
Q-Star Meets Scalable Posterior Sampling:
Bridging Theory and Practice via HyperAgent

Yingru Li 1 2 * Jiawei Xu 1 * Lei Han 3 Zhi-Quan Luo 1 2

Abstract
We propose HyperAgent, a reinforcement learn-
ing (RL) algorithm based on the hypermodel
framework for exploration in RL. HyperAgent
allows for the efficient incremental approxima-
tion of posteriors associated with an optimal
action-value function (Q⋆) without the need for
conjugacy and follows the greedy policies w.r.t.
these approximate posterior samples. We demon-
strate that HyperAgent offers robust performance
in large-scale deep RL benchmarks. It can
solve Deep Sea hard exploration problems with
episodes that optimally scale with problem size
and exhibits significant efficiency gains in the
Atari suite. Implementing HyperAgent requires
minimal code addition to well-established deep
RL frameworks like DQN. We theoretically prove
that, under tabular assumptions, HyperAgent
achieves logarithmic per-step computational com-
plexity while attaining sublinear regret, matching
the best known randomized tabular RL algorithm.

1. Introduction
Practical reinforcement learning (RL) in complex environ-
ments faces challenges such as large state spaces and an
increasingly large volume of data. The per-step computa-
tional complexity, defined as the computational cost for the
agent to make a decision at each interaction step, is crucial.
Under resource constraints, any reasonable design of an
RL agent must ensure bounded per-step computation, a key
requirement for scalability. If per-step computation scales
polynomially with the volume of accumulated interaction
data, computational requirements will soon become unsus-
tainable, which is untenable for scalability. Data efficiency

*Equal contribution 1The Chinese University of Hong Kong,
Shenzhen 2Shenzhen Research Institue of Big Data 3Tencent
AI and Robotics X. Correspondence to: Yingru Li <szrlee@
gmail.com or yingruli@link.cuhk.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

in sequential decision-making demands that the agent learns
the optimal policy with as few interaction steps as possible,
a fundamental challenge given the need to balance explo-
ration of the environment to gather more information and ex-
ploitation of existing information (Thompson, 1933; Lai &
Robbins, 1985; Thrun, 1992). Scalability and efficiency are
both critical for the practical deployment of RL algorithms
in real-world applications with limited resources. There
appears to be a divergence between the development of prac-
tical RL algorithms, which mainly focus on scalability and
computational efficiency, and RL theory, which prioritizes
data efficiency, to our knowledge. This divergence raises an
important question:

Can we design a practically efficient RL agent with
provable guarantees on efficiency and scalability?

1.1. Key Contributions

This work affirmatively answers the posed question
by proposing a novel reinforcement learning algorithm,
HyperAgent, based on the hypermodel framework (Li
et al., 2022; Dwaracherla et al., 2020; Osband et al., 2023b).
We highlight the advantages of HyperAgent below:

• Algorithmic Simplicity. HyperAgent’s implementa-
tion1 requires only the addition of a single module, the
last-layer linear hypermodel, to the conventional DDQN
framework and a minor modification for action selection.
The added module facilitates efficient incremental approx-
imation and sampling for the posteriors associated with
the Q⋆ function. Practically, HyperAgent can be a re-
placement for the ε-greedy method in most of its usecases.
This simplicity contrasts with state-of-the-art methods
for the Atari benchmarks, which often rely on multiple
complex algorithmic components and extensive tuning.

• Practical Efficiency. The HyperAgent algorithm
demonstrates exceptional scalability and efficiency in
challenging environments. Notably, in the Deep Sea ex-
ploration scenario (Osband et al., 2020), it efficiently
solves problems up to 120 × 120 in size with optimal

1We provide the open-source code at https://github.
com/szrlee/HyperAgent.

1

szrlee@gmail.com
szrlee@gmail.com
yingruli@link.cuhk.edu.cn
https://github.com/szrlee/HyperAgent
https://github.com/szrlee/HyperAgent

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

Practice in Deep RL Theory in Tabular RL

Algorithm Tractable Incremental Efficient Regret Per-step Computation

PSRL ✗ ✗ ✗ Õ(H2
√
SAK) O(S2A)

RLSVI ✓ ✗ ✗ Õ(H2
√
SAK) O(S2A)

Ensemble+ ✓ ✓ ● N/A N/A
HyperAgent ✓ ✓ ✓ Õ(H2

√
SAK) Õ(log(K)SA+ S2A)

Table 1. Milestones of RL algorithms evaluated in both practice and theory: PSRL (Strens, 2000; Osband & Van Roy, 2017), RLSVI (Os-
band et al., 2016b; 2019), Ensemble+ (Osband et al., 2018; 2019), and our HyperAgent. In deep RL, ● indicate intermediate outcomes
between ✓ and ✗. In tabular RL, we consider the number of states (S), actions (A), horizons (H), and episodes (K).

episode complexity, as shown in Figure 3. Furthermore,
HyperAgent achieves human-level performance on the
Atari benchmark suite (Bellemare et al., 2013), as detailed
in Figure 1, requiring only 15% of the interaction data
(1.5M interactions) and 5% of the network parameters
necessary for DDQN† (Double Deep Q-Networks, van
Hasselt et al. (2016)) and BBF (Bigger, Better, Faster,
Schwarzer et al. (2023)), respectively. In contrast, En-
semble+ (Osband et al., 2019), a randomized exploration
method, achieves a mere 0.22 IQM score with 1.5M inter-
actions but uses double the parameters of our approach.

• Provable Guarantees. We prove that HyperAgent
achieves sublinear regret in a tabular, episodic setting
with Õ(logK) per-step computation over K episodes.
This performance is supported by an incremental pos-
terior approximation argument central to our analysis
(Lemma 4.1). This argument is proved by a reduction
to the sequential random projection (Li, 2024a).

HyperAgent effectively bridges the theoretical and practi-
cal aspects of RL in complex, large-scale environments. See
Table 1 for representative milestones of the RL algorithms.

1.2. Related Works

The modern development of practical RL algorithms pro-
vides scalable solutions to the challenges posed by large
state spaces and the increasing size of interaction data under
resource constraints. These algorithms’ per-step computa-
tion complexity scales sub-linearly with (1) the problem
size, thanks to function approximation techniques (Bert-
sekas & Tsitsiklis, 1996; Mnih et al., 2015); and (2) the
increasing size of interaction data, due to advancements
in temporal difference learning (Sutton & Barto, 2018), Q-
learning (Watkins & Dayan, 1992), and incremental SGD
with finite buffers (Mnih et al., 2015). These advances
yielded impressive results in simulated environments and at-
tracted significant interest (Mnih et al., 2015; Schrittwieser
et al., 2020). However, data efficiency remains a barrier to
transferring this success to the real world (Lu et al., 2023).

To address data-efficiency empirically, recent deep RL al-
gorithms have incorporated increasingly complex heuristic
and algorithmic components, such as DDQN (van Hasselt

106 107

Parameters ∝ Per-step Computation Costs

0.0

0.2

0.4

0.6

0.8

1.0

#
T

ot
al

In
te

ra
ct

io
n

D
at

a

×107

HyperAgent

DDQN†

Rainbow

EfficientZero BBF
HyperAgentHyperAgent

Figure 1. This evaluation explores the relationship between the
amount of training data required and the model parameters neces-
sary to achieve human-level performance, quantified by a 1.0 IQM
score. It is assessed across 26 Atari games using the Interquartile
Mean (IQM) metric (Agarwal et al., 2021) using recent state-of-
the-art (SOTA) algorithms. The number of parameters is directly
proportional to the computational cost, as they predominantly influ-
ence the calculation during each SGD update per interaction step.
HyperAgent, denoted by ⋆, achieves a 1.0 IQM score with a
comparatively minimal number of interactions and parameters.

et al., 2016), Rainbow (Hessel et al., 2018), EfficientZero
(Ye et al., 2021), and BBF (Schwarzer et al., 2023) whose
details are around Table 3 in Appendix A. Moreover, these
algorithms lack theoretical efficiency guarantees; for exam-
ple, BBF employs ε-greedy exploration, which is provably
data inefficient, requiring an exponential number of samples
(Kakade, 2003; Strehl, 2007; Osband et al., 2019; Dann
et al., 2022). ε-greedy strategy is still popular in practice
due to its simplicity in implementation, requiring very few
additional lines of code. We aim to develop a simple replace-
ment for ε-greedy by HyperAgent for practical concerns
while achieving data efficient exploration with performance
guarantees.

Efficient exploration in reinforcement learning hinges on
decisions driven not only by expectations but also by epis-
temic uncertainty (Russo et al., 2018; Osband et al., 2019).
Such decisions are informed by immediate and subsequent
observations over a long horizon, embodying the concept
of deep exploration (Osband et al., 2019). Among the piv-
otal exploration strategies in sequential decision-making
is Thompson Sampling (TS), which bases decisions on a

2

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

posterior distribution over models, reflecting the degree
of epistemic uncertainty (Thompson, 1933; Strens, 2000;
Russo et al., 2018). In its basic form, TS involves sam-
pling a model from the posterior and selecting an action
that is optimal according to the sampled model. However,
exact posterior sampling remains computationally feasible
only in simple environments–like Beta-Bernoulli and Linear-
Gaussian Bandits, as well as tabular MDPs with Dirichlet
priors over transition vectors–where conjugacy facilitates
efficient posterior updates (Russo et al., 2018; Strens, 2000).

To extend TS to more complex environments, approxima-
tions are indispensable (Russo et al., 2018), encompassing
both function approximation for scalability across large state
spaces and posterior approximation for epistemic uncer-
tainty estimation beyond conjugate scenarios. Randomized
Least-Squares Value Iteration (RLSVI) represents another
value-based TS approach, aiming to approximate posterior
sampling over the optimal value function without explic-
itly representing the distribution. This method achieves
tractability for value function approximation by introducing
randomness through perturbations, thus facilitating deep
exploration and enhancing data efficiency (Osband et al.,
2019). Despite avoiding explicit posterior maintenance,
RLSVI demands significant computational effort to generate
new point estimates for each episode through independent
perturbations and solving the perturbed optimization prob-
lem anew, without leveraging previous computations for
incremental updates. Consequently, while RLSVI remains
feasible under value function approximation, its scalabil-
ity is challenged by growing interaction data, a limitation
shared by subsequent methods (Ishfaq et al., 2021).

Bridging the Gap. The divergence between theoretical
and practical realms in reinforcement learning (RL) is ex-
panding, with theoretical algorithms lacking practical ap-
plicability and practical algorithms exhibiting empirical
and theoretical inefficiencies. Ensemble sampling, as in-
troduced by Osband et al. (2016a; 2018; 2019), emerges
as a promising technique to approximate the performance
of RLSVI. Further attempts such as Incre-Bayes-UCBVI
and Bayes-UCBDQN (Tiapkin et al., 2022) incorporate
ensemble-based empirical bootstraps to approximate Bayes-
UCBVI, which aims to bridge this gap. These methods
maintain multiple point estimates, updated incrementally, es-
sential for scalability. However, the computational demand
of managing an ensemble of complex models escalates, es-
pecially as the ensemble size must increase to accurately
approximate complex posterior distributions (Dwaracherla
et al., 2020; Osband et al., 2023b; Li et al., 2022; Qin et al.,
2022). An alternative strategy involves leveraging a hyper-
model (Dwaracherla et al., 2020; Li et al., 2022) or epistemic
neural networks (ENN) (Osband et al., 2023b;a) to gener-
ate approximate posterior samples. This approach, while

promising, demands a representation potentially more intri-
cate than simple point estimates. The computational over-
head of these models, including ensembles, hypermodels,
and ENNs, is theoretically under-explored. More discussion
of related works can be found in Appendix A.

