step cost im-
provements, our overall full-horizon solution is not sig-
nificantly better. Thus, broadly investigating how different
single-step solvers and their properties affect full-horizon
planning (e.g., in LaCAM) would be fruitful work. Another
avenue is to incorporate Anytime-PIBT with works such as
(Chen et al. 2024) which explicitly compute heuristics on-
line that incorporate congestion to avoid deadlock in the fu-
ture.

Overall, Anytime PIBT is a promising single-step any-
time algorithm with many potential future applications and
extensions.

References
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In Seventh Annual
Symposium on Combinatorial Search.
Chan, S.-H.; Chen, Z.; Guo, T.; Zhang, H.; Zhang, Y.; Hara-
bor, D.; Koenig, S.; Wu, C.; and Yu, J. 2024. The League
of Robot Runners Competition: Goals, Designs, and Imple-
mentation. In ICAPS 2024 System’s Demonstration track.
Chen, Z.; Harabor, D.; Li, J.; and Stuckey, P. J. 2024. Traf-
fic Flow Optimisation for Lifelong Multi-Agent Path Find-
ing. Proceedings of the AAAI Conference on Artificial Intel-
ligence, 38(18): 20674–20682.
Cohen, L.; Greco, M.; Ma, H.; Hernández, C.; Felner, A.;
Kumar, T. K. S.; and Koenig, S. 2018. Anytime Focal
Search with Applications. In Lang, J., ed., Proceedings of
the Twenty-Seventh International Joint Conference on Arti-
ficial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm,
Sweden, 1434–1441. ijcai.org.
Jiang, H.; Zhang, Y.; Veerapaneni, R.; and Li, J. 2024. Scal-
ing Lifelong Multi-Agent Path Finding to More Realistic

Settings: Research Challenges and Opportunities. In Pro-
ceedings of the International Symposium on Combinatorial
Search, volume 17, 234–242.
Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig, S.
2021. Anytime Multi-Agent Path Finding via Large Neigh-
borhood Search. In Dignum, F.; Lomuscio, A.; Endriss, U.;
and Nowé, A., eds., AAMAS ’21: 20th International Confer-
ence on Autonomous Agents and Multiagent Systems, Virtual
Event, United Kingdom, May 3-7, 2021, 1581–1583. ACM.
Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig, S.
2022. MAPF-LNS2: Fast Repairing for Multi-Agent Path
Finding via Large Neighborhood Search. Proceedings of the
AAAI Conference on Artificial Intelligence, 36(9): 10256–
10265.
Li, J.; Ruml, W.; and Koenig, S. 2021. EECBS: A Bounded-
Suboptimal Search for Multi-Agent Path Finding. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
35(14): 12353–12362.
Okumura, K. 2023a. Improving LaCAM for Scalable Even-
tually Optimal Multi-Agent Pathfinding. In Proceedings
of the Thirty-Second International Joint Conference on Ar-
tificial Intelligence, IJCAI 2023, 19th-25th August 2023,
Macao, SAR, China, 243–251. ijcai.org.
Okumura, K. 2023b. LaCAM: Search-Based Algorithm for
Quick Multi-Agent Pathfinding. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(10): 11655–11662.
Okumura, K. 2024. Engineering LaCAM*: Towards Real-
time, Large-scale, and Near-optimal Multi-agent Pathfind-
ing. In Dastani, M.; Sichman, J. S.; Alechina, N.; and
Dignum, V., eds., Proceedings of the 23rd International
Conference on Autonomous Agents and Multiagent Sys-
tems, AAMAS 2024, Auckland, New Zealand, May 6-10,
2024, 1501–1509. International Foundation for Autonomous
Agents and Multiagent Systems / ACM.
Okumura, K.; Machida, M.; Défago, X.; and Tamura, Y.
2022. Priority inheritance with backtracking for itera-
tive multi-agent path finding. Artificial Intelligence, 310:
103752.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40–66.
Shaw, P. 1998. Using Constraint Programming and Local
Search Methods to Solve Vehicle Routing Problems. In
Maher, M. J.; and Puget, J., eds., Principles and Practice
of Constraint Programming - CP98, 4th International Con-
ference, Pisa, Italy, October 26-30, 1998, Proceedings, vol-
ume 1520 of Lecture Notes in Computer Science, 417–431.
Springer.
Standley, T. S. 2010. Finding Optimal Solutions to Cooper-
ative Pathfinding Problems. In Fox, M.; and Poole, D., eds.,
Proceedings of the Twenty-Fourth AAAI Conference on Ar-
tificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July
11-15, 2010, 173–178. AAAI Press.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Boyarski, E.; and Bartak, R. 2019. Multi-Agent Pathfinding:

