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Abstract

Thermodynamic integration (TI) offers a rigorous
method for estimating free-energy differences
by integrating over a sequence of interpolating
conformational ensembles. However, TI
calculations are computationally expensive and
typically limited to coupling a small number
of degrees of freedom due to the need to
sample numerous intermediate ensembles with
sufficient conformational-space overlap. In this
work, we propose to perform TI along an
alchemical pathway represented by a trainable
neural network, which we term Neural TI.
Critically, we parametrize a time-dependent
Hamiltonian interpolating between the interacting
and non-interacting systems, and optimize its
gradient using a denoising-diffusion objective.
The ability of the resulting energy-based diffusion
model to sample all intermediate ensembles
allows us to perform TI from a single
reference calculation. We apply our method to
Lennard-Jones fluids, where we report accurate
calculations of the excess chemical potential,
demonstrating that Neural TI is capable of
coupling hundreds of degrees of freedom at once.

1. Introduction
Accurate estimation of free-energy differences is pivotal
in numerous scientific disciplines, including chemistry,
biology, and materials science. These estimations are
essential for understanding molecular interactions, reaction
mechanisms, and phase transitions (Gao et al., 2006;
Mobley & Gilson, 2017; Agarwal et al., 2021). The main
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methodologies to estimate free-energy differences are rooted
in statistical mechanics including free-energy perturbation
and thermodynamic integration (TI). They estimate the
ratio of partition functions of the two ensembles, typically
sampling the two conformational ensembles via Monte
Carlo or molecular dynamics simulations. Because of
typically poor overlap between distributions, intermediate
simulations are required to help interpolate the two end
points. The exact pathway connecting the two ensembles
can be chosen freely, because the free energy is a state
function. The chosen interpolation is often unphysical,
resulting in a so-called alchemical transformation. The
necessity to sample intermediate Hamiltonians leads to
significant computational expense (Chipot & Pohorille,
2007; Mey et al., 2020).

Machine learning—in particular generative models—is
rapidly transforming how we model molecular systems
(Sanchez-Lengeling & Aspuru-Guzik, 2018; Hermann et al.,
2020; Noé et al., 2020; Fedik et al., 2022). Recently,
normalizing flows have been proposed for sampling in the
context of statistical physics (Nicoli et al., 2020), quantum
field theory (Albergo et al., 2019), and molecules (Noé
et al., 2019). Flow-based approaches are attractive as
they represent exact probability densities that can be used
for unbiased estimation of observables when combined
with importance sampling to correct for the mismatch
between the learnt and target densities. Flow-based methods
have been proposed as a means to compute free-energy
differences (Noé et al., 2019; Wirnsberger et al., 2020).
However, flows also present challenges: coupling flows
(Dinh et al., 2016) are cumbersome to work with when
one needs to encode physical bias in the architecture, and
continuous flows (Chen et al., 2018) suffer from the cost of
computing the divergence of the model.

In this work, we instead propose to use denoising diffusion
models (DDMs) (Sohl-Dickstein et al., 2015; Ho et al.,
2020) to estimate free-energy differences. To this end, we
assign our data and latent distributions to the interacting
and non-interacting Hamiltonians, respectively. We then
train a time-dependent, interpolating potential Uθ

t between
the potentials of the target, U0, and the prior, U1, along the
finite-time interval of the DDM. We match the force exerted
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Figure 1. Schematic summary of the proposed approach. We interpolate between the target, H0, and latent, H1, Hamiltonians with a
time-dependent potential Uθ

t . During sampling, the normalizing constant of the target can be estimated via thermodynamic integration.
Particles whose separation from their closest neighbor is less than 0.85σ are colored red, the rest are colored blue. This color-coding
illustrates that in the ideal gas (right) there are many colliding particles and as the LJ potential is turned on (left) the particles do not
overlap anymore.

by the potential to the Hyvärinen score of the DDM

s(x, t) = ∇x log ρt = −β∇xU
θ
t .

This parametrization of the score, while limiting its
expressivity, will easily allow us to compute time derivatives
of the energy—a critical component to perform TI along the
diffusion process. The TI calculation efficiently estimates
the ratio of partition function of turning on the interactions
of the Hamiltonian. However, because we can analytically
calculate the partition function of the non-interacting system
as well, our methodology yields the partition function of the
target Hamiltonian. We call our method Neural TI.

