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Abstract

Test-time adaptation with pre-trained vision-language models shows impressive
zero-shot classification abilities, and training-free methods further improve the
performance without any optimization burden. However, existing training-free
test-time adaptation methods typically rely on entropy criteria to select the visual
features and update the visual caches, while ignoring the generalizable factors,
such as shape-sensitive and style-insensitive factors. In this paper, we propose a
novel shape and style guidance method (SSG) for training-free test-time adaptation
in vision-language models, aiming to highlight the shape-sensitive (SHS) and style-
insensitive (STI) factors. Specifically, SSG perturbs the raw test image with shape
and style corruption operations, and measures the prediction difference between
the raw and corrupted ones as perturbed prediction difference (PPD). Based on
the PPD measurement, SSG reweights the high-confidence visual features and
corresponding predictions, aiming to highlight the effect of SHS and STI factors
during the test-time procedure. Furthermore, SSG takes both PPD and entropy
into consideration to update the visual cache, aiming to maintain the stored sample
with high entropy and generalizable factors. Extensive experimental results on
out-of-distribution and cross-domain benchmark datasets demonstrate that our
proposed SSG consistently outperforms previous state-of-the-art methods while
also exhibiting promising computational efficiency.

1 Introduction

Vision-language models (VLMs) have demonstrated impressive effectiveness in downstream vision
tasks, such as classification and generation. As the representative model, CLIP [1] is trained on
extensive noisy image-text pairs to achieve multi-modality alignment, and leverages the learned
embedding space to enable zero-shot image classification. Through the learned embedding space,
images can be directly recognized by matching image features with text embeddings from different
classes. Nevertheless, CLIP still faces challenges when encountering domain and distribution
shifts during test-time inference. As a common real-world scenario, out-of-distribution (OOD)
issues compromise CLIP’s ability to maintain consistent cross-modal feature alignment, resulting in
degraded performance.

To mitigate the out-of-distribution issues, test-time adaptation is introduced to improve the model’s
generalization ability. Test-time adaptation only demands the unlabeled data stream to adapt the
model during inference, which is beneficial for real-world utilization. Recently, along with the
rapid development of large-scale vision-language models, studies about the test-time adaptation of
vision-language models have been popular. As a pioneering work, Test-time Prompt Tuning [2]
(TPT) is proposed to learn an adaptive prompt from the single test data, which is built on random
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augmentations and self-entropy optimization. Following TPT, DiffTPT [3] brings in diffusion-based
augmentations to provide more various views of the single data, thus facilitating better prompt
tuning during test time. Although such prompt tuning methods show promising performance in
terms of test-time adaptation, they require gradient descent to optimize learnable prompts which is
time-consuming with large overhead, especially for large-scale vision-language models, and thus
infeasible in some computationally constrained scenarios.

Different from prompt tuning, training-free methods utilize memory banks or caches to store the high-
quality test samples and make use of these stored caches to improve the model’s prediction adaptively.
Taking TDA [4] as an example, it constructs a dynamic key-value cache with the pseudo labels of
a stream of test samples as values and the corresponding extracted features as keys. During the
test-time procedure, TDA exploits the valuable knowledge encoded in CLIP based on augmentations
and entropy selection, while maintaining the cache update through historical entropy comparison.
Then TDA produces output predictions based on the similarity between the test sample and stored
data in dynamic caches. Compared with prompt tuning methods, training-free methods do not involve
backpropagation optimization thus improving the inference efficiency obviously. However, existing
training-free test-time adaptation methods typically focus on the entropy criteria, including using
entropy to select the high-confidence samples from augmented views and updating the visual caches
through entropy comparison, thus ignoring the exploration of generalizable factors which is important
in the field of transfer learning.

In the field of transfer learning, generalizable factors, such as shape-sensitive factors and style-
insensitive factors, are beneficial for models against domain shifts. Geirhos [5] conducts large-scale
experiments and verifies the advantages of shape-sensitive factors to improve the model’s robustness
and transfer ability. MixStyle [6] proposes to force the model to learn style-insensitive factors by
randomly mixing instance style statistics, which promotes the model’s classification accuracy in
domain generalization. DeYO [7] claims to combine the commonly positively-corelated with label
factors with entropy to assist the backpropagation optimization of single-modality models such
as ResNet18/ResNet50. However, vision-language models face the dual-modality misalignment,
and generalizable factors have not been explored in the field of test-time adaptation in large-scale
vision-language models such as CLIP, especially for the training-free methods.