Definitions, Variants, and Benchmarks. Symposium on Com-
binatorial Search (SoCS), 151–158.
Veerapaneni, R.; Saleem, M. S.; Li, J.; and Likhachev, M.
2024a. Windowed MAPF with Completeness Guarantees.
arXiv:2410.01798.
Veerapaneni, R.; Wang, Q.; Ren, K.; Jakobsson, A.; Li, J.;
and Likhachev, M. 2024b. Improving Learnt Local MAPF
Policies with Heuristic Search. International Conference on
Automated Planning and Scheduling, 34(1): 597–606.
Zhang, Y.; Chen, Z.; Harabor, D.; Bodic, P. L.; and Stuckey,
P. J. 2024. Planning and Execution in Multi-Agent Path
Finding: Models and Algorithms. Proceedings of the Inter-
national Conference on Automated Planning and Schedul-
ing, 34(1): 707–715.

A Quick Summary
Recommended background readings: Readers new to
PIBT or LaCAM should read Okumura et al. (2022) or Oku-
mura (2023b) respectively. Readers new to Disjoint Agent
Groups are recommended to read Veerapaneni et al. (2024a).

Motivation in respect to prior work: PIBT is an ex-
tremely fast and effective single-step planner that is used
in several other methods (e.g., LaCAM). However, PIBT is
very greedy (which leads to poor solution quality) and can-
not leverage extra planning time as it returns the first solu-
tion it finds. Ideally, we would have an “anytime” version of
PIBT that can leverage additional planning time to improve
its solution cost. Our goal is to do exactly this.

A.1 Intended Takeaways
Our main contribution is designing Anytime PIBT, which
finds the same initial solution as PIBT but then uses addi-
tional planning time to improve costs. We prove how Any-
time PIBT will eventually find the optimal single-step solu-
tion, and empirically show how it can indeed do so even with
hundreds of agents on certain instances. Anytime PIBT has
a few algorithmic/theoretical insights and interesting exper-
imental results which are our main takeaways:

1. Viewing single-step MAPF as a recursive process
where planning for N agents means we can plan for 1 one
and get a smaller N − 1 single-step MAPF instance. From
this perspective, PIBT employs a DFS that returns the first
solution it found. Thus, we can get anytime behavior in Any-
time PIBT by employing an Anytime DFS.

2. The problem with the recursive perspective is that it
grows exponentially with the number of agents, and thus
performs poorly in practice. Our second key insight is that
we can decompose our MAPF problem into groups of inde-
pendent agents (formally defined as disjoint agent groups)
and solve those separately. This makes Anytime PIBT run
significantly faster.

3. Anytime PIBT will provably find single-step optimal
actions given sufficient time (and in practice can indeed find
single-step optimal actions in less than a second).

4. Anytime PIBT has a consistent very small improvement
in solution costs (e.g., less than 2 percent) when used for full
horizon by itself or with LaCAM and LaCAM*. This is in-
teresting as PIBT is typically thought of as a very greedy
single-step planning, so our intuition is that improving the
single-step solution cost would have a larger impact on over-
all costs.

5. Finding optimal single-step paths can lead to poorer
success rates as the optimal single-step solution as agents
resting on their goal can become obstacles as pushing from
their goal increases the cost. Another perspective is that
PIBT’s behavior of high priority agents pushing through
low priority agents is long term beneficial despite it hav-
ing high single-step solution costs. We therefore tested an
Anytime-PIBT with tiebreaking that maintains priorities and
only checks through agents best actions, which does result
in a similar success rate to PIBT while still improving costs.