We demonstrate our methodology on computer
simulations of a condensed-phase, many-body system:
the Lennard-Jones (LJ) liquid. The particles are confined
to a box with periodic boundary conditions, leading to
topological constraints on the DDM addressed further
below. The latent space consists of the ideal-gas system:
particles that carry kinetic energy, but do not interact.
The DDM thereby interpolates between interacting and
non-interacting system, whose trajectories model the
dynamics of a time-dependent force-field −∇Uθ

t . See
Figure 1 for a schematic summary of the proposed approach.
We validate Neural TI on accurate calculations of the
excess chemical potential. For the first time, we report
accurate free-energy differences of coupling an entire liquid,
totalling 600 degrees of freedom.

2. Thermodynamic integration
Suppose now that Uλ is a one-parameter family of potentials,
and Zλ =

∫
dx e−βUλ(x) = e−βF are the corresponding

normalizing constants at inverse temperature β = (kBT )
−1.

Given samples from all ρλ = e−βUλ(x)/Zλ the free energy
difference ∆F0→1 between λ = 0 and λ = 1 can be written
as

β∆F0→1 = logZ0 − logZ1 (1)

= −
∫ 1

0

dλ∂λ logZλ (2)

= −
∫ 1

0

dλ
1

Zλ
∂λ

(∫
dx e−βUλ(x)

)
(3)

= β

∫ 1

0

dλ
1

Zλ

(∫
dx e−βUλ(x)∂λUλ(x)

)

(4)

= β

∫ 1

0

dλ ⟨∂λUλ⟩λ , (5)

where ⟨∂λUλ⟩λ denotes the expected value of ∂λUλ

under the density ρλ = Z−1λ e−βUλ . Practically, the
small phase-space overlap between ensembles requires
an interpolation of many intermediate Hamiltonians
parametrized by the coupling variable λ (Mey et al., 2020).
Here instead we will use a DDM (§3) to learn the alchemical
pathway, i.e., we replace λ by the diffusion model’s time
variable, t. The generative model’s ability to sample
all intermediate ensembles will do away with the need
for intermediate reference simulations, and provide an
accurate estimate of much larger free-energy differences
than reported so far (Straatsma & Berendsen, 1988).

3. Denoising Diffusion models
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) are a class of generative models defined by a pair
(forward and reverse) of stochastic processes. In the
continuous-time formulation (Song et al., 2020), the forward
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process is given by the stochastic differential equation
(SDE)

dX = ftXdt→ + gtdWt→ , (6)

where dWt→ is a Wiener process and SDE starts from the
initial condition X0 ∼ ρ0. Note that ρt(xt|x0) is a Gaussian
for all t and x0. In particular ft and gt are time-dependent
and are chosen such that ρt(x1|x0) is close to a standard
Gaussian distribution for all x0. The noising process then
corresponds to simulating Eq. (6) from t = 0 to t = 1. The
same time marginals can be reproduced by a time-reversed
SDE (Anderson, 1982) from t = 1 to t = 0,

dY =
[
ftY + g2t∇x log ρt

]
dt← + gtdW←t , (7)

with initial condition Y0 ∼ N (0, I). Given the score
s(x, t) = ∇x log ρt(x), one could use the reverse Eq. (7) to
map Gaussian samples to the initial target density ρ0.

Physically speaking, both the forward and reverse processes
correspond to an overdamped Langevin dynamics driven by
the time-dependent potentials 1

2ft||x||2 and −12 ft||y||2 −
g2t log ρt, respectively. We can thus interpret the score,
∇ log ρt, as a force induced by the potential (− log ρt) (Arts
et al., 2023).

Score estimation on Rd To estimate the score s(x, t) =
∇x log ρt, one integrates over the conditional scores

∇ log ρt(x) = Ex0∼ρ0,xt∼p(xt|x0) [∇ log ρt(xt|x0)] . (8)

Denoting the mean and variance of log ρ(xt|x0) by γtx0

and σ2
t , we can rewrite the integrand as

∇ log ρt(xt|x0) = −xt − γtx0

σ2
t

= − ϵ

σt
. (9)

Instead of learning the score directly, it is customary to
train a neural network ϵθ(x, t) to predict the noise term
ϵ = 1

σt
(xt − γtx0) instead. The score is then recovered as

sθ(x, t) = −ϵθ(x, t)/σt.