In this paper, we propose shape and style guidance (SSG) method, which is the first exploration
of generalizable factors for the training-free test-time adaptation in vision-language models. First
of all, we demonstrate the benefits of generalizable factors from the perspective of disentangled
theoretical analysis, and then design SSG to exploit shape-sensitive (SHS) and style-insensitive (STI)
factors to represent generalizable factors. SSG proposes perturbation prediction difference (PPD) to
determine SHS and STI factors quantitatively. Specifically, SSG perturbs the shape/style of test-time
images efficiently, and measures the prediction difference between the raw image and the perturbed
one as the PPD. Then, based on the PPD, SSG reweights the high-confidence visual features and
corresponding predictions, aiming to highlight the effect of SHS and STI factors during the test-time
procedure. Meanwhile, PPD can be utilized to cast as the cache criteria with entropy to update the
dynamic visual cache, and the sample with lower entropy and higher PPD is stored in the visual
cache, which means not only high confidence but also high SHS and STI factors are considered. We
conduct comprehensive experiments on out-of-distribution and cross-domain benchmarks with two
representative CLIP backbones ResNet-50 and ViT-B/16. Experimental results show SSG obviously
outperforms state-of-the-art methods, while maintaining promising test-time inference efficiency.

2 Related Work

Vision-Language Models. Vision-Language Models have shown impressive generalization abilities
through contrastive pre-training with numerous text-image pairs [1, 8–10]. CLIP [1] works by
harmoniously aligning 400 million image-text pairs to predict the most relevant text description for
a given image. Recently, adapting CLIP for downstream applications has garnered considerable
attention and has been widely explored in various approaches [11–16]. Among these, CoOp [11]
introduces the concept of learnable prompts [17–20], while CoCoOp [12] further refines these
prompts by conditioning them on image embeddings to achieve better generalization. Maple [21], on
the other hand, applies to prompt to both the vision and language branches, thereby enhancing the
alignment between multimodal embeddings. These advancements have improved performance, yet
they still require training on the target data with ground-truth labels. Differently, SSG aims to explore
test-time adaptation, yet they still require training on the target data with ground-truth labels.
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Test-Time Adaptation. Tent [22] minimizes generalization error on shifted data by employing
test-time entropy minimization. Specifically for vision-language models, Test-time Prompt Tuning
(TPT) [2] dynamically optimizes prompts during evaluation to improve zero-shot generalization.
TPT works by generating multiple augmented versions of a test sample and minimizing the entropy
of the model’s predictions across these versions to ensure consistent results. Recent advancements
like DiffTPT [3] leverage diffusion models to create semantically consistent augmented images for
entropy minimization, while PromptAlign [23] aligns token statistics between test samples and the
source distribution. TPS [24] adjusts per-class prototypes within the embedding space, and adapts by
learning a shift vector for each prototype. DPE [25] proposes the dual-modality prototype learning
for the test-time adaptation in vision-language models. However, these methods necessitate gradient
descent operations on augmented images, posing significant computational and time challenges.

Recently, training-free test-time adaptation is popular which uses the cache model to facilitate the
prediction of test samples in a non-parametric manner. Methods such as T3A [26] utilize prototypes
as downstream classifiers, dynamically adjusting their weights to improve performance. For vision-
language models, TDA [4] introduces both positive and negative caches to obtain high-quality
test samples from the target domain. BoostAdapter [27] introduces the instance-aware boosting
samples through the augmentation operations based on TDA. However, current training-free test-time
adaptation methods in vision-language models typically ignore the generalizable factors such as
shape-sensitive and style-insensitive factors, and we bring them into this field for the first time.

3 Method

3.1 Preliminaries

Zero-Shot CLIP. CLIP consists of two pre-trained parallel encoders, a visual encoder Ev and a
textual encoder Et. For a C-class classification task, CLIP extracts the visual feature ftest from a
single test image xtest and extracts textual features WT

C from C class-specific prompts. Then CLIP
performs zero-shot predictions by computing the similarities between ftest and WT

C as

P (ftest) = ftestW
T
C. (1)

Training-Free Test-Time Adaptation. To avoid the heavy optimization burden while achieving
promising performance, training-free test-time adaptation methods typically maintain a dynamic
visual cache, which stores few-shot high-quality samples’ visual features as keys Q and corresponding
pseudo-labels as values L̂. Given the test-time visual feature ftest, the adapted predictions can be
calculated by the stored cache as

Pcache (ftest) = A
(
ftestQ

T
)
L̂, (2)

where A(z) = α exp(−β(1− z)) is an adaptation function with a weighting factor α and a sharpness
ratio β in [13]. The final prediction is the combination of raw prediction P (ftest) and the adapted
prediction Pcache (ftest).

The Effect of Entropy. As discussed in Sec.1, existing training-free test-time adaptation methods
focus on entropy criteria to obtain the visual features and construct the visual cache, and we describe
the effect of entropy in detail.

