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ABSTRACT

Assigning importance weights to adversarial data has achieved great success in
training adversarially robust networks under limited model capacity. However,
existing instance-reweighted adversarial training (AT) methods heavily depend on
heuristics and/or geometric interpretations to determine those importance weights,
making these algorithms lack rigorous theoretical justification/guarantee. More-
over, recent research has shown that adversarial training suffers from a severe
non-uniform robust performance across the training distribution, e.g., data points
belonging to some classes can be much more vulnerable to adversarial attacks than
others. To address both issues, in this paper, we propose a novel doubly-robust
instance reweighted AT framework, which allows to obtain the importance weights
via exploring distributionally robust optimization (DRO) techniques, and at the
same time boosts the robustness on the most vulnerable examples. In particular, our
importance weights are obtained by optimizing the KL-divergence regularized loss
function, which allows us to devise new algorithms with a theoretical convergence
guarantee. Experiments on standard classification datasets demonstrate that our
proposed approach outperforms related state-of-the-art baseline methods in terms
of average robust performance, and at the same time improves the robustness
against attacks on the weakest data points.

1 INTRODUCTION

Deep learning models are known to be vulnerable to malicious adversarial attacks Nguyen et al.
(2015), i.e., small perturbation added to natural input data can easily fool state-of-the-art networks.
Given that these deep neural networks are being heavily deployed in real-life applications, even in
safety-critical applications, adversarial training (AT) Madry et al. (2017); Athalye et al. (2018a);
Carmon et al. (2019) has been proposed for training networks to be robust to adversarial attacks
Athalye et al. (2018b); Szegedy et al. (2013); Goodfellow et al. (2014); Papernot et al. (2016); Nguyen
et al. (2015); Zhang et al. (2021b; 2020a). In particular, most existing defense strategies are based on
the recipes similar to AT Madry et al. (2017), where the goal is to minimize the average loss of the
worst-case adversarial data for the training distribution via solving a minimax optimization problem.

Despite its success, the traditional AT method Madry et al. (2017) has some major limitations. First,
even though existing overparameterized neural networks seem to be good enough for natural data,
highly adversarial data consumes much more model capacity compared to their clean counterpart,
making the minimization of the uniform average adversarial loss a very pessimistic goal, as argued
in Zhang et al. (2020b). To overcome this limitation, recent works Zhang et al. (2020b); Liu et al.
(2021a); Zeng et al. (2021); Ding et al. (2018) assign an importance weight to each data point in
the training distribution, in order to emphasize the ones that are critical to determining the model’s
decision boundaries. By allowing more careful exploitation of the limited model capacity, such a
simple instance-reweighted scheme combined with traditional adversarial training has yielded a
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significant boost in the robust performance of current adversarially trained models. Yet, existing
methods for instance-reweighted AT mostly adopt heuristic techniques and/or geometric intuitions in
order to compute the instance weights, which makes these algorithms lack a principled and rigorous
theoretical justification/guarantee. This hence motivates the following question we ask:

How to systematically determine the importance weights via a principled approach, rather than
resorting to heuristics/interpretations which are often sub-optimal?

Moreover, as observed in Tian et al. (2021), another critical limitation of the transitional AT method is
that it suffers a severe non-uniform performance across the empirical distribution. For example, while
the average robust performance of the AT method on the CIFAR10 dataset can be as high as 49%,
the robust accuracy for the weakest class is as low as 14%, which depicts a huge disparity in robust
performance across different classes. We note that such a non-uniform performance across classes is
also slightly observed in the standard training with clean data, but its severity is much worsened in
adversarial training (see Figure 1). Indeed, this is a critical limitation that requires special attention as,
in a real-world situation, a more intelligent attacker can, in fact, decide which examples to attack so
as to achieve a much higher success rate (e.g., 86% when attacking the most vulnerable class). This
non-uniform robust performance is even worsened in the case of imbalanced training distributions
Wu et al. (2021); Wang et al. (2022), where the robust performance for the most vulnerable class can
be as low as 0%. This motivates our second question given below:

Can such an issue of non-uniform performance particularly over imbalanced datasets be addressed at
the instance level simultaneously as we design the importance weights to address the first question?

In this paper, we propose a novel doubly robust instance reweighted optimization approach to address
both of the above questions.

1.1 OUR CONTRIBUTIONS

(A novel principled framework for instance reweighted AT) In order to determine the instance
weights for AT in a theoretically grounded way, we propose a novel doubly robust instance reweighted
optimization framework, based on distributionally robust optimization (DRO) Rahimian & Mehrotra
(2019); Qian et al. (2019) and bilevel optimization (Zhang et al., 2022; Pedregosa, 2016; Grazzi
et al., 2020b). Through building a model that is robust not only to the adversarial attacks but also
to the worst-case instance weight selections, our framework (a) enjoys better robust performance
than existing instance-reweighted schemes based on heuristic/geometric techniques Zhang et al.
(2020b); Liu et al. (2021a); Zeng et al. (2021) as well as tradtional AT baselines Madry et al. (2017);
and (b) addresses the non-uniform issues Tian et al. (2021); Pethick et al. (2023) of traditional AT
by carefully optimizing the instance weights so as to boost the robust performance of the most
vulnerable examples. Moreover, the proposed framework can be reformulated into a new finite-sum
compositional bilevel optimization problem (CBO), which can be of great interest to the optimization
community on its own.

(A novel algorithm with theoretical guarantee) Solving the proposed doubly robust optimization
problem is technically challenging, including the non-differentiability of the optimizer for the
constrained inner level problem and the biased hypergradient estimation for the compositional outer
level problem. To tackle these challenges, we first propose a penalized reformulation based on the
log-barrier penalty method, and then develop a novel algorithm which exploits the implicit function
theorem and keeps track of a running average of the outer level composed function values. Our
algorithm not only leads to a robust model for the proposed instance reweighted optimization problem
but also provides a solution to the generic compositional bilevel optimization problem. Under widely
adopted assumptions in the bilevel (Grazzi et al., 2020a; Ji et al., 2021; Rajeswaran et al., 2019; Ji
& Liang, 2021) and compositional optimization Wang et al. (2017); Chen et al. (2021b); Lian et al.
(2017); Blanchet et al. (2017); Devraj & Chen (2019) literature, we further establish the convergence
guarantee for the proposed algorithm.

(Strong experimental performance) Experiments on several balanced and imbalanced image
recognition datasets demonstrate the effectiveness of our proposed approach. In particular, on
CIFAR10 our approach yields +3.5% improvement in overall robustness against PGD attacks Madry
et al. (2017) with most of it coming from boosting robustness on vulnerable data points.
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1.2 RELATED WORK

Adversarial training for robust learning Adversarial training (AT) Madry et al. (2017); Athalye et al.
(2018a); Carmon et al. (2019) was proposed for training deep neural networks robust to malicious
adversarial attacks Goodfellow et al. (2014); Tramèr et al. (2017). In particular, Madry et al. (2017)
introduced a generic AT framework based on minimax optimization with the goal of minimizing
the training loss of the worst-case adversarial data for the training distribution. However, despite
AT method being still considered as one of the most powerful defense strategies, Rice et al. (2020)
highlights a severe decrease in robust performance of traditional AT when training is not stopped
early, a phenomenon they dubbed robust overfitting. Several extensions of the standard AT method
have been proposed to mitigate this intriguing problem, such as data augmentation-based techniques
Rebuffi et al. (2021); Gowal et al. (2021), or smoothing-based methods Chen et al. (2021a); Yang
et al. (2020a;b). Zhang et al. (2019) proposed a theoretically grounded objective for AT to strike
a balance between robust and natural performance. However, those methods suffer a severe non-
uniform performance across classification categories, as observed in Tian et al. (2021). Our proposed
framework helps mitigate this drawback by carefully optimizing for the most vulnerable data points.

Instance reweighted adversarial training Another line of works Zhang et al. (2020b); Liu et al.
(2021a); Zeng et al. (2021); Ding et al. (2018) assign an importance weight to each data point in
the empirical distribution and minimize the weighted adversarial losses. This has been shown to
significantly boost the performance of AT due to more careful exploitation of the limited capacity of
large deep neural networks to fit highly adversarial data, and helps overcome robust overfitting to
some extent Zhang et al. (2020b). For example, in the geometry-aware adversarial instance reweighted
adversarial training (GAIRAT) Zhang et al. (2020b) method, the instance weight is computed based
on the minimum number of PGD Madry et al. (2017) steps required to generate a mis-classified
adversarial example. Liu et al. (2021a) leverages probabilistic margins to compute weights. Existing
approaches for instance reweighted AT are, however, all based on heuristics/geometric intuitions to
determine the weights. In this paper, we propose a principled approach to instance-reweighted AT by
exploiting robust optimization techniques Qian et al. (2019); Rahimian & Mehrotra (2019).

Instance reweighting has also been used in the context of domain adaptation Jiang & Zhai (2007),
data augmentation Yi et al. (2021), and imbalanced classification Ren et al. (2018). By determining
the instance weights in a more principled way, our method also has the potential to be applied to
these contexts, which we leave as future work.

Due to space limitation, more discussions about related literature in Bilevel Optimization and
Stochastic Compositional Optimization is deferred to Appendix A.