2. Reinforcement Learning & Hypermodel
We consider the episodic RL setting in which an agent in-
teracts with an unknown environment over a sequence of
episodes. We model the environment as a Markov Decision
Problem (MDP)M = (S,A, P, r, sterminal, ρ), where S is
the state space, A is the action space, terminal ∈ S is the
terminal state, and ρ is the initial state distribution. For each
episode, the initial state S0 is drawn from the distribution
ρ. At each time step t = 1, 2, . . . within an episode, the
agent observes a state St ∈ S. If St ̸= sterminal, the agent
selects an action At ∈ A, transits to a new state St+1 ∼
P (· | St, At), with reward Rt+1 = r(St, At, St+1). An
episode terminates once the agent arrives at the terminal
state. Let τ be the termination time , i.e., Sτ = sterminal.
A policy π : S → A maps a state s ∈ S to an action
a ∈ A. For each MDPM and each policy π, we define the
associated action-value function as

Qπ
M(s, a) := EM,π

[
τ∑

t=1

Rt | S0 = s,A0 = a

]
,

where the subscript π under the expectation indicates that
actions over the time periods are selected according to the
policy π. Let V π

M(s) := Qπ
M(s, π(s)). We further define

the optimal value function V ⋆
M(s) = maxπ V

π
M(s) for all

s ∈ S where it takes the maximum on optimal policy π∗.
Optimal policy also corresponds to the optimal action-value
function, denoted Q⋆ and defined as

Q⋆(s, a) = Qπ∗

M(s, a) ∀(s, a) ∈ S ×A. (1)

In the reinforcement learning problem, the agent is given
knowledge about S,A, r, sterminal, and ρ, but is uncertain
about transition P . The unknown MDPM, together with
the unknown transition function P , are modeled as random
variables drawn from a prior distribution. As a consequence,
the optimal action-value function Q⋆ is also a random vari-
able that the agent is uncertain about at the beginning. Thus,
the agent needs to explore the environment and gather infor-
mation to resolve this uncertainty.

2.1. Hypermodel

As maintaining the degree of uncertainty (Russo et al., 2018)
is crucial for data-efficient sequential decision-making, we
build RL agents based on the hypermodel (Li et al., 2022;
Dwaracherla et al., 2020) framework for epistemic uncer-
tainty estimation. The hypermodel takes an input x ∈ Rd

3

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

and a random index ξ ∼ Pξ from a fixed reference distri-
bution, producing an output fθ(x, ξ) that reflects a sample
from the approximate posterior, measuring the degree of
uncertainty. The variation in the hypermodel’s output with
ξ captures the model’s degree of uncertainty about x, pro-
viding a dynamic and adaptable approach to uncertainty
representation. This design, combining a trainable param-
eter θ with a constant reference distribution Pξ, allows the
hypermodel to adjust its uncertainty quantification over time,
optimizing its performance and decision-making capabili-
ties in dynamic environments. (1) For example, a special
case of a linear hypermodel is fθ(x, ξ) = ⟨x, µ + Aξ⟩
with θ = (A ∈ Rd×M , µ ∈ Rd) and Pξ = N(0, IM),
which is essentially the Box-Muller transformation: one
could sample from a linear-Gaussian model N(x⊤µ, x⊤Σx)
via a linear hypermodel if AA⊤ = Σ. (2) Another spe-
cial case is the ensemble sampling: with a uniform distri-
bution Pξ = U(e1, . . . , eM) and an ensemble of models
θ = A = [θ̃1, . . . , θ̃M] ∈ Rd×M such that θ̃m ∼ N(µ,Σ),
one can uniformly sample from these ensembles by a form
of hypermodel fθ(x, ξ) := ⟨x,Aξ⟩. In general, the hyper-
model fθ(·) can be any function approximator, e.g., neural
networks, transforming the reference distribution Pξ to an
arbitrary distribution. We adopt a class of hypermodel that
can be represented as an additive function of a learnable
function and a fixed prior model (additive prior assumption),

fθ(x, ξ)︸ ︷︷ ︸
“Posterior” Hypermodel

= fL
θ (x, ξ)︸ ︷︷ ︸

Learnable function

+ fP (x, ξ)︸ ︷︷ ︸
Fixed prior model

(2)

The prior model fP represents the prior bias and prior un-
certainty, and it has no trainable parameters. The learnable
function is initialized to output values near zero and is then
trained by fitting the data. The resultant sum fθ(x, ·) pro-
duces reasonable predictions for all probable values of ξ,
capturing epistemic uncertainty. This additive prior assump-
tion can be validated under linear-Gaussian model (Osband
et al., 2018), also related to Matheron’s rule (Journel & Hui-
jbregts, 1976; Hoffman & Ribak, 1991; Doucet, 2010) with
applications in Gaussian processes (Wilson et al., 2020).

As described in Figure 2, we design the hypermodel for
feed-forward neural networks (NN) with the last-layer lin-
ear hypermodel assumption: the degree of uncertainty
can be approximated by a linear hypermodel fθ(·, ξ) =
⟨ϕw(·), wpredict(ξ)⟩ over the last-layer wpredict(ξ) =
Aξ + b. This new assumption is unconventional to the liter-
ature (Dwaracherla et al., 2020; Li et al., 2022; Osband et al.,
2023b), and can be validated when the hidden-layer feature
mapping ϕw(·) is fixed through the learning process, as
proved in Section 4. We discuss the details of the last-layer
linear hypermodel and clarify the critical differences and
advantages compared with prior works in Appendix C.3.

Hidden-Layers
𝜙!(⋅)

Last-
LayerInput 𝑥

𝑃𝜉 ∼ Index 𝜉

Feed-forward NN

𝑤"#$%&'((𝜉)Hypermodel

𝑓)(𝑥, 𝜉)

Figure 2. Last-layer linear hypermodel.

3. Algorithm design
We now describe HyperAgent, a DQN-type algorithm for
large-scale complex environments. HyperAgent consists
of three key components:

1. A hypermodel that maintains an approximate distribution
over optimal value function Q⋆.

2. An incremental update mechanism to update the hyper-
models.

3. An index sampling scheme that uses the hypermodels for
exploration.

In the context of reinforcement learning, we define the
action-value function with hypermodel as fθ : S×A×Ξ→
R parameterized by θ, where Ξ is the index space. As we
introduce random index following reference distribution Pξ

as an input, the fθ is essentially a randomized value func-
tion. Under the last-layer linear hypermodel assumption, we
define the action-value function fθ(s, a, ξ) as

⟨A(a)ξ + b(a), ϕw(s)⟩︸ ︷︷ ︸
Learnable fL

θ (s,a,ξ)

+ ⟨A(a)
0 ξ + b

(a)
0 , ϕw0

(s)⟩︸ ︷︷ ︸
Fixed prior fP (s,a,ξ)

(3)

where θ includes a set of learnable parameters
{w,A(a), b(a)} and fixed parameters {w0,A

(a)
0 , b

(a)
0 }

for each action a ∈ A. The action-value function fθ
based on the hypermodel is then trained by minimizing
the loss function motivated by fitted Q-iteration (FQI),
a classical method (Ernst et al., 2005) for batch-based
function approximation for optimal action-value Q⋆,
with a famous online extension called DQN (Mnih et al.,
2015). An important notion we introduce that differentiate
HyperAgent to DQN is the index mapping ξ− : S → Ξ.
The index sampling procedure is to produce random
variables ξ−(s) following Pξ for each s ∈ S (line 4) and to
pergorm greedy action selection (line 7). Intuitively, this
procedure introduces noises that are independent across
episodes, and induces diverse exploration behavior.

For training, HyperAgent maintains two hypermodels:
one for the main value function fθ and the other for the tar-
get value function fθ− where θ− is the target parameters. It

4

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

Algorithm 1 HyperAgent

1: Input: Reference Pξ. Perturbation Pz. Buffer D. Initialize θ = θ− = θinit, train step j = 0.
2: for each episode k = 1, 2, . . . do
3: Sample an index mapping ξk(·) ∼ Pξ. Set t = 0 and observe Sk,0 ∼ ρ
4: repeat
5: Select Ak,t = argmaxa∈A fθ(Sk,t, a, ξk(Sk,t))
6: Observe Sk,t+1 from the environment and Rk,t+1 = r(Sk,t, Ak,t, Sk,t+1)
7: Sample perturbation random vector zk,t+1 ∼ Pz; Add (Sk,t, Ak,t, Rk,t+1, Sk,t+1, zk,t+1) to buffer D
8: Increment step counter t← t+ 1; Compute θ, θ−, j ← update(D, θ, θ−, ξ− = ξk, t, j) with Algorithm 2
9: until Sk,t = sterminal

10: end for

also maintains a buffer of transitions D = {(s, a, r, s′, z)},
where z ∈ RM is the algorithmic perturbation vector sam-
pled from the perturbation distribution Pz (described in line
9). Let γ be the discounted factor. We denote the perturbed
temporal difference (TD) loss for a given index ξ and a
transition tuple d as ℓγ,σ(θ; θ−, ξ−, ξ, d), defined as

[r + σξ⊤z+ γmax
a′∈A

fθ−(s′, a′, ξ−(s′))− fθ(s, a, ξ)]
2,

where σ is a hyperparameter to control the variance of al-
gorithmic random perturbation. HyperAgent updates the
hypermodel by minimizing the loss Lγ,σ,β(θ; θ−, ξ−, D) as

Eξ∼Pξ

[∑
d∈D

1

|D|ℓ
γ,σ(θ; θ−, ξ−, ξ, d)

]
+

β

|D| ∥θ∥
2, (4)

where β ≥ 0 is for prior regularization. We optimize the
loss function Equation (4) using SGD with a mini-batch of
data D̃ and a batch of indices Ξ̃ from Pξ. That is, we take
gradient descent w.r.t. the sampled loss L̃(θ; θ−, ξ−, D̃) as

1

|Ξ̃|
∑
ξ∈Ξ̃

∑
d∈D̃

1

|D̃|
ℓγ,σ(θ; θ−, ξ−, ξ, d) +

β

|D| ∥θ∥
2. (5)

Then, the target parameters θ− are periodically updated
to θ. We summarized the HyperAgent in Algorithm 1
where the update function through Equations (4) and (5)
is described in Algorithm 2.

For practitioners, the primal benefits and motivations in-
clude straightforward implementation as a plug-and-play
alternative to DQN-type methods. It can also replace the
ε-greedy exploration strategy. Extending actor-critic type
deep reinforcement learning algorithms to incorporate simi-
lar advantages as in HyperAgent can be readily achieved.

4. Theoretical insights and analysis
In this section, we provide insights on how perturbed TD
loss and index sampling works and why it performs efficient
incremental posterior approximation for optimal value Q⋆

without reliance on conjugacy and faciliates deep explo-
ration. For clarity, we focus on tabular representations when
ϕw(s) = ϕw0

(s) = 1s ∈ R|S| is a fixed one-hot vector.

Tabular setups. Let us define short notations msa =(
A(a)

)⊤
ϕw(s) and µsa =

(
b(a)
)⊤

ϕw(s) for ease of ex-
position. Similarly, define m0,sa and µ0,sa from w0,A

(a)
0

and b
(a)
0 , respectively. Following Equation (3),

fθ(s, a, ξ) = µsa +m⊤
saξ︸ ︷︷ ︸

Learnable fL
θ (s,a,ξ)

+ µ0,sa +m⊤
0,saξ︸ ︷︷ ︸

Fixed Prior fP (s,a,ξ)

where θ = (µ ∈ R|S||A|,m ∈ R|S||A|×M) are the pa-
rameters to be learned; m0,sa := σ0z0,sa where z0,sa ∈
RM is an independent random vector sampled from Pz

and µ0,sa, σ0 are prior mean and prior variance for each
(s, a) ∈ S × A. The regularizer in Equation (4) now be-
comes β∥θ∥2 = β

∑
s,a

(
µ2
sa + ∥msa∥2

)
.

History. Denote the sequence of observations in
episode k by Ok = (Sk,t, Ak,t, Rk,t+1, Sk,t+1)

τk−1
t=0 where

Sk,t, Ak,t, Rk,t+1 are the state, action, and reward at the t-th
time step of the k-th episode, and τk is the termination time
at episode k. We denote the history of observations made
prior to episode k byHk = (O1, . . . ,Ok−1). Without loss
of generality, we assume that under any MDPM and policy
π, the termination time τ < ∞ is finite with probability
1. The agent’s behavior is governed by the agent policy
πagent = (πk)

K
k=1, which uses the history Hk to select a

policy πk = agent(S,A, r,Hk) for the k-th episode.