3.1. TI with diffusion models

Salimans & Ho (2021) raise the point that although the
score s(x, t) is the gradient of the log-density log ρt(x),
it is usually modelled with a free-form neural network
that does not necessarily learn a conservative vector field.
Our proposal is to approximate the score as the force of a
time-dependent, parametric potential Uθ

t ,

s(x, t) = ∇x log ρt = −β∇xU
θ
t .

This in turn means that Uθ
t itself serves as an approximation

of the negative log-likelihood up to an additive constant.
Since Uθ

t is a neural network, its time-derivative can be
computed with automatic differentiation and the ensemble
average ⟨∂tUθ

t ⟩t can be estimated from samples either from
the forward or from the learned reverse process.

3.2. Diffusion models on tori

In what follows we will be interested in particles living in a
d-dimensional box with periodic boundary conditions. To
work with such systems the usual framework of diffusion
models needs to be slightly adjusted to accommodate
for the different topology of the configurational space.
Topologically speaking, the position of a single particle
is specified by a point on a hypertorus, TN , of dimension
d, and the configurational space of N particles is then a
dN -dimensional hypertorus, TdN .

Although there are works generalizing diffusion models to
non-Euclidean geometries (De Bortoli et al., 2022; Huang
et al., 2022), for our case it is sufficient to derive a model for
the simplest manifold with non-trivial topology, the circle
S1 = R/Z. To do this, we set the forward process to be
an unbiased random walk on S1 converging to the uniform
distribution. Explicitly, the forward and backward processes
take the following form,

dX = gtdWt→ X0 ∼ ρ0 (10)

dY = g2t∇ log ρtdt← + gtdWt← Y0 ∼ U(S1). (11)

Score estimation on S1 Note that on the circle the
time-marginals ρt(xt|x0) are wrapped Gaussians,

ρt(xt|x0) =
∑

k∈Z
N (xt + k;x0, σ

2
t ). (12)

Jing et al. (2022) compute the score of the wrapped
Gaussian in Eq. (12) by truncating both the
numerator and denominator of the logarithmic derivative
∇ log ρt(xt|x0) = ∇ρt(xt|x0)

ρt(xt|x0)
. Alternatively, one could

write the score at xt of the wrapped Gaussian as a weighted
average of the scores of the unwrapped Gaussian over the
fiber above xt

∇ log ρt(xt|x0) =
∇ρt(xt|x0)

ρt(xt|x0)
(13)

=

∑
k∈Z ∇Nk∑
k∈Z Nk

(14)

=

∑
k∈Z Nk

∇Nk

Nk∑
k∈Z Nk

(15)

=

∑
k∈Z Nk∇ logNk∑

k∈Z Nk
, (16)

where Nk = N (xt + k;x0, σ
2
t ) are the evaluations of the

unwrapped Gaussian on the fiber and σ2
t =

∫ t

0
dτ g2τ . This

in particular means that the noise prediction model ϵθ can
be trained by sampling xt = [(x0 + σtϵ) mod 1] where
ϵ ∼ N (0, 1) and taking a gradient step on ||ϵθ(xt, t)− ϵ||2.
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4. Statistical ensembles
For the rest of the paper we exclusively consider systems of
indistinguishable particles confined to a d-dimensional box
of volume V with periodic boundary conditions.

4.1. Canonical ensemble (NV T )

If we assume that a system has a fixed number of particles
N and is in thermal equilibrium with a reservoir at a fixed
inverse temperature β = (kBT )

−1, then the likelihood of a
particular microstate (q,p) = (q1, ...qN , p1, ..., pN ) is

ρ(q,p) =
1

ZN

1

hdNN !
e−βH(q,p), (17)

where h is Planck’s constant, d is the dimensionality of the
system, H is the Hamiltonian and ZN =

∫ dpdq
hdNN !

e−βH(q,p)

is the canonical partition function, i.e., the normalizing
constant of the density e−βH(q,p)

hdNN !
.

