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ABSTRACT

The field of video generation has made remarkable advancements, yet there remains
a pressing need for a clear, systematic recipe that can guide the development of
robust and scalable models. In this work, we present a comprehensive study that sys-
tematically explores the interplay of model architectures, training recipes, and data
curation strategies, culminating in a simple and scalable text-image-conditioned
video generation method, named STIV. Our framework integrates image condition
into a Diffusion Transformer (DiT) through frame replacement, while incorporating
text conditioning via a joint image-text conditional classifier-free guidance. This
design enables STIV to perform both text-to-video (T2V) and text-image-to-video
(TI2V) tasks simultaneously. Additionally, STIV can be easily extended to various
applications, such as video prediction, frame interpolation, multi-view generation,
and long video generation, etc. With comprehensive ablation studies on T2I, T2V,
and TI2V, STIV demonstrate strong performance, despite its simple design. An
8.7B model with 5122 resolution achieves 83.1 on VBench T2V, surpassing both
leading open and closed-source models like CogVideoX-5B, Pika, Kling, and
Gen-3. The same-sized model also achieves a state-of-the-art result of 90.1 on
VBench 12V task at 5122 resolution. By providing a transparent and extensible
recipe for building cutting-edge video generation models, we aim to empower
future research and accelerate progress toward more versatile and reliable video
generation solutions.

1 INTRODUCTION

The field of video generation has witnessed a significant progress with the introduction of Sora [43]],
a video generation model based on Diffusion Transformer (DiT) [44] architecture. Researchers
have been actively exploring optimal methods to incorporate text and other conditions into the DiT
architecture. For example, PixArt-« [10] leverages cross attention, while SD3 [20] concatenates text
with the noised patches and applies self-attention using the MMDIiT block. Several video generation
models [65 47, 22]] adopt similar approaches and have made substantial progress in the text-to-video
(T2V) task. Pure T2V approaches often struggle with producing coherent and realistic videos, as
their outputs are not grounded in external references or contextual constraints [14]]. To address this
limitation, text-image-to-video (TI2V) introduce an initial image frame along with the textual prompt,
providing a more concrete grounding for the generated video.

Despite substantial progress in video generation, achieving Sora-level performance for T2V and TI2V
remains challenging. A central challenge is how to seamlessly integrate image-based conditions
into the DiT architecture, calling for innovative techniques blend visual inputs smoothly with textual
cues. Meanwhile, there is a pressing need for stable, efficient large-scale training strategies, as
well as improving the overall quality of training datasets. To address these issues, a comprehensive,
step-by-step “recipe” would greatly assist in developing unified models that handle both T2V and
TI2V task under one framework. Overcoming these challenges is essential for advancing the field
and fully realizing the potential of video generation models.

Although various studies [62, 4} 18, [12} |50} [70} [15] have examined methods of integrating image
conditions into the U-Net architectures, how to effectively incorporate such conditions into the DiT
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Figure 1: Performance comparison of our Text-to-Video model against both open-source and closed-
source state-of-the-art models on VBench [32].

architecture remains unsolved. Moreover, existing studies in video generation often focuses on
individual aspects independently, overlooking the how their collective impact on overall performance.
For instance, while stability tricks like QK-norm [29} 20]] have been introduced, they prove insufficient
as models scale to larger sizes [58]], and no existing approach has successfully unified T2V and TI2V
capabilities within a single model. This lack of systematic, holistic research limits progress toward
more efficient and versatile video generation solutions.

In this work, we first present a comprehensive study of model architectures and training strategies
to establish a robust foundation for T2V. Our analysis reveals three key insights: (1) stability
techniques such as QK-norm and sandwich-norm [26, 18] are critical for effectively scaling larger
video generation models; (2) employing factorized spatial-temporal attention [3]], MaskDiT [71], and
switching to AdaFactor [55] significantly improve training efficiency and reduce memory usage with
minimal impact on performance loss; (3) progressive training, where spatial and temporal layers
are initialized from separate models, outperforms using a single model under the same compute
constraints. Starting from a PixArt-a baseline architecture, we address scaling challenges with
these stability and efficiency measures, and further enhance performance with Flow Matching [42],
RoPE [57], and micro conditions [46]. Our largest T2V model (8.7B parameters) achieves state-of-
the-art semantic alignment and a VBench score of 83.1.

We then identify the optimal model architecture and hyperparameters established in the T2V setting
and apply them to the TI2V task. Our results show that simply replacing the first noised latent frame
with the un-noised image condition latent yields strong performance. Although ConsistI2V [50]
introduced a similar idea in a U-Net setting, it required spatial self-attention for each frame and
window-based temporal self-attention to match our quality. In contrast, the DiT architecture natively
propagates the image-conditioned first frame through stacked spatial-temporal attention layers,
eliminating the need for these additional operations. However, as we scale up spatial resolution,
we observe the model producing slow or nearly static motion. To solve this, we introduce random
dropout of the image condition during training and apply joint image-text conditional classifier-free
guidance (JIT-CFG) for both text and image conditions during inference. This strategy resolves the
motion issue and also enables a single model to excel at both T2V and TI2V tasks.

With all these changes, we finalize our model and scale it up from 600M to 8.7B parameters. Our
best STIV model achieves a state-of-the-art result of 90.1 in the VBench 12V task at 5122 resolution.
Beyond enhancing video generation quality, we demonstrate the potential of extending our framework
to various downstream applications, including video prediction, frame interpolation, multi-view
generation and long video generation. These results validate the scalability and versatility of our
approach, showcasing its ability to address diverse video generation challenges. We summarize our
contributions as follows:

* We present STIV, a single model capable of performing both T2V and TI2V tasks. At its
core, we replace the noised latent with the un-noised image condition latent and introduce
joint image-text conditioned CFG.
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Figure 2: We replace the first frame of the noised video latents with the ground truth latent and
randomly drop out the image condition. We use cross attention to incorporate the text embedding,
and use QK-norm in multi-head attention, the sandwich-norm in both attention and feedforward, and
stateless layernorm after singleton conditions to stabilize the training.

* We conduct a systematic study for T2I, T2V and TI2V, covering model architectures, efficient
and stable training techniques, and progressive training recipes to scale up the model size,
spatial resolution, and duration.

* These design features make it easy to train and adaptable to various tasks, including video
prediction, frame interpolation, and long video generation.

* We include detailed ablation studies on different design choices and hyperparameters, evalu-
ated on VBench, VBench-I2V and MSRVTT. These studies demonstrate the effectiveness
of the proposed model compared with a range of recent state-of-the-art open-source and
closed-source video generation models.

2 STIV

This section describes our key components of our proposed STIV method for text-image-to-video
(TI2V) generation, which is illustrated in Fig.[2] Afterward, Sec.[A]and [B]presents detailed experi-
mental results.

2.1 BASE MODEL ARCHITECTURE

The STIV model is based on PixArt-« [10], which converts the input frames into spatial and temporal
latent embeddings using a frozen Variational Autoencoder (VAE). These embeddings are then
processed by a stack of learnable DiT-like blocks. We employ the T5 [49] tokenizer and an internally
trained CLIP [48] text encoder to process text prompts. The overall framework is illustrated in Fig. 2]
Other significant architectural changes are outlined below.

Spatial-Temporal Attention We use factorized spatial and temporal attention [3]]. We first fold the
temporal dimension into the batch dimension and perform spatial self-attention on spatial tokens.
Then, we permute the outputs and fold the spatial dimension into the batch dimension to perform
temporal self-attention on temporal tokens. By using factorized spatial and temporal attention, we
can easily preload weights from a text-to-image (T2I) model, as images are a special case of videos
with only one temporal token and only need spatial attention.

Singleton Condition We use the original image resolution, crop coordinates, and sampling stride
as micro conditions to encode the meta information of the training data. We first use a sinusoidal
embedding layer to encode these properties, followed by an MLP to project them into a d-dimensional
embedding space. These micro condition embeddings, along with the diffusion timestep embedding
and the last text token embedding from the last layer of the CLIP model, are added to form a singleton
condition. We also apply stateless layer normalization to each singleton embedding and then add
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them together. This singleton condition is used to produce shared scale-shift-gate parameters that are
utilized in the spatial attention and feed-forward layers of each Transformer layer.

Rotary Positional Embedding Rotary Positional Embeddings (RoPE) [57] are used so that the model
has a strong inductive bias for processing relative temporal and spatial relationships. Additionally,
ROPE can be made compatible with the masking methods used in high compute applications and are
highly adaptable to variations in resolution [[74]. We apply 2D RoPE [39]] for the spatial attention and
1D RoPE for the temporal attention inside the factorized Spatial-Temporal attention.

Flow Matching Instead of using the conventional diffusion loss, we opt for a Flow Matching training
objective. It defines a conditional optimal transport between two examples drawn from a source and
target distribution. In our case, we assume the source distribution to be Gaussian and utilize linear
interpolates [42]] to achieve this.

xy=t-x1+(1—1) e (1

The training objective is then formulated as
. 2
HgnEw,GEN(O,I),c,t HFG(wtvc’ t) - vt”Q 2

where the velocity vector field v, = 1 — €.

In inference time, we solve the corresponding reverse-time SDE, from timestep O to 1, to generate
images from a randomly sampled Gaussian noise €.

2.2 MODEL SCALING

As we scale up the model, we encounter training instability and infrastructure challenges. In this
section, we outline the methods to improve training stability and efficiency.