2 PRELIMINARY ON AT
Traditional AT. The traditional adversarial training (AT) Madry et al. (2017) framework is formulated
as the following minimax optimization problem over the training dataset D = {(xi, yi)}Mi=1

min
θ

1

M

M∑
i=1

max
δ∈C

ℓ(xi + δ, yi; θ), (1)

where ℓ(xi + δ, yi; θ) is the loss function on the adversarial input xi + δ, C is the treat model that
defines the constraint on the adversarial noise δ, and θ ∈ Rd corresponds to the model parameters.
Thus, the traditional AT builds robust models by optimizing the parameters θ for the average worst-
case adversarial loss ℓ(xi + δ, yi; θ) over the training dataset D. A natural solver for the problem in
Equation (1) is the AT algorithm Madry et al. (2017), where 1) the projected gradient descent (PGD)
Madry et al. (2017) method is first adopted to approximate the worst-case adversarial noise δ and 2)
an outer minimization step is performed on the parameters θ using stochastic gradient descent (SGD)
methods. However, the traditional AT is known to consume tremendous amount of model capacity
due to its overwhelming smoothing effect of natural data neighborhoods Zhang et al. (2020b). In
other words, the traditional AT robustifies models by making decision boundaries far away from
natural data points so that their adversarial counterparts are still correctly classified (i.e., do not cross
the decision boundary), and thus requires significantly more model capacity compared to the standard
training on clean data.

Instance Reweighted AT. The geometry-aware approach in Zhang et al. (2020b) introduces a new
line of methods that reweights the adversarial loss on each individual data point in order to address
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the drawback of traditional AT. The key motivation is that distinct data points are unequal by nature
and should be treated differently based on how important they participate on the selection of decision
boundaries. Hence, the learning objective of the geometry-aware instance-reweighted adversarial
training (GAIRAT) method as well as its variants Zhang et al. (2020b); Liu et al. (2021a); Zeng et al.
(2021) can be written as

min
θ

M∑
i=1

wi max
δ∈Ci

ℓ(xi + δ, yi; θ) with
M∑
i=1

wi = 1 and wi ≥ 0, (2)

where the constraints on the weights vector w = (w1, ..., wM )⊤ are imposed in order to make
Equation (2) consistent with the original objective in Equation (1). This framework assumes that
the weight vector w = (w1, ..., wM )⊤ can be obtained separately and the goal is only to optimize
for θ once an off-the-shelf technique/heuristic can be used to compute w. Intuitively, the key idea
driving the weight assignments in instance reweighted methods is that larger weights should be
assigned to the training examples closer to the decision boundaries, whereas the ones that are far
away should have smaller weights because they are less important in determining the boundaries.
The major difference among the existing instance reweighted AT methods lies in the heuristics used
to design/compute the instance weights wi, i = 1, ...,M . However, none of those methods adopt a
scheme that is theoretically grounded, nor does the formulation in Equation (2) provide a way of
determining those weights.

Bilevel Optimization Formulation for AT. Along a different line, bilevel optimization has recently
been leveraged to develop a more powerful framework for adversarial training Zhang et al. (2022):

min
θ

1

M

M∑
i=1

ℓ(xi + δ∗i (θ), yi; θ) s.t. δ∗i (θ) = argmin
δ∈Ci

ℓ′(xi + δ, yi; θ), (3)

where for each data point (xi, yi), δ∗i (θ) represents some worst-case/optimal adversarial noise under
the attack loss function ℓ′(·; θ). Such a bilevel optimization formulation of AT has key advantages
over the traditional framework in Equation (1). First, the traditional AT can be recovered by setting
the attack objective to be the negative of the training objective, i.e., ℓ′(·; θ) = −ℓ(·; θ). Second, the
bilevel formulation gives one the flexibility to separately design the inner and outer level objectives,
ℓ′ and ℓ, respectively. These key advantages make the formulation in Equation (3) a more generic
and powerful framework than the one in Equation (1). As we will see next, this enables us to
independently construct a new outer level objective that also solves for the instance weights w, and
an inner level objective for regularized attack.

3 PROPOSED FRAMEWORK FOR INSTANCE REWEIGHTED AT

3.1 DONE: DOUBLY ROBUST INSTANCE REWEIGHTED AT

Using the bilevel formulation for AT in Eq. equation 3, we can incorporate the instance reweighted
idea as

min
θ

M∑
i=1

wiℓ(xi + δ∗i (θ), yi; θ) s.t. δ∗i (θ) = argmin
δ∈Ci

ℓ′(xi + δ, yi; θ) with
M∑
i=1

wi = 1 and wi ≥ 0. (4)

Based on bilevel optimization and distributionally robust optimization (DRO), we next propose a
new framework for AT which determines the weights w in a more principled way rather than using
heuristic methods. Specifically, by letting w maximize the weighted sum of the adversarial losses
ℓ(xi + δ∗i (θ), yi; θ), i = 1, ...,M , we seek to build a model in the outer level problem that is robust
not only to the adversarial attacks but also to the worst-case attack distribution:

min
θ

max
w∈P

M∑
i=1

wiℓ(xi + δ∗i (θ), yi; θ)−r

M∑
i=1

wi log(Mwi) s.t. δ∗i (θ) = argmin
δ∈Ci

ℓ′(xi + δ, yi; θ), (5)

where P represents the probability simplex, i.e., P = {w ∈ RM :
∑M

i=1 wi = 1 and wi ≥ 0}, and
the term r

∑M
i=1 wi log(Mwi) in the outer level objective captures the KL-divergence between w

and the uniform weight distribution, which is a widely adopted choice of regularizer in the DRO
literature Rahimian & Mehrotra (2019). Note that the regularization parameter r > 0 controls the
tradeoff between two extreme cases: 1) r = 0 leads to an un-regularized problem (as we comment
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below), and 2) r → ∞ yields wi → 1
M , and hence, we recover the average objective in Equation (1).

Such a regularizer is introduced to promote the balance between the uniform and worst-case weights
w; otherwise the outer level objective in Equation (5) becomes linear in weights vector w, which
makes the solution of the ‘max’ problem to be trivially a one-hot vector w (where the only ‘1’ is at
index i with the largest adversarial loss), and in practice, such a trivial one-hot vector w makes the
optimization routine unstable and usually hurts generalization to the training distribution Qian et al.
(2019); Wang et al. (2021).

Overall, the formulation in Equation (5) becomes a doubly robust bilevel optimization: (a) the
inner level finds the worst-case noise δ in order to make the model parameters θ robust to such
adversarial perturbation of data input; and (b) the outer level finds the worst-case reweighting first so
that the optimization over the model θ can focus on those data points with high loss values, i.e., the
optimization over θ is over the worst-case adversarial losses.

3.2 AN EQUIVALENT COMPOSITIONAL BILEVEL OPTIMIZATION PROBLEM

An important consequence of choosing the KL-divergence as the regularizer is that the max problem
in the outer objective of Equation (5) admits a unique solution w∗(θ) (see Qi et al. (2021) for
proof), which has its i-the entry given by w∗

i (θ) = exp
(

ℓi(θ,δ
∗
i (θ))
r

)
/
∑

j exp
(

ℓj(θ,δ
∗
j (θ))

r

)
. Here

we denote ℓi(θ, δ
∗
i (θ)) = ℓ(xi + δ∗i (θ), yi; θ). Substituting this optimal weights vector w∗(θ) back

in Equation (5) yields the following equivalent optimization problem

min
θ

r log

(
1

M

M∑
i=1

exp

(
ℓi(θ, δ

∗
i (θ))

r

))
s.t. δ∗i (θ) = argmin

δ∈Ci

ℓ′i(θ, δ). (6)

Problem (6) is, in fact to the best of our knowledge, a novel optimization framework, which we
define as a compositional bilevel optimization problem. Without the inner level problem, stochastic
algorithms with known convergence behaviors have been devised for the single-level compositional
problem. Nevertheless, directly solving problem (6) suffers from several key technical challenges.
In particular, the fact that the minimizer of the inner level constrained problem in Equation (6) may
not be differentiable w.r.t. to the model parameter θ prevents the usage of implicit differentiation for
solving the bilevel optimization problem.

To tackle this challenge, we propose a penalized reformulation based on the log-barrier penalty
method. More specifically, we consider ℓ∞-norm based attack constraint given by C = {δ ∈ Rp :∥∥δ∥∥∞ ≤ ϵ, x + δ ∈ [0, 1]p} for radius ϵ > 0 and input x ∈ Rp. In this case, the constraint set

C can be written in the form of linear constraint Aδ ≤ b with A =
(
Ip,−Ip

)⊤ ∈ R2p×p and

b =
(
min(ϵ1p,1p − x),min(ϵ1p, x)

)⊤ ∈ R2p. With this, we can reformulate the inner problem in
Equation (6) as δ∗i (θ) = argmin{Aiδ≤bi} ℓ

′
i(θ, δ), where Ai and bi are realizations of aforementioned

A and b for input xi. By using the log-barrier penalty method to penalize the linear constraint into
the attack objective, the optimization problem (6) becomes

min
θ

L(θ) := r log

(
1

M

M∑
i=1

exp

(
ℓi(θ, δ̂

∗
i (θ))

r

))
s.t. δ̂∗i (θ) = argmin

δ∈Ci

ℓbari (θ, δ), (7)

where ℓbari (θ, δ) := ℓ′i(θ, δ)− c
∑2p

k=1 log(bk − δ⊤ak), ak denotes the k-th row of matrix Ai and bk
is the k-th entry of vector bi. Note that now the constraint {δ ∈ Ci} is never binding in Equation (7),
because the log-barrier penalty forces the minimizer of ℓbari (θ, δ) to be strictly inside the constraint

set. Based on this, we show that the minimizer δ̂∗i (θ) becomes differentiable, i.e., ∂δ̂∗i (θ)
∂θ exists when

ℓ′i(θ, δ) is twice differentiable and under some mild conditions. With the smoothness of δ̂∗i (θ), we
also provide the expression of the gradient ∇L(θ) in the following proposition.