Ideal and interacting gases In the ideal gas particles do
not interact with each other and the system is described by
a Hamiltonian only containing a kinetic term Hideal(p) =∑

i
p2
i

2m . In this case ZN can be analytically computed

Z ideal
N =

∫
dp

hdNN !
e−βHideal(p) =

(V Λ−d)N

N !
, (18)

where V is the volume of the box and Λ = h/
√
2πmβ−1 is

the thermal wavelength. Since particle positions in the ideal
gas are independently and uniformly distributed over the
box, the latent space of the toroidal diffusion model (§3.2)
describes the positions q of an ideal gas in the canonical
ensemble.

More generally, a many-body system will also consist of
interactions, as described by a potential U(q),

H(q,p) =
∑

i

p2i
2m

+ U(q). (19)

The separation between the positions and momenta offers a
factorization of the partition function

ZN = Z ideal
N

∫
dq e−βU(q). (20)

Estimating the partition function Suppose now that
we have trained a DDM on the positions q with its
score parametrized as the force of a time-dependent
potential, sθ(q, t) = −β∇Uθ

t (q), between the target and
non-interacting Hamiltonians, i.e., Uθ

0 (q) = U(q) and
Uθ
1 (q) = Uideal(q) ≡ 0. As the toroidal DDM maps

configurations of the ideal gas to the interacting system,
the setup is adequate to perform TI over the coupling

of interactions. In addition, because Z ideal
N is known

analytically, we obtain an estimate of the partition function
of the full, target Hamiltonian

ẐN = Z ideal
N exp

(
β

∫ 1

0

dt ⟨∂tUθ
t ⟩t
)
. (21)

4.2. Grand Canonical ensemble (µV T )

Let us now assume that a system is both in thermal and
chemical equilibrium with the reservoir at fixed temperature
T and chemical potential µ. The likelihood of a microstate
(N,q,p) = (N, q1, ...qN , p1, ..., pN ) is

ρ(N,q,p) =
1

Z
1

hdNN !
eβ(µN−H(q,p)), (22)

where Z =
∑

N

∫ dqdp
hdNN !

eβ(µN−H(q,p)) is the grand
canonical partition function. The grand canonical partition
function is a weighted sum of the canonical partition
functions according to the chemical potential,

Z(µ) =
∑

N

eβµNZN . (23)

The excess chemical potential The choice of a
Hamiltonian H and chemical potential µ defines a marginal
distribution, p(N), of the number of particles present in the
system

p(N) =
1

Z eβµNZN . (24)

In the case of the ideal gas, p(N) = 1
Z

(eβµV Λ−d)N

N ! is
Poisson distributed with expected value

⟨N⟩(Hideal, µ) = eβµV Λ−d. (25)

For interacting systems, the expected number of particles
⟨N⟩(H, µ) can be used to decompose the chemical potential
as µ = µideal + µex, where µideal is the chemical potential of
the ideal gas of the same density

µideal = β−1 log
⟨N⟩Λd

V
. (26)

Intuitively, the excess chemical potential µex = µ − µideal
measures the deviation in chemical potential due to the
interaction term of the Hamiltonian at fixed density.

The straightforward way of estimating the excess chemical
potential of an interacting system is to perform a
grand-canonical Monte Carlo (GCMC) simulation on the
distribution in Eq. (22) at a prescribed value of µ.
Grand-canonical sampling of the number of particles allows
us to estimate the empirical mean ⟨N⟩GCMC, from which we
extract µideal via Eq. (26). From µ and µideal, one can simply
compute the excess chemical potential, µex = µ− µideal.
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In this work we estimate the excess chemical potential
from several canonical simulations. We train a generative
model on several canonical ensembles and then estimate the
canonical partition function ZN for each N . The collection
{ZN} is used to compute the distribution of the number of
particles, p(N), see Eq. (24), for a predefined choice of the
chemical potential, µ. In combination with Eq. (26), we
compute the excess chemical potential, µex.

5. Application: Lennard-Jones fluid
We consider a crowded condensed-matter system: a
collection of three-dimensional particles confined in a box,
interacting via a pairwise Lennard-Jones (LJ) potential

ULJ(q) =
∑

i ̸=j

4ε

[(
σ

rij

)12

−
(

σ

rij

)6
]
, (27)

where rij represents the inter-particle distance between
particles i and j.