Stable Training Recipes We discovered that QK-Norm — applying RMSNorm [68] to the query and
key vectors prior to computing attention logits — significantly stabilizes training. This finding aligns
with the results reported in SD3 [20]. We also change from pre-norm to sandwich-norm [18] for both
MHA and FFN, which involves adding pre-norm and post-norm with stateless layer normalization [37]]
to both the layers within the STIV block.

MHA (z) = x + gate - norm (Attn (scale - norm(z) + shift))
FFN(z) = z + gate - norm (MLP (scale - norm(z) + shift))

Efficient DiT Training We follow MaskDiT [71]] by randomly masking 50% of spatial tokens before
passing them into the major DiT blocks. After unmasking, we add two additional DiT blocks. We
also switch from AdamW to AdaFactor optimizer and employ gradient checkpointing to only store
the self-attention outputs. These modifications significantly enhance efficiency and reduce memory
consumption, enabling the training of larger models at higher resolution and longer duration.

2.3 IMAGE CONDITIONING
2.3.1 FRAME REPLACEMENT

During training, we replace the noised first frame latent with the un-noised latent of the image
condition before passing the latents into the STIV blocks, and masking out the loss of the replaced
frame. During inference, we use the un-noised latent of the original image condition for the first
frame at each TI2V diffusion step.

The frame replacement strategy offers flexibility in extending STIV to various applications. For
instance, if c; = @, it defaults to text-to-video (T2V) generation. Conversely, if ¢y is the initial
frame, it becomes the typical text-image-to-video (TI2V) generation. Moreover, if multiple frames
as cy are provided, they can be used for video prediction even without c7. Additionally, supplying
the first and last frames as c; enables the model to learn a frame interpolation, generating frames
between them. Furthermore, combining T2V and frame interpolation allows for the generation of
long-duration videos: T2V generates keyframes, and frame interpolation frames then fills in frames
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between each pair of consecutive keyframes. Ultimately, a single model can be trained to perform all
tasks by randomly selecting the appropriate conditioning strategy.

2.3.2 IMAGE CONDITION DROPOUT

As mentioned above, the frame replacement strategy offers substantial flexibility for training various
types of models. Here, we demonstrate a specific application in which we train a model to perform
both T2V and TI2V tasks. In this case, we randomly drop out ¢y and ¢ during training.

Classifier-free guidance (CFG), commonly used in text-to-image generation, has proven to be highly
beneficial in enhancing the quality of generated images by directing the probability mass toward
the high-likelihood regions given the condition. Building on this concept, we introduce a Joint
Image-Text Classifier-Free Guidance (JIT-CFG) approach, which leverages both text and image
conditions. It modifies the velocity estimates as

Fg(wt,CT,C[,t) = F@(wta®7®7t)
+s- (Fo(ﬂﬂnCT,CI,t) - F@(wt7®7®7t))

where s is the guidance scale. When ¢; = &, it reduces to standard CFG for T2V generation.
Although it is possible to introduce two separate guidance scales, as done in [6], to balance the
strength of the image and text conditions, we found that our two-pass approach yields strong results.
Additionally, using two scales would require three forward passes, increasing the inference cost.

Empirical observations[A.4.2]suggest that applying image condition dropout with JIT-CFG effectively
not only achieves multi-task training in a natural way, but also resolves the staleness issue for a
5122 STIV model. We hypothesize that image condition dropout prevents the model from passively
overfitting to the image condition, allowing it to more effectively capture the motion information
from the underlying video training data.

2.4 PROGRESSIVE TRAINING RECIPE

We adopt a progressive training recipe as illustrated in Figure[3] The process begins by training a
text-to-image (T2I) model, which serves to initialize a text-to-video (T2V) model. Next, the T2V
model serves as the starting point for initializing the STIV model. To facilitate rapid adaptation
to higher resolutions and longer durations training, we incorporate interpolated ROPE embeddings
in both the spatial and temporal dimensions, and initialize the model weights using those from the
lower-resolution, shorter-duration models.
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Figure 3: Progressive training pipeline of the STIV model. The T2I model is first trained to initialize
the T2V model, which then initializes the STTV model at both low and high resolutions. Notably, the
high-res T2V model is initialized using both the high-res T2I model and the low-res T2V model.

3 CONCLUSION

In conclusion, we conduct a comprehensive study on how to build a good video generation model,
and present a scalable and flexible approach for integrating text and image conditioning within a
unified video generation framework. Our model not only demonstrates good performance on public
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benchmarks, but also shows versatility in downstream applications, supporting controllable video
generation, video prediction, frame interpolation, long video generation, and multi-view generation,
which collectively highlight its potential as a foundation for the broad research community.
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A RECIPE STUDY FOR STIV

A.1 BASIC SETUP

We first introduce the training, data and evaluation setup before diving into our model and studies as
follows.

Training Unless otherwise specified, we use the AdaFactor optimizer (8; = 0.9, 52 = 0.999) [55]
without any weight decay. We also clip the gradient norm if the gradient norm exceeds 1.0. We use
a constant learning rate schedule with a 1k step linear warmup with a maximum learning rate of
2 x 10~*. For T2I models, we train each model for 400k steps with a batch size of 4,096. This is
approximately 1.4 epochs on our internal T2I datasets. For T2V and TI2V models, we train each
model for 400k steps with a batch size of 1,024. This is roughly 5.5 epochs on our internal video
datasets. For all models, exponential moving average weights are gathered by a decay rate of 0.9999
and are then used for evaluation. When MaskDiT is used, we train with 50% spatial random masking
during the initial 400k steps. Subsequently, we perform unmasked fine-tuning using all tokens. We
use 50k steps of unmasked fine-tuning for T2I models and 100k steps for T2V and TI2V models.
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Data We build a video data engine pipeline that includes video pre-processing, captioning, and
filtering to accelerate the model’s development when handling large-scale videos is required. Specif-
ically, we apply PySceneDetect E] to analyze video frames, detect and segment scenes based on
abrupt transitions and gradual fades. This segmentation is followed by the feature extractions for
filtering, including motion score, aesthetic score, text area, frame dimensions, clarity score, temporal
consistency, and video orientation, among others. For each video segment, we perform dense cap-
tioning and categorization to gain a comprehensive understanding of video distribution. To further
enhance caption quality, we adapt DSG [13] and propose DSG-Video, a metric designed to assess
hallucination rates and overall caption quality. This data engine is integral in filtering videos and
preparing tailored datasets for different training stages: our data sources include Panda-70M [11]] and
an internally curated high-quality dataset of 42M videos. Using this, we curate over 90M high-quality
video-caption pairs. See more details in Appendix.

Evaluation We mainly use VBench [32]], VBench-I2V and MSRVTT [64] to evaluate T2V and TI2V
models. For VBench, we mainly report Quality (temporal quality and frame-wise quality), Semantic
(semantic alignment with different perspectives of the input text prompt) and Total score (weighted
average of Quality and Semantic), and they can be actually decomposed into 16 dimensions in total.
VBench-I2V builds upon the VBench with three new Video-Image Alignment metrics: Subject
Consistency, Background Consistency, and Camera Motion Control. These additional metrics provide
a more comprehensive evaluation by focusing on how well the generated video aligns with the input
image and specified prompt instructions. More details about the detailed dimensions are presented in
Section E} We present three model scales: XL, XXL, and M with their configuration detailed in
Table(l| In the following section, we use the notation X-S-T to represent an X-size model with an S?
resolution and T frames. If unspecified, the default configuration is a 2562 resolution with 20 frames.
More detailed model and training configurations are provided in the Appendix.

#0of STIV Hidden # of Attn

Model Size Blocks Dims Heads
XL (600M) 28 1,152 18
XXL (1.5B) 38 1,536 24
M (8.7B) 46 3,072 48

Table 1: Model Configurations

Uhttps://github.com/Breakthrough/PySceneDetect

Model COCO Gen DSG Image
FID| Evalf Evalt Rewardf
Baseline 26.17 0.358 0.571 -0.25
+ QK norm 25,60 0372 0.574 -0.22
+ Sandwich norm | 25.76  0.366 0.577 -0.23
+ Cond. norm 2558 0.393 0.583 -0.22
+ LR to 2E-4 26.35 0379 0.586 -0.12
+ Flow 2496 0457 0.639 0.15
+ Renorm 21.16 0471 0.668 0.32
+ AdaFactor 20.26 0474 0.661 0.32
+ MaskDiT 23.85 0499 0.663 0.30
+ Shared AdaLLN 22.83  0.496 0.658 0.24
+ Micro cond. 20.02 0498 0.673 0.41
+ RoPE 18.40 0.502 0.680 0.48
+ Internal VAE 19.57 0492 0.668 0.52
+ Internal CLIP 17.97 0.607 0.717 0.65
+ Synth. captions | 18.04  0.685 0.751 0.81

Table 2: Text-to-image model ablation studies.
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Module - VBench
Quality T | Semantic T | Total 1
Base model 80.19 70.51 78.25
w/ temp. patch=1 80.92 71.69 79.07
w/ temp. patch=4 79.72 69.15 77.61
w/ causal temp. attn 74.59 73.13 74.30
+ temp. mask 77.58 65.95 75.25
- spatial mask 80.57 70.31 78.52

Table 3: Ablation Study of T2V model design using T2V-XL. The base model uses temporal path
size 2, non-causal temporal attention, spatial masking ratio 0.5, and no temporal masking.