Proposition 1. Let ℓ′i(θ, δ) be twice differentiable. Define γk = 1/(bk − a⊤k δ̂
∗
i (θ))

2, k = 1, ..., 2p

and diagonal matrix Ci(θ) = cdiag
(
γ1+γp+1, γ2+γp+2, ..., γp+γ2p

)
. If ∇2

δ ℓ
′
i(θ, δ̂

∗
i (θ))+Ci(θ)

is invertible, then the implicit gradient ∂δ̂∗i (θ)
∂θ exists and we have

∇L(θ) =
r
∑M

i=1

(
∇θ gi(θ, δ̂

∗
i (θ))−∇θδ ℓ

′
i(θ, δ̂

∗
i (θ))

[
∇2

δ ℓ′i(θ, δ̂
∗
i (θ)) + Ci(θ)

]−1∇δ gi(θ, δ̂
∗
i (θ))

)
∑M

i=1 gi(θ, δ̂
∗
i (θ))

,

where gi(θ, δ̂
∗
i (θ)) = exp

(
ℓi(θ,δ̂

∗
i (θ))
r

)
.
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Proposition 1 provides the expression of the total gradient ∇L(θ), which is useful for practical
implementation of implicit differentiation based algorithms for problem (6). Moreover, as in Zhang
et al. (2022), when ℓ′i(θ, ·) is modeled by a ReLU-based deep neural network, the hessian ∇2

δ ℓ
′
i(θ, δ)

w.r.t. input δ can be safely neglected due to the fact that ReLU network generally lead to piece-wise
linear decision boundaries w.r.t. its inputs Moosavi-Dezfooli et al. (2019); Alfarra et al. (2022), i.e.,
∇2

δ ℓ
′
i(θ, δ) ≈ 0. Further, the diagonal matrix Ci(θ) can be efficiently inverted. Hence, in order to

approximate ∇L(θ), we only need Jacobian-vector product computations which can be efficiently
computed using existing automatic differentiation packages.

3.3 COMPOSITIONAL IMPLICIT DIFFERENTIATION (CID)

To solve our reformulated problem (7) for AT, we consider the following generic compositional
bilevel optimization problem, which can be of great interest to the optimization community:

min
θ

F (θ) := f (g (θ, δ∗(θ))) = f

(
1

M

M∑
i=1

gi (θ, δ
∗
i (θ))

)
(8)

s.t. δ∗(θ) = (δ∗1(θ), ..., δ
∗
M (θ)) = argmin

(δ1,...,δM )∈V1×...×VM

1

M

M∑
i=1

hi (θ, δi) ,

which can immediately recover problem (7) by setting gi = exp
(

ℓi(θ,δ̂
∗
i (θ))
r

)
, hi = ℓ′i(θ, δ) −

c
∑2p

k=1 log(bk−δ⊤ak), and the constraint set Vi = Ci. Here the outer functions gi(θ, δ) : Rd×Rp →
Rm and f(z) : Rm → R are generic nonconvex and continuously differentiable functions. The
inner function hi(θ, δ) : Rd × Vi → R is a twice differentiable and admits a unique minimizer in
δ, Vi is a convex subset of Rp that is assumed to contain the minizers δ∗i (θ). We collect all inner
loop minimizers into a single vector δ∗(θ). The goal is to minimize the total objective function
F (θ) : Rd −→ R, which not only leads to a robust model for our instance reweighted optimization
problem (7) but also provides a solution to the generic compositional bilevel optimization problem.

As alluded earlier, solving the compositional bilevel optimization problem is nontrivial. More specifi-
cally, it can be shown that the gradient of the total objective is ∇F (θ) = ∂g(θ,δ∗(θ))

∂θ ∇f (g (θ, δ∗(θ)))
by applying the chain rule. Due to the fact that ∇f(·) needs to be evaluated at the full
value g (θ, δ∗(θ)), standard stochastic gradient descent methods cannot be naively applied here.
The reason is that even if we can obtain the unbiased estimates gi (θ, δ

∗
i (θ)), the product

∂gi(θ,δ
∗
i (θ))

∂θ ∇f (gi (θ, δ
∗
i (θ))) would still be biased, unless f(·) is a linear function. This key differ-

ence makes problem (8) particularly challenging and sets it apart from the standard finite-sum bilevel
optimization problem in which the total objective is linear w.r.t. the sampling probabilities 1

M .

To design a theoretically grounded algorithm for problem (8), note that the stochastic compositional
gradient descent (SCGD) Wang et al. (2017) algorithm for the single-level compositional optimization
problem keeps track of a running average of the composed function evaluations during the algorithm
running. Inspired by SCGD, we propose a novel algorithm (see Algorithm 1) that exploits the implicit
differentiation technique to deal with the bilevel aspect of problem (8). Using the implicit function
theorem, we can obtain

∂gi (θ, δ
∗
i (θ))

∂θ
= ∇θgi (θ, δ

∗
i (θ))−∇θ∇δhi (θ, δ

∗
i (θ)) v

∗
i , (9)

with each v∗i being the solution of the linear system ∇2
δhi (θ, δ

∗
i (θ)) v = ∇δgi (θ, δ

∗
i (θ)).

Specifically, at each step t, the algorithm first samples a batch B of cost functions {(gi, hi)} and
applies K steps of projected gradient descent to obtain δKi (θt) as an estimate of the minimizer
δ∗i (θt) of each hi(θt, ·) in B. Then, the algorithm computes an approximation ∇̂gi(θt, δ

K
i (θt)) of the

stochastic gradient sample ∂gi(θt,δ
∗(θt))

∂θ by replacing each δ∗i (θt) with δKi (θt) in Equation (9). The
running estimate ut of ∂g(θ,δ∗(θ))

∂θ and the parameters θ will be next updated as follows

ut+1 = (1− ηt)ut +
ηt
|B|

|B|∑
i=1

gi(θt, δ
K
i (θt)) and θt+1 = θt −

βt

|B|

|B|∑
i=1

∇̂gi(θt, δ
K
i (θt))∇f(ut+1). (10)

Note that we will refer the instantiation of Algorithm 1 for solving the instance reweighted problem
(7) as DONE (which stands for Doubly Robust Instance Reweighted AT).
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Algorithm 1 Compositional Implicit Differentiation (CID)

1: Input: stepsizes α, {βt}, {ηt}, initializations θ0 ∈ Rd, δ0 ∈ Rp, and u0 ∈ Rm.
2: for k = 0, 1, 2, ..., T − 1 do
3: Draw a minibatch of cost functions B = {(gi, hi)}
4: for each (gi, hi) ∈ B (in parallel) do
5: for k = 1, ...,K do
6: Update δki,t = ΠC

(
δk−1
i,t − α∇δhi(θt, δ

k−1
i,t )

)
7: end for
8: Compute sample gradient estimate ∇̂gi(θt, δ

K
i,t) as in Equation (9) by replacing δ∗i (θt) with δKi,t

9: end for
10: Compute g(θt, δ

K
t ;B) = 1

|B|
∑|B|

i=1 gi(θt, δ
K
i,t) and ∇̂g(θt, δ

K
t ;B) = 1

|B|
∑|B|

i=1 ∇̂gi(θt, δ
K
i,t)

11: Update ut+1 = (1− ηt)ut + ηtg(θt, δ
K
t ;B)

12: Update θt+1 = θt − βt∇̂g(θt, δ
K
t ;B)∇f(ut+1)

13: end for

3.4 CONVERGENCE ANALYSIS OF CID

In the following, we establish the convergence rate of the proposed CID algorithm under widely
adopted assumptions in bilevel and compositional optimization literatures (see Appendix E for the
statement of assumptions and proof of Theorem 1).
Theorem 1. Suppose that Assumptions 1, 2, 3 (which are given in Appendix) hold. Select the stepsizes
as βt =

1√
T

and ηt ∈ [ 12 , 1), and batchsize as O(T ). Then, the iterates θt, t = 0, ..., T − 1 of the
CID algorithm satisfy ∑T−1

t=0 E
∥∥∇F (θt)

∥∥2
T

≤ O
( 1√

T
+ (1− αµ)K

)
,

The proof can be found in the Appendix. Theorem 1 indicates that Algorithm 1 can achieve an
ϵ-accurate stationary point by selecting T = O(ϵ−2) and K = O(log 1

ϵ ). The dependency on the
batchsize can be reduced to O(ϵ−1) by selecting ηt = T−0.25, which would also lead to a higher
iteration complexity of O(ϵ−4).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Baselines. We consider image classification problems and compare the performance
of our proposed DONE method with related baselines on four image recognition datasets CIFAR10
Krizhevsky & Hinton (2009), SVHN Netzer et al. (2011), STL10 Coates et al. (2011), and GTSRB
Stallkamp et al. (2012). More details about the datasets can be found in the appendix. We compare
against standard adversarial training methods AT Madry et al. (2017) and FAT Zhang et al. (2020a),
and three other state-of-the-art instance re-weighted adversarial training methods GAIRAT Zhang
et al. (2020b), WMMR Zeng et al. (2021), and MAIL Liu et al. (2021a). We use the official publicly
available codes of the respective baselines and their recommended training configurations. For
our algorithm DONE, we consider three implementations based on how we solve the inner loop
optimization: (i) DONE-GD uses simple non-sign projected gradient descent steps; (ii) DONE-
ADAM employs the Adam optimizer; and (iii) DONE-PGD adopts the projected gradient sign
method. We run all baselines on a single NVIDIA Tesla V100 GPU.

More details about the training and hyperparameters search can be found in Appendix B.

Evaluation. For all baselines, we report their standard accuracy on clean data (SA), the robust
accuracy against 20 steps PGD attacks (RA-PGD) Madry et al. (2017), the robust accuracy against
AutoAttacks (RA-AA) Croce & Hein (2020), and the RA-PGD of the 30% most vulnerable classes
(RA-Tail-30) as a measure of robustness against attacks on the most vulnerable data points.

4.2 BETTER DISTRIBUTION OF ROBUST PERFORMANCE

We first demonstrate that our proposed doubly robust formulation can indeed achieve robust per-
formance in a more balanced way across the empirical distribution. Figure 1 shows the per class
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Figure 1: Per-class robust accuracy comparisons between our method and traditional AT method on
balanced and imbalanced (0.2 imbalance ratio) CIFAR10.