Therefore, we define some statistics related to the history
Hk. Let Ek = {0, 1, . . . , τk − 1} denote the time index in
episode k and Ek,sa = {t : (Sk,t, Ak,t) = (s, a), t ∈ Ek}
record the time index the agent encountered (s, a) in the
k-th episode. Assume T =

∑K
k=1 |Ek| total interactions

encountered within K episodes. Let Nk,sa =
∑k−1

ℓ=1 |Eℓ,sa|
denote the counts of visitation for state-action pair (s, a)
prior to episode k. For every pair (s, a) with Nk,sa > 0,

5

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

∀s′ ∈ S, the empirical transition up to episode k is

P̂k,sa(s
′) :=

k−1∑
ℓ=1

∑
t∈Eℓ

1(Sℓ,t,Aℓ,t,Sℓ,t+1)=(s,a,s′)

Nk,sa
.

In case Nk,sa = 0, define P̂k,sa(s
′) = 1 for arbitrary s′.

Stochastic Bellman operator. For the ease of explanation,
let us use the vector notation fθ,ξ(s, a) := fθ(s, a, ξ(s)).
Initially, let θ0 := (µ0 = 0,m0 = 0). At episode k,
HyperAgent will act greedily w.r.t. the action-value vec-
tor fθk,ξk

where θk = (µk,mk). That is, the agent chose
policy πk(s) ∈ argmaxa∈A fθk,ξk

(s, a).

Now we explain how HyperAgent performs incremen-
tal updates from θk−1 to θk. Suppose that, at the begin-
ning of episode k, it maintains parameters θ(0)k := θk−1 =
(µk−1,mk−1), the buffer D = Hk, and index mapping
ξ− = ξk. By iteratively solving its objective Equation (4)
with β = σ2/σ2

0 , θ
− = θ

(i)
k and obtaining the closed-

form solution θ
(i+1)
k from i = 0 until converging to θk,

HyperAgent would yield the closed-form iterative up-
date rule (1) mk−1 → mk and (2) θ(i)k = (µ

(i)
k ,mk) →

θ
(i+1)
k = (µ

(i+1)
k ,mk) as follows. Using short notation

m̃k,sa = mk,sa + σ0z0,sa, for all (s, a, k), we have

(Nk,sa + β)m̃k,sa − (Nk−1,sa + β)m̃k−1,sa

=
∑

t∈Ek−1,sa

σzk−1,t+1. (6)

More interestingly, the iterative process on θik, for i =
0, 1, . . . can be described using the following equation

f
θ
(i+1)
k ,ξk

= F γ
k fθ(i)

k ,ξk
, (7)

where F γ
k can be regarded as a stochastic Bellman operator

induced by HyperAgent in episode k: i.e., for any Q-
value function, F γ

k Q(s, a) is defined as

βµ0,sa +Nk,sa(rsa + γV ⊤
Q P̂k,sa)

Nk,sa + β
+ m̃⊤

k,saξk(s), (8)

where VQ(s) := maxa Q(s, a) is the greedy value with
respect to Q. The derivations for Equations (6) to (8) can be
found in Appendix C.4, which are crucial for understanding.

True Bellman operator. Before digging into Equations (6)
to (8), let us first examine the true Bellman operator F γ

M:
when applied to fixed and bounded Q, for any (s, a) ∈ S×A

F γ
MQ(s, a) = rsa + γV ⊤

Q Psa. (9)

Note the true Bellman operator has a fixed point on opti-
mal action-value function, i.e., Q⋆ = F γ

MQ⋆. Since the
transition P is a random variable in our setup, the true

Bellman operator is also a random variable that propagates
uncertainty for Q⋆. As will be discussed in Lemma D.11,
conditioned on the history Hk up to episode k, the poste-
rior variance of then Bellman equation in Equation (9) is
inversely proportion to the visitation counts on (s, a)

Var (F γ
MQ(s, a) | Hk) ∝

1

Nk,sa + β
. (10)

Intuitively, more experience at (s, a) leads to less epistemic
uncertainty and smaller posterior variance on Q⋆(s, a).

Understanding Equation (6). This is an incremental up-
date with computational complexity O(M). A key property
of the hypermodel in HyperAgent is that, with logarith-
mically small M , it can approximate the posterior vari-
ance sequentially in every episode via incremental update
in Equation (6). This is formalized as the key lemma.
Lemma 4.1 (Incremental posterior approximation). For m̃k

recursively defined in Equation (6) with z ∼ U(SM−1). For
any k ≥ 1, define the good event of ε-approximation

Gk,sa(ε) :=
{
∥m̃k,sa∥2 ∈

(
(1− ε)σ2

Nk,sa + β
,
(1 + ε)σ2

Nk,sa + β

)}
.

The joint event ∩(s,a)∈S×A ∩Kk=1 Gk,sa(ε) holds with prob-
ability at least 1− δ if M ≃ ε−2 log(|S||A|T/δ).

A direct observation from Lemma 4.1 is larger M results
in smaller ε, implying more accurate approximation of pos-
terior variance over Q⋆(s, a) using their visitation counts
and appropriately chosen σ. As shown in Appendix D.1, the
difficulty in proving Lemma 4.1 arises from the sequential
dependence among high-dimensional random variables. It
is resolved due to the first probability tool (Li, 2024a) for
sequential random projection. Additionally, in the regret
analysis, we will show constant approximation ε = 1/2 suf-
fices for efficient deep exploration with logarithmic per-step
computation costs. To highlight, Lemma 4.1 also validates
our assumption about the last-layer linear hypermodel in the
special case when the hidden layer feature mapping ϕw(·)
is a fixed one-hot mapping. We leave the exploration of
general setups for ϕw(·) to future work.

Understanding Equation (8). Now, we will argue that
the HyperAgent-induced operator F γ

k is essentially mim-
icking the behavior of the true Bellman operator F γ

M con-
ditioned on history Hk, thus producing an approximate
posterior over Q⋆. As shown in Lemma C.1, the stochas-
tic Bellman operator F γ

k is a contraction mapping and
thus guarantees convergence of Equation (7). It differs
from the empirical Bellman iteration V ⊤

Q P̂k,sa in two ways:
(1) there is a slight regularization toward the prior mean
µ0,sa, and (2) more importantly, HyperAgent adds noise
wk,sa := m̃⊤

k,saξk(s) to each iteration. For a common
choice ξk(s) ∼ Pξ := N(0, IM), the noise wk,sa is Gaus-
sian distributed conditioned on m̃k,sa. Importantly, as

6

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

shown by Lemma 4.1, the variance of the perturbation noise

Varξk
(wk,sa) = ∥m̃k,sa∥2 ∝

1

Nk,sa + β

coincides with the posterior variance of the true Bellman
operator in Equation (10) up to a constant. Incorporating
the Gaussian noise in the Bellman iteration would backprop-
agate the uncertainty estimates and approximate the posteri-
ors associated with the optimal action-value Q⋆, which is
essential to incentivize deep exploration behavior. This is
because the injected noise w from later states with less visita-
tion counts (thus larger variance) will be backpropagated to
initial state by the HyperAgent. A simple illustration on
this efficient deep exploration behavior is in Appendix D.2.

Regret bound. To rigorously justify the algorithmic
insights and benefits, we provide theoretical results for
HyperAgent with tabular representation and hyperparam-
eters for update specified in Table 6. Denote the regret of a
policy πk over episode k by ∆k := V ⋆

M(sk,0)−V πk

M (sk,0).
Maximizing total reward is equivalent to minimizing the
expected total regret: Regret(K, agent) := E

∑K
k=1 ∆k.

Theorem 4.2. Under Assumptions D.7 and D.8 with β ≥
3, if the Tabular HyperAgent is applied with planning
horizon H , and parameters with (M,µ0, σ, σ0) satisfying

M = O(1) · log(SAHK) = Õ(logK),

(σ2/σ2
0) = β, σ ≥

√
6H and minsa µ0,sa ≥ H , then

∀K ∈ N, Regret(K,HyperAgent) is upper bounded by

18H2
√
βSAK log+(1 + SAHK) log+ (1 +K/SA) ,

where log+(x) = max(1, log(x)). The per-step computa-
tion of HyperAgent is O(S2A+ SAM).

Remark 4.3. The time-inhomogeneous MDP is a common
benchmark for regret analysis in the literature, e.g., (Azar
et al., 2017; Osband et al., 2019). For notation unifica-
tion with Table 1, as explained in Assumption D.7, |S| =
SH, |A| = A and τ = H almost surely. Assumption D.8
is common in the literature of Bayesian regret analysis (Os-
band et al., 2019; Osband & Van Roy, 2017; Lu & Van Roy,
2019). The regret bound Õ(H2

√
SAK) of HyperAgent

matches the best known Bayesian regret bound, such as
those of RLSVI (Osband et al., 2019) and PSRL (Osband
& Van Roy, 2017), while HyperAgent provides the com-
putation and scalability benefits that RLSVI and PSRL do
not have, as discussed in Section 1 and Table 1. On the
other hand, most practically scalable algorithms, including
recent BBF (Schwarzer et al., 2023), use ε-greedy, which is
provably data-inefficient without sublinear regret guarantees
in general (Dann et al., 2022). As shown in Table 1, a recent
concurrent work claims LMC-LSVI (Ishfaq et al., 2024) is
practical and provable but suffers Õ(K) per-step computa-
tional complexity, which is not acceptable under bounded

computation resource constraints. Instead, the per-step
computation of HyperAgent is Õ(logK). This is due
to the choice of M in Appendix D.1 when proving the key
Lemma 4.1. These comparisons imply HyperAgent is the
first provably scalable and efficient RL agent among prac-
tically useful ones. Analytical details are in Appendix D.3.
Extension to frequentist regret without Assumption D.8 is di-
rect either using HyperAgent or its variants of optimistic
index sampling in Appendix C.2.

5. Empirical studies
This section assesses the efficiency and scalability of
HyperAgent empirically. In DeepSea hard exploration
problems, it is the only and first deep RL algorithm that suc-
cessfully handling large state spaces up to 120× 120 with
optimal episodes complexity. In Atari benchmark suite, it
excels in processing continuous state spaces with pixels and
achieves human-level performance with comparably mini-
mal total number of interactions. HyperAgent achieves
the best performance in 8 hardest exploration compared to
other approximate posterior sampling type deep RL algo-
rithms. We provide reproduction details in Appendix B.

5.1. Computational results for deep exploration

We demonstrate the exploration effectiveness and scalabil-
ity of HyperAgent utilizing DeepSea, a reward-sparse
environment that demands deep exploration (Osband et al.,
2020; 2019). Details for DeepSea are in Appendix B.3.

Comparative analysis. Based on the structure of DeepSea
with size N , i.e., N × N states, the proficient agent can
discern an optimal policy within Θ(N) episodes (Osband
et al., 2019), since it learns to move right from one addi-
tional cell along the diagonal in each episode. We compare
HyperAgent with several baselines: Ensemble+ (Osband
et al., 2018; 2019), HyperDQN (Li et al., 2022), and EN-
NDQN (Osband et al., 2023a), which also claimed deep
exploration ability. As depicted in Figure 3, HyperAgent
outperforms other baselines, showcasing its exceptional
data efficiency. To highlight, it is the only and first deep
RL agent learning the optimal policy with optimal episodes
complexity Θ(N). Moreover, HyperAgent offers the
advantage of computation efficiency as its output layer (hy-
permodel) maintains constant parameters when scaling up
the problem size. In contrast, ENNDQN requires increasing
number of parameters as the problem size increases, due
to the inclusion of the original state as part of the inputs
(see Appendix C.3.2 for detailed discussions). For instance,
in DeepSea(N = 20), HyperAgent uses only 5% of the
parameters required by ENNDQN.