First, entropy involves the generation of visual features ftest. As presented in TPT [2], considering the
test-time image xtestis single, current methods typically augment the single image to various views
as {x1

test, ..., x
K
test}, then obtain the corresponding visual features {f1

test, ..., f
K
test} and prediction

{P (f1
test), ..., P (fK

test)}. Then, entropy is utilized to select the high-confidence samples, which
means features with lower entropy of prediction are selected. We term the selected visual features as
Fe = {f1∗

test, ..., f
k∗
test} and prediction as Pe = {P (f1∗

test), ..., P (fk∗
test)}. The test-time visual feature

ftest and corresponding prediction P (ftest) is the average of entropy-selected Fe and Pe. Training-
free test-time adaptation methods such as TDA [4] basically follow the above procedure to maintain
promising performance. Though it is reasonable not to use augmented views in test-time adaptation,
the performance can easily suffer by the complicated samples without various augmentation and
entropy-based selection.

Second, entropy involves the update of the dynamic visual cache. Considering the visual cache’s
capacity is limited, entropy is selected as the cache criteria to determine which sample should be
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Figure 1: The generation of Permuted Prediction Difference (PPD). PPD consists of PPDst and
PPDsh, which is used to determine shape-sensitive and style-insensitive factors quantitatively. SSG
proposes to perturb the shape of test-time images and measure the prediction difference as PPDsh,
where the perturbation is the patch-shuffle of image content. Meanwhile, SSG perturbs the style
of test-time images and measures the prediction difference as PPDst, where the perturbation is the
colour affine transformation with hue adjustment.

stored. Specifically, the current test-time sample compares its entropy H(ftestW
T
C) with stored

samples’ entropy H(qentW
T
C) in the visual cache, where H denotes the entropy function and qent is

the ’uncertain’ key in visual cache [4]. The lower entropy sample’s visual feature and pseudo-label
will be stored finally. Through the entropy comparison, the high-confidence sample is maintained in
the visual cache.

Although entropy plays an important role in existing training-free test-time adaptation methods
in VLMs, generalizable factors are totally ignored in the whole procedure, which can be proved
beneficial as depicted below.

Theoretical Analysis about Generalizable Factors. As claimed in Sec.1, generalizable factors
are beneficial for transfer learning. Following the previous works [7, 28], we give the theoretical
analysis of the generalizable factors’ important roles under the training-free test-time adaptation in
vision-language models.

From the previous work [7], we can obtain that there is a disentangled latent vector v(x) =
(v1(x), · · · , vdv

(x)) corresponding to the input image xtest and feature ftest. For convenience,
we assume vi ∈ [0, 1] and focus on binary classification, where label y ∈ {−1, 1}. Then we can
define corrtrain

i = corr
(
ytrain, vtrain

i

)
is the correlation between the train label ytrain and the i-th factor

vtrain
i corresponding to xtrain , we can define corrtest

i = corr (ytest, vtest
i ) as the same way. After that,

we can obtain different partitions from v based on above correlations:

vpp =
{
vi | corrtrain

i > 0, corrtest
i > 0

}
,vpn =

{
vi | corrtrain

i > 0, corrtest
i ≤ 0

}
. (3)

We regard vpp as the generalizable factors which are commonly positively-correlated with the label,
and vpn as the spurious factors which are only positively-correlated with the label during the training-
time. As a result, we have a theoretical conclusion that a sample x ∈ X test is a harmful sample for
training-free test-time adaptation in the vision-language model if it satisfies the following condition:

vpp(x) ·
(
Ex′∼X test

+1

[
vpp

(
x′)]− Ex′∼X test

−1
[
[
vpp

(
x′)])

+ vpn(x) ·
(
Ex′∼X test

+1

[
vpn

(
x′)]−Ex′∼X test

−1

[
vpn

(
x′)])<0,

(4)

where X test
y = {x | (x, y) ∈ Dtest , y = y}. Though we get the basically same conclusion as shown

in [7], we give the insightful proof process, which is specially designed for training-free scenarios and
is different from the case of entropy optimization. The detailed proof is provided in the Appendix.

From the Eq. 4, we can obtain that the sample with high confidence can be harmful, thus generalizable
factors vpp should be highlighted and spurious factors vpn should be avoided, which approves the
claims about the benefits of generalizable factors for training-free test-time adaptation in VLMs.
Detailed analysis can be found in the Appendix.

4



𝐏𝐏𝐃

𝑓!"#!

1. Logits的颜⾊换好，和主图保持⼀致

…

Dynamic Visual Cache

Cache Keys
(Visual Features)

… …

Cache Values
(Class Labels)

Class_{1}

Class_{i}

𝑓!"#!