Init MSRVTT . VBench

’ FVD | Quality 7 | Semantic T | Total 1
Scratch 417.98 80.27 67.84 77.78
T2V-256 415.63 80.28 71.29 78.49
T21-512 401.83 79.77 71.58 78.13
Both 405.14 80.45 72.37 78.83

Table 4: Different model initialization for T2V-XL-512.

A.2 ABLATION STUDIES FOR KEY CHANGES ON T2I

We conduct a comprehensive ablation study to understand the impact of various model architecture
designs and training strategies mentioned in Sec.[2]on the text-to-image generation task. To evaluate
generation quality, we use a suite of popular automated metrics, including FID score [30], GenEval
[24], DSGEval [13]], and Image Reward [63]].

We began with a base T2I-XL model, a DiT [44] model augmented with cross-attention layers to
integrate with text embeddings. Initially, we applied a series of stabilization techniques, including QK-
norm, sandwich-norm and singleton condition norm, which yielded comparable results to the baseline.
Notably, these techniques enabled us to train models stably even with a learning rate increased from
le-4 to 2e-4. We demonstrated that incorporating Flow Matching during training and employing
CFG—RenormalizatiorE] during inference improved all the metrics substantially. Subsequently, we
explored techniques to reduce training memory, such as AdaFactor Optimizer, MaskDiT, and Shared
AdaLN, which maintained similar performance. Utilizing micro conditions and RoPE further reduced
the FID score and improved DSGEval and Image Reward. Finally, incorporating an internally trained
bigG CLIP model improved on all metrics even more. Notably, combining synthetic recaption with
original caption following [35]] achieved the best results in almost all metrics. For more details, refer
to the Appendix

We use the optimal model architecture and training hyperparameters based on the T2I ablation study
as our starting point for the remaining T2V and TI2V experiments.

A.3 ABLATION STUDIES ON KEY DESIGNS FOR T2V

Key Modulation We make some design choices in our model based on the evaluations on VBench,
as shown in Tab.[3] The base model uses a temporal path size of 2, non-causal temporal attention, and
a spatial masking ratio of 0.5. As expected, the model with temporal patch=1 is slightly better albeit
with double compute. Using temporal patch=4 leads to a noticeable performance drop. Using causal
temporal attention also results in a significant drop in both quality and total scores. Furthermore,
removing the spatial masking results in a slight decrease in the Semantic score and an improvement
in the Quality and Total scores. However, this comes at the cost of requiring more compute as the
length of tokens are doubled. On the other hand, using temporal masking significantly degrades
model performance, with large drops observed in the VBench quality and final scores.

Model Initialization We investigate how initialization impacts the performance of T2V-XL models.
We train 5122 T2V models by four different paths under a controlled total FLOPs setting: from

’Detailed description in Appendix.
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scratch, initializing from a lower resolution T2V-256 model, initializing from a T2I-512 model, and
loading both the temporal and spatial weights from T2V-256 and T2I-512 models respectively (Tab. ).
We find that jointly initializing from both a low resolution T2V model and a high resolution T2I model
can achieve better VBench metrics. This joint initialization method yields slightly improved FVD
values compared to training from scratch and offers benefits in terms of efficient experimentation and
cost when low resolution models are already present.

A.4 ABLATION STUDIES ON KEY DESIGNS FOR TI2V

Here, we studied each design component in TI2V framework and tackled multi-task learning and
staleness issue encountered when training high resolution TI2V models.

A.4.1 THE EFFECT OF FRAME REPLACEMENT

Models Subj Bg Temp Mot Dyn | Aesth | Img | 12V | 12V | Cam | I2V Avg Avg
Cons | Cons | Flick | Smooth | Deg | Qual | Qual | Subj | Bg Mot Scores | Scores
CA 822 | 92.8 95.7 96.3 424 | 488 65.5 | 889 | 909 | 269 68.2 73.0
CA +LP 952 | 98.7 97.4 98.1 222 | 573 66.8 | 969 | 97.3 | 22.7 72.3 75.3
FR 945 | 983 96.6 97.8 36.6 | 58.0 66.1 | 96.8 | 97.1 | 31.5 75.8 77.3
FR + CA 95.1 98.6 97.0 98.1 354 | 58.0 662 | 969 | 97.3 | 28.8 74.4 77.1
FR+CA+LP | 953 | 985 97.3 98.2 224 | 573 663 | 97.0 | 974 | 2538 73.4 75.6

Table 5: Ablation Study Results for Different Model Components for Text-Image-To-Video (TI2V)
task on VBench-12V.

We ablate several model variants for TI2V on STIV-XL model, by combining the following key
components: Frame Replacement (FR), Cross Attention (CA), and Large Projection (LP). As shown
in Tab. 5] notably, adding a large projection layer enhances the information passed by the cross-
attention, resulting in improvements in both subject and background consistency. However, this
approach may overly constrain the model, as evidenced by a reduction in the dynamic degree score
(22.36 for FR + CA + LP compared to 35.4 for FR + CA), indicating that the model might exert
excessive control over the generated output. In contrast, frame replacement alone has proven to be a
robust and effective approach, yielding consistent improvements without negatively impacting other
dimensions of video quality. The frame replacement (FR) model achieves high scores in 12V average
scores (the average of 12V Subject, I2V Background and Camera Motion) and total average scores.
These results underline the advantage of frame replacement as a foundational component, providing
a stable backbone for maintaining quality across diverse dimensions.

A.4.2 THE EFFECT OF IMAGE CONDITION DROPOUT

Our experiments show that image condition dropout with JIT-CFG not only supports multi-task
training but also resolves staleness in a 5122 STIV model.

Multi-task training By using image-conditioning dropout during STIV training, we effectively
enable both T2V and TI2V capability. As shown in Tab.[6] models trained exclusively on T2V or
TI2V task alone cannot perform the other task, while STIV with image condition dropout can easily
handles both two task well, achieving performance comparable to the best single-task models.

VBench-T2V VBench-12V
Model (M-512) QT ST T 7 Qf TT
T2V 822 77.0 81.2 / / /
STIV 74.6 319 66.1 | 98.0 82.1 90.1
STIV-JIT 823 741 80.7 | 97.6 819 89.8
STIV-JIT-TUP 83.0 73.1 81.0 | 972 823 89.7

Table 6: Comparison of T2V, STIV and STIV with JIT-CFG on VBench and VBench-I12V 12V Score,
Quality, Total scores.

Greater motion In practice, we have observed that while STIV-M-512 performs well on VBench-
12V, it sometimes generates static frames. The VBench-I2V metric tends to favor videos with less
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motion, prioritizing smoothness and consistency. As shown in Tab.[7} STIV with JIT-CFG achieves
higher dynamic degrees at the cost of a slight reduction in consistency and smoothness scores. We
also show visual comparisons from Fig.[7]to Fig.[0]in the Appendix.

Dyn Mot Temp Bg

Model Deg | Smooth | Flick | Cons
STIV-M-512 10.2 99.6 99.3 99.1
STIV-M-512-JIT | 24.0 99.1 98.6 98.6

Table 7: Effect of JIT-CFG on motion-related scores.

B RESULTS

Based on all of these studies, we scale our T2V and STIV model from 600M to 8.7B. We show the
main results in Table[§]and Table[9] comparing our models with state-of-the-art open sourced and close
sourced models, which demonstrates the effectiveness of our recipes. Specifically, we do finetuning
on top of the pretrained video generation models (SFT), based on the 20,000 videos filtered from
Panda-70M [[11]] using the method mentioned in Section[G.1} Since we adopt MaskDiT technique
in our pretraining stage, we try finetuning our model in an unmask manner (UnmaskSFT). We also
finetuned our STIV model to become a temporal upsampler to interpolate the videos generated by
our main T2V and STIV models to boost the motion smoothness (+ TUP).

T2V Performance We first showcase the effectiveness of our T2V model as the foundation for
STIV. Table [§] presents a comparison of different T2V model variants on VBench, including the
VBench-Quality, VBench-Semantic, and VBench-Total scores. Our analysis reveals that scaling up
model parameters in our T2V model improves semantic following capability. Specifically, as model
size increase from XL to XXL and M, VBench-Semantic scores rise from 72.5 to 72.7 and then to
74.8. This explicit emergence (from XL, XXL to M), suggesting larger models are better at capturing
semantic information. However, the impact on video quality, measured by VBench-Quality, remains
modest, with only a slight increase from 80.7 to 81.2 and then to 82.1. This finding suggests that
scaling has a greater effect on the model’s semantic capabilities than on video quality. Furthermore,
increasing the spatial resolution from 256 to 512 significantly boosts the VBench-Semantic score
from 74.8 to 77.0. Detailed results can be found in Table[T2

The Influence of SFT Additionally, fine-tuning the model with high-quality SFT data markedly
enhances the VBench-Quality score from 82.2 to 83.9. Finetuning our model without any masking
slightly increases the performance of model on the semantic score. Our best model achieves a VBench-
Semantic score of 79.5, outperforming closed source models such as KLING, PIKA, and Gen-3.
With the temporal upsampler, our model can achieve the state-of-the-art quality score compared with
all other models.