Through more ablation studies on DeepSea in Appendix E,
we offer a comprehensive understanding of HyperAgent,

7

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

20 30 40 50 60 70 80 90 100 110 120
Size

0

2

4

6

8

10

E
p

is
od

es
to

L
ea

rn

×103

R2 = 0.90

DeepSea

Ensemble+ ENNDQN HyperDQN HyperAgent

Figure 3. The metric Episodes to Learn(N) := avg{K|R̄K ≥ 0.99} measures the episodes needed to learn the optimal policy in
DeepSea of size N , where R̄K is the return achieved by the agent after K episodes of interaction, averaged over 100 evaluations. The
crossmark ✗ denotes the algorithm’s failure to solve the problem within 104 episodes. We conduct experiments on each algorithm with 10
different initial random seeds, presenting each result as a distinct point in the figure. The dashed line for HyperAgent, based on linear
regression with an R2 of 0.90, illustrates linear scaling in episode complexity, represented by Θ(N).

including validation for theoretical insights in Section 4,
index sampling schemes and sample-average approximation
in Section 3, and comparison with structures within the
hypermodel framework in Section 2.1.

5.2. Results on Atari benchmark

Baselines. We further assess the data and computation ef-
ficiency on the Arcade Learning Environment (Bellemare
et al., 2013) using IQM (Agarwal et al., 2021) as the eval-
uation criterion. An IQM score of 1.0 indicates that the
algorithm performs on par with humans. We examine
HyperAgent with several baselines: DDQN† (van Has-
selt et al., 2016), Ensemble+ (Osband et al., 2018; 2019),
Rainbow (Hessel et al., 2018), DER (van Hasselt et al.,
2019), HyperDQN (Li et al., 2022), BBF (Schwarzer et al.,
2023), and EfficientZero (Ye et al., 2021). Following the
established practice in widely accepted research (Łukasz
Kaiser et al., 2020; van Hasselt et al., 2019; Ye et al., 2021),
the results are compared on 26 Atari games.

Overall results. Figure 1 illustrates the correlation between
model parameters and training data for achieving human-
level performance. HyperAgent attains human-level per-
formance with minimal parameters and relatively modest
training data, surpassing other methods. Notably, neither
DER nor HyperDQN can achieve human-level performance
within 2M training data (refer to Appendix F).

Ablation study. Table 2 displays the comprehensive re-
sults of HyperAgent across 26 Atari games. To demon-
strate the superior performance of HyperAgent stemming
from our principled algorithm design rather than the fine-
tuning of hyper-parameters, we developed our version of

Method IQM Median Mean

DDQN† 0.13 (0.11, 0.15) 0.12 (0.07, 0.14) 0.49 (0.43, 0.55)
DDQN(ours) 0.70 (0.69, 0.71) 0.55 (0.54, 0.58) 0.97 (0.95, 1.00)
HyperAgent 1.22 (1.15, 1.30) 1.07 (1.03, 1.14) 1.97 (1.89, 2.07)

Table 2. Performance profiles of HyperAgent across 26 Atari
games with 2M training data. The data in parentheses represent
the 95% confidence interval.

DDQN, referred to as DDQN(ours). This implementation
mirrors the hyper-parameters and network structure (except
for the last layer) of HyperAgent. The comparative result
with vanilla DDQN† (Hessel et al., 2018) indicates that (1)
DDQN(ours) outperforms DDQN† due to hyperparameters
adjustments, and (2) HyperAgent exhibits superior per-
formance compared to DDQN(ours), owing to the inclusion
of an additional hypermodel, index sampling schemes, and
incremental mechanisms that facilitate deep exploration. It
is worth noting that we also applied an identical set of hyper-
parameters across all 55 Atari games (refer to Appendix F),
where HyperAgent achieves top performance in 31 out
of 55 games, underscoring its robustness and scalability.

Exploration on Atari. Through a comparison with algo-
rithms related to approximate posterior sampling on the 8
most challenging exploration Atari games (Bellemare et al.,
2016), as shown in Figure 4, HyperAgent can achieve
the best performance in 7 out of 8 games, demonstrating its
ability to efficiently track the approximate posteriors over
Q⋆ and perform deep exploration.

8

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

0 0.5M 1.0M 1.5M 2M

0

500

1000

1500

2000

2500
E

p
is

o
d

e
R

et
u

rn
Alien

0 0.5M 1.0M 1.5M 2M

0

10

20

30

Freeway

0 0.5M 1.0M 1.5M 2M

0

200

400

600

Gravitar

0 0.5M 1.0M 1.5M 2M

0

2500

5000

7500

10000

12500

Hero

0 0.5M 1.0M 1.5M 2M

Num of Steps

−1250

−1000

−750

−500

−250

0

E
p

is
o
d

e
R

et
u

rn

Pitfall

0 0.5M 1.0M 1.5M 2M

Num of Steps

0

2500

5000

7500

10000

12500

Qbert

0 0.5M 1.0M 1.5M 2M

Num of Steps

0

1000

2000

3000

Solaris

0 0.5M 1.0M 1.5M 2M

Num of Steps

0

100

200

300

400

Venture

Variational LangevinMC Ensemble+ Rainbow HyperAgent

Figure 4. Comparison of HyperAgent on the 8 hardest exploration Atari games with Variational approximation (SANE Aravindan &
Lee, 2021), LangevinMC (AdamLMCDQN Ishfaq et al., 2024, an extension of LMC-LSVI in deep RL), Ensemble+ (Osband et al., 2018;
2019, Ensemble sampling with a randomized prior function) and Rainbow (Hessel et al., 2018).

6. Conclusion and future directions
We present a reinforcement learning (RL) algorithm,
HyperAgent, that simplifies, accelerates, and scales the
learning process across complex environments. With a
hypermodel, index sampling, and incremental updates,
HyperAgent efficiently tracks the approximate poste-
rior distribution associated with the optimal value func-
tion Q⋆ and performs the greedy policy over randomly
sampled Q⋆ from this distribution to facilitate deep ex-
ploration. It achieves significant efficiency in data and
computation over baselines. This is demonstrated through
superior performance in challenging benchmarks like the
DeepSea and Atari suites with minimal computational re-
sources. HyperAgent’s algorithmic simplicity, practical
efficiency, and theoretical underpinnings—highlighted by
the incremental posterior approximation argument with
a novel reduction to sequential random projection (Li,
2024a)—establish HyperAgent as a solution that effec-
tively bridges the gap between theoretical rigor and practical
application in reinforcement learning, setting new standards
for future RL algorithm design.

Future directions in both practical and theoretical domains
are highlighted here. On the practical side, the hypermodel’s
compatibility with any feedforward neural network archi-
tecture offers seamless integration into a wide array of
deep reinforcement learning frameworks, including actor-
critic structures and transformer-based large models. This

flexibility enhances its utility across various applications,
such as foundation models, large language models (LLMs),
and vision-language models (VLMs). Exploring these in-
tegrations could yield significant advancements. Theoret-
ically, the prospect of extending our analysis to include
linear, generalized linear, and neural function approxima-
tions with stochastic gradient descent (SGD) updates opens
up a promising field for future studies. This exploration
could deepen our understanding of the underlying mecha-
nisms and improve the model’s efficacy and applicability in
complex scenarios, further bridging the gap.

The study of scalable posterior inference and uncertainty
estimation for both exploration and alignment is of great
importance. First, utilizing hypermodel for uncertainty-
aware reward modeling is promising for mitigating reward
hacking in offline alignment problem and facilitate active
feedback query in online alignment problem. Second, it is
possible to derive both more efficient alignment algorithm
via HyperAgent, performing approximate posterior sam-
pling over Q⋆. Extending large foundation models to solve
multi-stage sequential decision tasks is also promising.

9

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

Acknowledgements
The author would like to thank David Janz for reviewing
the manuscript and providing feedback on writing. The
work of Y. Li was supported by the Internal Project Fund
from Shenzhen Research Institute of Big Data under Grants
J00220240001. The work of Z.-Q. Luo was supported by
the Guangdong Major Project of Basic and Applied Basic
Research (No.2023B0303000001), the Guangdong Provin-
cial Key Laboratory of Big Data Computing, and the Na-
tional Key Research and Development Project under grant
2022YFA1003900.

Impact statement
HyperAgent represents a major advancement in rein-
forcement learning (RL). Its applications span gaming, au-
tonomous vehicles, robotics, healthcare, financial trading,
energy production, and more. With its computation- and
data-efficient design, businesses can use HyperAgent for
real-time decision-making, optimizing efficiency and out-
comes under resource constraints.

Education and research in machine learning (ML) will ben-
efit from HyperAgent. Its simplicity allows easy im-
plementation, facilitating learning and experimentation for
researchers and students, and accelerating advancements in
the field. This tool could become vital in academic research
and corporate R&D, driving discoveries and breakthroughs
in AI. The ease of implementation can democratize access
to RL algorithms, fostering innovation and growth.

Smaller organizations and startups, often limited by comput-
ing resources, could leverage HyperAgent’s scalability
and performance, creating a level playing field and encour-
aging creative innovation.

However, ethical considerations are crucial. The handling
of large-scale interaction data requires robust policies to en-
sure user privacy and data protection. Efficiently managing
large data sets heightens privacy concerns. Autonomous
decision-making with RL must be monitored to prevent
harmful behavior. Ethical implementation and continuous
monitoring are essential to ensure fairness, safety, and secu-
rity.

References
Agarwal, A., Jin, Y., and Zhang, T. VOQL: Towards Op-

timal Regret in Model-free RL with Nonlinear Func-
tion Approximation. In Neu, G. and Rosasco, L.
(eds.), Proceedings of Thirty Sixth Conference on Learn-
ing Theory, volume 195 of Proceedings of Machine
Learning Research, pp. 987–1063. PMLR, 12–15 Jul
2023. URL https://proceedings.mlr.press/
v195/agarwal23a.html.

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C.,
and Bellemare, M. Deep Reinforcement Learning at the
Edge of the Statistical Precipice. In Ranzato, M., Beygelz-
imer, A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 29304–29320. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/
f514cec81cb148559cf475e7426eed5e-Paper.
pdf.

Aravindan, S. and Lee, W. S. State-Aware Variational
Thompson Sampling for Deep Q-Networks. In Proceed-
ings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 124–132, 2021.

Azar, M. G., Osband, I., and Munos, R. Minimax Regret
Bounds for Reinforcement Learning. In Precup, D. and
Teh, Y. W. (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceed-
ings of Machine Learning Research, pp. 263–272. PMLR,
06–11 Aug 2017. URL https://proceedings.
mlr.press/v70/azar17a.html.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying Count-Based
Exploration and Intrinsic Motivation. In Lee, D.,
Sugiyama, M., Luxburg, U., Guyon, I., and Garnett,
R. (eds.), Advances in Neural Information Process-
ing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.
cc/paper_files/paper/2016/file/
afda332245e2af431fb7b672a68b659d-Paper.
pdf.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The Arcade Learning Environment: An Evaluation Plat-
form for General Agents. Journal of Artificial Intelligence
Research, 47:253–279, jun 2013.

Bellemare, M. G., Dabney, W., and Munos, R. A dis-
tributional perspective on reinforcement learning. In
Precup, D. and Teh, Y. W. (eds.), Proceedings of
the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 449–458. PMLR, 06–11 Aug 2017.
URL https://proceedings.mlr.press/v70/
bellemare17a.html.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-Dynamic Pro-
gramming. Athena Scientific, 1st edition, 1996. ISBN
1886529108.

Dann, C., Mansour, Y., Mohri, M., Sekhari, A., and Sridha-
ran, K. Guarantees for Epsilon-Greedy Reinforcement
Learning with Function Approximation. In Chaudhuri, K.,
Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato,

10

https://proceedings.mlr.press/v195/agarwal23a.html
https://proceedings.mlr.press/v195/agarwal23a.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://proceedings.mlr.press/v70/azar17a.html
https://proceedings.mlr.press/v70/azar17a.html
https://proceedings.neurips.cc/paper_files/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://proceedings.mlr.press/v70/bellemare17a.html
https://proceedings.mlr.press/v70/bellemare17a.html

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

S. (eds.), Proceedings of the 39th International Confer-
ence on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pp. 4666–4689. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/dann22a.html.

Doucet, A. A note on efficient conditional simulation of
Gaussian distributions. Departments of Computer Sci-
ence and Statistics, University of British Columbia, 1020,
2010.