Entropy

Pseudo 
Label

Entropy Pseudo 
Label

Cache Update

𝑓!"#!
*

Dynamic Visual 
Cache

Fi
na

l P
re

di
ct

io
n

ℙ"

𝐏𝐏𝐃

Ad
ap

te
d 

Pr
ed

ic
tio

n

Cache Criteria
(Entropy & )𝐏𝐏𝐃

𝑃(𝑓!"#!) 𝑃(𝑓!"#!)

𝔽"

Figure 2: The effect of Permuted Prediction Difference (PPD). First, based on PPD, SSG reweights
the entropy-selected augmented visual features Fe to get ftest and Pe to get P (ftest), which highlights
the shape-sensitive factors and style-insensitive factors. Second, PPD can be applied with entropy
to cast as the cache criteria during the update of the visual cache, which means that not only high
confidence is considered, but also high shape-sensitive and style-insensitive factors are considered.
Finally, the reweighted visual feature ftest queries the updated dynamic visual cache to obtain the
adapted predictions, and generate the final predictions.

3.2 Shape and Style Guidance (SSG)

To highlight the generalizable factors, we leverage the prominent shape-sensitive [5] and style-
insensitive factors [6] to represent them. In detail, we design shape and style guidance (SSG) to
bring in the shape-sensitive and style-insensitive factors. First, SSG designs measurement methods to
determine shape-sensitive and style-insensitive factors quantitatively. Then, SSG utilizes the designed
measurement to affect the training-free test-time adaptation procedure in addition to entropy criteria.
It is worth mentioning that we consider the test-time adaptation procedure with augmented images
for the general case.

Shape-Sensitive Factors Measurement. To determine the shape-sensitive factors, SSG proposes to
perturb the shape of test-time images first, and measure the prediction difference between the raw
image and the perturbed one. The larger the difference is, the more the test-time image is affected
by shape-sensitive factors. Specifically, given the augmented images {x1

test, ..., x
K
test}, SSG utilizes

the shape perturbation to obtain the corrupted images {x̂1
test, ..., x̂

K
test}. By the way, considering

the simplicity and effectiveness, SSG chooses the patch-shuffle operation to permute the image,
which corrupts the shape of the object but preserves local information [7, 29]. We also utilize the
entropy to select the high-confidence visual features F̂e and prediction as P̂e. After that, based on the
pseudo-label from raw prediction, we measure the difference between the raw prediction Pe and the
perturbed one P̂e, and term it as Shape Perturbed Prediction Difference (PPDsh) as

PPDsh

(
Pe, P̂e

)
=

(
Pe − P̂e

)
y
, (5)

where y represents the prediction of a specific class according to the pseudo-label from the raw
prediction.

Style-Insensitive Factors Measurement. Besides the shape-sensitive factors, SSG also proposes
to determine the style-insensitive factors. Following the same way, SSG perturbs the style of
the test-time image, and measures the prediction difference. The smaller the difference is, the
more the test-time image is affected by style-insensitive factors. Specifically, SSG utilizes the style
perturbation to obtain the corrupted images {x̃1

test, ..., x̃
K
test}. Though other advanced style translation

operations such as instance statistic permutation or fourier-based style translation can be applied,
SSG chooses the efficient colour transformation along with hue adjustment to perturb the style of the
image, considering the efficiency of test-time adaptation. After the entropy selection and difference
measurement in the same way, SSG obtains the Style Perturbed Prediction Difference (PPDst)

PPDst

(
Pe, P̃e

)
=

(
Pe − P̃e

)
y
. (6)

After obtaining the PPDsh and PPDst measurements, SSG combines them as Perturbed Prediction
Difference (PPD) to influence the training-free test-time adaptation procedure. Because SSG aims to
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highlight the shape-sensitive and style-insensitive factors, PPD is calculated as

PPD (Pe) = PPDsh

(
Pe, P̂e

)
− PPDst

(
Pe, P̃e

)
. (7)

The whole and detailed process of obtaining PPD is shown in Fig. 1, along with the specific operations
in PPDsh and PPDst.

The Effect of PPD. As shown in Fig. 2, PPD can be deeply influenced the training-free test-time
adaptation procedure in VLMs. First, SSG reweights the entropy-selected augmented visual features
Fe by PPD to get ftest, rather than the simple average operation as stated before, shown as

ftest =

k∗∑
i=1∗

PPD (Pe)i ∗ f
i∗
test. (8)

It is noticeable that PPD in Eq. 8 is processed by the softmax normalization to maintain the raw feature
scale. Meanwhile, the same operation can be applied to entropy-selected augmented prediction Pe.
Through the above operations, SSG highlights the shape-sensitive and style-insensitive factors in
high-confidence samples, which can further improve the model’s generalization ability during the test
time.