Table 1: Performance evaluations on balanced and imbalanced (0.2 imbalance ratio) CIFAR10.

Method Balanced CIFAR10 Unbalanced CIFAR10

SA RA-PGD RA-Tail-30 RA-AA SA RA-PGD RA-Tail-30 RA-AA

AT 82.1 49.29 28.35 45.22 69.74 42.37 6.25 39.55
FAT 86.21 46.59 27.12 43.71 - - - -

WMMR 81.6 49.53 31.24 40.9 - - - -
MAIL 83.47 55.12 37.30 44.08 72.01 45.64 9.8 37.17

GAIRAT 83.22 54.81 37.45 41.10 73.87 45.18 16.9 35.43

DONE-GD 83.41 57.46 40.11 45.66 74.22 48.29 17.19 40.06
DONE-PGD 82.62 58.54 40.18 44.49 74.58 48.13 15.83 38.69

DONE-ADAM 82.25 58.51 40.36 44.20 74.56 48.15 17.10 39.46

robust accuracy (RA-PGD) of the standard AT method and our doubly-robust approach (i.e., vanilla
DONE-GD method) for both balanced and imbalanced (with an imbalance ratio of 0.2) CIFAR10
dataset. For the balanced case, our algorithm improves the robustness on all classes, meanwhile
with a more significant boost on the weakest classes (cat, deer, and bird). On the other hand, for
the imbalanced data case, the classes with more examples (last five categories) heavily dominate
the robust training dynamic. This consequently leads to very high robustness on those classes, but
nearly zero robustness on the vulnerable classes (such as cat). However, our method can still boost
the per class RA-PGD on the weak classes (+11% on average on the 3 most vulnerable classes)
and at the same time maintain a superior average RA-PGD. Overall, the results for both balanced
and imbalanced settings clearly demonstrate that our doubly-robust approach can, in fact, improve
worst-case robustness and hence achieve superior average robust performance.

4.3 MAIN RESULTS

Table 4: Comparisons with fast AT methods.

Method SA RA-PGD RA-Tail-30

Fast-AT 82.44 45.37 23.3
Fast-AT-GA 79.83 47.56 25.01

Fast-BAT 79.91 49.13 26.05

DONE 79.17 55.17 37.13

Comparisons under CIFAR10. The overall
performance of the compared baselines un-
der both balanced and imbalanced CIFAR10
are reported in Table 1. We highlight the fol-
lowing important observations. First, overall
our methods outperform all other baselines
in terms of all three robustness metrics (RA-
PGD, RA-Tail-30, and RA-AA), meanwhile
also maintaining a competitive standard acur-
racy (SA). In particular, our algorithms can
improve the RA-PGD of the strongest baseline (MAIL) by over 3% with most of the gain coming
from improvement on the weakest classes, as is depicted on the RA-Tail-30 column. This shows
that our doubly robust approach can mitigate the weak robustness on the vulnerable data points
while also keeping the robust performance on well guarded examples (i.e., easy data points) at the
same level. Second, note that the instance reweighted baselines consistently outperform the methods
without reweighting on the RA-Tail-30 metric, which indicates that reweighting in general boosts
the robustness on weak examples. This advantage is even clearer on the imbalanced data case. Yet,
our algorithms still outperform the other instance reweighted methods by around 3% in terms of
RA-Tail-30 in the balanced data setup due to their doubly-robust nature, which clearly is helpful
both for average and worst-case robust performance. Third, note that the other methods that employ
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Table 2: Performance evaluations on balanced and imbalanced (0.2 imbalance ratio) SVHN.

Method Balanced SVHN Unbalanced SVHN (0.2)

SA RA-PGD RA-Tail-30 RA-AA SA RA-PGD RA-Tail-30 RA-AA

AT 93.21 57.82 47.21 46.27 88.46 51.08 33.67 41.13
MAIL 93.11 65.56 52.23 41.38 86.62 48.48 31.91 34.46

GAIRAT 91.56 64.74 52.15 39.41 86.73 53.79 36.46 33.25

DONE-PGD 92.80 66.20 55.84 48.32 88.05 54.85 39.91 41.44
DONE-ADAM 92.58 65.72 53.79 49.13 88.98 55.90 41.10 42.38

Table 3: Performance evaluations on STL10 and GTSRB (originally imbalanced) datasets.

Method STL10 GTSRB

SA RA-PGD RA-Tail-30 RA-AA SA RA-PGD RA-Tail-30 RA-AA

AT 67.11 36.28 10.07 32.58 88.13 59.65 27.03 57.83
MAIL 68.06 38.20 13.33 32.86 88.47 55.96 20.73 53.44

GAIRAT 65.67 35.23 15.21 30.42 86.67 54.38 22.10 51.18

DONE-PGD 66.98 40.23 17.87 33.71 89.34 60.16 27.41 57.25
DONE-ADAM 66.92 39.70 17.62 34.59 88.76 60.05 28.35 57.70

heuristics to compute the instance weights achieve worst RA-AA performance compared to the
standard AT method. In contrast, our algorithms, which also fall in the instance reweighted paradigm,
can still attain competitive performance for RA-AA compared to the standard AT method. This
highlights the suboptimality of using heuristics which could be geared towards improving one metric
(such as the RA-PGD) but may not be necessarily beneficial to the overall robustness of the model.

Performance Comparisons on the other datasets. Table 2 shows the evaluations of the compared
baselines on the SVHN dataset. As depicted, our algorithms (DONE-PGD and DONE-ADAM)
significantly outperform the standard AT method on the RA-PGD metric and at the same time achieve
better robustness against AutoAttacks (RA-AA). Compared with the instance reweighted baselines
(MAIL & GAIRAT), the advantage of our methods is even more important on the RA-AA metric (e.g.,
up to around +8% on RA-AA vs +1.5% on RA-PGD for the balanced data setting). We also note
considerable improvements on the GTSRB and STL10 datasets in Table 3. Similarly to the CIFAR10
dataset, our approach yields an important boost on the RA-Tail-30 robustness metric compared to
all other baselines and the advantage is more significant on the imbalanced data case. These results
consistently demonstrate that our doubly-robust approach can indeed improve worst-case robust
performance meanwhile also maintaining/improving the overall robustness.

Evaluations under Fast AT Setting. We also compare our approach with fast adversarial training
methods. For this setup, we generate the adversarial attacks during training with only 1 GD step after
initialization with 1 PGD warm-up step Zhang et al. (2022) and train all baselines for 25 epochs. We
compare our method with Fast-BAT Zhang et al. (2022), Fast-AT Wong et al. (2020), and Fast-AT-GA
Andriushchenko & Flammarion (2020) on CIFAR10. The evaluations of the compared methods are
reported in Table 4. Our algorithm achieves a much better robust performance and at the same time
keeps a competitive SA. In particular, we note a significant boost (+11%) in RA-Tail-30, which is
mainly the cause of the improvement in the overall RA-PGD.

5 CONCLUSIONS

In this paper, we proposed a novel doubly robust instance reweighted adversarial training framework
based on DRO and bilevel optimization, which not only determines the instance weights for AT in a
theoretically grounded way but also addresses the non-uniform issues of traditional AT by boosting
the robust performance of the most vulnerable examples. To address the technical challenges in
solving the doubly robust optimization problem, we proposed a penalized reformulation using the
log-barrier penalty method, and developed a novel algorithm based on implicit function theorem and
tracking a running average of the outer level function values. Our proposed framework also leads
to a new finite-sum compositional bilevel optimization problem, which can be of great interest to
the optimization community and solved by our developed algorithm with theoretical guarantee. In
the experiments on standard benchmarks, our doubly-robust approach (DONE) outperforms related
state-of-the-art baseline approaches in average robust performance and also improves the robustness
against attacks on the weakest data points.
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SUPPLEMENTARY MATERIAL

We provide the details omitted in the main paper. The sections are organized as fellows:

• Appendix A: We discuss related literature about bilevel optimization and stochastic compositional
optimization.

• Appendix B: We provide more details about datasets, training setups, hyperparameters search, and
implementations.

• Appendix C: We provide the distributions of the robustly learned instance weights and models’
confusion matrices for the considered datasets.

• Appendix D: We provide the proof of Proposition 1.

• Appendix E: We present the convergence analysis of our proposed CID algorithm including the
statements of assumptions and the full proof of Theorem 1.

A MORE RELATED WORK DISCUSSIONS ABOUT BILEVEL OPTIMIZATION
AND STOCHASTIC COMPOSITIONAL OPTIMIZATION

Bilevel optimization Bilevel optimization is a powerful tool to study many machine learning applica-
tions such as hyperparameter optimization (Franceschi et al., 2018; Shaban et al., 2019), meta-learning
(Bertinetto et al., 2018; Franceschi et al., 2018; Rajeswaran et al., 2019; Ji et al., 2020; Liu et al.,
2021b), neural architecture search (Liu et al., 2018; Zhang et al., 2021a), etc. Existing approaches are
usually approximate implicit differentiation (AID) based (Domke, 2012; Pedregosa, 2016; Gould
et al., 2016; Liao et al., 2018; Lorraine et al., 2020), or iterative differentiation (ITD) based (Domke,
2012; Maclaurin et al., 2015; Franceschi et al., 2017; Finn et al., 2017; Shaban et al., 2019; Rajeswaran
et al., 2019; Liu et al., 2020). The convergence rates of these methods have been widely established
(Grazzi et al., 2020a; Ji et al., 2021; Rajeswaran et al., 2019; Ji & Liang, 2021). Bilevel optimization
has been leveraged in adversarial training very recently, which provides a more generic framework by
allowing independent designs of the inner and outer level objectives Zhang et al. (2022). However,
none of these studies investigated bilevel optimization when the outer objective is in the form of
compositions of functions. In this work, we introduce the compositional bilevel optimization problem
as a novel pipeline for instance reweighted AT, and establish its first known convergence rate.