Du, S., Kakade, S., Lee, J., Lovett, S., Mahajan, G., Sun, W.,
and Wang, R. Bilinear Classes: A Structural Frame-
work for Provable Generalization in RL. In Meila,
M. and Zhang, T. (eds.), Proceedings of the 38th In-
ternational Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp.
2826–2836. PMLR, 18–24 Jul 2021. URL https://
proceedings.mlr.press/v139/du21a.html.

Dwaracherla, V. and Van Roy, B. Langevin DQN, 2021.

Dwaracherla, V., Lu, X., Ibrahimi, M., Osband, I., Wen,
Z., and Van Roy, B. Hypermodels for Exploration. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=ryx6WgStPB.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-Based Batch
Mode Reinforcement Learning. Journal of Machine
Learning Research, 6(18):503–556, 2005. URL http:
//jmlr.org/papers/v6/ernst05a.html.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Hessel, M.,
Osband, I., Graves, A., Mnih, V., Munos, R., Hassabis, D.,
Pietquin, O., Blundell, C., and Legg, S. Noisy Networks
For Exploration. In International Conference on Learning
Representations, 2018. URL https://openreview.
net/forum?id=rywHCPkAW.

Foster, D. J., Kakade, S. M., Qian, J., and Rakhlin, A. The
Statistical Complexity of Interactive Decision Making,
2023.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Mastering
Diverse Domains through World Models, 2024.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Os-
trovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M.,
and Silver, D. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

Hoffman, Y. and Ribak, E. Constrained realizations of Gaus-
sian fields-A simple algorithm. Astrophysical Journal,
Part 2-Letters (ISSN 0004-637X), vol. 380, Oct. 10, 1991,
p. L5-L8., 380:L5–L8, 1991.

Ishfaq, H., Cui, Q., Nguyen, V., Ayoub, A., Yang, Z., Wang,
Z., Precup, D., and Yang, L. Randomized Exploration
in Reinforcement Learning with General Value Func-
tion Approximation. In Meila, M. and Zhang, T. (eds.),
Proceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 4607–4616. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/
v139/ishfaq21a.html.

Ishfaq, H., Lan, Q., Xu, P., Mahmood, A. R., Precup, D.,
Anandkumar, A., and Azizzadenesheli, K. Provable
and Practical: Efficient Exploration in Reinforcement
Learning via Langevin Monte Carlo. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=nfIAEJFiBZ.

Jaksch, T., Ortner, R., and Auer, P. Near-optimal Regret
Bounds for Reinforcement Learning. Journal of Machine
Learning Research, 11:1563–1600, 2010.

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J., and
Schapire, R. E. Contextual Decision Processes with low
Bellman rank are PAC-Learnable. In Precup, D. and Teh,
Y. W. (eds.), Proceedings of the 34th International Confer-
ence on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pp. 1704–1713. PMLR, 06–
11 Aug 2017. URL https://proceedings.mlr.
press/v70/jiang17c.html.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Prov-
ably efficient reinforcement learning with linear func-
tion approximation. In Abernethy, J. and Agarwal, S.
(eds.), Proceedings of Thirty Third Conference on Learn-
ing Theory, volume 125 of Proceedings of Machine
Learning Research, pp. 2137–2143. PMLR, 09–12 Jul
2020. URL https://proceedings.mlr.press/
v125/jin20a.html.

Jin, C., Liu, Q., and Miryoosefi, S. Bellman Eluder
Dimension: New Rich Classes of RL Problems, and
Sample-Efficient Algorithms. In Ranzato, M., Beygelz-
imer, A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 13406–13418. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/
6f5e4e86a87220e5d361ad82f1ebc335-Paper.
pdf.

Johnson, W. B. and Lindenstrauss, J. Extensions of Lips-
chitz mappings into a Hilbert space. In Conference on
Modern Analysis and Probability, volume 26, pp. 189–
206. American Mathematical Society, 1984.

11

https://proceedings.mlr.press/v162/dann22a.html
https://proceedings.mlr.press/v162/dann22a.html
https://proceedings.mlr.press/v139/du21a.html
https://proceedings.mlr.press/v139/du21a.html
https://openreview.net/forum?id=ryx6WgStPB
https://openreview.net/forum?id=ryx6WgStPB
http://jmlr.org/papers/v6/ernst05a.html
http://jmlr.org/papers/v6/ernst05a.html
https://openreview.net/forum?id=rywHCPkAW
https://openreview.net/forum?id=rywHCPkAW
https://proceedings.mlr.press/v139/ishfaq21a.html
https://proceedings.mlr.press/v139/ishfaq21a.html
https://openreview.net/forum?id=nfIAEJFiBZ
https://openreview.net/forum?id=nfIAEJFiBZ
https://proceedings.mlr.press/v70/jiang17c.html
https://proceedings.mlr.press/v70/jiang17c.html
https://proceedings.mlr.press/v125/jin20a.html
https://proceedings.mlr.press/v125/jin20a.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/6f5e4e86a87220e5d361ad82f1ebc335-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/6f5e4e86a87220e5d361ad82f1ebc335-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/6f5e4e86a87220e5d361ad82f1ebc335-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/6f5e4e86a87220e5d361ad82f1ebc335-Paper.pdf

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

Journel, A. G. and Huijbregts, C. J. Mining geostatistics.
1976.

Kakade, S. M. On the Sample Complexity of Reinforce-
ment Learning. University of London, University College
London (United Kingdom), 2003.

Kearns, M. and Singh, S. Near-Optimal Reinforce-
ment Learning in Polynomial Time. Machine
Learning, 49(2):209–232, 2002. doi: 10.1023/
A:1017984413808. URL https://doi.org/10.
1023/A:1017984413808.

Lai, T. L. and Robbins, H. Asymptotically efficient adaptive
allocation rules. Advances in applied mathematics, 6(1):
4–22, 1985.

Laskin, M., Srinivas, A., and Abbeel, P. CURL: Con-
trastive unsupervised representations for reinforcement
learning. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 5639–5650. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/laskin20a.html.

Li, Y. Probability Tools for Sequential Random Pro-
jection, 2024a. URL https://arxiv.org/abs/
2402.14026.

Li, Y. Simple, unified analysis of Johnson-Lindenstrauss
with applications, 2024b. URL https://arxiv.
org/abs/2402.10232.

Li, Z., Li, Y., Zhang, Y., Zhang, T., and Luo, Z.-Q. Hy-
perDQN: A Randomized Exploration Method for Deep
Reinforcement Learning. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?id=X0nrKAXu7g-.

Liang, H. and Luo, Z.-Q. Bridging Distributional and Risk-
sensitive Reinforcement Learning with Provable Regret
Bounds, 2024.

Liu, H. and Abbeel, P. APS: Active Pretraining with Suc-
cessor Features. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 6736–6747. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/
v139/liu21b.html.

Liu, Z., Lu, M., Xiong, W., Zhong, H., Hu, H., Zhang, S.,
Zheng, S., Yang, Z., and Wang, Z. Maximize to Explore:
One Objective Function Fusing Estimation, Planning,
and Exploration. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=A57UMlUJdc.

Lu, X. and Van Roy, B. Information-Theoretic Confidence
Bounds for Reinforcement Learning. In Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F.,
Fox, E., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/
411ae1bf081d1674ca6091f8c59a266f-Paper.
pdf.

Lu, X., Van Roy, B., Dwaracherla, V., Ibrahimi, M., Os-
band, I., and Wen, Z. Reinforcement Learning, Bit
by Bit. Foundations and Trends® in Machine Learn-
ing, 16(6):733–865, 2023. ISSN 1935-8237. doi:
10.1561/2200000097. URL http://dx.doi.org/
10.1561/2200000097.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D.,
Wierstra, D., Legg, S., and Hassabis, D. Human-level
control through deep reinforcement learning. Nature, 518
(7540):529–533, 2015. doi: 10.1038/nature14236. URL
https://doi.org/10.1038/nature14236.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L.,
and Courville, A. The primacy bias in deep reinforce-
ment learning. In Chaudhuri, K., Jegelka, S., Song,
L., Szepesvari, C., Niu, G., and Sabato, S. (eds.), Pro-
ceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 16828–16847. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/
v162/nikishin22a.html.

Osband, I. and Van Roy, B. Bootstrapped Thompson Sam-
pling and Deep Exploration, 2015.

Osband, I. and Van Roy, B. Why is Posterior Sam-
pling Better than Optimism for Reinforcement Learn-
ing? In Precup, D. and Teh, Y. W. (eds.), Proceed-
ings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 2701–2710. PMLR, 06–11 Aug 2017.
URL https://proceedings.mlr.press/v70/
osband17a.html.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. Deep
Exploration via Bootstrapped DQN. Advances in neural
information processing systems, 29, 2016a.

Osband, I., Van Roy, B., and Wen, Z. Generalization and
Exploration via Randomized Value Functions. In Interna-
tional Conference on Machine Learning, pp. 2377–2386.
PMLR, 2016b.

12

https://doi.org/10.1023/A:1017984413808
https://doi.org/10.1023/A:1017984413808
https://proceedings.mlr.press/v119/laskin20a.html
https://proceedings.mlr.press/v119/laskin20a.html
https://arxiv.org/abs/2402.14026
https://arxiv.org/abs/2402.14026
https://arxiv.org/abs/2402.10232
https://arxiv.org/abs/2402.10232
https://openreview.net/forum?id=X0nrKAXu7g-
https://openreview.net/forum?id=X0nrKAXu7g-
https://proceedings.mlr.press/v139/liu21b.html
https://proceedings.mlr.press/v139/liu21b.html
https://openreview.net/forum?id=A57UMlUJdc
https://openreview.net/forum?id=A57UMlUJdc
https://proceedings.neurips.cc/paper/2019/file/411ae1bf081d1674ca6091f8c59a266f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/411ae1bf081d1674ca6091f8c59a266f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/411ae1bf081d1674ca6091f8c59a266f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/411ae1bf081d1674ca6091f8c59a266f-Paper.pdf
http://dx.doi.org/10.1561/2200000097
http://dx.doi.org/10.1561/2200000097
https://doi.org/10.1038/nature14236
https://proceedings.mlr.press/v162/nikishin22a.html
https://proceedings.mlr.press/v162/nikishin22a.html
https://proceedings.mlr.press/v70/osband17a.html
https://proceedings.mlr.press/v70/osband17a.html

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

Osband, I., Aslanides, J., and Cassirer, A. Ran-
domized prior functions for deep reinforcement
learning. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett,
R. (eds.), Advances in Neural Information Process-
ing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.
cc/paper_files/paper/2018/file/
5a7b238ba0f6502e5d6be14424b20ded-Paper.
pdf.

Osband, I., Van Roy, B., Russo, D. J., and Wen, Z. Deep
Exploration via Randomized Value Functions. Jour-
nal of Machine Learning Research, 20(124):1–62, 2019.
URL http://jmlr.org/papers/v20/18-339.
html.

Osband, I., Doron, Y., Hessel, M., Aslanides, J., Sezener,
E., Saraiva, A., McKinney, K., Lattimore, T., Szepesvari,
C., Singh, S., Van Roy, B., Sutton, R., Silver, D., and van
Hasselt, H. Behaviour Suite for Reinforcement Learning.
In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=rygf-kSYwH.

Osband, I., Wen, Z., Asghari, S. M., Dwaracherla, V.,
Ibrahimi, M., Lu, X., and Van Roy, B. Approximate
Thompson Sampling via Epistemic Neural Networks. In
The 39th Conference on Uncertainty in Artificial Intel-
ligence, 2023a. URL https://openreview.net/
forum?id=xampQmrqD8U.

Osband, I., Wen, Z., Asghari, S. M., Dwaracherla, V.,
Ibrahimi, M., Lu, X., and Van Roy, B. Epistemic Neu-
ral Networks. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023b. URL https:
//openreview.net/forum?id=dZqcC1qCmB.

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen,
R. Y., Chen, X., Asfour, T., Abbeel, P., and Andrychow-
icz, M. Parameter Space Noise for Exploration. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=ByBAl2eAZ.

Qin, C., Wen, Z., Lu, X., and Van Roy, B. An Analy-
sis of Ensemble Sampling. In Oh, A. H., Agarwal, A.,
Belgrave, D., and Cho, K. (eds.), Advances in Neural
Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=c6ibx0yl-aG.