To demonstrate the accuracy of our DDM-based Neural TI
scheme, we perform the following

1. Generate training configurations via canonical Monte
Carlo simulations at different particle numbers
N1, . . . , Ni;

2. Train a single diffusion model on the positions q of the
training data, making the model transferable between
different Ni. This transferability property is crucial
since we would like to estimate ZN also at those values
of N that did not belong to the training set;

3. Estimate the partition function, ZN , by generating
configurations at a given N from the DDM and
computing ẐN from TI, see Eq. (21);

4. Make grand-canonical estimates from a collection of
canonical ẐN across values of N , {ẐN1

, ẐN2
, . . . },

and compare against reference GCMC simulations.

Parametrization of the score To ensure that the boundary
conditions at t ∈ {0, 1} of the energy interpolation are met,
we follow the interpolation proposed by Máté & Fleuret
(2023) and parametrize the score as

s(q, t) = −β∇
[
t(1− t)Uθ

t (q) + (1− t)ULJ
t (q)

]
, (28)

where ULJ
t is a soft-core LJ-potential (Beutler et al., 1994)

with a time-dependent softening parameter

ULJ
t (q) =

∑

i ̸=j

4ε



(

σ2

tσ2 + r2ij

)6

−
(

σ2

tσ2 + r2ij

)3

 .

(29)

This soft-core potential ensures that the numerically
unstable region of the LJ-potential is not evaluated on
noisy samples but is slowly introduced as more and more
noise is removed from the samples (Figure 2). The only
trainable component, Uθ

t can then be parametrized using
ideas from the machine learning force field literature (Schütt
et al., 2017; Gasteiger et al., 2019; Batatia et al., 2022;
Batzner et al., 2022). Strictly speaking, our model learns a
time-dependent potential, and thus the above architectures
are only applicable once conditioned on the diffusion time,
t.

0 1 2 3 4 5

r/σ

0U
L

J
t

t

Figure 2. The soft-core LJ potential ULJ
t in Eq. (29) for various

values of t ∈ [0, 1]. Note that for larger values of t, particles can
get closer to each other without experiencing strong repulsive
forces. This is necessary since in the diffusion process it is
inevitable that particles get close to each other as t increases.

Results We set the dimension of the system to d = 3, the
volume of the box to V = 216, the inverse temperature
to β = 1, the mass of the particles to m = 1, Planck’s
constant to h = 10−4, and the parameters of the LJ-potential
to ε = 0.8, σ = 1. We train a single DDM on samples
from canonical Monte Carlo simulations at particle numbers
N ∈ {40, 80, 120, 160, 200} (i.e. densities ρ = N/V ∈
{0.19, 0.37, 0.56, 0.74, 0.93}). We refer the reader to
Appendix B for details on the Monte Carlo simulations
and on the architecture.

To evaluate the generative performance of these models
we compare the radial distribution function (RDF), g(r),
between Monte Carlo samples and samples from the trained
DDM (Figure 3). We find accurate reconstructions across a
broad range of densities, ρ = 0.19 to ρ = 0.93. The shapes
of the RDF clearly indicate a transition from gas to liquid
as we increase particle density.

The accuracy of the Neural TI estimated free energy
differences is assessed first in Figure 4. The different
panels monitor estimates of the particle-number distribution,
p(N), and show significant changes in the distribution
as we change the chemical potential. They highlight
the transferability of our methodology across the phase
transition.

Further, we also evaluate the functional relationship between
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1

g
(r

)
ρ = 0.19

1

ρ = 0.56

0 1 2 3

r/σ

1g
(r

)

ρ = 0.74

0 1 2 3

r/σ

1

ρ = 0.93

MC DMFigure 3. Radial distribution functions as predicted by Monte
Carlo simulations (gray) and a diffusion model (red) trained on
densities ρ ∈ {0.19, 0.37, 0.56, 0.74, 0.93}. Note that the model
reconstructs g(r) across the the gas-liquid phase transition. A
Gaussian kernel with σ = 0.03 was applied to all curves in this
plot.

p(
N

)

βµ = −28.5 βµ = −28.0

0.0 0.2 0.4 0.6 0.8 1.0

ρ

p(
N

)

βµ = −27.5

0.0 0.2 0.4 0.6 0.8 1.0

ρ

βµ = −26.0

GCMC TIFigure 4. Distribution of the number of particles in the grand
canonical ensemble at different chemical potentials from GCMC
simulations (gray) and estimated by thermodynamic integration
with a trained diffusion model (red). The vertical blue lines denote
the canonical ensembles that the diffusion model was trained on.
A Gaussian kernel with σ = 0.015 was applied to all curves in
this plot.

