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Abstract

Most realisations of Optical Neural Networks are aimed at using the platform for
inference. In backpropagation, the update process is performed in opposite di-
rection to the forward pass and relies on the gradient of the loss function with
respect to the weights. To calculate this, the gradient of the activation function
with respect to the inputs is required. As such, the training process of Optical
Neural Networks is typically implemented in the digital domain. This is realised
using simulation techniques however this method is not optimal as it is not fast and
cannot replicate the subtle experimental imperfections of the system. One mitiga-
tion involves training with additional noise but this is suboptimal. We propose a
novel method to implement backpropagation through nonlinear optical units us-
ing small-signal modulation of laser inputs and a lock-in amplifier. This allows
for the calculation of the gradient of the activation function with respect to the
inputs synchronously with the forward pass using high-speed analog circuitry. We
experimentally demonstrate this method for a semiconductor optical amplifier in
the nonlinear regime and show that the measured gradient is in good agreement
with the calculated gradient from a steady-state analytical model for the device.
This method can extract the phase of the signal enabling the encoding of negative
and complex weights - besides being applicable to any optical nonlinear material,
electro-optic activation functions in free space or photonic integrated platforms.
Importantly, this gradient measurement method is resilient to device drift, induced
by environment or ageing, which would affect finite difference based techniques -
those would require periodic calibration.

1 Introduction

Backpropagation is regarded as the algorithm of choice for training neural networks. The algorithm
is based on recursive application of the chain rule and calculates the gradient of the loss function with
respect to the weights [1]. To find the gradients, the information is passed backwards through the
network. In the forward pass, the activation function is applied to the input and provides nonlinear
modulation. Instead, in the backward pass, the gradient of the activation function with respect to the
inputs is required. In Optical Neural Networks (ONNs), it is not trivial to access the gradient as the
optical computational steps for the forward pass and backward pass are different. And, thus, it is
one of the main challenges in implementing ONNs.

Ideally, the backward pass of the network should be implemented wholly in the optical domain to
avoid the need for optical to digital conversion. But finding an optical material that implements this
response is nontrivial. Our proposal here it to use an analog opto-electronic method using small-
signal modulation and a lock-in amplifier. The benefit of using a lock-in amplifier is that it can
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provide a high speed (>10GHz) and scalable platform, being suitable for implementation with pho-
tonic integrated circuits. This allows for the extraction of the gradient of the activation function
with respect to the inputs synchronously with the forward pass as the weights are updated. Poten-
tially, the output signals can then be used to update the weights of the network with minimal latency
[2]. By computing the gradient simultaneously with the forward pass, the need for implementing
backpropagation in the digital domain is removed.

Other solutions involve changes to the training algorithm such that backpropagation is avoided or
modified and direct access/calculation of the gradients in the optical domain is no longer required.
These methods can be neuro-inspired despite taking longer to descend on the optimal solution such
as the direct feedback alignment method [3]. Or stochastic perturbation methods where weights are
randomly perturbed and the change in the loss function was used to approximate the gradient such
as Bandyopadhyay et al. [4]. These methods are not optimal as the convergence is slower compared
to backpropagation as discussed in [5].

An experimental demonstration of the backpropagation algorithm, calculating the gradient of the
loss function with respect to the weights, by interfering the forward inference and backward error
signals was performed by Pai et al. [6]. The authors demonstrated the technique through a MZI
based ONN and the readout was then performed using a camera of the tapped outputs at the reference
mid section of the circuit. However the authors used activation functions in the digital domain.
To implement backpropagation through nonlinear optical materials, Spall et al. [7] utilised the
pump probe process with rubidium gas. This method involved building a free space ONN with both
forward pump and backward probe propagation components. The gas cell is a type of saturable
absorber where the transmissivity is nonlinear with respect to the input power, thus the forward
pump induces a nonlinear response on the gas encoding the forward pass For low input power, the
transmissivity is low and as the pump power increases (from a threshold point) the transmissivity
starts to increase linearly. Both the pump and probe components propagate through the gas cell
where the probe is used to measure the gradient of the activation function with respect to the inputs.
However, the probe gradient measurement is accurate for a narrow range of pump powers.

One of the most convenient platforms for implementing optical activation functions are saturable
absorbers and semiconductor optical amplifiers (SOAs). They have a nonlinear response to the
input power and can be both implemented in integrated and free space platforms. Specifically semi-
conductor saturable mirrors (SESAMs) and SOAs are based on semiconductor materials and their
responses are well understood and modelled. The SOA amplifies nonlinearly in accordance with the
gain saturation equation [8], for steady-state conditions, in accordance to:

g =
g0

1 + I/Isat
(1)

where g is the gain, g0 is the small signal gain, I is the input power and Isat is the saturation power.
SESAMs reflect nonlinearly in accordance with the saturable absorber equation [8]:

a =
a0

1 + I/Isat
(2)

where a is the absorption and a0 is the small signal absorption.