Quan, J. and Ostrovski, G. DQN Zoo: Reference imple-
mentations of DQN-based agents, 2020. URL http:
//github.com/deepmind/dqn_zoo.

Russo, D. and Van Roy, B. Learning to optimize via
information-directed sampling. Operations Research,

66(1):230–252, 2018. doi: 10.1287/opre.2017.1663.
URL https://doi.org/10.1287/opre.2017.
1663.

Russo, D. J., Van Roy, B., Kazerouni, A., Osband, I., and
Wen, Z. A Tutorial on Thompson Sampling. Founda-
tions and Trends® in Machine Learning, 11(1):1–96,
2018. ISSN 1935-8237. doi: 10.1561/2200000070. URL
http://dx.doi.org/10.1561/2200000070.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., Lillicrap, T., and Silver, D. Mastering
atari, go, chess and shogi by planning with a learned
model. Nature, 588(7839):604–609, 2020. doi: 10.1038/
s41586-020-03051-4. URL https://doi.org/10.
1038/s41586-020-03051-4.

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D.,
Courville, A., and Bachman, P. Data-efficient reinforce-
ment learning with self-predictive representations. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=uCQfPZwRaUu.

Schwarzer, M., Ceron, J. S. O., Courville, A., Bellemare,
M. G., Agarwal, R., and Castro, P. S. Bigger, Better,
Faster: Human-level Atari with human-level efficiency.
In International Conference on Machine Learning, pp.
30365–30380. PMLR, 2023.

Strehl, A. L. Probably Approximately Correct (PAC) ex-
ploration in reinforcement learning. PhD thesis, Rutgers
University-Graduate School-New Brunswick, 2007.

Strens, M. A Bayesian Framework for Reinforcement Learn-
ing. In International Conference on Machine Learning,
pp. 943–950, 2000.

Sutton, R. S. and Barto, A. G. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition,
2018. URL http://incompleteideas.net/
book/the-book-2nd.html.

Thompson, W. R. On the Likelihood that One Unknown
Probability Exceeds Another in View of the Evidence
of Two Samples. Biometrika, 25(3/4):285–294, 1933.
ISSN 00063444. URL http://www.jstor.org/
stable/2332286.

Thrun, S. Efficient Exploration In Reinforcement Learn-
ing. Technical Report CMU-CS-92-102, Carnegie Mellon
University, Pittsburgh, PA, January 1992.

Tiapkin, D., Belomestny, D., Moulines, É., Naumov, A.,
Samsonov, S., Tang, Y., Valko, M., and Ménard, P. From
Dirichlet to Rubin: Optimistic exploration in RL with-
out bonuses. In International Conference on Machine
Learning, pp. 21380–21431. PMLR, 2022.

13

https://proceedings.neurips.cc/paper_files/paper/2018/file/5a7b238ba0f6502e5d6be14424b20ded-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/5a7b238ba0f6502e5d6be14424b20ded-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/5a7b238ba0f6502e5d6be14424b20ded-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/5a7b238ba0f6502e5d6be14424b20ded-Paper.pdf
http://jmlr.org/papers/v20/18-339.html
http://jmlr.org/papers/v20/18-339.html
https://openreview.net/forum?id=rygf-kSYwH
https://openreview.net/forum?id=rygf-kSYwH
https://openreview.net/forum?id=xampQmrqD8U
https://openreview.net/forum?id=xampQmrqD8U
https://openreview.net/forum?id=dZqcC1qCmB
https://openreview.net/forum?id=dZqcC1qCmB
https://openreview.net/forum?id=ByBAl2eAZ
https://openreview.net/forum?id=ByBAl2eAZ
https://openreview.net/forum?id=c6ibx0yl-aG
https://openreview.net/forum?id=c6ibx0yl-aG
http://github.com/deepmind/dqn_zoo
http://github.com/deepmind/dqn_zoo
https://doi.org/10.1287/opre.2017.1663
https://doi.org/10.1287/opre.2017.1663
http://dx.doi.org/10.1561/2200000070
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
https://openreview.net/forum?id=uCQfPZwRaUu
https://openreview.net/forum?id=uCQfPZwRaUu
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://www.jstor.org/stable/2332286
http://www.jstor.org/stable/2332286

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

van Hasselt, H., Guez, A., and Silver, D. Deep Re-
inforcement Learning with Double Q-Learning. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 30(1), Mar. 2016. doi: 10.1609/aaai.v30i1.
10295. URL https://ojs.aaai.org/index.
php/AAAI/article/view/10295.

van Hasselt, H. P., Hessel, M., and Aslanides, J. When to use
parametric models in reinforcement learning? Advances
in Neural Information Processing Systems, 32, 2019.

Wang, R., Salakhutdinov, R. R., and Yang, L. Rein-
forcement Learning with General Value Function
Approximation: Provably Efficient Approach via
Bounded Eluder Dimension. In Larochelle, H., Ran-
zato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 6123–6135. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
440924c5948e05070663f88e69e8242b-Paper.
pdf.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot,
M., and Freitas, N. Dueling Network Architectures
for Deep Reinforcement Learning. In Balcan, M. F.
and Weinberger, K. Q. (eds.), Proceedings of The 33rd
International Conference on Machine Learning, vol-
ume 48 of Proceedings of Machine Learning Research,
pp. 1995–2003, New York, New York, USA, 20–22 Jun
2016. PMLR. URL https://proceedings.mlr.
press/v48/wangf16.html.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,
8:279–292, 1992.

Welling, M. and Teh, Y. W. Bayesian Learning via Stochas-
tic Gradient Langevin Dynamics. In Getoor, L. and
Scheffer, T. (eds.), ICML, pp. 681–688. Omnipress,
2011. URL http://dblp.uni-trier.de/db/
conf/icml/icml2011.html#WellingT11.

Wen, Z. Efficient Reinforcement Learning with Value Func-
tion Generalization. PhD thesis, Stanford University,
Stanford, CA, USA, 2014. AAI28121065.

Wilson, J., Borovitskiy, V., Terenin, A., Mostowsky, P.,
and Deisenroth, M. Efficiently sampling functions from
Gaussian process posteriors. In International Conference
on Machine Learning, pp. 10292–10302. PMLR, 2020.

Xu, P., Zheng, H., Mazumdar, E. V., Azizzadenesheli, K.,
and Anandkumar, A. Langevin Monte Carlo for Contex-
tual Bandits. In International Conference on Machine
Learning, pp. 24830–24850. PMLR, 2022.

Ye, W., Liu, S., Kurutach, T., Abbeel, P., and Gao, Y. Master-
ing Atari Games with Limited Data. Advances in Neural
Information Processing Systems, 34:25476–25488, 2021.

Łukasz Kaiser, Babaeizadeh, M., Miłos, P., Osiński, B.,
Campbell, R. H., Czechowski, K., Erhan, D., Finn, C.,
Kozakowski, P., Levine, S., Mohiuddin, A., Sepassi, R.,
Tucker, G., and Michalewski, H. Model Based Rein-
forcement Learning for Atari. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=S1xCPJHtDB.

14

https://ojs.aaai.org/index.php/AAAI/article/view/10295
https://ojs.aaai.org/index.php/AAAI/article/view/10295
https://proceedings.neurips.cc/paper_files/paper/2020/file/440924c5948e05070663f88e69e8242b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/440924c5948e05070663f88e69e8242b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/440924c5948e05070663f88e69e8242b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/440924c5948e05070663f88e69e8242b-Paper.pdf
https://proceedings.mlr.press/v48/wangf16.html
https://proceedings.mlr.press/v48/wangf16.html
http://dblp.uni-trier.de/db/conf/icml/icml2011.html#WellingT11
http://dblp.uni-trier.de/db/conf/icml/icml2011.html#WellingT11
https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=S1xCPJHtDB

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

A. Additional discussion on related works
Our work represents sustained and focused efforts towards developing principled RL algorithms that are practically efficient
with function approximation in complex environments.

Discussion on the algorithmic simplicity and deployment efficiency. To address data efficiency, recent deep RL
algorithms have incorporated increasingly complex heuristic and algorithmic components, such as DDQN (van Hasselt
et al., 2016), Rainbow (Hessel et al., 2018), EfficientZero (Ye et al., 2021), and BBF (Schwarzer et al., 2023). Furthermore,
their practical efficiency often falls short due to high per-step computational costs, exemplified by BBF’s use of larger
networks and more complex components that require careful tuning and may challenge deployment in real-world settings.
Several works (Hessel et al., 2018; van Hasselt et al., 2019; Schwarzer et al., 2023) employ a combination of techniques,
including dueling networks (Wang et al., 2016), reset strategy (Nikishin et al., 2022), distributional RL (Bellemare et al.,
2017), and others, to achieve data efficiency. Some have demonstrated remarkable performance on Atari games. However,
integrating multiple techniques makes the algorithms complicated and challenging to apply to various scenarios. It requires
careful selection of hyperparameters for each technique. For example, the reset frequency in the reset strategy needs
meticulous consideration. Furthermore, combining multiple techniques results in a significant computational cost. For
instance, BBF (Schwarzer et al., 2023) designs a larger network with 15 convolutional layers, which has 20 times more
parameters than our method. Model-based RL (Łukasz Kaiser et al., 2020; Schrittwieser et al., 2020; Ye et al., 2021;
Hafner et al., 2024) is a widely used approach for achieving data efficiency. However, the performance of these methods is
contingent upon the accuracy of the learned predictive model. Furthermore, the learning of predictive models can incur
higher computational costs, and employing tree-based search methods with predictive models may not offer sufficient
exploration. Other methods (Schwarzer et al., 2021; Laskin et al., 2020; Liu & Abbeel, 2021) achieve data efficiency by
enhancing representation learning. While these approaches perform well in environments with image-based states, they show
poorer performance in environments characterized by simple structure yet requiring deep exploration, as seen in DeepSea.

Algorithm Components

DDQN Incremental SGD with experience replay and target network
Rainbow (DDQN) + Prioritized replay, Dueling networks, Distributional RL, Noisy Nets.

BBF (DDQN) + Prioritized replay, Dueling networks, Distributional RL,
Self-Prediction, Harder resets, Larger network, Annealing hyper-parameters.

HyperAgent (DDQN) + hypermodel

Table 3. The extra techniques used in different algorithms, e.g. DDQN (van Hasselt et al., 2016), Rainbow (Hessel et al., 2018), BBF
(Schwarzer et al., 2023) and HyperAgent.

Other Principled Exploration Approaches. Exploration strategies such as ”Optimism in the Face of Uncertainty” (OFU)
(Lai & Robbins, 1985) and Information-Directed Sampling (IDS) (Russo & Van Roy, 2018) also play crucial roles. OFU,
efficient in tabular settings, encompasses strategies from explicit exploration in unknown states (E3, Kearns & Singh
(2002)) to bonus-based and bonus-free optimistic exploration (Jaksch et al., 2010; Tiapkin et al., 2022; Liang & Luo,
2024). However, OFU also encounter computational hurdles in RL with general function approximation, leading to either
intractability or unsustainable resource demands as data accumulates (Jiang et al., 2017; Jin et al., 2021; Du et al., 2021;
Foster et al., 2023; Liu et al., 2023; Wang et al., 2020; Agarwal et al., 2023). IDS, while statistically advantageous and
tractable in multi-armed and linear bandits, lacks feasible solutions for RL problems in tabular settings (Russo & Van Roy,
2018).