ρ and µ in Figure 5. The left subfigure shows the
average density as a function of the chemical potential,
as calculated by both reference GCMC and our proposed
TI methodology. Though the reference calculations are
run in the grand-canonical ensemble, we make use of
TI from a set of canonical simulations to estimate µ.
The TI calculations estimate the partition functions, ẐN ,
at different values of N . From those, we compute
the particle-number distribution via Eq.(24), extract the
mean, and deduce the average particle density, ⟨ρ⟩. We
find excellent agreement across the gas–liquid phase
transition—visually illustrated by the jump in density. The
right subfigure shows the excess chemical potential as a
function of particle density. Our methodology allows us to
smoothly interpolate across the phase transition. At high
density, the slight underestimation of the particle-number
distribution leads a small discrepancy in the excess chemical

potential. The main workhorse-method to compute excess
chemical potentials from canonical simulations, the Widom
particle-insertion method, shows significant difficulties in
this regime due to its perturbative nature (Widom, 1963;
Frenkel & Smit, 2023).

0.0 0.2 0.4 0.6 0.8

〈ρ〉

−2

0

2

4

β
µ

ex

GCMC
TI

−30 −28 −26 −24 −22

βµ

0.0

0.2

0.4

0.6

0.8

〈ρ
〉

GCMC
TI

Figure 5. Expected density as a function of the chemical potential
(left) and estimates of µex as a function of the expected density
(right). The left plot suggests a that a gas-liquid phase transition
takes place at βµ ≈ −28. The blue lines denote the canonical
ensembles that the diffusion model was trained on.

Neural TI offers unique insight in the equilibrium properties
of liquids by directly reporting the free energy of coupling
the entire liquid. Figure 6 shows the coupling free energy
from the ideal gas to the target Hamiltonian of the LJ particle
configurations at different densities. On the left, densities
close to 0 lead to virtually no free energy due to the ideal-gas
limit. As density increases close to ρ ≈ 0.75, we observe
a maximum—interestingly quite a bit higher in density
compared to where the excess chemical potential attains its
minimum, i.e., ⟨ρ⟩ ≈ 0.55. Instead, we hypothesize that the
peak occurs where significant particle-overlap starts severely
hampering the configurational space available—this is
exactly the regime where perturbative methods, e.g., Widom
insertion, become challenging. At a density of 1.0, the
available configurational integral reduces significantly—as
can be seen by the drop to low ∆F̂ values.

For comparison, we perform the same estimate using
standard TI with 5, 10, 20, 50 and 100 evenly spaced
intermediate simulations. The convergence of the standard
TI curves with the number of intermediate simulations
validates Neural TI as a free-energy estimator. At high
densities the slight discrepancy between Neural TI and
standard TI with many simulations is likely both due
to convergence issues of the reference simulations and
limited expressivity of our time-dependent ML force-field
architecture.

We finally point at the sheer amplitude of the estimated
free-energy differences: up to 200 kBT in free energies
are reported. Traditional TI methodologies require tens
of interpolating Hamiltonians, such that each reference
simulation contributes on the order of kBT each. Neural TI’s
ability to reach two orders of magnitude more demonstrates
the appeal to learn the alchemical pathway. While
traditional alchemical-transformation methods focus on
minimizing the change in Hamiltonian to a handful of
degrees of freedom, here we report free-energy differences
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of coupling an entire box of LJ particles, totaling 600
degrees of freedom.

0.0 0.2 0.4 0.6 0.8 1.0

ρ

0

50

100

150

200

250

β
∆
F̂

1→
0

neural TI
TI (100 simulations)
TI (50 simulations)
TI (20 simulations)
TI (10 simulations)
TI (5 simulations)

0 25 50 75 100 125 150 175 200
N

Figure 6. Estimated free energy of turning on the LJ interactions in
the canonical ensemble at different densities (number of particles
at the top). The subscript 1 → 0 corresponds to an interpolation
from the non-interacting latent space to the target Hamiltonian, i.e.,
turning on interactions in the system. Estimate by Neural TI shown
in thick black. For comparison, we also display various standard
TI estimates with increasing numbers of reference simulations
(various colors).