Second, PPD can be applied with entropy to cast as the cache criteria during the update of the visual
cache, such as H(ftestW

T
C) − PPD. It means that not only high-confidence is considered, but

also high shape-sensitive and style-insensitive factors are considered. Meanwhile, the stored visual
feature also obtains the generalizable factors as shown in Eq. 8, which further boosts the test-time
performance. Finally, the reweighted visual feature ftest queries the updated dynamic visual cache to
obtain the adapted predictions, and generate the final predictions.

4 Experiments

4.1 Experimental Settings

Datasets. We follow previous works [2, 3] to evaluate our method on two benchmarking scenarios, in-
cluding out-of-distribution benchmark and cross-domain benchmark. Out-of-distribution benchmark
aims to evaluate the model’s robustness to natural distribution shifts on 4 ImageNet [30] vari-
ants, including ImageNet-A [31], ImageNet-V2 [32], ImageNet-R [33], and ImageNet-Sketch [34].
The cross-domain benchmark aims to evaluate the transferring performance on 10 diverse recog-
nition datasets, including FGVCAircraft [35], Caltech101 [36], StandfordCars [37], DTD [38],
EuroSAT [39], Flowers102 [40], Food101 [41], OxfordPets [42], SUN397 [43], and UCF101 [44].
We follow the split in CoOp [11], and more details are shown in Appendix.

Baselines. We first compare SSG with the zero-shot CLIP prediction along with the ensemble version
of 80 hand-crafted prompts from [1]. Then, we compare our method SSG with test-time adaptation
approaches for CLIP. For the prompt tuning methods, we compare SSG with TPT [2], DiffTPT [3],
and PromptAlign [45]. We also compare with recent prototype learning methods including TPS [24]
and DPE [25]. For the training-free methods, we compare SSG with TDA [4], DMN-ZS [46] and
BoostAdapter [27] with promising performance. Besides the test-time adaptation methods, we also
show the performance of the representative work CoOp [11], Co-CoOp [12] and Maple [21].

Implementation Details. We adopt two types of backbone including ResNet-50 [47] and ViT-
B/16 [48] as the visual encoder of CLIP. Following TPT [2] and TDA [4], we set the batch size as
1 and generate 63 augmented views for each test image, while setting the k∗ as the top-10%. All
experiments are conducted on a single 24GB NVIDIA RTX 4090 GPU. We build our SSG on the
naive cache-based method, which only contains the positive cache and can be considered as the
TDA [4] without a negative cache. For the cache implementation details, we follow the TDA [4]
default setting for the positive cache. Specifically, the utilised cache in SSG is a dynamic key-value
cache, whose memory size is 3 for all datasets. Considering our SSG is plug and play for existing
training-free methods, so we also provide the enhanced version by combining BoostAdapter with
SSG as the new version SSG+.
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Table 1: Performance comparisons on out-of-distribution benchmark. We present top-1 accuracy(%)
and employ both ResNet-50 and ViT-B/16 visual backbones of CLIP. The best results are highlighted
in bold, and the second best results are highlighted in underline. The standard deviation is in brackets

Method ImageNet-A ImageNet-V2 ImageNet-R ImageNet-S OOD Average
CLIP-ResNet-50 [1] 21.83 51.41 56.15 33.37 40.69
Ensemble 23.24 52.91 60.72 35.48 43.09
CoOp [11] 23.06 55.40 56.60 34.67 42.43
TPT [2] 26.67 54.70 59.11 35.09 43.89
DiffTPT [3] 31.06 55.80 58.80 37.10 45.69
TDA [4] 30.29 55.54 62.58 38.12 46.63
DMN-ZS [46] 28.57 56.12 61.44 39.84 46.49
TPS [24] 30.48 54.96 62.87 37.14 46.36
DPE [25] 30.15 56.72 63.72 40.03 47.66
BoostAdapter [27] 35.12 56.14 62.66 38.87 48.20
SSG (Ours) 31.54 (0.25) 56.78 (0.18) 63.77 (0.20) 39.11 (0.12) 47.78 (0.19)
SSG+ (Ours) 35.92 (0.22) 57.29 (0.17) 63.91 (0.22) 39.51 (0.11) 49.16 (0.18)
CLIP-ViT-B/16 [1] 47.87 60.86 73.98 46.09 57.20
Ensemble 49.89 61.88 77.65 48.24 59.42
CoOp [11] 49.71 64.20 75.21 47.99 59.28
Co-CoOp [12] 50.63 64.07 76.18 48.75 59.91
TPT [2] 54.77 63.45 77.06 47.94 60.81
DiffTPT [3] 55.68 65.10 75.00 46.80 60.52
PromptAlign [45] 59.37 65.29 79.33 50.23 63.55
TDA [4] 60.11 64.67 80.24 50.54 63.89
DMN-ZS [46] 58.28 65.17 78.55 53.20 63.80
TPS [24] 60.08 64.73 80.27 49.95 63.76
DPE [25] 59.63 65.44 80.40 52.26 64.43
BoostAdapter [27] 64.53 65.51 80.95 51.28 65.57
SSG (Ours) 62.02 (0.14) 65.32 (0.12) 81.33 (0.18) 52.13 (0.13) 65.20 (0.13)
SSG+ (Ours) 65.16 (0.18) 65.84 (0.14) 81.54 (0.15) 52.42 (0.13) 66.24 (0.15)