TI2V Performance As shown in Tab.[0] our model delivers competitive performance compared
to state-of-the-art approaches. It also reveals that while scaling up improves the 12V score, it has
minimal impact on quality. In contrast, increasing the resolution leads to noticeable improvements
in both quality and 12V scores. We provide complete results for the decomposed dimensions in
Table

C RELATED WORK

Text-To-Video Generation In recent years, diffusion-based methods have emerged as the dominant
approach in text-to-video generation, both for close-source models [43} 45} !47]] and open-source
models [66] [72]. [28 I8, O] leverages latent diffusion models (LDMs) [51] to enhance training
efficiency. VideoLDM [5] integrates temporal convolution and attention mechanisms into the LDM
U-Net for video generation. Recently, there has been a shift from UNet to diffusion transformer-based
architectures [47, 166l 73] 22]. CogVideoX [65]] adopts the framework from SD3 [20] to incorporate
self-attention on the entire 3D video sequence with text conditions. Lumina-T2X [39] employs zero-
init attention to transform noise into different modalities. In contrast to previous models, our focus is
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Model | Quality 7 | Semantic 7 | Total T
Open Sourced Models
OpenSora V1.2 81.4 73.4 79.8
AnimateDiff-V2 82.9 69.8 80.3
VideoCrafter-2.0 82.2 73.4 80.4
T2V-Turbo 82.2 74.5 80.6
CogVideoX-2B 82.2 75.8 80.9
Allegro 83.1 73.0 81.1
CogVideoX-5B 82.8 77.0 81.6
LaVie-2 83.2 75.7 81.8
Close Sourced Models
Gen-2 82.5 73.0 80.6
PIKA 82.9 71.8 80.7
EMU3 84.1 68.4 81.0
KLING 83.4 75.7 81.9
Gen-3 84.1 75.2 82.3
Ours
XL 80.7 72.5 79.1
XXL 81.2 72.7 79.5
M 82.1 74.8 80.6
M-512 82.2 77.0 81.2
+ SFT 83.9 78.3 82.8
+ SFT + TUP 84.2 78.5 83.1
+ UnmaskSFT 83.7 79.5 82.9
+ UnmaskSFT + TUP 84.4 77.2 83.0

Table 8: Performance comparison of T2V variants with open-sourced and close-sourced models on
VBench.

Model Quality 1 | 12V 1 | Total 1
VideoCrafter-12V 81.3 89.0 85.1
Consistent-12V 78.9 94.8 86.8
DynamicCrafter-256 80.2 96.6 88.4
SEINE-512 80.6 96.3 88.4
12VGen-XL 81.2 95.8 88.5
DynamicCrafter-512 81.6 96.6 89.1
Animate-Anything 81.2 98.3 89.8
SVD 82.8 96.9 89.9
STIV-XL 79.1 95.7 87.4
STIV-M 78.8 96.3 87.6
STIV-M-512 82.1 98.0 90.1
STIV-M-512-JIT 81.9 97.6 89.8

Table 9: Performance comparison of STIV-TI2V variants with open-sourced and close-sourced
models on VBench-12V.

to scale our diffusion transformer-based video generation model with spatial, temporal, and cross
attention to over 8B parameters using various techniques. This model achieves good performance on
VBench and serves as a strong baseline for the development of our text-image-to-video model: STIV.

Text-Image-To-Video Generation Controlling video content solely through text poses significant
challenges in achieving satisfactory alignment between the video and the input text, as well as
fine-grained control over the video generation process. To address this issue, recent approaches have
integrated both the first frame and text to enhance control over video generation [[70, 125} 162 18, 1501,
mostly based on U-Net architecture. 2VGen-XL [[70] builds upon the SDXL and employs a cascading
technique to generate high-resolution video. DynamiCrafter [62] and VideoCrafter [8]] use cross-
attention to incorporate image condition. ConsistentI2V [50] employs a similar frame replacement
strategy, but it also requires spatial temporal attention over the initial frame and special noise
initialization to enhance consistency. Animate Anything [[16] also employs the frame replacement
technique, but it requires the use of motion strength loss to enhance the motion. However, their
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Dynamic Degree on VBench-12V is relatively low, at 2.7%. We apply frame replacement on the DiT
architecture with our proposed image condition dropout method, and JIT-CFG can generate high
quality 12V videos while effectively addresses the motion staleness issue.

D JOINT IMAGE-TEXT CLASSIFIER-FREE GUIDANCE

We introduce a novel framework, Joint Image-Text Classifier-Free Guidance (JIT-CFG), in Section
which facilitates the seamless integration of text and image conditions to enhance the modeling
performance. This is accomplished through a modified velocity estimate, expressed as:

Fa(wtchvcfvt) = Fe(wh@w@vt)
+w- (Fe(ﬂft,CT»Clat) 7F9(wta®7®,t))

The approach employs text and image condition dropout, which is also critical for unifying T2V and
TI2V tasks.

Probability mass shift Our model learns P(x|cr, ¢;), the probability distribution of generating
video « given the text prompt ¢y and image condition c;. Here, we demonstrate how JIT-CFG shifts
the probability mass toward regions of higher likelihood, conditioned on ¢ and c;. First, consider a
score-matching model with JIT-CFG

So(xy, er,er,t) = sp(xy, t)
+w- (so(xy, 1, c1,t) — 894, 1))
Using the definition of score and Bayes’ Rule, we derive
So(xt, e, cy,t)

=VliogP;(xt) + w - (ViogP;(xy, e, cr) — ViogP(xy))

=VlogP;(x¢) +w - ViogP(er, cr|x)

=Vlog (P(z:) Py (er, cr|xt))

=Vlog (Ptl_w(mt)th(ﬂfﬂcT,Cl)) )
where w determines the influence of the text and image conditions during sampling from the tempered

distribution. For a flow-matching model employing linear interpolants, the velocity and score are
related as [42]:

. I
se(wtacTacI7t) = EFG(J’DCT—UCIat) - Lt

1-—t
It implies g—g = ﬁ > 0, meaning that the JIT-CFG-guided velocity F shifts the probability mass
in alignment with the modified score § by adjusting the tempered distribution.

CFG-Renormalization Empirically, we observed that the magnitude of the modified velocity,

|| Fy(t, er, e, t)|| tends to be very large during the early stages of integration in inference (i.e.
when ¢ is small). This behavior sometimes leads to overshooting beyond the learned latent distri-
bution, resulting in artifacts in the generated output. We identified this issue as primarily due to
the significant difference between the conditional velocity, Fy(x, cr, ¢y, t), and the unconditional
velocity, Fy(x;, I, @, t) when ¢ is small.

To mitigate this, we propose a simple yet effective renormalization method that re-scales the magni-
tude of the modified velocity to || Fy (s, cr, 1, t)|| while preserving its direction. Formally, this is
defined as:

5 13‘9 T, Cr,Cr,t
Fy(xt,cr,cr,t) = ||Fy(xt, e, cr,t)|] (@, er, c1,1)

|1 Eo(zs, er,er, t)]|

As shown in Table 2] this technique significantly improves performance across various T2I evaluation
benchmarks.
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E IMPLEMENTATION DETAILS FOR T2V AND STIV

Given that we use spatial-temporal attention, we first pretrain the T2I model using only an image
dataset. Subsequently, we load the EMA weights from the T2I model, excluding the temporal
attention. In our work, we use the per-frame VAE, which is the same one used in the T2I model. On
top of that, we use a temporal patch of size 2 in the DiT part for video models. We modify the T2I
cubify weights by inflating the 3D convolution weight in the temporal dimension. For video training
data, we select one frame from every three frames and add independent and identically distributed
Gaussian noise to each frame. Following standard practice, we randomly replace text prompt with
empty string 10% during training. In our JIT-CFG setting, we also independently randomly drop
image condition 8% during training. For both T2V and STIV models, the JIT-CFG scale is set to 7.5.
The training schedule follows the progressive training recipe described in section [2.2]

F IMPLEMENTATION DETAILS OF TEXT ENCODERS

We used our internal CLIP text encoder to encode text into embeddings. Concretely, a text is first
tokenized via a TS5 tokenizer. The tokenized text is mapped into embeddings via an embedding
lookup table and further encoded via 32 layers of transformer with casual attention. Each transformer
layer contains 20 attention heads. Each attention head has 64 hidden dimensions. The output text
embedding has a dimension of 1280.

G ABLATION STUDY ON TEXT-TO-IMAGE GENERATION

Baseline Setup For our base model, we employed the PixArt-« architecture [[10], which builds on
the DiT [44] model with added cross-attention layers to integrate image tokens with text embeddings.
As pre-trained components, we used the open-source sd-vae-ft-ema modeﬂ and OpenAI CLIP L14
modeﬂ both of which are widely adopted in the community. We conduct our experiments using the
XL model configuration with a 2562 image size. The full baseline model, which includes the VAE and
CLIP text encoder, has approximately 1.06 billion parameters. For noise generation and denoising,
we used a diffusion-based approach with Stable Diffusion’s default noise schedule. The training was
conducted with a batch size of 4,096 over 400k steps, which corresponds to approximately 1.4 epochs
on our internal text-to-image dataset.

Table [2| summarizes the results of our ablation study, focusing on the following aspects:

Stabilized Training Leveraging recent advancements in LLM and diffusion model architectures, we
integrated QK-Norm [29] to manage the activation scale within attention layers. Additionally, we
applied sandwich-norm [26] to both the inputs and outputs of the attention layer and the feedforward
layer. Projected conditions, including timestep embeddings, pooled CLIP text embeddings, and
micro condition embeddings, were normalized before being input to AdaLLN. These normalization
techniques enhanced training stability, allowing us to increase the learning rate from 1 x 10~* to
2 x 1074, and also resulting in quality improvements.