Ensemble-based methods. Osband & Van Roy (2015); Osband et al. (2016a) initiated the bootstrapped ensemble methods,
an incremental version of randomized value functions (Wen, 2014), on bandit and deep RL, maintaining an ensemble of
point estimates, each being incremental updated. This algorithm design methodology avoid refit a potentially complex
model from scratch in the online interactive decision problems. Bayes-UCBVI (Tiapkin et al., 2022) was extended to
Incre-Bayes-UCBVI (Tiapkin et al., 2022) using the exact same idea as Algorithm 5 in (Osband & Van Roy, 2015) and then
extended to Bayes-UCBDQN (Tiapkin et al., 2022) following BootDQN (Osband et al., 2016a). As reported by the author,
Bayes-UCBDQN shares very similar performance as BootDQN (Osband et al., 2016a) but requires addition algorithmic
module on artificially generated pseudo transitions and pseduo targets, which is environment-dependent and challenging to

15

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

tune in practice as mentioned in appendix G.3 of (Tiapkin et al., 2022). Ensemble+ (Osband et al., 2018; 2019) introduces
the randomized prior function for controlling the exploration behavior in the initial stages, somewhat similar to optimistic
initialization in tabular RL algorithm design, facilitate the deep exploration and data efficiency. This additive prior design
principle is further employed in a line of works (Dwaracherla et al., 2020; Li et al., 2022; Osband et al., 2023b;a). For a
practical implmentation of LSVI-PHE (Ishfaq et al., 2021), it utilizes the optimistic sampling (OS) with ensemble methods
as a heuristic combination: it maintains an ensemble of M value networks {Qi(s, a), i = 1, . . . ,M} and take greedy action
according to the maximum value function over M values Q(s, a) = maxi∈[M] Qi(s, a) for action selection and Q-target
computation. As will be discussed in Appendix C.2, we propose another index sampling scheme called optimistic index
sampling (OIS). OIS, OS and quantile-based Incre-Bayes-UCBVI are related in a high level, all using multiple randomized
value functions to form a optimistic value function with high probability, thus leading to OFU-based principle for deep
exploration. Critical distinction exists, compared with ensemble-based OS and Incre-Bayes-UCBVI, OIS is computationally
much more friendly2 due to our continuous reference distribution Pξ for sampling as many indices as possible to construct
randomized value functions.

Theoretical analysis of ensemble based sampling is rare and difficult. As pointed out by the first correct analysis of ensemble
sampling for linear bandit problem (Qin et al., 2022), the first analysis of ensemble sampling in 2017 has technical flaws.
The results of Qin et al. (2022) show Ensemble sampling, although achieving sublinear regret in (d-dimensional, T -steps)
linear bandit problems, requires Õ(T) per-step computation, which is unsatisfied for a scalable agent with bounded resource.
Because of the potential challenges, there is currently no theoretical analysis available for ensemble-based randomized value
functions across any class of RL problems.

Langevin Monte-Carlo. Langecin Monte-Carlo (LMC), staring from SGLD (Welling & Teh, 2011), has huge influence
in Bayesian deep learning and approximate Bayesian inference. However, as discussed in many literature (Osband et al.,
2023b), the computational costs of LMC-based inference are prohibitive in large scale deep learning systems. Recent
advances show the application of LMC-based posterior inference for sequence decision making, such as LMCTS (Xu et al.,
2022) for contextual bandits as well as LangevinDQN (Dwaracherla & Van Roy, 2021) and LMC-LSVI (Ishfaq et al., 2024)
for reinforcement learning. As we will discuss in the following, these LMC-based TS schemes still suffer scalability issues
as the per-step computational complexity would grow unbounded with the increasingly large amount of interaction data.

LMCTS (Xu et al., 2022) provides the first regret bound of LMC based TS scheme in (d-dimensional, T -steps) linear bandit
problem, showing Õ(d3/2

√
T) regret bound with κt log(3

√
2dT log(T 3)) inner-loop iteration complexity within time step

t. As discussed in (Xu et al., 2022), the conditional number κt = O(t) in general. For a single iteration in time step t, LMC
requires O(d2) computation for a gradient calculation of loss function: ∇Lt(θ) = 2(Vtθ − bt) using notations in (Xu et al.,
2022); and O(d) computation on noise generation and parameters update (line 5 and 6 in Algorithm 1 (Xu et al., 2022)).
Additional dA computation comes from greedy action selection among action set A by first computing rewards with inner
product and selecting the maximum. Therefore, the per-step computation complexity of LMCTS is Õ(d2T + dA), which
scales polynomially with increasing number of interactions T . LMCTS is not provably scalable under resource constraints.

LMC-LSVI (Ishfaq et al., 2024) applies similar methodologies and analytical tools as LMCTS (Xu et al., 2022), providing
Õ(d3/2H3/2

√
T) regret in the linear MDP (d-dimensional feature mappings and H-horizons and K episodes where

T = KH). The inner-loop iteration complexity of LMC within one time step (k, h) of episode k is 2κk log(4HKd) .
Similarly, κk = O(k) in general. (1) In the general feature case: For a single iteration in time step (k, h), LMC requires
O(d2) computation cost for the gradient calculation as from equation (6) of (Ishfaq et al., 2024) and O(d) computation
cost for noise generation and parameter update. The per-step computational complexity caused by LMC inner-loops is
O(d2κk log(4HKd)) = O(d2k log(HKd)). Additional per-step computation cost in episode k is Õ(d2Ak), coming from
LSVI as discussed in (Jin et al., 2020). Therefore, the per-step computation complexity is Õ(d2K log(HKd) + d2AK),
scaling polynomially with increasing number of episodes K. (2) When consider tabular representation where the feature
is one-hot vector with d = SA, the per-step computational complexity caused by LMC is O(SAK log(SAHK)) as the
covariance matrix is diagonal in the tabular setting. The computation cost by LSVI is now O(S2A) with no dependence
on K as we can perform incremental counting and bottom-up dynamic programming in tabular setting. The per-step
computational complexity of LMC-LSVI is O(SAK log(SAHK) + S2A), still scaling polynomially with increasing
number of episodes K. Thus, LMC-LSVI is not provably scalable under resource constraints.

Ishfaq et al. (2024) also extends their LMC-LSVI to deep RL setting, with a combination of Adam optimization techniques,

2See detailed descriptions and ablation studies in Appendix C.2.

16

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

resulting the AdamLMCDQN. It introduces additional hyper-parameters, such as the bias term and temperature, to tune as
shown in Algorithm 2 of (Ishfaq et al., 2024). As discussed in (Ishfaq et al., 2024), AdamLMCDQN is sensitive to the bias
term and tuned over a set of hyper-parameters for different Atari environments, showing its deployment difficulty. As shown
in Figure 4, our HyperAgent, using a single set of hyper-parameters for all Atari environments, performs much better
than AdamLMCDQN (LangevinMC) in all 8 hardest exploration Atari environments.

Heuristics on noise injection. For example, Noisy-Net (Fortunato et al., 2018) learns noisy parameters using gradient
descent, whereas (Plappert et al., 2018) added constant Gaussian noise to the parameters of the neural network. SANE (Ar-
avindan & Lee, 2021) is a variational Thompson sampling approximation for DQNs which uses a deep network whose
parameters are perturbed by a learned variational noise distribution. Noisy-Net can be regarded as an approximation to
the SANE. While Langevin Monte-Carlo may seem simliar to Noisy-Net (Fortunato et al., 2018; Plappert et al., 2018)
or SANE (Aravindan & Lee, 2021) due to their random perturbations of neural network weights in state-action value
and target value computation, as well as action selection. Critical differences exist, as noisy networks are not ensured to
approximate the posterior distribution (Fortunato et al., 2018) and do not achieve deep exploration (Osband et al., 2018).
SANE (Aravindan & Lee, 2021) also lacks rigorous guarantees on posterior approximation and deep exploration.

B. Reproducibility
In support of other researchers interested in utilizing our work and authenticating our findings, we offer the implementation of
HyperAgent at the link https://github.com/szrlee/HyperAgent. This repository includes all the necessary
code to replicate our experimental results and instructions on usage. Following this, we will present the evaluation protocol
employed in our experiments and the reproducibility of the compared baselines.

B.1. Evaluation protocol

Protocol on DeepSea. We replicate all experiments on DeeSea using 10 different random seeds. In each experiment
run, we set the maximum episode to 10000 and evaluate the agent 100 times for every 1000 interactions to obtain the
average return. The experiment can stop early when the average return reaches 0.99, at which point we record the number
of interactions used by the agent. We then collect 10 data points (the number of interactions) for a specific problem size
N , which are then utilized to generate a scatter plot in Figures 3 and 8 to 15. In Figure 3, we perform linear regression on
HyperAgent’s data to establish the dashed line and calculate the R2 value indicating the goodness of fit. In Figures 8
to 15, we calculate the average over 10 data points to construct the polyline.

Protocol on Atari. For the experiments on Atari, our training and evaluation protocol follows the baseline works (Mnih
et al., 2015; van Hasselt et al., 2016; Łukasz Kaiser et al., 2020; Li et al., 2022) During the training process, we assess the
agent 10 times after every 20,000 interactions to calculate the average return at each checkpoint. This allows us to obtain 20
data points for each game at every checkpoint, as we repeat the process with 20 different random seeds. We then compute
the mean and 90% confidence interval range for plotting the learning curve in Figures 4, 20 and 21.

We calculate the best score for each game using the following steps: (1) for each Atari game, the algorithm is performed
with 20 different initial random seeds; (2) The program with one particular random seed will produce one best model (the
checkpoint with highest average return), leading to 20 different models for each Atari game; (3) We then evaluate all 20
models, each for 200 times; (4) We calculate the average score from these 200 evaluations as the score for each model
associated with each seed. (5) Finally, we calculate and report the average score across 20 seeds as the final score for each
Atari game. We follow the aforementioned five-step protocol to determine the score for all 55 Atari games outlined in
Tables 7 and 9. We then utilize the 20 scores for each of the 26 Atari games to compute the Interquartile Mean (IQM),
median, and mean score, along with the 95% confidence interval3 for our algorithms, as depicted in Tables 2 and 8.

B.2. Reproducibility of baselines

Experiments on DeepSea. We present our HyperModel and ENNDQN implementation and utilize the official HyperDQN
implementation4 to replicate results. We kindly request the implementation of Ensemble+ from the author of Li et al. (2022),

3Using the evaluation code from the paper (Agarwal et al., 2021) available at https://github.com/google-research/
rliable.

4https://github.com/liziniu/HyperDQN

17

https://github.com/szrlee/HyperAgent
https://github.com/google-research/rliable
https://github.com/google-research/rliable
https://github.com/liziniu/HyperDQN

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

and they employ the repository on behavior suite5 for reproduction. We perform ablation studies in DeepSea benchmarks
for a comprehensive understanding of HyperAgent in Appendix E.

Experiments on Atari. We provide our version of DDQN(ours) and replicated the results using a well-known repository6

for DER. We obtained the result data for DDQN† and Rainbow from DQN Zoo7. As they were based on 200M frames,
we extracted the initial 20M steps from these results to compare them with HyperAgent. We acquired the official
implementation of BBF8 and EfficientZero9 from their official repositories, and reached out to the author of Li et al. (2022)
for the results data of Ensemble+ with an ensemble size10 of 10. For the experiments about exploration on Atari (refer to
Figure 4 and Figure 21), we utilized the official implementation to replicate the results of SANE11. and we obtained the raw
result data of Ensemble+12, AdamLMCDQN and LangevinAdam from official repository of LMC-LSVI13. In addition to
the results shown in the main article, we also provide fine-grained studies on Atari suite in Appendix F.

B.3. Environment Settings

In this section, we describe the environments used in experiments. We firstly use the DeepSea (Osband et al., 2020; 2019)
to demonstrate the exploration efficiency and scalability of HyperAgent. DeepSea (see Figure 5) is a reward-sparse
environment that demands deep exploration (Osband et al., 2019). The environment under consideration has a discrete
action space consisting of two actions: moving left or right. During each run of the experiment, the action for moving right
is randomly sampled from Bernoulli distribution for each row. Specifically, the action variable takes binary values of 1 or
0 for moving right, and the action map is different for each run of the experiment. The agent receives a reward of 0 for
moving left, and a penalty of −(0.01/N) for moving right, where N denotes the size of DeepSea. The agent will earn a
reward of 1 upon reaching the lower-right corner. The optimal policy for the agent is to learn to move continuously towards
the right. The sparse rewards and states presented in this environment effectively showcase the exploration efficiency of
HyperAgent without any additional complexity.

For the experiments on the Atari games, we utilized the standard wrapper provided by OpenAI gym. Specifically, we
terminated each environment after a maximum of 108K steps without using sticky actions. For further details on the settings
used for the Atari games, please refer to Table 4.