Stochastic compositional optimization Stochastic compositional optimization (SCO) deals with the
minimization of compositions of stochastic functions. Wang et al. (2017) proposed the compositional
stochastic gradient descent (SCGD) algorithm as a pioneering method for SCO problems and
established its convergence rate. Many extentions of SCGD have been proposed with improved
rates, including accelerated and adaptive SCGD methods Wang et al. (2016); Tutunov et al. (2020),
and variance reduced SCGD methods Lian et al. (2017); Blanchet et al. (2017); Lin et al. (2020);
Devraj & Chen (2019); Hu et al. (2019). A SCO reformulation has also been used to solve nonconvex
distributionally robust optimization (DRO) Rahimian & Mehrotra (2019); Qian et al. (2019) problems.
The problem studied in this paper naturally falls into a new class of problems but with an additional
inner loop compared to the existing single-level SCO problem, which we refer to as compositional
bilevel optimization (CBO).

B MORE EMPIRICAL SPECIFICATIONS

B.1 MORE DETAILS ABOUT TRAINING AND HYPERPARAMETERS SEARCH

Following the standard practice in adversarial training Madry et al. (2017); Liu et al. (2021a); Zhang
et al. (2020b), we train our baselines using stochastic gradient descent with a minibtach size of 128
and a momentum of 0.9. We use ResNet-18 as the backbone network as in Madry et al. (2017) and
train our baselines for 60 epochs with a cyclic learning rate schedule where the maximum learning
rate is set to 0.2 Zhang et al. (2020b); Liu et al. (2021c) (please see fig. 2). We consider ℓ∞-norm
bounded adversarial perturbations with a maximum radius of ϵ = 8/255 both for training and testing.
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For the KL-divergence regularization parameter r in our algorithms, we use a decayed schedule
where we initially set it to 10 and decay it to 1 and 0.1, respectively at epochs 40 and 50 (see fig. 2).
This setting allows our methods to start with an instance-weight distribution close to uniform at the
beginning of training where the weights are less informative, and progressively emphasize more on
learning a weight distribution that boosts worst-case adversarial robustness. All hyperparameters
were fixed by holding out 10% of the training data as a validation set and selecting the values that
achieve the best performance on the validation set. For the reported results, we train on the full
training dataset and report the performance on the testing set Zhang et al. (2020b); Liu et al. (2021a).

Figure 2: Learning process of our method DONE-ADAM for the balanced CIFAR10 experiment.
The SA and RA-PGD in third row are evaluated on the test set. The plots are obtained by averaging
three different runs.

B.2 FURTHER DESCRIPTIONS ABOUT DATASETS

We consider image recognition problems and compare the performance of the baselines on four
datasets: CIFAR10 Krizhevsky & Hinton (2009), SVHN Netzer et al. (2011), STL10 Coates et al.
(2011), and GTSRB Stallkamp et al. (2012). For CIFAR10, SVHN, and STL10 we use the training
and test splits provided by Torchvision. For GTSRB, we use the splits provided in Zhang et al. (2022).
STL10 has 10 categories that are similar to those in CIFAR10 but with larger colour images (96× 96
resolution) and less samples (500 per class for training and 800 per class for testing). The German
Traffic Sign Recognition Benchmark (GTSRB) contains 43 classes of traffic signs, split into 39,209
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Figure 3: Confusion matrices of models robustly trained using our approach. The annotations
correspond to the raw number of adversarial examples from class i that were classified as class j.
Per-class robust performance are depicted in the diagonals. Axis labels are provided in first plot only.

training images and 12,630 test images. The images are 32 × 32 resolution colour. The dataset is
highly class-imbalanced with some classes having over 2000 samples and others only 200 samples.

B.3 FURTHER IMPLEMENTATION SPECIFICATIONS

We use the official publicly available codes of the respective baselines and their recommended training
configurations. Pytorch codes for our method are provided in the supplementary material of our
submission. Our implementation is built upon the codebase accompanying the paper Zhang et al.
(2022). We thank the authors for making it publicly available. All codes are tested with Python 3.7
and Pytorch 1.8.

For example, to run our DONE-ADAM algorithm on the balanced CIFAR10 dataset, please run the
following command:

py thon main . py −−mode o u r s ++ −− d a t a s e t CIFAR10 −− i r 1 . −− k l _ c o e f 10
−− epochs 60 −− c y c l i c _ m i l e s t o n e 25 −− k l c _ m i l e s t o n e 1 40
−− k l c _ m i l e s t o n e 2 50 −− a t t a c k _ r s _ t e s t 1 −− a t t a c k _ s t e p _ t e s t 20

For example the argument ‘ir’ can be used to control the imbalance ratio. The argument ‘mode’ can
be set to ‘ours’ or ‘ours++’, and selects among different implementations of our same approach.
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gt: airpl | pred: airpl gt: airpl | pred: airpl gt: airpl | pred: airpl gt: airpl | pred: airpl

gt: truck | pred: truck gt: car | pred: car gt: airpl | pred: airpl gt: bird | pred: bird

gt: truck | pred: truck gt: horse | pred: horse gt: ship | pred: ship gt: airpl | pred: airpl

gt: monke | pred: monke gt: car | pred: car gt: cat | pred: cat gt: airpl | pred: airpl

gt: horse | pred: horse gt: ship | pred: ship gt: truck | pred: truck gt: horse | pred: horse

gt: autom | pred: autom gt: truck | pred: truck gt: airpl | pred: airpl gt: airpl | pred: airpl

gt: horse | pred: horse gt: truck | pred: truck gt: truck | pred: truck gt: horse | pred: horse

gt: horse | pred: horse gt: airpl | pred: airpl gt: truck | pred: truck gt: horse | pred: horse

(a) STL10 dataset (b) CIFAR10 dataset

Figure 4: Samples with small weights from STL10 and CIFAR10 datasets. These are generally ‘easy’
images with the true objects well centered and clear/non-ambiguous backgrounds.

Both implementations perform similarly. Please check the file ‘train.py’ for more details about the
arguments and the possible options.

We run all baselines on a single NVIDIA Tesla V100 GPU.

C DISTRIBUTIONS OF LEARNED WEIGHTS

Figure 5 shows the distributions of the learned weights per-class for CIFAR10, SVHN, and STL10
datasets. The distributions are obtained on the testing sets using 20 PGD steps. Further per-class
insights are also provided in Figure 3 as confusion matrices (where per-class robust accuracies are
depicted in the diagonals). Comparing the two figures, we note a negative correlation between
the magnitude of weights and the per-class robust performance, i.e., classes on which the model
achieve high robustness are usually associated with weights that are closer to 0. For example, the
class automobile in CIFAR10 datset, in which the model achieves the highest adversarial robustness
of 74.5% also has around 70% of its associated weights less than 0.001. As a comparison, the most
vulnerable class (i.e., cat, in which the model achieves a robustness of 34.4%) has more than 90% of
its associated weights larger than 0.001. We note a similar correlation of the weights distributions and
the robust performance in STL10 dataset. Interestingly, the robust performance is more uniformly
distributed across classes in the SVHN dataset (as depicted in the corresponding confusion matrix in
Figure 3) and our method was able to automatically discover very close weights distributions across
classes for this dataset. This further demonstrates the generality/robustness of our approach, which
can perform well no matter if instance re-weighting is advantageous or less important.

Figures 4 and 6 provides examples of images from CIFAR10 and STL10 datasets with low/high
associated weights. Examples with low weights are usually ‘easy’ images in which the objects are
well centered with clear/non-ambiguous backgrounds. Our algorithm was able to correctly classify
the adversarial examples crafted from these images. In contrast, examples with high weights are
generally ‘hard’ samples with only parts of the objects appearing or/and backgrounds that can lead to
ambiguity. For example, the true label of the second image in the first row of Figure 6 is deer but the
image also contains a car in its background, which may easily lead to confusion. Also note the first
image in the third row of Figure 6, where only part of the tires of the car appears in the image.

18



Published as a conference paper at ICLR 2024

0.00 0.01
0

200

400

600

800

De
ns

ity

airplane

0.00 0.01

automobile

0.00 0.01

bird

0.00 0.01

cat

0.00 0.01

deer

0.00 0.01
0

200

400

600

800

De
ns

ity

dog

0.00 0.01

frog

0.00 0.01

horse

0.00 0.01

ship

0.00 0.01

truck

CIFAR10 dataset

0.0 0.1
0

25

50

75

100

125

De
ns

ity

airplane

0.0 0.1

bird

0.0 0.1

car

0.0 0.1

cat

0.0 0.1

deer

0.0 0.1
0

25

50

75

100

125

De
ns

ity

dog

0.0 0.1

horse

0.0 0.1

monkey

0.0 0.1

ship

0.0 0.1

truck

STL10 dataset

0.00 0.04
0

50

100

150

200

De
ns

ity

0

0.00 0.04

1

0.00 0.04

2

0.00 0.04

3

0.00 0.04

4

0.00 0.04
0

50

100

150

200

De
ns

ity

5

0.00 0.04

6

0.00 0.04

7

0.00 0.04

8

0.00 0.04

9

SVHN dataset

Figure 5: Distributions of the learned weights per class on the testing sets. Classes on which the model
achieve high robustness are usually associated with weights that are closer to 0. For example, the
class automobile in CIFAR10 datset, in which the model achieves the highest adversarial robustness
of 74.5% also has around 70% of its associated weights less than 0.001. As a comparison, the
class cat (in which the model achieves a robustness of 34.4%) has more than 90% of its associated
weights larger than 0.001. We note a similar correlation of the weights distributions and the robust
performance in STL10. The robust performance is better uniformly distributed across classes in the
SVHN dataset (see fig. 3) and our method was able to obtain a similar weights distribution across
classes for this dataset.
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gt: airpl | pred: horse gt: deer | pred: car gt: bird | pred: airpl gt: deer | pred: monke

gt: car | pred: bird gt: car | pred: deer gt: truck | pred: deer gt: airpl | pred: deer

gt: car | pred: cat gt: car | pred: deer gt: truck | pred: deer gt: airpl | pred: bird

gt: car | pred: airpl gt: ship | pred: airpl gt: monke | pred: truck gt: ship | pred: car
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gt: deer | pred: cat gt: ship | pred: dog gt: truck | pred: horse gt: ship | pred: airpl

(a) STL10 dataset (b) CIFAR10 dataset

Figure 6: Samples with large weights from STL10 and CIFAR10 datasets. These are ‘hard’ examples
with only parts of the objects appearing or/and complex backgrounds that easily lead to ambiguity.
For example, the true label of the second image in the first row of figure (a) is deer but the image also
contains a car in its background, which leads to ambiguity. Also note the first image in the third row
of figure (a), where only part of the tires of the car appears in the image.