Noising and Denoising Process Formulation We explored optimized noising/denoising formulations
by replacing the diffusion process with a flow-based linear interpolant[42]]. Additionally, we applied
renormalization at each inference step to counteract potential side effects from high classifier-free
guidance (CFG) values. Here, the norm of the prediction with CFG was linearly scaled to match the
conditional prediction norm, as explained in Sec.|D}

Training Cost Optimization To reduce training costs, we evaluated three strategies: (1) switching
from the AdamW optimizer to Adafactor, (2) applying MaskDiT training with a 50% masking ratio,
and (3) using a shared AdaLN module across layers instead of unique instances per layer. These
changes reduced per-device HBM usage from approximately 28GB to 11GB, allowing us to train on
v5e TPUs instead of the more costly v5p TPUs. Notably, as shown in Table 2] masked training may
adversely affect metrics such as FID and HPS. However, we found additional unmask finetuning for a

3https://huggingface.co/stabilityai/sd-vae-ft-ema
*https://huggingface.co/openai/clip-vit-large-patch14

17



Published as a workshop paper at SCOPE - ICLR 2025

m Baseline Win mTie m New Config Win

SYNTH. CAPTION 28.98% 32.78% 38.24%

INTERNAL CLIP 30.94% 26.04% 43.01%
DIFFUSION TO FLOW 25.92% 21.51% 52.57%

Figure 4: Human evaluation results on significant changes in T2I ablation study Tab.

short duration (e.g. S0k steps) can fix the artifacts causing these score drops. However, this additional
training phase was not included in the final configuration, as further training on video generation can
address this issue as well.

Enhanced Pre-trained Models and Conditioning We evaluated improvements from advanced pre-
trained models and additional conditioning techniques. Specifically, we upgraded from the OpenAl
CLIP L14 to an internally trained CLIP-bigG model [36]] and from a 4-channel to an 8-channel VAE.
We also introduced 2D RoPE to support masked training and added micro-conditions, inspired by
SDXL [46], to mitigate cropping artifacts in elongated objects. Finally, synthetic captions generated
via [35]] were included in our training data, resulting in notable performance gains.

Human Evaluation of Model Changes To validate improvements observed in automated metrics,
we conducted human evaluations for key modifications, including the addition of synthetic captions,
upgrade of CLIP model, and transition from diffusion to flow matching based objective. Human raters
are asked to asses image fidelity, text-image alignment, and visual appeal, and give 5 level preference
ratings for image pairs. Each pair is sent to 5 raters for rating and the image pair will be considered tie
of combined voting is neutral. Results from Figure ] demonstrate clear alignment between automated
metrics and human judgments. This justifies our usage of automatic evaluation as daily development
metrics to maintain generation quality and prevent regressions leading to significant quality losses.

G.1 VIDEO DATA ENGINE

Data quality is pivotal for video generation models. However, curating large-scale, high-quality
datasets remains challenging due to issues like noisy captions, hallucinations, and limited diversity in
video content and duration. To address these concerns, we propose a Video Data Engine (Fig. 5)—a
comprehensive pipeline that improves dataset quality and reduces hallucinations, ultimately enhancing
model performance. More details can be found in Sec. ?? in the appendix.

Our approach focuses on three key questions: (1) How to preprocess raw videos for better consistency?
(2) What is the effect of data filtering on model performance? (3) How can advanced video captioning
reduce hallucinations and improve outcomes? We use Panda-70M [[L1]] as a working example and
produce a curated subset, Panda-30M, via our pipeline.

Video Pre-processing and Feature Extraction. We employ PySceneDeteclE] to remove abrupt
transitions and inconsistent segments, yielding more coherent clips. We then extract key features
(e.g., motion and aesthetic scores) to guide subsequent filtering.

Data Engine for Filtering Effective data filtering is crucial for improving dataset quality and
reducing hallucinations. We develop an automated filtering infrastructure that supports efficient data
selection, quality control, and continuous improvement throughout the model’s development lifecycle.
For instance, we can sample high-quality videos with predefined resolutions / motion scores for
the fine-tuning stage. This filtering system allows us to systematically remove low-quality videos
and focus on data that enhances model performance. From Panda-30M, we further apply filtering

>https://github.com/Breakthrough/PySceneDetect
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g . Per Segment Filtering: Captioning:
— Pre-processing: — Motion Score — Richness

! —
Raw [> — Segment Video [> A ; [:> [:> Processed
) _R o — Aesthetic Score —Accuracy :
Video emove insistent segments — Video Orientation — Hallucination Video

Figure 5: An overview of our video data engine, including video pre-processing, filtering, and video
captioning.

Caption Object Existence Questions Detected ?

. . . Are there hands?
Aperson is preparing a meal with rice, meat, and Is there a meal?

= vegetables. They are placing the food items in a Is there rice?

black rectangular container. Next to the container, —» — |s there meat? — —>
there is a small insect in a plastic box, and a yellow
- plastic box with a cat illustration, hinting at the
meal's intended recipient. Hands reach out to grab
the containers.

Are there vegetables?
Is there a container?
Is there an insect?

Is there a box?

A 3 N N N N NN

Figure 6: An overview of DSG-Video’s approach to detecting object hallucinations in captions: we
use an LLM to generate questions and another MLLM to validate the presence of the object across
frames. If the MLLM fails to detect the object in all frames, the object is classified as a hallucination.

based on motion score and aesthetic score to obtain Panda-10M, named as a high-quality version of
Panda-30M. The results are summarized in Tab.[T0} instead of pursuing data volume, higher-quality
videos have the potential to achieve more promising results.

Data MSRVTT . VBench

FVD | Quality T | Semantic T | Total T
Panda-30M 770.9 80.4 73.6 65.6
Panda-10M 759.2 80.8 73.4 66.2

Table 10: Compare Panda-30M and Panda-10M (high-quality) using XL T2V model.

Video Captioning Model High-quality video-text pairs are essential for training text-to-video models.
Existing datasets often suffer from noisy or irrelevant captions, limited in describing temporal dynam-
ics. We initially attempted a frame-based captioning approach followed by LLM summarization [4],
but found that single-frame captions fail to represent motion, and LLM summarization can induce hal-
lucinations. To improve caption quality while balancing cost, we employ LLaVA-Hound-7B [69]—a
video LLM capable of producing more coherent and motion-aware descriptions.

Caption Evaluation and Ablations To objectively assess caption accuracy, we introduce DSG-
Video(Fig.[6), a module inspired by DSG [[13], that detects hallucinated objects by probing captions
with LLM-generated questions and verifying object presence in sampled video frames using a
multimodal LLM. This yields two metrics, DSG-Video; and DSG-Videog, reflecting hallucination at
the object and sentence levels, respectively. We compare two captioning strategies—frame-based plus
LLM summarization (FCapLLM) and direct video captioning (VCap)—on the Panda-30M dataset.
As shown in Tab. [TT] VCap reduces hallucinations and increases the diversity of described objects,
leading to improved T2V model performance. These results demonstrate that richer, more accurate
video descriptions can significantly enhance downstream generation quality.

H DETAILED RESULTS FOR IMAGING DROPOUT

As mentioned in Section[A:4.2] after adding imaging dropout. We observe this phenomenon happens
when we scale our model to 8B with >= 512 resolutions, probably due to the model being more easily
overfitting to follow the first frame with a larger model capacity, and it becomes worse under the
higher resolution. Specifically, we showcase some examples to see the different between generated
videos without image dropout and videos with image dropout (STIV-M-512). We generate the videos
conditioned on the first frame and text prompt borrowed from MovieGenBench [47] As shown in
Fig.[7to P using image condition dropout in general achieves better performance than the baseline
in terms of motion quality.
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‘ STIV-M-512 V.S. STIV-M-512-JIT

Prompt: A red panda taking a bite of a pizza.

Reference Image

Prompt: A rocket blasting off from the launch pad, accelerating rapidly into the sky.

Reference Image

Figure 7: Visualization of STIV-M-512 V.S. STIV-M-512-JIT. (Given the same prompt, the figures
in the top row are generated by STIV-M-512, while the figures in the bottom row are generated by
STIV-M-512-JIT.)
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STIV-M-512 V.S. STIV-M-512-JIT

Prompt: A sports car accelerating rapidly on an open highway, the engine roaring.

Reference Image

Prompt: A glass of iced coffee condensing water on the outside, with droplets forming and sliding
down the glass in slow motion.

Reference Image

Figure 8: Visualization of STIV-M-512 V.S. STIV-M-512-JIT. (Given the same prompt, the figures
in the top row are generated by STIV-M-512, while the figures in the bottom row are generated by
STIV-M-512-JIT.)
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STIV-M-512 V.S. STIV-M-512-JIT

Prompt: Cars and pedestrians move through a bustling downtown street lined with skyscrapers,
their lights reflecting off the windows of the towering buildings as day turns to dusk.

Reference Image

Reference Image

Prompt: Robots move efficiently through a futuristic laboratory, adjusting holographic displays and
conducting experiments, while scientists observe and interact with the high-tech equipment.

Reference Image

Figure 9: Visualization of STIV-M-512 V.S. STIV-M-512-JIT. (Given the same prompt, the figures
in the top row are generated by STIV-M-512, while the figures in the bottom row are generated by
STIV-M-512-JIT.)
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Caption | Total Object | DSG-Video;(|) DSG-Video.(]) | MSRVTT FVD (]) VBench (1)
FCapLLM 1249 6.4 24.0 808.1 64.2
VCap 1911 5.3 15.0 770.9 65.6

Table 11: Compare different captions using XL T2V model. DSG-Video metrics are calculated from
100 random captions.
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I DETAILED RESULTS FOR T2V AND STIV

I.1 DETAILS OF VBENCH AND VBENCH-I2V EVALUATION METRICS

We follow the same as the evaluation protocol provided by VBench [32].