2 Backpropagation: the relevance of the activation function gradient

To explain backpropagation through nonlinear units we describe a simple 2 layer neural network.
The input vector is given by x, the weight matrix of the first layer is given by W1. By performing a
matrix vector multiplication, the output of the first layer is given by z1.

z1 = W1x1 (3)

The output of the first layer is then passed through the activation function to give the input of the
second layer x2.

x2 = f(z1) (4)
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The weight matrix of the second layer is given by W2 and the output of the second layer is given
by y2.

y2 = W2x2 (5)

The loss function is given by L and the gradient of the loss function with respect to the first weight
matrix is calculated by the chain rule. The gradient allows for the update of the weights in order to
minimise the loss function. Applying the chain rule, the gradient of the loss function with respect to
the first weight matrix is given by:

∂L

∂W1
=

∂L

∂y2

∂y2

∂x2

∂x2

∂z1

∂z1
∂W1

(6)

This is rewritten as:

∂L

∂W1
=

∂L

∂y2
W2f

′(z1)x1 (7)

Where the first value ∂L
∂y2

is known as the error vector and f ′(z1) is the derivative of the activation
function with respect to the input. For a ReLU activation function applied to an example weight
matrix the transformation is shown as:

ReLU(W) = ReLU

(
0.5 1.9 0
−0.6 0 −0.2
−1 0 0.2

)
=

(
0.5 1.9 0
0 0 0
0 0 0.2

)

The derivative of the ReLU activation function is a step function with value 0 for negative inputs and
1 for positive inputs. Hence, the derivative of the ReLU activation function applied to the example
weight matrix is:

f ′(W) = ReLU ′(W) =

(
1 1 0
0 0 0
0 0 1

)

3 Proposed method

An alternative method to calculate the gradient of the activation function with respect to its inputs is
to use small-signal modulation in combination with a lock-in amplifier. This method is applicable to
any nonlinear material that has a known response to the input power as well as being applicable to
both free space and integrated platforms. Although the method is not implemented optically as the
pump probe method, it is still an analog method and so it can be implemented at high speeds besides
being agnostic to the optical nonlinear material. A lock-in amplifier is a device that uses a reference
tone (of a given frequency) to extract the amplitude and phase of a device (in our case, a nonlinear
device/system).

It provides resilience to noise and device drift by relying on coherent mixing of the device output
signal and the reference tone, i.e. coherent mixing gain is able to extract the reference signal even
from a noisy and/or distorted output.Finally, the lock-in response is passed through a low pass that
acts as a temporal integrator in which the product oscillates in time with an average value of zero
[9]. The output is given by:

Vout = VsigVLsin(ωrt+ θsig)sin(ωLt+ θref ) (8)

Where Vsig is the signal amplitude, VL is the lock-in amplifier output, ωr is the reference frequency,
θsig is the phase of the signal, ωL is the lock-in amplifier frequency and θref is the phase of the
reference signal. Using the sin product identity, the output is given by:
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Vout =
VsigVL

2
cos(ωrt+ θsig − ωLt− θref )−

VsigVL

2
cos(ωrt+ θsig + ωLt+ θref ) (9)

This results in 2 AC components at the sum and difference frequencies of the reference and input
signals. By lowpassing the output, the difference DC component is extracted with ωr = ωL.

Vout =
VsigVL

2
cos(θsig − θref ) = X (10)

This is the signal magnitude and useful for calculating the magnitude of the derivative of the ac-
tivation function with respect to the input. Essentially these steps remove the DC component of a
signal. On first glance, a lock-in amplifier proves to be unnecessarily complex as the magnitude of
the derivative can be simply calculated with a photodetector passed through a capacitor. The ca-
pacitor removes any DC component of the signal and the output is proportional to the modulation
depth. A lock-in amplifier requires additional components besides just a photodiode, but gives larger
dynamic range or sensitivity and resilience to device drift. Additionally, where the lock-in amplifier
is useful is the ability to extract the phase of the signal as in ONNs the phase is a crucial component
for encoding negative and complex weights. The output is dependant of the reference phase θref
and to extract the phase of the signal, the reference phase is varied and the output is measured. If
the phase difference between the reference and the signal is π/2, the output is zero according to
equation 8. By adding a separate circuit that multiplies the signal with a reference signal that is π/2
out of phase with the original reference signal, the low-pass output will be given by.