D PROOF OF PROPOSITION 1

Recall the reformulated problem (7), which we rewrite as

min
θ

L(θ) := f

(
1

M

M∑
i=1

gi(θ, δ̂
∗
i (θ))

)

s.t. δ̂∗i (θ) = argmin
δ∈Ci

ℓbari (θ, δ) := ℓ′i(θ, δ)− c

2p∑
k=1

log(bk − δ⊤ak),

where gi(θ, δ̂
∗
i (θ)) = exp

(
ℓi(θ,δ̂

∗
i (θ))
r

)
, and f(z) = r log(z) for z ≥ 1.

Applying the chain rule to the outer function, we have

∇L(θ) =∇f

(
1

M

M∑
i=1

gi(θ, δ̂
∗
i (θ))

)
1

M

M∑
i=1

∂gi(θ, δ̂
∗
i (θ))

∂θ

=
r∑M

i=1 gi(θ, δ̂
∗
i (θ))

M∑
i=1

(
∇θgi(θ, δ̂

∗
i (θ)) +

∂δ̂∗i (θ)

∂θ
∇δgi(θ, δ̂

∗
i (θ))

)
. (11)

Also, note that ∇δℓ
bar
i (θ, δ) = ∇δℓ

′
i(θ, δ) + c

∑2p
k=1

ak

bk−δ⊤ak
. Using the implicit differentiation

w.r.t. θ of equation ∇δℓ
bar
i (θ, δ̂∗i (θ)) = 0, i.e.,

∇δℓ
′
i(θ, δ̂

∗
i (θ))) + c

2p∑
k=1

ak

bk − a⊤k δ̂
∗
i (θ))

= 0,

we obtain

∇θδℓ
′
i(θ, δ̂

∗
i (θ)) +

∂δ̂∗i (θ)

∂θ
∇2

δℓ
′
i(θ, δ̂

∗
i (θ)) + c

∂δ̂∗i (θ)

∂θ

2p∑
k=1

aka
⊤
k(

bk − a⊤k δ̂
∗
i (θ))

)2 = 0.
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Therefore, we obtain

∂δ̂∗i (θ)

∂θ

[
∇2

δℓ
′
i(θ, δ̂

∗
i (θ)) + c

2p∑
k=1

γkaka
⊤
k

]
= −∇θδℓ

′
i(θ, δ̂

∗
i (θ)). (12)

where we define γk := 1

(bk−a⊤
k δ̂∗i (θ)))

2 .

Further, note that A =
(
Ip,−Ip

)⊤
. Thus the first p rows of A (i.e., ak, k = 1, ..., p) correspond to

the p basis vectors of Rp, and hence aka⊤k = diag(ek), where ek is the k-th basis vector of Rp. Thus,
considering the first p rows we obtain

∑p
k=1 γkaka

⊤
k = diag(γ1, ..., γp). Similarly, the bottom p

rows yields
∑2p

k=p+1 γkaka
⊤
k = diag(γp+1, ..., γ2p). Therefore, we have

c

2p∑
k=1

γkaka
⊤
k = cdiag(γ1 + γp+1, ..., γp + γ2p) := Ci(θ). (13)

Substituting eq. (13) in eq. (12) yields

∂δ̂∗i (θ)

∂θ

[
∇2

δℓ
′
i(θ, δ̂

∗
i (θ)) + Ci(θ)

]
= −∇θδℓ

′
i(θ, δ̂

∗
i (θ)).

If ∇2
δℓ

′
i(θ, δ̂

∗
i (θ)) + Ci(θ) is invertable, the above equation further implies

∂δ̂∗i (θ)

∂θ
= −∇θδℓ

′
i(θ, δ̂

∗
i (θ))

[
∇2

δℓ
′
i(θ, δ̂

∗
i (θ)) + Ci(θ)

]−1

. (14)

Now, combining eq. (14) and eq. (11) we obtain

∇L(θ) = r∑M
i=1 gi(θ, δ̂

∗
i (θ))

M∑
i=1

(
∇θgi(θ, δ̂

∗
i (θ))

−∇θδℓ
′
i(θ, δ̂

∗
i (θ))

[
∇2

δℓ
′
i(θ, δ̂

∗
i (θ)) + Ci(θ)

]−1

∇δgi(θ, δ̂
∗
i (θ))

)
,

which completes the proof.

E CONVERGENCE ANALYSIS OF THE CID ALGORITHM

We provide the convergence analysis of the CID algorithm for solving the generic compositional
bilevel optimization problem (8), which we rewrite as follows:

min
θ

F (θ) := f (g (θ, δ∗(θ))) = f

(
1

M

M∑
i=1

gi (θ, δ
∗
i (θ))

)
(15)

s.t. δ∗(θ) = (δ∗1(θ), ..., δ
∗
M (θ)) = argmin

(δ1,...,δM )∈V1×...×VM

1

M

M∑
i=1

hi (θ, δi) .

Challenge and Novelty. We note that although bilevel optimization and compositional optimization
have been well studied in the optimization literature, to our best knowledge, there have not been any
theoretical analysis of compositional bilevel optimization. The special challenge arising in such a
problem is due to the fact that the bias error caused by the stochastic estimation of the compositional
function in the outer-loop is further complicated by the approximation error from the inner loop. Our
main novel development here lies in tracking such an error in the convergence analysis.

To proceed the analysis, we let w = (θ, δ) denote all optimization parameters. We denote by
∥∥ · ∥∥ the

ℓ2 norm for vectors and the spectral norm for matrices.

We adopt the following assumptions for our analysis, which are widely used in bilevel and compo-
sitional optimization literature (Grazzi et al., 2020a; Ji et al., 2021; Ji & Liang, 2021; Wang et al.,
2017; Chen et al., 2021b).
Assumption 1. The objective functions f , gi, and hi for any i = 1, . . . ,M satisfy
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• f is Cf -Lipschitz continuous and Lf -smooth, i.e., for any z and z′,∣∣f(z)− f(z′)
∣∣ ≤ Cf

∥∥z − z′
∥∥, ∥∥∇f(z)−∇f(z′)

∥∥ ≤ Lf

∥∥z − z′
∥∥. (16)

• gi is Cg-Lipschitz continuous and Lg-smooth, i.e., for any w and w′,∥∥gi(w)− gi(w
′)
∥∥ ≤ Cg

∥∥w − w′∥∥, ∥∥∇gi(w)−∇gi(w
′)
∥∥ ≤ Lg

∥∥w − w′∥∥. (17)

• hi is Lh-smooth, i.e., for any w and w′,∥∥∇hi(w)−∇hi(w
′)
∥∥ ≤ Lh

∥∥w − w′∥∥. (18)

Assumption 2. The function hi(θ, δ) for any i = 1, . . . ,M is µ-strongly convex w.r.t. δ and its
second-order derivatives ∇θ∇δhi(w) and ∇2

δhi(w) are Lθδ- and Lδδ-Lipschitz, i.e., for any w and
w′,∥∥∇θ∇δhi(w)−∇θ∇δhi(w)

∥∥ ≤ Lθδ

∥∥w − w′∥∥, ∥∥∇2
δhi(w)−∇2

δhi(w
′)
∥∥ ≤ Lδδ

∥∥w − w′∥∥.
(19)

Assumption 3. The stochastic sample gi for any i = 1, . . . ,M has bounded variance, i.e.,

Ei

∥∥gi(θ, δi)− 1

M

M∑
j=1

gj(θ, δj)
∥∥2 ≤ σ2

g . (20)

The following theorem (as restatement of Theorem 1) characterizes the convergence rate of our
designed CID algorithm.
Theorem 2 (Re-statement of Theorem 1). Suppose that Assumptions 1, 2, 3 hold. Select the stepsizes
as βt =

1√
T

and ηt ∈ [ 12 , 1), and batchsize as |B| = O(T ). Then, the iterates θt, t = 0, ..., T − 1 of
the CID algorithm satisfy∑T−1

t=0 E
∥∥∇F (θt)

∥∥2
T

≤ O
( 1√

T
+ (1− αµ)K

)
In the following two subsections, we first establish a number of useful supporting lemmas and then
provide the proof of Theorem 2 (which is a restatement of Theorem 1).

E.1 SUPPORTING LEMMAS

For notational convenience, we let L = max{Lf , Lg, Lh}, C = max{Cf , Cg}, and τ =
max{Lθδ, Lδδ}.
Lemma 1. Suppose that Assumptions 1 and 2 hold. Then, the total objective F (θ) (defined at the
outer level of problem (15) is LF -smooth, i.e., for any θ, θ′,∥∥∇F (θ)−∇F (θ′)

∥∥ ≤ LF

∥∥θ − θ′
∥∥, (21)

where LF = C2L
(
1 + L

µ

)2
+ CLG.