I.1.1 VIDEO QUALITY

Video Quality is divided into two aspects: Temporal Quality and Image Quality. Temporal Quality
evaluates cross-frame consistency, including (1) Subject Consistency, ensuring that subjects main-
tain a consistent appearance across frames; (2) Background Consistency, assessing stability in the
background using feature similarity; (3) Temporal Flickering, measuring smooth transitions in both
static and dynamic areas; (4) Motion Smoothness, evaluating the fluidity and realism of motion; and
(5) Dynamic Degree, analyzing the presence of large-scale dynamics or motions. Image Quality
focuses on individual images and evaluates (1) Aesthetic Quality, considering artistic appeal and
visual richness, and (2) Imaging Quality, measuring clarity, noise, and other distortions.

1.1.2 VIDEO-CONDITION CONSISTENCY

Video-Condition Consistency ensures alignment with the input prompt and is categorized into Seman-
tics and Style, each with finer-grained dimensions.

Semantics (1) Object Class: Measures the success of generating specific objects described in the text
prompt. (2) Multiple Objects: Evaluates the ability to compose multiple objects from different classes
in a single frame. (3) Human Action: Assesses whether the generated video accurately captures
actions described in the prompt. (4) Color: Ensures synthesized object colors align with the text
description. (5) Spatial Relationship: Checks whether spatial relationships between objects align with
the prompt. (6) Scene: Evaluates consistency between generated scenes and the intended description
(e.g., “ocean” versus “river”).

Style (1) Appearance Style: Measures consistency of styles mentioned in the prompt, such as “oil
painting” or “cyberpunk” (2) Temporal Style: Assesses temporal continuity of styles across frames,
ensuring smooth transitions.

Overall Consistency We further evaluate Overall Consistency using metrics that combine semantic
and style alignment, reflecting both the accuracy and coherence of generated videos.

VBench-12V builds upon the VBench with three new Video-Image Alignment metrics: Subject
Consistency, Background Consistency, and Camera Motion Control. These additional metrics provide
a more comprehensive evaluation by focusing on how well the generated video aligns with the input
image and specified prompt instructions. Specifically, Subject Consistency evaluates the alignment
between the subject in the input image and the generated video, ensuring coherence in character
or object representation. Background Consistency assesses the continuity of the background scene
between the input image and the video, highlighting the model’s ability to maintain a consistent
environment. Camera Motion Control, under Video-Text Alignment, examines the adherence to
camera control directions as described in the prompt, which is crucial for generating realistic video
sequences that respond to specified dynamic instructions.

1.2 DETAILED RESULTS ON VBENCH AND VBENCH-I2V

We showcase the detailed version of the performance shown in Tab.[I2]and Tab.[13]
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Model Subject Back Temporal Motion Dynamic | Aesthetic Imaging Object Multiple Human
Cons. Cons Flickering Smooth. Degree Quality Quality Class Objects Action
CogVideoX-5B [65] 96.2 96.5 98.7 96.9 80.0 62.0 62.9 85.2 62.1 99.4
CogVideoX-2B [65] 96.8 96.6 98.9 97.7 59.9 60.8 61.7 83.4 62.6 98.0
Allegro [73] 96.3 96.7 99.0 98.8 55.0 63.7 63.6 87.5 59.9 91.4
AnimateDiff-V2 [27] 95.3 97.7 98.8 97.8 40.8 67.2 70.1 90.9 36.9 92.6
OpenSora V1.2 [72] 96.8 97.6 99.5 98.5 42.4 56.9 63.3 82.2 51.8 91.2
T2V-Turbo [38] 96.3 97.0 97.5 97.3 49.2 63.0 72.5 94.0 54.7 95.2
VideoCrafter-2.0 [9] 96.9 98.2 98.4 97.7 42.5 63.1 67.2 92.6 40.7 95.0
LaVie-2 [61] 97.9 98.5 98.8 98.4 31.1 67.6 70.4 97.5 64.9 96.4
LaVIE [61] 91.4 97.5 98.3 96.4 49.7 54.9 61.9 91.8 333 96.8
ModelScope [60] 89.9 95.3 98.3 95.8 66.4 52.1 58.6 82.2 39.0 92.4
VideoCrafter [8] 86.2 92.9 97.6 91.8 89.7 44.4 57.2 87.3 25.9 93.0
CogVideo [31]] 92.2 95.4 97.6 96.5 42.2 38.2 41.0 73.4 18.1 78.2
PIKA [45] 96.9 97.4 99.7 99.5 47.5 62.4 61.9 88.7 43.1 86.2
Gen-3 [53] 97.1 96.6 98.6 99.2 60.1 63.3 66.8 87.8 53.6 96.4
Gen-2 [52] 97.6 97.6 99.6 99.6 18.9 67.0 67.4 90.9 55.5 89.2
KLING [34] 98.3 97.6 99.3 99.4 46.9 61.2 65.6 87.2 68.1 93.4
EMU3 [25] 95.3 97.7 98.6 98.9 79.3 59.6 62.6 86.2 44.6 71.7
XL 96.0 98.5 98.4 96.5 62.5 56.3 59.3 91.5 41.3 98.0
XXL 97.5 98.9 99.1 98.2 48.6 56.2 59.7 91.1 49.1 99.0
M-256 96.0 98.5 98.6 97.2 68.1 57.0 60.8 88.8 62.1 98.0
M-512 95.9 96.9 98.8 98.0 59.7 60.6 62.5 85.9 72.4 96.0
M-512-SFT 96.7 97.4 98.7 98.3 70.8 61.7 63.9 88.1 67.7 97.0
M-512-SFT+TUP 94.8 95.9 98.7 99.2 70.8 63.7 65.0 88.9 70.3 95.0
M-512-UnMSFT 94.3 96.9 98.8 96.7 77.8 61.4 68.6 90.0 72.3 97.0
M-512-UnMSFT+TUP 95.2 95.8 98.8 99.2 70.8 63.6 65.9 90.0 69.8 94.0
Model Color Spatial Scene App. Temp. Overall Quality Semantic Total Averaged
Rel. Style Style Cons, Score Score Score Scores
CogVideoX-5B [65] 82.8 66.4 532 249 25.4 27.6 82.8 77.0 81.6 70.0
CogVideoX-2B [65] 79.4 69.9 51.1 24.8 24.4 26.7 82.2 75.8 80.9 68.3
Allegro [73] 82.8 67.2 46.7 20.5 244 26.4 83.1 73.0 81.1 67.5
AnimateDiff-V2 [27] 87.5 34.6 50.2 22.4 26.0 27.0 82.9 69.8 80.3 64.7
OpenSora V1.2 [72] 90.1 68.6 42.4 24.0 245 26.9 81.4 73.4 79.8 66.0
T2V-Turbo [38] 89.9 38.7 55.6 24.4 25.5 28.2 82.6 74.8 81.0 67.4
VideoCrafter-2.0 [9] 92.9 35.9 55.3 25.1 25.8 28.2 82.2 73.4 80.4 66.0
LaVie-2 [61] 91.7 38.7 49.6 25.1 25.2 27.4 83.2 75.8 81.8 67.6
LaVIE [61] 86.4 34.1 52.7 23.6 25.9 26.4 78.8 70.3 77.1 63.8
ModelScope [60] 81.7 33.7 39.3 23.4 254 25.7 78.1 66.5 75.8 62.4
VideoCrafter [8] 78.8 36.7 43.4 21.6 25.4 25.2 81.6 72.2 79.7 62.3
CogVideo [31] 79.6 18.2 28.2 22.0 7.8 7.7 72.1 46.8 67.0 52.3
PIKA [45] 90.6 61.0 49.8 223 242 25.9 82.9 71.8 80.7 66.1
Gen-3 [53] 80.9 65.1 54.6 243 24.7 26.7 84.1 75.2 823 68.5
Gen-2 [52] 89.5 66.9 48.9 19.3 24.1 26.2 82.5 73.0 80.6 66.1
KLING [34] 89.9 73.0 50.9 19.6 242 26.4 834 75.7 81.9 68.8
EMUS3 [25] 88.3 68.7 37.1 20.9 23.3 24.8 84.1 68.4 81.0 66.7
XL 86.4 42.4 54.4 22.4 26.3 27.8 80.7 72.5 79.1 66.1
XXL 90.8 45.1 45.5 22.1 26.1 27.4 81.2 72.7 79.5 65.9
M-256 83.6 44.5 54.7 225 26.6 28.4 82.7 74.8 80.6 67.9
M-512 91.2 51.0 53.6 23.9 25.8 27.8 82.2 71.0 81.2 68.8
M-512-SFT 93.7 58.0 52.8 24.6 26.2 28.5 83.9 78.3 82.8 70.3
M-512-SFT+TUP 94.7 50.6 57.3 24.5 26.7 28.6 84.2 78.5 83.1 70.3
M-512-UnMSFT 92.0 59.8 53.1 24.8 26.7 28.8 83.7 79.5 82.9 71.2
M-512-UnMSFT+TUP 87.7 46.9 57.1 24.5 26.6 28.5 84.4 77.2 83.0 69.7