4.2 Experimental Results

Out-of-distribution Benchmark. As shown in Table 1, we compare our SSG with other state-of-
the-art methods on 4 out-of-distribution ImageNet variants. Compared with test-time prompt tuning
methods TPT, our SSG improves the average accuracy by about 3.9% on the ResNet-50 backbone
and 4.4% on the ViT-B/16 backbone. Compared with prototype learning methods, both our SSG and
SSG+ show superior performance, especially for the ViT-B/16 backbone. It is worth mentioning that,
our SSG does not demand the heavy optimization burden compared with prompt-tuning and prototype
learning methods, while achieving better performance. Compared with the training-free test-time
adaptation method TDA and DMN-ZS, our SSG provides an obvious improvement. Compared with
the current SOTA method BoostAdapter, our SSG almost outperforms it on all datasets except for
ImageNet-A. Meanwhile, our SSG+ further enhances the performance compared with BoostAdapter,
which verifies the effectiveness of our SSG.

Table 2: Comparison results in terms of efficiency
(testing time) and effectiveness (accuracy)

Method Testing Time OOD Accuracy Gain

CLIP [1] ~3 min 57.20 -
TPT [2] 2 h 36 min 60.81 +3.61
DiffTPT [3] >5 h 60.52 +3.32
TDA [4] ~15 min 63.89 +6.69
DPE [25] ~28 min 64.43 +7.23
SSG (Ours) ~15 min 65.20 +8.00

Efficiency Comparison. As the training-free
test-time adaptation methods, the inference ef-
ficiency is an important advantage against other
methods such as test-time prompt learning and
prototype learning methods. Therefore, we com-
pare our SSG with other test-time adaptation
methods for vision-language models. We evalu-
ate different methods on the ImageNet-A dataset
and the experiments are conducted on a single
24GB NVIDIA RTX 4090 GPU. In our SSG,
the extra introduced computations are the shape and style perturbation, but these perturbation opera-
tions are extremely simple and do not bring in heavy computation overhead. Besides, the operations
based on PPD such as reweighting or comparison are also lightweight. The detailed comparison
results are shown in Table 2. Compared with test-time prompt tuning and prototype learning methods,
it is obvious that our SSG shows a significant improvement in terms of testing time due to the design
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Table 3: Performance comparisons on cross-datesets generalization. We also present top-1
accuracy(%) for all methods on two backbones of CLIP. The best results are highlighted in bold.

Method Aircraft Caltech Cars DTD EuroSAT Flower Food101 Pets SUN397 UCF101 Average
CLIP-RN-50 [1] 15.66 85.88 55.70 40.37 23.69 61.75 73.97 83.57 58.80 58.84 55.82
Ensemble 16.11 87.26 55.89 40.37 25.79 62.77 74.82 82.97 60.85 59.48 56.63
CoOp [11] 15.12 86.53 55.32 37.29 26.20 61.55 75.59 87.00 58.15 59.05 56.18
TPT [2] 17.58 87.02 58.46 40.84 28.33 62.69 74.88 84.49 61.46 60.82 57.66
DiffTPT [3] 17.60 86.89 60.71 40.72 41.04 63.53 79.21 83.40 62.72 62.67 59.85
TDA [4] 17.61 89.70 57.78 43.74 42.11 68.74 77.75 86.18 62.53 64.18 61.03
DPE [25] 19.80 90.83 59.26 50.18 41.67 67.60 77.83 85.97 64.23 61.98 61.93
BoostAdapter [27] 18.93 88.48 59.67 43.85 44.40 68.25 78.78 85.75 62.83 64.42 61.54
SSG (Ours) 21.63 90.67 60.75 52.19 43.26 69.02 77.73 86.64 64.23 62.15 62.83
SSG+ (Ours) 22.14 90.68 60.99 52.31 44.58 69.07 78.91 86.32 64.41 64.77 63.42
CLIP-ViT-B/16 23.67 93.35 65.48 44.27 42.01 67.44 83.65 88.25 62.59 65.13 63.58
Ensemble 23.22 93.55 66.11 45.04 50.42 66.99 82.86 86.92 65.63 65.16 64.59
CoOp [11] 18.47 93.70 64.51 41.92 46.39 68.71 85.30 89.14 64.15 66.55 63.88
CoCoOp [12] 22.29 93.79 64.90 45.45 39.23 70.85 83.97 90.46 66.89 68.44 64.63
TPT [2] 24.78 94.16 66.87 47.75 42.44 68.98 84.67 87.79 65.50 68.04 65.10
DiffTPT [3] 25.60 92.49 67.01 47.00 43.13 70.10 87.23 88.22 65.74 62.67 65.47
PromptAlign 24.80 94.01 68.50 47.24 47.86 72.39 86.65 90.76 67.54 69.47 66.92
TDA [4] 23.91 94.24 67.28 47.40 58.00 71.42 86.14 88.63 67.62 70.66 67.53
DPE [25] 28.95 94.81 67.31 54.20 55.79 75.07 86.17 91.14 70.07 70.44 69.40
BoostAdapter [27] 27.45 94.77 69.30 45.69 61.22 71.66 87.17 89.51 68.09 71.93 68.68
SSG (Ours) 30.21 94.93 68.65 56.15 59.91 74.54 86.40 91.58 70.10 69.73 70.24
SSG+ (Ours) 31.97 95.24 69.97 55.47 62.54 74.64 86.99 91.89 70.64 72.69 71.20