Proof. Applying the chain rule, we have

∇F (θ) =
∂g (θ, δ∗(θ))

∂θ
∇f (g (θ, δ∗(θ))) . (22)

Therefore, using triangle inequality, we obtain∥∥∇F (θ)−∇F (θ′)
∥∥ =

∥∥∂g (θ, δ∗(θ))
∂θ

∇f (g (θ, δ∗(θ)))− ∂g (θ′, δ∗(θ′))

∂θ
∇f (g (θ′, δ∗(θ′)))

∥∥
≤
∥∥∂g (θ, δ∗(θ))

∂θ
(∇f (g (θ, δ∗(θ)))−∇f (g (θ′, δ∗(θ′))))

∥∥
+
∥∥(∂g (θ, δ∗(θ))

∂θ
− ∂g (θ′, δ∗(θ′))

∂θ

)
∇f (g (θ′, δ∗(θ′)))

∥∥
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≤
∥∥∂g (θ, δ∗(θ))

∂θ

∥∥∥∥∇f (g (θ, δ∗(θ)))−∇f (g (θ′, δ∗(θ′)))
∥∥

+
∥∥∂g (θ, δ∗(θ))

∂θ
− ∂g (θ′, δ∗(θ′))

∂θ

∥∥∥∥∇f (g (θ′, δ∗(θ′)))
∥∥

≤Lf

∥∥∂g (θ, δ∗(θ))
∂θ

∥∥∥∥g (θ, δ∗(θ))− g (θ′, δ∗(θ′))
∥∥

+ Cf

∥∥∂g (θ, δ∗(θ))
∂θ

− ∂g (θ′, δ∗(θ′))

∂θ

∥∥. (23)

The chain rule yields

∂gi (θ, δ
∗
i (θ))

∂θ
=∇θgi (θ, δ

∗
i (θ)) +

∂δ∗i (θ)

∂θ
∇δgi (θ, δ

∗
i (θ))

=∇θgi (θ, δ
∗
i (θ))−∇θ∇δhi (θ, δ

∗
i (θ))

[
∇2

δhi (θ, δ
∗
i (θ))

]−1 ∇δgi (θ, δ
∗
i (θ)) ,

where the last equality follows from the implicit differentiation result for bilevel optimization
Pedregosa (2016); Ji et al. (2021).

Thus, we obtain∥∥∂gi (θ, δ∗i (θ))
∂θ

∥∥
≤
∥∥∇θgi (θ, δ

∗
i (θ))

∥∥+ ∥∥∇θ∇δhi (θ, δ
∗
i (θ))

[
∇2

δhi (θ, δ
∗
i (θ))

]−1 ∇δgi (θ, δ
∗
i (θ))

∥∥
≤ Cg +

L

µ
Cg. (24)

Therfore, g (θ, δ∗(θ)) = 1
M

∑M
i=1 gi (θ, δ

∗
i (θ))) is Lipschitz with constant CG = Cg

(
1 + L

µ

)
.

Further, following from Lemma 2 in Ji et al. (2021) we obtain that ∂g(θ,δ∗(θ))
∂θ is Lipschitz with the

constant LG. Thus, combining with eq. (23), we obtain∥∥∇F (θ)−∇F (θ′)
∥∥ ≤LfC

2
G

∥∥θ − θ′
∥∥+ CfLG

∥∥θ − θ′
∥∥ (25)

Rearranging the above equation completes the proof.

Lemma 2. Suppose that Assumptions 1 and 3 hold. Then, we have

EB
∥∥ut+1−g(θt, δ

K
t )
∥∥2 ≤ (1−ηt)

∥∥ut−g(θt−1, δ
K
t−1)

∥∥2+2η2t
|B|

σ2
g+

C2

ηt
(1+κ2)

∥∥θt−θt−1

∥∥2. (26)

Proof. We first show that
∂δKi,t
∂θ is κ-Lipschitz. To explicitly write the dependency of δki,t on θt, we

define δki (θt) := δki,t. Then we have∥∥δKi (θ)− δKi (θ′)
∥∥

=
∥∥ΠX

(
δK−1
i (θ)− α∇δhi

(
θ, δK−1

i (θ)
))

−ΠX
(
δK−1
i (θ′)− α∇δhi

(
θ′, δK−1

i (θ′)
)) ∥∥

≤
∥∥δK−1

i (θ)− α∇δhi

(
θ, δK−1

i (θ)
)
− δK−1

i (θ′) + α∇δhi

(
θ′, δK−1

i (θ′)
) ∥∥

≤
∥∥δK−1

i (θ)− δK−1
i (θ′) + α

(
∇δhi

(
θ′, δK−1

i (θ′)
)
−∇δhi

(
θ′, δK−1

i (θ)
)) ∥∥︸ ︷︷ ︸

T1

+ α
∥∥∇δhi

(
θ′, δK−1

i (θ)
)
−∇δhi

(
θ, δK−1

i (θ)
) ∥∥

≤
(
L− µ

L+ µ

)∥∥δK−1
i (θ)− δK−1

i (θ′)
∥∥+ αL

∥∥θ − θ′
∥∥,

where we upper-bound the term T1 using the fact that the operator y → y − α∇h(y) is a contraction
mapping with the constant L−µ

L+µ for an L-smooth and µ-stongly convex function h when the stepsize
α is set to 2

L+µ . Hence, telescoping the previous inequality over k from K − 1 down to 0 yields

∥∥δKi (θ)− δKi (θ′)
∥∥ ≤

(
L− µ

L+ µ

)K ∥∥δ0i (θ)− δ0i (θ
′)
∥∥+ αL

∥∥θ − θ′
∥∥K−1∑

k=0

(
L− µ

L+ µ

)k
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≤0 +
αL

1− L−µ
L+µ

∥∥θ − θ′
∥∥ = κ

∥∥θ − θ′
∥∥, (27)

where the second inequality follows because δ0i (θ) = δ0i (θ
′) as the same initial point, and the last

equality follows by setting the stepsize α to 2
L+µ .

Denote dt = (1 − ηt)
(
g(θt, δ

K
t )− g(θt−1, δ

K
t−1)

)
= 1−ηt

M

∑M
i=1

(
gi(θt, δ

K
i,t)− gi(θt−1, δ

K
i,t−1)

)
.

We can then obtain∥∥dt∥∥2 ≤ (1− ηt)
2

M

M∑
i=1

∥∥gi(θt, δKi,t)− gi(θt−1, δ
K
i,t−1)

∥∥2
≤ (1− ηt)

2

M

M∑
i=1

C2
(∥∥θt − θt−1

∥∥2 + ∥∥δKi,t − δKi,t−1

∥∥2)
≤ (1− ηt)

2

M

M∑
i=1

C2(1 + κ2)
∥∥θt − θt−1

∥∥2
=(1− ηt)

2(1 + κ2)C2
∥∥θt − θt−1

∥∥2. (28)

Recall ut+1 = (1− ηt)ut + ηtg(θt, δ
K
t ;B). Thus combining with the definition of dt, we have

EB
∥∥ut+1 − g(θt, δ

K
t ) + dt

∥∥2
=EB

∥∥(1− ηt)
(
ut − g(θt−1, δ

K
t−1)

)
+ ηt

(
g(θt, δ

K
t ;B)− g(θt, δ

K
t )
) ∥∥2

=(1− ηt)
2
∥∥ut − g(θt−1, δ

K
t−1)

∥∥2 + η2tEB
∥∥g(θt, δKt ;B)− g(θt, δ

K
t )
∥∥2

+ 2(1− ηt)ηt
〈
ut − g(θt−1, δ

K
t−1),EB

(
g(θt, δ

K
t ;B)− g(θt, δ

K
t )
)〉

=(1− ηt)
2
∥∥ut − g(θt−1, δ

K
t−1)

∥∥2 + η2t
|B|

Ei

∥∥gi(θt, δKi,t)− g(θt, δ
K
t )
∥∥2

≤(1− ηt)
2
∥∥ut − g(θt−1, δ

K
t−1)

∥∥2 + η2t
|B|

σ2
g . (29)

Based on the inequality
∥∥a + b

∥∥2 ≤ (1 + c)
∥∥a∥∥2 + (1 + 1

c )
∥∥b∥∥2 for any c > 0, by letting c = ηt,

we have

EB
∥∥ut+1 − g(θt, δ

K
t )
∥∥2 ≤(1 + ηt)EB

∥∥ut+1 − g(θt, δ
K
t ) + dt

∥∥2 + (1 +
1

ηt
)EB

∥∥dt∥∥2
≤(1 + ηt)(1− ηt)

2
∥∥ut − g(θt−1, δ

K
t−1)

∥∥2 + (1 + ηt)η
2
t

|B|
σ2
g

+
1 + ηt
ηt

(1− ηt)
2(1 + κ2)C2

∥∥θt − θt−1

∥∥2
≤(1− ηt)

∥∥ut − g(θt−1, δ
K
t−1)

∥∥2 + 2η2t
|B|

σ2
g +

C2

ηt
(1 + κ2)

∥∥θt − θt−1

∥∥2.
(30)

Hence, the proof is complete.

Lemma 3. Suppose that Assumptions 1 and 2 hold. Then we have∥∥∥∂g (θt, δ∗(θt))
∂θ

− ∇̂g(θt, δ
K
t )
∥∥∥2 ≤ Ω(1− αµ)K∆0, (31)

where ∆0 = maxi,t
∥∥δ∗i (θt)− δ0

∥∥2 and Ω = O
(
L+ τ2C2

µ2 + L
(
κ+ τC

µ2

)2 )
.

Proof. The proof follows the steps similar to those in the proof of Lemma 3 in Ji et al. (2021).