Table 12: Detailed Evaluation Results for Text-To-Video Generation Models.
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Model Subject Background Temporal Motion Dynamic | Aesthetic
Consistency | Consistency Flickering Smoothness Degree Quality
DynamicCrafter-256 [62]] 94.7 98.3 98.1 97.8 40.6 58.7
DynamicCrafter-512 [62] 93.8 96.6 95.6 96.8 69.7 60.9
Animate-Anything [15] 98.9 98.2 98.1 98.6 2.7 67.1
SVD [4] 95.5 96.6 98.1 98.1 524 60.2
SEINE-512 [12] 95.3 97.1 97.3 97.1 27.1 64.6
VideoCrafter-12V [9] 97.9 98.8 98.2 98.0 22.6 60.8
Consistent-12V [50] 95.3 98.3 97.6 974 18.6 59.0
12VGen-XL [70] 94.2 97.1 98.3 26.1 26.1 64.8
STIV-M 95.4 98.9 97.2 98.1 32.1 59.0
STIV-M-512 99.5 99.3 99.5 99.6 10.2 62.5
STIV-M-512-JIT 98.1 98.6 98.7 99.1 24.0 65.4
Model Imaging 2v 2v Camera 12V Final
Quality Subject Background Motion Quality Score
DynamicCrafter-256 [62] 62.3 97.1 97.6 20.9 80.2 88.4
DynamicCrafter-512 [62] 68.6 97.2 97.4 32.0 81.6 89.1
Animate-Anything [15] 72.1 98.8 98.6 13.1 81.2 89.8
SVD [4] 69.8 98.8 98.6 62.3 82.8 89.9
SEINE-512 [12] 71.4 97.2 96.9 21.0 80.6 88.4
VideoCrafter-12V [9] 71.7 91.2 91.3 33.6 81.3 85.1
Consistent-12V [50] 66.9 95.8 96.0 339 78.9 86.8
12VGen-XL [70] 69.1 96.5 96.8 18.5 81.2 88.5
STIV-M 66.1 97.0 974 22.7 78.8 87.6
STIV-M-512 71.5 99.2 97.3 13.2 82.1 90.1
STIV-M-512-JIT 71.0 98.8 97.5 15.1 81.9 89.8

Table 13: Detailed Evaluation Results for Text-Image-To-Video Generation Models.

J DETAILS OF MODEL INITIALIZATION ABLATIONS

To facilitate a fair comparison for different initialization methods we estimate the FLOPs associated
with spatial-temporal computation in the transformer for various model training steps (Tables [14]and
[I5). When controlling for FLOPs we take into account, the compute used to pretrain the intermediate
models, the reduction in an effective number of tokens due to masking in the relevant attention blocks,
the increased parameter count when temporal attention is included, and the increased number of
tokens passed to the model during high resolution training. For both the high resolution and higher
frame count experiments we attebyto keep the compute budget across model initialization ablations
similar. Tables [T6|and [T7]show the VBench quality metrics for high resolution and high frame count
XL sized models respectively.

Init. Method | Models Stage 1 | Stage 2 | Stage 3 | Stage 4 | Total
Scratch | T2V-512 5.93 5.93
T2V-256 | T2I-256, T2V-256, T2V-512 1.11 2.05 2.84 6.00
T2I-512 | T2I-256, T2I-512, T2V-512 1.11 8.43 4.02 5.97
Both | T2I-256, T2V-256, T2I-512, T2V-512 1.11 2.05 8.43 1.98 5.98
Table 14: A breakdown of FLOPs for training high resolution T2V models. Unit 102!,
Init. Method | Models Stage 1 | Stage 2 | Stage 3 | Total
T21 T21-256, T2V-256-40 1.11 2.05 3.16
T2V (int.) T21-256, T2V-256-20, T2V-256-40 1.11 1.02 1.02 3.16
T2V (ext.) T2I-256, T2V-256-20, T2V-256-40 1.11 1.02 1.02 3.16
T2V 2x (int.) | T2I-256, T2V-256-20 2x stride, T2V-256-40 1.11 1.02 1.02 3.16

Table 15: A breakdown of FLOPs for training high frame count T2V models. Unit: 103!,
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Initial | Subject | Background | Temporal Motion Dynamic | Aesthetic | Imaging | Object
Method Cons. Cons. Flickering | Smoothness Degree Quality Quality Class
Scratch 93.1 97.1 97.9 97.3 61.4 58.6 58.6 87.0
T2V-256 91.9 97.1 98.0 97.5 58.6 59.4 59.7 91.2
T2I-512 92.3 97.2 98.2 97.0 522 60.0 59.3 88.8
Both 924 97.3 98.3 97.4 53.9 60.7 60.6 88.2
Initial | Multiple Human Color Spatial Scene App. Temp. Overall
Method | Objects Action Relationship Style Style Cons.
Scratch 29.7 954 88.3 33.8 46.9 21.6 25.8 26.4
T2V-256 45.7 95.8 89.0 36.3 50.0 21.9 25.8 27.3
T2I-512 474 96.4 87.9 37.0 49.1 22.5 26.2 27.8
Both 49.7 96.0 88.1 36.7 52.3 22.8 26.3 28.0
Table 16: Detailed VBench metrics of different model initialization methods for higher resolution
T2V model training.
Initial | Subject | Background | Temporal Motion Dynamic | Aesthetic | Imaging | Object
Method Cons. Cons. Flickering | Smoothness Degree Quality Quality Class
T21 93.2 98.1 98.7 95.2 57.8 542 58.2 84.6
T2V (int.) 91.7 97.7 97.7 96.8 64.7 54.7 59.2 86.9
T2V (ext.) 91.3 97.5 97.8 96.9 58.6 54.6 60.0 86.1
T2V 2x (int.) 91.0 97.3 97.2 97.0 70.3 54.1 59.4 85.8
Initial | Multiple Human Color Spatial Scene App. Temp. Overall
Method | Objects Action Relationship Style Style Cons.
T2I 30.8 922 85.0 29.9 452 21.1 25.0 26.0
T2V (int.) 25.5 95.4 85.3 28.6 414 21.2 253 26.6
T2V (ext.) 28.5 95.2 84.2 25.9 36.8 20.9 25.6 26.8
T2V 2x (int.) 29.3 94.0 87.7 28.6 4.2 20.9 25.7 26.7

Table 17: Detailed VBench metrics of different model initialization methods for higher frame count
T2V model training.

K StUDY OF T2V ON PHYSICS COMMONSENSE ALIGNMENT BENCHMARK

We evaluated our models on physics commonsense benchmark VideoPhy, which outperforms both
open sourced and close sourced models on the leaderboard, the results are shown in Tab.

Model Source | PC | SA | Avg.
OpenSora [[72] Open 35 | 21 28
SVD [4] Open 34 | 37 35
CogVideoX-2B [66] Open 39 | 40 39
LaVIE [61] Open 36 | 45 41
VideoCrafter2 [9] Open 36 | 47 41
CogVideoX-5B [66] Open | 41 | 57 49
Model Source | PC | SA | Avg.
Gen-2 [52]] Closed | 31 | 26 29
Pika [45]] Closed | 33 | 25 29
Lumiere-T2V [2]] Closed | 31 | 35 33
Lumiere-T212V [2] Closed | 25 | 46 35
Luma Dream Machine [40] | Closed | 30 | 53 | 41.5
XL Our 36 | 57 47
M-512 Our 43 | 59 51

Table 18: Performance of T2V models on VideoPhy [[1].
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L StUuDY OF CLASS-TO-VIDEO ON UCF-101

UCF-101 is an action recognition dataset, which contains 101 classes over 9.5K training videos. Here
we train STIV from scratch and perform label-to-video (L2V) generation with 16 frames and 128>
resolution. We follow TATS [23]] to adopt the Inception Score (IS) [54] and FVD for the evaluatiorﬂ

Tab. [I9]shows that our L2V-XL achieves significant improvements, leading to +12% IS and -22%
FVD over MAGVIT. This also highlights the effectiveness of our model design for convention video
generation. From the ablation study over different modulations, only without spatial mask makes a
lower FVD but degrades IS, while all other settings hurt the performance.

Method ISt | FVD (‘Q’faei‘;t‘;h -
CogVideo [31] 50.5 626 -
TATS [23] 79.3 332 -
MMVG [21] 73.7 328 -
VideoFusion [41]] 80.0 173 -
MAGVIT [67] 83.6 159 -
XL-128 934 124 69.9
- Spatial Mask 88.5 102 70.6
+ Temporal Mask 94.9 167 68.1
+ Temporal ScaleShiftGate | 78.9 141 69.1
+ Causal TemporalAttention | 86.9 106 70.3

Table 19: Performance of Class-to-Video Generation on UCF-101.

M FLEXIBLE APPLICATIONS

Here, we demonstrate how to extend our STIV to various applications, such as video prediction,
frame interpolation, multi-view generation, and long video generation.

Video Prediction We initialize from a STIV-XXL model to train a text-video-to-video model
conditioned on the first four frames. As shown in Fig. 20 the video-to-video model (STIV-V2V)
shows significantly lower FVD scores compared to the text-to-video model (T2V) on MSRVTT [64]]
test set and MovieGen Bench [47]]. This result indicates that video-to-video models can achieve
superior performance, which is promising for applications in autonomous driving and embodied Al
where high fidelity and consistency in generated video frames are crucial.