6. Conclusion
We present Neural TI: a generative machine-learning
approach to perform thermodynamic integration in
molecular systems. Our work shows that energy-based
denoising diffusion models (DDMs) are particularly well
suited to calculate the free-energy difference of turning on
interactions in a many-body Hamiltonian. We find that
by associating the latent space to the ideal-gas system,
and further parametrizing the score as the derivative of
an energy function, we can efficiently and accurately
perform TI. Unlike conventional applications, our approach
does not require reference Monte Carlo or molecular
dynamics simulations at intermediate couplings between
the end points. Instead, DDMs integrate the conformational
ensemble along the finite-time interval of the diffusion
process. Critically, we demonstrate for the first time
the accurate estimation of free energies of coupling all
interactions for up to 600 degrees of freedom.

We demonstrate the applicability of Neural TI on
Lennard-Jones fluids. We show our DDM model to transfer
across densities around the gas–liquid transition of the
system. The structural accuracy of the configurations
is illustrated by the radial distribution functions. More
importantly, we show that our TI calculations are accurate
for varying numbers of particles: the excess chemical
potentials and particle-number distributions result from
weighted averages of TI-estimated canonical partition
functions. We report free-energy differences of coupling
Hamiltonians of up to 200 kBT from a single reference
simulation—the fully interacting Hamiltonian alone. We

expect DDM-based TI to significantly improve alchemical
transformations of molecular systems by coupling many
more degrees of freedom than what was possible until now.
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Schütt, K., Kindermans, P.-J., Sauceda Felix, H. E.,
Chmiela, S., Tkatchenko, A., and Müller, K.-R. Schnet:
A continuous-filter convolutional neural network for
modeling quantum interactions. Advances in neural
information processing systems, 30, 2017.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N.,
and Ganguli, S. Deep unsupervised learning using
nonequilibrium thermodynamics. In International
conference on machine learning, pp. 2256–2265. PMLR,
2015.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A.,
Ermon, S., and Poole, B. Score-based generative
modeling through stochastic differential equations. In
International Conference on Learning Representations,
2020.

8

https://www.sciencedirect.com/science/article/pii/0009261494003971
https://www.sciencedirect.com/science/article/pii/0009261494003971
https://openreview.net/forum?id=TH6YrEcbth
https://openreview.net/forum?id=TH6YrEcbth
https://openreview.net/forum?id=9AS-TF2jRNb
https://openreview.net/forum?id=9AS-TF2jRNb


ICML 2024 AI for Science workshop

Straatsma, T. and Berendsen, H. Free energy of ionic
hydration: Analysis of a thermodynamic integration
technique to evaluate free energy differences by
molecular dynamics simulations. The Journal of chemical
physics, 89(9):5876–5886, 1988.

Widom, B. Some topics in the theory of fluids. The Journal
of Chemical Physics, 39(11):2808–2812, 1963.

Wirnsberger, P., Ballard, A. J., Papamakarios, G.,
Abercrombie, S., Racanière, S., Pritzel, A.,
Jimenez Rezende, D., and Blundell, C. Targeted
free energy estimation via learned mappings. The
Journal of Chemical Physics, 153(14), 2020.

9



ICML 2024 AI for Science workshop

A. Experiments on a 1D Lennard-Jones system
In this experiment we work with a d = 1-dimensional
system. We set the volume (length) of the box to V = 100,
the inverse temperature β = 1, the mass of the particles to
m = 1, Planck’s constant to h = 10−4, and the parameters
of the LJ-potential to ε = 0.8, σ = 1.