of the training-free method. Specifically, the computational efficiency of SSG is more than 8×
times higher than that of TPT and almost 2× times higher than that of DPE, while improving the
performance about 4.4% and 0.8%. Though SSG still gives a slower testing time compared with
zero-shot CLIP, it obtains obvious OOD accuracy improvement of about 8.0%.

It is worth mentioning that, SSG applies the shape/style perturbation to the raw input images before
the model forward procedure, and we concatenate them into a batch to feed into the model, thus the
forward passes can be shared and maintain the forward time nearly unchanged. Meanwhile, due to the
design of a triple number of inputs per sample to share the forward process for maintaining inference
time, our SSG consumes more memory usage (3862 MiB) compared with TDA (3098 MiB). Our
SSG increases the memory usage within an acceptable scope, as both 3862MiB and 3098MiB are
generally considered to be acceptable memory usage ranges (< 4GB) in most practical scenarios.
Thus, our SSG achieves a modest trade-off given the gains in accuracy and comparable inference
time. Compared with DPE (9986 MiB), our SSG shows an obviously lower memory usage (3862
MiB) while achieving better OOD accuracy, which demonstrates the effectiveness of SSG.

Cross-Domain Benchmark. As shown in Table 3, we compare our SSG with other state-of-the-art
methods on 10 fine-grained cross-domain datasets. Compared with the test-time prompt tuning
methods TPT and DiffTPT, our SSG outperforms them obviously in the average accuracy. Compared
with the prototype learning method DPE, our SSG gives a promising performance without any
parameter optimization. Compared with the BoostAdapter method, our SSG also gives superior
performance on 7 out of 10 datasets, showing the effectiveness of the whole design.

4.3 Ablation Studies

First, we conduct experiments to explore the influence of shape-sensitive and style-insensitive
factors. Second, we conduct experiments to determine the influence of hyperparameters on the shape
perturbation operation. Third, we conduct experiments to explore the effect of the PPD’s operations
including PPD reweighting and comparison.

Shape-Sensitive and Style-Insensitive Factors. SSG aims to bring in generalizable factors to
assist test-time adaptation, thus designing PPDsh and PPDst to measure shape-sensitive and style-
insensitive factors respectively. We conduct experiments to clarify the different effects of PPDsh and
PPDst, along with the full version as PPD shown in Eq. 7. There are three experiments, the first one
only involves the PPDst measurement which means only the style-insensitive factors are brought
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Figure 3: Ablation experiments about important components of SSG. Left: we conduct experiments
to explore the influence of shape-sensitive and style-insensitive factors through PPDsh, PPDst and
PPD measurements. Middle: we conduct experiments to determine the influence of hyperparameters
(patch number) on the shape perturbation operation. Right: we conduct experiments to explore the
effect of the PPD’s operations including PPD reweighting and comparison.

into the test-time adaptation procedure. The second one only considers the shape-sensitive factors
and PPDsh measurement, and the last one is the full model consisting of both PPDsh and PPDst,
which is termed PPD.

We conduct experiments on the ViT-B/16 backbone, and the results on all OOD datasets and the single
ImageNet-V2 are shown in Fig. 3 left. The results show that PPDsh achieves more achievement
than PPDst, which shows that shape-sensitive factors represent better generalizable factors than
style-insensitive factors to some degree. Though style and shape are considered the disentangled
factors in some cases, shape-sensitive factors are more straightforward for the generalizable concept.
But it is worth mentioning that, the full model which utilizes the PPD shows the best performance,
which means the style-insensitive factors are a good complement to shape-sensitive factors.