Frame Interpolation We propose STIV-TUP, a temporal upsampler initialized from an STIV-XL
model, and continue train conditioned on consecutive frames sampled by stride of 2 with the text
conditioning. Fig. 21| shows that our STIV can also be used to do decent frame interpolation
conditioned on both text and image. We observe that using text conditions is slightly better in FID
and FVD on the MSRVTT test set. We also cascade the temporal upsampler with our main model to
explore whether it can boost the main performance. As shown in Tab. [§|and Tab.[6] using a temporal
upsampler on the top of the main models can improve the quality performance while maintaining
other scores.

Multi-View Generation Multi-view generation is a specialized task focused on creating novel views
from a given input image. This task places demands on view consistency and can greatly benefit
from a well-pretrained video generation model. By adapting a video generation model for multi-
view generation, we can evaluate whether the pretraining has effectively captured underlying 3D
information, which would enhance multi-view generation.

SFollowing our baselines (https://github.com/songweige/TATS/issues/13), we apply
C3D [39] pre-trained on UCF-101 for the IS logits. For FVD, we adopt 13D [[7] pre-trained on Kinetics-
400 [33] to calculate the video embeddings.
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MSRVTT | MovieGen MSRVTT GSO [19
Model FVD | FVD | Model usetext | pypy | pypy  Model PSNR{ SSIM{ LPIPS |
T2V 3362 3372 STIV-IOP | No 72 63 Zerol 254+ 71200 0723 0143
STIV-V2V | 1837 1863 STIV-TUP | Yes 20 59 STIV-TV-XL | 21.643 0724 0.156

Table 20: Comparison of Table 21: Performance of STIV-Table 22: Multiview generation com-
T2V and V2V. TUP. parison.

Here, we adopt the novel view camera definitions outlined in Zero123++ [S6], which specifies six
novel view cameras for each input image. The initial frame in our TI2V model is set as the given
image, and the next six frames, representing novel views, are predicted as future frames within
TI2V. For training, we began with our TI2V-XL checkpoint trained with a 256 resolution, fine-tuning
it for 110k steps on Objaverse [17]. For a fair comparison, we increased the image resolution to
320 during finetuning, aligning with the settings used in Zero123++. Our evaluation used objects
from the Google Scanned Objects dataset [19], where we compared the output multi-view images
against ground-truth renderings. As shown in Fig. [22] despite only using temporal attention for
cross-view consistency, our approach achieves comparable performance to Zero123++ which uses
full attention to all the views. This outcome validates the effectiveness of our spatiotemporal attention
in maintaining 3D consistency. A visual comparison between our approach and Zero123++ is shown
in Figure

Long Video Generation We develop an effective and efficient framework to generate long videos.
Specifically, we propose a hierarchical framework, including training our STIV on two different
modes: (1) key frame prediction by learning uniformly sampled video frames with stride of 20 with
image conditioning dropout and (2) interpolated frame generation by learning consecutive video
frames with first and last frame as image conditions. During sampling stage, we change the image and
micro conditions, and first use the first mode to generate key frames and then generate the interpolated
frames use the second mode, leading to a long video. It is natural to reuse the STIV model to
autoregressively generate the videos conditioned on previous generated one. However, in practice,
we found this rollout approach can be hurt by error propagation in the previous video, and lacks some
global consistency between frames. Therefore, we propose a simple yet effective baseline, purely
based on our STIV framework. As mentioned in the main text, we design a hierarchical framework,
train our STIV on two different modes: (1) key frame prediction by learning uniformly sampled video
frames with a stride of 20 with image conditioning dropout, and (2) interpolated frame generation
by learning consecutive video frames with the first and last frame as image conditions. During the
sampling stage, we change the image and micro conditions, and first use the first mode to generate
key frames and then generate the interpolated frames using the second mode, leading to a long video.
We showcase one long T2V and one TI2V example in Figure we achieve (20 — 1) x 20 = 380
frames in total. We uniformly sampled 8 frames out of the 380 frames. Noted that this is only an
early exploration of long video generation, and we do not have many long enough videos in our
training distribution, so we leave it as future work to further explore the architecture to boost long
video synthesis.

N MORE EXAMPLES

We show more examples at the end of the Appendix using the text prompts and image as first frame
condition borrowed from MovieGenBench [47] and Sora [43]].
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Multi-View Generation
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Figure 10: The visual comparison between our STIV-XL with Zero123++ [56] on GSO [19].
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Long Video Generation

Prompt: A drone camera circles around a beautiful historic church built on a rocky outcropping
along the Amalfi Coast, the view showcases historic and magnificent architectural details and tiered
pathways and patios...

Figure 11: Visualizations of long video generation framework.
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Text-to-Video

Prompt: A pirate ship sailing through a storm with enormous waves crashing against the sides, its
crew fighting against the wind as lightning illuminates the scene.

Prompt: A samurai on horseback charging across a field of cherry blossoms, slicing petals in
mid-air as they fall, leaving a trail of pink in their path.

F ‘}?\ -° i/ - M— "~.- Y P

Prompt: Giant Pandas are eating hot noodles in a Chinese restaurant.

L

|
y
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Text-to-Video

Prompt: A zoom-in on a clock face, focusing on the intricate movement of the hands and the ticking
mechanism inside.

Prompt: Robots move efficiently through a futuristic laboratory, adjusting holographic displays and
conducting experiments, while scientists observe and interact with the high-tech equipment.

Prompt: A robotic arm wielding a glowing sword, battling a shadowy figure in a high-tech dojo,
each strike creating sparks that light up the space.

Prompt: A city skyline reflected in the water, but the reflection shows an alternate world with flying
cars, towering robots, and futuristic architecture.
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| Text-to-Video

Prompt: A dog dressed as a chef, expertly flipping pancakes in a kitchen.

Prompt: A snowboarder performing a dramatic backflip over a frozen lake, landing gracefully and
leaving a trail of sparkling ice dust in the air.
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Text-to-Video

Prompt: A person dancing with their own shadow, which has come to life.

Prompt: A cyclist accelerating out of the saddle during a steep climb.

Prompt: A speed skater accelerating during a short track race.

e
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Text-Image-to-Video

Prompt: Reflections in the window of a train traveling through the Tokyo suburbs.

Reference Image

Prompt: The Glenfinnan Viaduct is a historic railway bridge in Scotland, UK, that crosses over the
west highland line between the towns of Mallaig and Fort William. It is a stunning sight as a steam
train leaves the bridge...

Reference Image

Prompt: The camera follows behind a white vintage SUV with a black roof rack as it speeds up a
steep dirt road surrounded by pine trees on a steep mountain slope, dust kicks up from it’s tires, the
sunlight shines on the SUV...

Reference Image

Prompt: Photorealistic closeup video of two pirate ships battling each other as they sail inside a cup

of coffee.

Reference Image
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Text-Image-to-Video

Prompt: A litter of golden retriever puppies playing in the snow. Their heads pop out of the snow,
covered in.

Reference Image

Prompt: An adorable happy otter confidently stands on a surfboard wearing a yellow lifejacket,
riding along turquoise tropical waters near lush tropical islands, 3D digital render art style.

Reference Image

Prompt: A dog dressed as a chef, expertly flipping pancakes in a kitchen.

Reference Image
Prompt: A skeleton wearing a flower hat and sunglasses dances in the wild at sunset.

Reference Image
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Text-Image-to-Video

Prompt: The video features a central spacecraft with a predominantly white and gray color scheme,
accented with red and black details. It has a sleek, angular design with multiple protruding elements
that suggest advanced technology...

Reference Image

Prompt: The video begins with a dark space background, dotted with stars, and a central object that
appears to be a spacecraft with a glowing blue light at its core. The spacecraft is detailed with
various components...

Reference Image

Prompt: Robots move efficiently through a futuristic laboratory, adjusting holographic displays and
conducting experiments, while scientists observe and interact with the high-tech equipment.

Reference Image

Prompt: The video presents a serene scene with a group of camels walking in a line across a desert

landscape. The camels are adorned with colorful saddles and are led by a person wearing a green
garment. The background features a clear sky...

Reference Image
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Text-Image-to-Video

Prompt: A crab made of different jewlery is walking on the beach. As it walks, it drops different
Jjewelry pieces like diamonds, pearls, etc.

Reference Image

Prompt: The video captures a single sea turtle with a patterned shell and flippers, swimming in a
clear blue underwater environment. The turtle moves gracefully over a bed of coral reefs, which
exhibit a variety of colors...

Reference Image

Prompt: A mesmerizing video of a jellyfish moving through water, with its tentacles flowing
gracefully.

Reference Image

Prompt: A video of a diver creating bubbles underwater, with bubbles rising and interacting with
each other.

Reference Image
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Text-Image-to-Video

Prompt: The individual in the video is dressed in a blue protective suit with a hood, a mask with a
filter, and white gloves. They are holding a spray bottle in one hand and a spray nozzle in the other...

v
ir
J

Reference Image

Prompt: The video captures a bustling city street scene during the evening. The sky is overcast, and
the street is wet, reflecting the lights from the vehicles and buildings. The buildings are tall with
modern architecture...

Reference Image

Prompt: The video presents a series of images capturing the Colosseum from an aerial perspective
during the evening. The ancient amphitheater is illuminated by artificial lighting, which highlights its
circular shape and the arches...

Reference Image

Prompt: The video features two dogs, one with a predominantly white coat and the other with a mix
of black, brown, and white fur. Both dogs are adorned with accessories; the white dog wears a red
tie, while the other sports a purple bow tie...

Reference Image
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