We train a single diffusion model on samples from
canonical Monte Carlo simulations at particle numbers
N ∈ {50, 70, 90} (i.e. densities ρ ∈ {0.5, 0.7, 0.9}). The
architecture of the potential network is a SchNet-like (Schütt
et al., 2017) architecture with time-dependent RBF kernels.
We refer the reader to Appendix B for details on the Monte
Carlo simulations and on the architecture.
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MC DMFigure 7. Radial distribution functions as predicted by Monte Carlo
simulations (gray) and a diffusion model (red) trained on densities
ρ ∈ {0.5, 0.7, 0.9}. Note that the model reconstructs g(r) on a
wide range of densities starting from ρ = 0.4, close to the gas
phase to ρ = 1.0 close to the solid phase. A Gaussian kernel with
σ = 0.05 was applied to all curves in this plot.
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GCMC TIFigure 8. Distribution of the number of particles in the grand
canonical ensemble at different chemical potentials as predicted
by GCMC simulations (gray) and by thermodynamic integration
with a trained diffusion model (red). The blue lines denote the
canonical ensembles that the diffusion model was trained on. A
Gaussian kernel with σ = 0.015 was applied to all curves in this
plot.

To evaluate the generative performance of these models

we compare the radial distribution function g(r) between
Monte Carlo samples, and samples from the trained
diffusion model (Figure 7).

The accuracy of the thermodynamic integration along the
trained diffusion model is gauged by comparing its estimates
of p(N) (Figure 8) and of the relation between ρ, µ and µex
(Figure 9) to grand canonical Monte Carlo simulations.
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Figure 9. Expected density as a function of the chemical potential
(left) and estimates of µex as a function of the expected density
(right). The vertical blue lines denote the canonical ensembles that
the diffusion model was trained on.

B. Experimental details
Monte Carlo sampling

Canonical MC To generate the training dataset in the
canonical ensemble, we run Monte Carlo simulations on the
positions q. The variance of the proposal distributions are
tuned so that the acceptance rate is between 0.10 and 0.30.
We run the simulations until 60000 samples are accepted,
discard the first 10000 as the burn-in phase, and train our
models on the remaining 50000.

Grand Canonical MC To generate reference grand
canonical data, we perform GCMC simulations until 15000
moves that change the particle count are accepted. From
the generated trajectories we discard the first 20% as the
burn-in phase, and use the remaining 80% as the ground
truth.

TI in Figure 6 We run simulations at λ ∈
{0.00, 0.01, 0.02, ..., 1.00} at particle counts 10, 20, ..., 200
with the intermediate potential

ULJ
λ (q) =

∑

i̸=j

4(1−λ)ε



(

σ2

λσ2 + r2ij

)6

−
(

σ2

λσ2 + r2ij

)3

 .

We collect 12000 samples from which discard the first 2000
as the burn-in phase.

Force fields

D=1 For the 1-dimensional box (Appendix A), we use a
SchNet-like (Schütt et al., 2017) architecture. To make the
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architecture time-dependent, we predict the parameters of
the RBF kernels from the diffusion time using a small MLP.
The network consists of 3 layers each of which performs a
message passing step and an atom-wise update. The final
readout of the energy is the sum of the features over all
nodes and channels. The number of channels is 32 and the
MLPs in the RBF-parameter prediction and in the atom-wise
update both have two hidden layers with 64 neurons. Since
the number of particles is reasonably low (≤ 100), we do
not use a cutoff radius, and perform message passing on the
fully connected graph between the nodes.

D=3 For the 3-dimensional box (§5) we find that the
SchNet-like architecture that worked in the one-dimensional
case, can not reconstruct g(r) above a density of 0.30.
We thus include directional information (Gasteiger et al.,
2019) to the potential network. In our architecture nodes
and edges are equipped with both scalar and vectorial
features. For this discussion we denote these features by
hnode

scalar, h
node
vec , hedge

scalar, h
edge
vec . Our network consists of 3 layers

each of which performs the following sequence of steps.

1. Update hedge
scalar (hedge

vec ) as a linear combination of the
current value of hedge

scalar (hedge
vec ) and the values of hnode

scalar
(hnode

vec ) of the source and target nodes.

2. Compute gnode
scalar (gnode

vec ) by aggregating the edge features
at the target nodes with time-dependent RBF weights
(see previous paragraph).

3. Update hnode
vec as a linear combination of hnode

vec and gnode
vec .

4. Update hnode
scalar as a MLP whose input is hnode

scalar, g
scalar
vec ,

and the channel-wise inner product between hnode
vec and

gnode
vec .

In our experiments we used 64 channels for all scalar and
vectorial features. The final readout is the sum of scalar
node features over all nodes and channels. The cutoff radius
when building the graph was chosen to be two times the σ
parameter of the LJ-potential.
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