Hyperparameters in Shape Perturbation Operation. To obtain the PPDsh measurement, SSG
introduces the shape perturbation operation to generate the shape-corrupted images. Specifically,
PPDsh chooses the simple patch shuffle operation as the shape perturbation, and achieves the
promising performance. As the important hyperparameter in patch shuffle, the patch number in the
image is desired to be explored. We choose different patch numbers to conduct experiments on
ViT-B/16, and show the results in Fig. 3 middle. The choice patch numbers range from 2 to 16, which
covers the extreme cases in the regular patch shuffle operation.

According to the accuracy of ImageNet-R and ImageNet-A, we can find the patch number as {4,
6} performs the better performance, both smaller and larger patch numbers decrease the accuracy
obviously, especially for the larger patch number such as 16. We analyze the results from the property
of shape corruption. A small patch number such as 2 may not corrupt the semantic instances due
to the small instance size, so the shape-sensitive factors are not captured well. For the large patch
number of 16, the local information is totally corrupted, thus the prediction is easily affected by many
factors rather than the shape-sensitive factors. Therefore, a proper patch number is demanded when
applying the patch shuffle, and we choose patch number 4 in default for all main experiments, and
the performance shows a stable improvement.

Hyperparameters about the combination between PPDsh and PPDst. For the combination of
PPDsh and PPDst in Eq. 7, considering the training-free methods’ efficiency and no extra learnable
parameters, we combine them in a simple way by the hyperparameter as 1 and achieve the best
performance compared with alone PPDsh/PPDst as shown in Fig. 3. We conduct experiments about
different ratios to combine PPDsh and PPDst, such as rescaling PPDst with 0.5/1.5/2.0 factors to
obtain PPD. The OOD accuracy of SSG varies from 65.20 to 65.11/65.07/65.15. This result shows the
performance range is relatively stable, which shows the robustness of SSG performance. Considering
the situation in actual scenarios, the scale of PPDst can be simply set to 1.0.

The Effect of PPD Operation. Once obtained the PPD measurement, SSG applies it to reweight
the high-confidence samples to generate the test-time visual feature, while assisting the visual cache
selection along with the entropy criteria. To clarify the different effects of these two operations,
we design three ablation experiments. The first one only involves the PPD reweighting, and the
second one only involves the PPD comparison. The third one is the full model with both PPD
reweighting and comparison. We conduct experiments on ViT-B/16, and show the accuracy results
on all OOD datasets and the single ImageNet-S dataset in Fig. 3 right. According to the results,
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Table 4: Comparison results based on the OpenCLIP (ViT-L/14) backbone.

Method ImageNet-A ImageNet-V ImageNet-R ImageNet-S OOD Average

OpenCLIP [49] 53.88 67.69 87.42 63.18 68.13
TDA [4] 61.27 68.42 88.41 64.67 70.69
DPE [25] 61.09 70.83 89.18 66.33 71.86
SSG (Ours) 62.85 69.97 89.67 66.56 72.26

we can find reweighting operation achieves better performance and a combination of them gets the
best performance. It is worth mentioning that PPD comparison for the update of the visual cache is
helpful for the PPD reweighting. It illustrates that even for the single test-time image without any
augmentation, the PPD comparison still contributes to the construct of the visual cache.

SSG on other Vision-Language models. Our SSG can easily be applied to other vision-language
models, and we follow DPE to involve the OpenCLIP (ViT-L/14) [49] as an example for a fair and
public comparison. We show the comparison results in Table 4. We can observe that our SSG still
outperforms training-free TDA by 1.57% on average across 4 datasets, showing that our method
generalizes well to the larger-scale vision-language model.

5 Conclusion

In this work, we propose a novel shape and style guidance (SSG) method for the training-free test-time
adaptation fields in VLMs. SSG first brings the generalizable factors such as shape-sensitive and style-
insensitive factors into the test-time adaptation procedure. To determine the generalizable factors, SSG
designs the shape perturbed prediction difference (PPDsh) and style perturbed prediction difference
(PPDst) measurement, by utilizing the shape perturbation and style perturbation to corrupt the raw
image. Based on the perturbed prediction difference (PPD), SSG reweights the high-confidence
visual features for a better generalizable representation, and introduces PPD as the cache criteria
along with the entropy.

Despite the promising performance of our SSG, it also has some limitations. Though SSG proposes
to explore the generalizable factors, the current utilized shape and style perturbation operation is
straightforward, and more advanced and efficient operations, such as fourier-based or channel-based
methods, can be discussed in the future. At the same time, there are always some tasks (e.g., texture-
based medical image analysis) that depend on style information, and how to explore the generalizable
factors on these tasks is one promising research direction.
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