In the following, we define Λ = Ω(1− αµ)K∆0.
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Lemma 4. Suppose that Assumptions 1, 2, 3 hold. Then, we have

EBF (θt+1)− F (θt) ≤− βtαt

∥∥∇F (θt)
∥∥2 + βtΓ∆0(1− αµ)K

+ ηtEB
∥∥g(θt, δKt )− ut+1

∥∥2 + LFβ
2
t

2
C4

(
1 +

L

µ

)2

, (32)

where αt =
1
2 − βtL

2

ηt
C2
(
1 + L

µ

)2
.

Proof. Based on the Lipschitzness of ∇F (θ) in Lemma 1, we have

F (θt+1)− F (θt) ≤⟨∇F (θt), θt+1 − θt⟩+
LF

2

∥∥θt+1 − θt
∥∥2

≤− βt

∥∥∇F (θt)
∥∥2 + βt

〈
∇F (θt),∇F (θt)− ∇̂g(θt, δ

K
t ;B)∇f(ut+1)

〉
+

LFβ
2
t

2

∥∥∇̂g(θt, δ
K
t ;B)∇f(ut+1)

∥∥2
≤− βt

∥∥∇F (θt)
∥∥2 + βt

〈
∇F (θt),∇F (θt)− ∇̂g(θt, δ

K
t )∇f

(
g(θt, δ

K
t )
)〉

︸ ︷︷ ︸
A1

+ βt

〈
∇F (θt), ∇̂g(θt, δ

K
t )∇f

(
g(θt, δ

K
t )
)
− ∇̂g(θt, δ

K
t ;B)∇f(ut+1)

〉
︸ ︷︷ ︸

A2

+
LFβ

2
t

2

∥∥∇̂g(θt, δ
K
t ;B)∇f(ut+1)

∥∥2. (33)

Next, we upper-bound the inner product terms A1 and A2, respectively. Using Young’s inequality,
we obtain

A1 ≤βt

2

∥∥∇F (θt)
∥∥2 + βt

2

∥∥∇F (θt)− ∇̂g(θt, δ
K
t )∇f

(
g(θt, δ

K
t )
) ∥∥2

≤βt

2

∥∥∇F (θt)
∥∥2 + βt

∥∥∂g (θt, δ∗(θt))
∂θ

∥∥2∥∥∇f (g (θt, δ
∗(θt)))−∇f

(
g(θt, δ

K
t )
) ∥∥2

+ βt

∥∥∇f
(
g(θt, δ

K
t )
) ∥∥2∥∥∂g (θt, δ∗(θt))

∂θ
− ∇̂g(θt, δ

K
t )
∥∥2

≤βt

2

∥∥∇F (θt)
∥∥2 + βtL

2
GL

2
∥∥g (θt, δ∗(θt))− g(θt, δ

K
t )
∥∥2

+ βtC
2
∥∥∂g (θt, δ∗(θt))

∂θ
− ∇̂g(θt, δ

K
t )
∥∥2

≤βt

2

∥∥∇F (θt)
∥∥2 + βtL

2
GL

2

M

M∑
i=1

∥∥gi (θt, δ∗i (θt))− gi(θt, δ
K
i,t)
∥∥2 + βtC

2Λ

≤βt

2

∥∥∇F (θt)
∥∥2 + βtL

2
GL

2C2

M

M∑
i=1

∥∥δ∗i (θt)− δKi,t
∥∥2 + βtC

2Λ

≤βt

2

∥∥∇F (θt)
∥∥2 + βtL

2
GL

2C2 (1− αµ)K

M

M∑
i=1

∥∥δ∗i (θt)− δ0
∥∥2 + βtC

2Λ

≤βt

2

∥∥∇F (θt)
∥∥2 + βtL

2
GL

2C2∆0(1− αµ)K + βtC
2Ω(1− αµ)K∆0

=
βt

2

∥∥∇F (θt)
∥∥2 + βtΓ∆0(1− αµ)K , (34)

where Γ = L2
GL

2C2 + C2Ω, ∆0 = maxi,t
∥∥δ∗i (θt)− δ0

∥∥2, and Λ = Ω(1− αµ)K∆0.

Further, we have

EBA2 =βtEB

〈
∇F (θt), ∇̂g(θt, δ

K
t ;B)∇f

(
g(θt, δ

K
t )
)
− ∇̂g(θt, δ

K
t ;B)∇f(ut+1)

〉
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≤βt

∥∥∇F (θt)
∥∥EB

[∥∥∇̂g(θt, δ
K
t ;B)

∥∥∥∥∇f
(
g(θt, δ

K
t )
)
−∇f(ut+1)

∥∥]
≤βtL

∥∥∇F (θt)
∥∥EB

[∥∥∇̂g(θt, δ
K
t ;B)

∥∥∥∥g(θt, δKt )− ut+1

∥∥]
≤ηtEB

∥∥g(θt, δKt )− ut+1

∥∥2 + β2
tL

2

ηt

∥∥∇F (θt)
∥∥2EB

∥∥∇̂g(θt, δ
K
t ;B)

∥∥2
≤ηtEB

∥∥g(θt, δKt )− ut+1

∥∥2 + β2
tL

2

ηt
C2(1 +

L

µ
)2
∥∥∇F (θt)

∥∥2, (35)

where the last inequality uses the upper-bound
∥∥∇̂gi(θt, δ

K
i,t)
∥∥ ≤ C + L

µC, which can be obtained
similarly to eq. (24).

Therefore, taking the conditional expectation EB in both sides of eq. (33), applying the bounds
for A1 and EBA2 in eqs. (34) and (35), and noting that EB

∥∥∇̂g(θt, δ
K
t ;B)∇f(ut+1)

∥∥2 ≤

C2EB
∥∥∇̂g(θt, δ

K
t ;B)

∥∥2 ≤ C4
(
1 + L

µ

)2
, we obtain

EBF (θt+1)− F (θt) ≤− βt

2

∥∥∇F (θt)
∥∥2 + βtΓ∆0(1− αµ)K + ηtEB

∥∥g(θt, δKt )− ut+1

∥∥2
+

β2
tL

2

ηt
C2

(
1 +

L

µ

)2 ∥∥∇F (θt)
∥∥2 + LFβ

2
t

2
C4

(
1 +

L

µ

)2

≤− βt

(
1

2
− βtL

2

ηt
C2

(
1 +

L

µ

)2
)∥∥∇F (θt)

∥∥2 + βtΓ∆0(1− αµ)K

+ ηtEB
∥∥g(θt, δKt )− ut+1

∥∥2 + LFβ
2
t

2
C4

(
1 +

L

µ

)2

.

Then, the proof is complete.

E.2 PROOF OF THEOREM 2 (I.E., THEOREM 1)

Denote Vt = F (θt) +
∥∥g(θt−1, δ

K
t−1)− ut

∥∥2. Then, using eq. (32) we obtain

EBVt+1 − Vt ≤− βtαt

∥∥∇F (θt)
∥∥2 + βtΓ∆0(1− αµ)K −

∥∥g(θt−1, δ
K
t−1)− ut

∥∥2
+ (1 + ηt)EB

∥∥g(θt, δKt )− ut+1

∥∥2 + 1

2
LFβ

2
tC

4

(
1 +

L

µ

)2

≤− βtαt

∥∥∇F (θt)
∥∥2 + βtΓ∆0(1− αµ)K −

∥∥g(θt−1, δ
K
t−1)− ut

∥∥2
+ (1 + ηt)(1− ηt)

∥∥g(θt−1, δ
K
t−1)− ut

∥∥2 + 2(1 + ηt)

|B|
η2t σ

2
g

+
C2

ηt
(1 + ηt)(1 + κ2)β2

tC
4

(
1 +

L

µ

)2

+
1

2
LFβ

2
tC

4

(
1 +

L

µ

)2

, (36)

where the last inequality follows from lemma 2. Further, following from the fact that (1−ηt)(1+ηt) =
1− η2t < 1, we obtain

EBVt+1 − Vt ≤− βtαt

∥∥∇F (θt)
∥∥2 + βtΓ∆0(1− αµ)K +

2(1 + ηt)

|B|
η2t σ

2
g

+
1 + ηt
ηt

β2
tC

6(1 + κ2)

(
1 +

L

µ

)2

+
1

2
LFβ

2
tC

4

(
1 +

L

µ

)2

. (37)

Now, select ηt ∈ [ 12 , 1) and βt such that αt ≥ 1
4 , i.e., βt ≤ 1

2L2
FC2(1+L

µ )
2 . Hence, taking total

expectation of eq. (37) yields

EVt+1 − EVt ≤− βt

4
E
∥∥∇F (θt)

∥∥2 + βtΓ∆0(1− αµ)K +
4σ2

g

|B|
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+ 4β2
tC

6(1 + κ2)

(
1 +

L

µ

)2

+
1

2
LFβ

2
tC

4

(
1 +

L

µ

)2

=− βt

4

∥∥∇F (θt)
∥∥2 + βtΓ∆0(1− αµ)K +

4σ2
g

|B|
+ β2

tDκ, (38)

where we define Dκ =
(
4C2(1 + κ2) + 1

2LF

)
(1 + κ)

2
C4. Therefore, telescoping eq. (38) over t

from 0 to T − 1 yields

EVT − V0 ≤−
T−1∑
t=0

βt

4
E
∥∥∇F (θt)

∥∥2 + 4σ2
gT

|B|
+ Γ∆0(1− αµ)K

T−1∑
t=0

βt +Dκ

T−1∑
t=0

β2
t .

Thus, rearranging terms, we obtain∑T−1
t=0 βtE

∥∥∇F (θt)
∥∥2∑T−1

t=0 βt

≤
16σ2

gT

|B|
∑T−1

t=0 βt

+ 4Γ∆0(1− αµ)K + 4Dκ

∑T−1
t=0 β2

t∑T−1
t=0 βt

+
4V0∑T−1
t=0 βt

. (39)

Hence, the proof is complete by choosing the batchsize |B| = O(T ) and stepsize βt =
1√
T

.
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