Vout =
VsigVL

2
sin(θsig − θref ) = Y (11)

This gives 2 quantities, the X and Y components of the signal where the X component is referred
to as the in phase component and the Y component is referred to as the quadrature component. The
magnitude of the signal vector removes the phase dependancy:

R =
√

X2 + Y 2 (12)

and the phase of the signal vector is given by:

ϕ = tan−1

(
Y

X

)
(13)

This measurement can be implemented with analog electronics and therefore has the potential to
operate at very high speeds [2] [10].

By mixing a small modulation with the input signal which is used for the forward pass, and tapping
off the signal after the nonlinear element the gradient of the activation function with respect to the
input can be calculated. An illustration of two input signals with varying power passing through the
nonlinear response of a SOA is shown in Figure 1.
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Figure 1: Effect of a non-linear response on modulated inputs.

Both input signals are modulated with the same small amplitude signal. As they address a different
part of the nonlinear response curve, the response stimulus amplitude is different. After removing
the DC component, the response to the small-signal modulation gives the gradient of the activation
function with respect to the input. If the modulation depth is too high, the response can become
distorted and not proportional to the gradient. When building an ONN with this technique it is
essential that the small-signal modulation has a constant modulation depth.

4 Experiment

As a proof-of-concept we used off the shelf components, mostly in bench-top form factor, never-
theless the proposed methods are suitable for opto-electronic integration. We use a Thorlabs SOA
1013SXS as a nonlinear element. The laser is tuned to 1550 nm sent to an amplifier and is split into
the pump input signal and the probe modulated signal. The pump signal passes through a digitally
controllable variable optical attenuator, and the power is varied from -23 to 0 dBm. In essence, the
attenuator acts as the weight matrix element. The probe signal is modulated with a 10 kHz square
wave using an acousto-optical modulator (AOM), which is generated by a HP function generator
with a 0.6V amplitude. The signals are then mixed using a 50/50 coupler and passed through the
SOA. A photo detector (PD1) is implemented after the coupler to measure the input power. After
the SOA, the signal is measured using a photo detector (PD2) and passed through to the lock-in
amplifier. We use a Stanford Research Systems SR830 lock-in amplifier which is referenced to the
10 kHz square wave. The schematic of the setup is shown in Figure 2.

Figure 2: Experimental setup of simultaneous gradient calculation.

To get a comparison of the gradient measured by the lock-in amplifier with the actual gradient, the
input power and output powers are measured. A fitted function based on a polynomial approximation
using the steady state model of the SOA (1) is then applied to the power out as a function of the

5



input power to calculate an analytic gradient. An additional measure is obtained by using the numpy
gradient function of the same curve. The function uses a multi-point method to approximate the
derivative. To simplify the comparison between the gradient calculation methods, data plotting in
Figure 3 is done with rescaling between 0 and 1. In this way, when comparing left and right plots in
Figure 3, we see that at the input power range of 0.5 to 1 the gradient reaches a constant value but is
clearly non-zero. In practice, rescaling would also be used due to the necessary recalibration of the
system for the specific response of different nonlinear materials.

Figure 3: Left. Nonlinear response of SOA with analytic fitted function. Right. Derivative of non-
linear response. Red: Lock-in amplifier measurement. Blue: Analytic gradient. Green: numpy
gradient.

In general, there is good agreement between the lock-in amplifier measurement and the analytic
gradient. There is a slight discrepancy where the lock-in amplifier measurement is higher than
the analytic gradient. Using the numpy gradient, a similar trend is observed likely indicating a
slight under fitting of the analytic function. This could be due to fluctuations of the input power
coming from the amplified laser or of fluctuations of the SOA output power due to environmental
perturbations where the analytic function is not able to fit to this behavior.

To incorporate this technique into a full ONN, the extracted gradient or voltage can be then used
to modulate a separate optical element such as a SLM or MZI mesh in which the backpropagated
signal is passed through – although different schemes should be explored as well.

5 Conclusion

In this study, we proposed a new technique for analog gradient calculation applicable to optical neu-
ral networks and compatible with any optical nonlinear materials as well as any photonic integrated
or bulk platforms. Critically, this method is applicable to networks using negative and complex
weights, since the lock-in amplifier can extract the phase of the signal. And, by enabling gradient
calculation synchronously with the forward pass, this method is resilient to device drift induced by
environment or ageing. In summary, this technique provides a step forward in training optical neu-
ral networks, reducing the need for digital backpropagation and allowing for scalable integration of
larger neural networks and faster training times.
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