Figure 5. Illustration for DeepSea.

Hyper-parameters Setting

Grey scaling True
Sticky action False
Observation down-sampling (84, 84)
Frames stacked 4
Action repetitions 4
Reward clipping [-1, 1]
Terminal on loss of life True
Max frames per episode 108K

Table 4. Detailed settings for Atari games

5https://github.com/google-deepmind/bsuite
6https://github.com/Kaixhin/Rainbow
7https://github.com/google-deepmind/dqn_zoo
8https://github.com/google-research/google-research/tree/master/bigger_better_faster
9https://github.com/YeWR/EfficientZero

10For guidance on selecting the ensemble size, refer to Appendix C.4 in (Li et al., 2022).
11https://github.com/NUS-LID/SANE
12It shares the same implementation as Li et al. (2022).
13https://github.com/hmishfaq/lmc-lsvi

18

https://github.com/google-deepmind/bsuite
https://github.com/Kaixhin/Rainbow
https://github.com/google-deepmind/dqn_zoo
https://github.com/google-research/google-research/tree/master/bigger_better_faster
https://github.com/YeWR/EfficientZero
https://github.com/NUS-LID/SANE
https://github.com/hmishfaq/lmc-lsvi

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

C. HyperAgent details
In this section, we describe more details of the proposed HyperAgent. First, we describe the general treatment for the
incremental update function (in line 11 of HyperAgent) in the following Algorithm 2 of Appendix C.1. Then, we
provide the details of index sampling schemes in Appendix C.2. Next, in Appendix C.3, we provide the implementation
details of HyperAgent with deep neural network (DNN) function approximation. We want to emphasize that all
experiments done in this article is using Option (1) with DNN value function approximation. In Appendix C.4, we describe
the closed-form update rule (Option (2)) when the tabular representation of the value function is exploited. Note that the
tabular version of HyperAgent is only for the clarity of analysis and understanding.

C.1. Incremental update mechanism of HyperAgent

Algorithm 2 update

1: Input: bufferD, θ, θ−, ξ−, agent step t, train step j
2: if t mod training freq = 0 then
3: repeat
4: Obtain θ by optimizing the loss Lγ,σ,β(θ; θ−, ξ−, D) in Equation (4):

– Option (1) with gradient descent w.r.t. the mini-batch sampled loss Equation (5); (HyperAgent)
– Option (2) with closed-form update in Equations (6) to (8). (Tabular HyperAgent)

5: Increment j ← j + 1
6: if (j mod target update freq) = 0 then
7: θ− ← θ
8: end if
9: until (j mod sample update ratio× training freq) = 0

10: end if
11: Return: θ, θ−, j.

Notice that in update, there are three important hyper-parameters (target update freq, sample update ratio,
training freq), which we will specify in Table 5 the hyper-paramters for practical implementation of HyperAgent
with DNN function approximation for all experimental studies; and in Table 6 the hyper-parameters only for regret analysis
in finite-horizon tabular RL with fixed horizon H . To highlight, We have not seen this level of unification of algorithmic
update rules between practice and theoretical analysis in literature!

Hyper-parameters Atari Setting DeepSea Setting

weight decay β 0.01 0
discount factor γ 0.99 0.99
learning rate 0.001 0.001
mini-batch size |D̃| 32 128
index dim M 4 4
Indices |Ξ̃| for approximation 20 20
Perturbation std. σ 0.01 0.0001
n-step target 5 1
target update freq in update 5 4
sample update ratio in update 1 1
training freq in update 1 1
hidden units 256 64
min replay size for sampling 2,000 steps 128 steps
memory size 500,000 steps 1000000 steps

Table 5. Hyper-parameters of HyperAgent. Other hyper-parameters used for Atari suite are the same as Rainbow (Hessel et al., 2018).
Note that we utilize a single configuration for all 55 games from Atari suite and a single configuration for DeepSea with varying sizes.

For the approximation of expectation in Equation (4), we sample multiple indices for each transition tuple in the mini-batch

19

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

and compute the empirical average, as described in Equation (5). Recall that |Ξ̃| is the number of indices for each state and we
set |Ξ̃| = 20 as default setting. We have demonstrated how the number of indices |Ξ̃| impacts our method in Appendix E.2.

C.2. Index sampling schemes of HyperAgent

Let us review the loss function. For a transition tuple d = (s, a, r, s′, z) ∈ D and given index ξ, the perturbed temporal
difference (TD) loss ℓγ,σ(θ; θ−, ξ−, ξ, d) is(

r + σξ⊤z+ γmax
a′∈A

fθ−(s′, a′, ξ−(s′))− fθ(s, a, ξ)

)2

, (11)

where θ− is the target parameters, and σ is a hyperparameter to control the std of algorithmic perturbation.

We have two options for index sampling schemes for ξk(s):

1. State-dependent sampling. As for implementation, especially for continuous or uncountable infinite state space:
in the interaction, ξk(s) in the line 7 of HyperAgent is implemented as independently sampling ξ ∼ Pξ for each
encountered state; for the target computation in Equation (11), ξk(s′) is implemented as independently sampling
ξ ∼ Pξ for each tuple d = (s, a, r, s′, z) in the every sampled mini-batch.

2. State-independent sampling. The implementation of state-independent ξk(s) = ξk is straightforward as we indepen-
dently sample ξk in the beginning of each episode k and use the same ξk for each state s encountered in the interaction
and for each target state s′ in target computation.

In our implementation by default, HyperAgent employs the state-independent ξ for action selection and utilizes state-
dependent ξ for Q-target computation. The ablation results in Appendix E.1 demonstrate that these distinct index sampling
schemes for ξ yield nearly identical performance.

Optimistic index sampling. To make agent’s behavior more optimistic with more aggresive deep exploration, in each
episode k, we can sample NOIS indices ξk,1, . . . , ξk,NOIS

and take the greedy action according to the associated hypermodel:

ak = argmax
a∈A

max
n∈[NOIS]

fθ(sk, a, ξk,n), (12)

which we call optimistic index sampling (OIS) action selection scheme.

In the hypermodel training part, for any transition tuple d = (s, a, r, s′, z) , we also sample multiple indices ξ−1 , . . . , ξ−NOIS

independently and modify the target computation in Equation (11) as

r + σξ⊤z+ γmax
a′∈A

max
n∈[NOIS]

fθ−(s′, a′, ξ−n (s′)). (13)

This modification in target computation boosts the propagation of uncertainty estimates from future states to earlier states,
which is beneficial for deep exploration. We call this variant HyperAgent w. OIS and compare it with HyperAgent
in Appendix E.2. HyperAgent w, OIS can outperform HyperAgent, and the OIS method incurs minimal additional
computation, as we have set M = 4 and NOIS = 5 in empirical studies. Theoretically, leveraging this optimistic value
estimation with OFU-based regret analysis, e.g. UCBVI-CH in (Azar et al., 2017), could lead a O(H2

√
SAK) frequentist

regret bound in finite-horizon time-inhomogeneous RL (Assumption D.7) without using Assumption D.8.

C.3. Function approximation with deep neural networks

Here we describe the implementation details of HyperAgent with deep neural networks and the main difference compared
to baselines.

C.3.1. HYPERMODEL ARCHITECTURE IN HyperAgent

First, we develop a hypermodel for efficient approximate the posterior over the action-value function under neural network
function approximation. As illustrated in Figure 2, we made assumptions that (1) Base-model: the action-value function is

20

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

Hidden-Layers
𝜙!(⋅)

Last-
LayerInput 𝑥

𝑃𝜉 ∼ Index 𝜉

Feed-forward NN

𝑤"#$%&'((𝜉)Hypermodel

𝑓)(𝑥, 𝜉)

Figure 6. (Figure 2 restated.) Description of the last-layer linear hypermodel: we made an assumption that the injected randomness only
from the linear layer is sufficient for uncertainty estimation of feed-forward neural networks.

linear in the feature space even when the feature is unknown and needs to be learned through the training of neural network
hidden layers; and (2) Last-layer linear hypermodel: the degree of uncertainty for base-model can be represented by a
linear hypermodel transforming the index distribution to the approximation posterior distribution over the last-layer; and can
be used for efficient deep exploration.

The (1) base-model assumption is common in supervised learning and deep reinforcement learning, e.g. DDQN(Mnih et al.,
2015; van Hasselt et al., 2016), BBF(Schwarzer et al., 2023).

As the explanation of the (2) last-layer linear hypermodel assumption: for example, in Figure 2, suppose the hidden layers in
neural networks forms the nonlinear feature mapping ϕw(·) with parameters w. Our last-layer linear hypermodel assumption
is formulated in Equation (14), with trainable θ = {A, b, w} and fixed parameters {A0, b0, w0}, taking the random index
ξ ∈ RM from reference distribution Pξ as input and outputs the weights for last-layer.

fθ(x, ξ) = ⟨Aξ + b, ϕw(x)⟩︸ ︷︷ ︸
Learnable fL

θ (x,ξ)

+ ⟨A0ξ + b0, ϕw0(x)⟩︸ ︷︷ ︸
Fixed prior fP (x,ξ)

= ⟨Aξ, ϕw(x)⟩︸ ︷︷ ︸
σL
θ (x,ξ)

+ ⟨A0ξ, ϕw0
(x)⟩︸ ︷︷ ︸

σP (x,ξ)

+ ⟨b, ϕw(x)⟩︸ ︷︷ ︸
µL
θ (x)

+ ⟨b0, ϕw(x)⟩︸ ︷︷ ︸
µP (x)

. (14)

It’s worth to note that our hypermodel only outputs the weights but not bias for last-layer.

(2) As shown in Lemma 4.1, we validate that the linear hypermodel with incremental update can approximate the posterior
of action-value function in the sequential decision processes. We conjecture that last layer linear hypermodel assumption
is reasonable under neural network function approximation. Through our formulation in Equation (14), HyperAgent is
supposed to accurately estimate the learnable mean µL

θ (x), which relies solely on the original input x, and the variation
prediction σL

θ (x, ξ), which is dependent on both the original input x and random index ξ. Since not being influenced
by other components that may only depend on the random index ξ like HyperDQN (Li et al., 2022), we conjecture our
last-layer linear hypermodel assumption in Equation (14) allows the hypermodel to capture uncertainty better. Another
benefit last-layer linear hypermodel is that this structure will not result in much parameters and provide better expectation
estimate.

The fixed prior model also offers prior bias and prior variation through the functions µP (x) and σP (x, ξ). This prior function
is not trainable so that it will not bring much computation, and designed to provide better exploration in the early stage of
training. We use Xavier normal initialization for the entire network except for the prior model. For the initialization of prior
model, we follow the method described in (Li et al., 2022; Dwaracherla et al., 2020). In this way, each row of prior function
is sampled from the unit hypersphere, which guarantees that the output of prior function can follow a desired Gaussian
distribution.

In the context of reinforcement learning, we define the action-value function with hypermodel and DNN approximation
as following. For each action a ∈ A, there is a set of trainable parameters {A(a), b(a)} and fixed parameters {A(a)

0 , b
(a)
0 },

i.e., the trainable set of parameters θ = {w, (A(a), b(a)) : a ∈ A} and the fixed one {w0, (A
(a)
0 , b

(a)
0) : a ∈ A} with

21

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

action-value function

fθ(s, a, ξ) = ⟨A(a)ξ + b(a), ϕw(s)⟩︸ ︷︷ ︸
Learnable fL

θ (s,a,ξ)

+ ⟨A(a)
0 ξ + b

(a)
0 , ϕw0

(s)⟩︸ ︷︷ ︸
Fixed prior fP (s,a,ξ)

.

The last-layer linear hypermodel assumption is further supported by the empirical results Figures 3 and 4 where hypermodel
with incremental updates enables efficient deep exploration in RL.

C.3.2. DIFFERENCE COMPARED TO PRIOR WORKS

Several related work can be included in the hypermodel framework introduced in Section 2.1. We will discuss the structural
and algorithmic differences under the unified framework in this sections. Furthermore, we performs ablation studies
concerning these mentioned differences in Appendix E.3.

Difference with HyperModel (Dwaracherla et al., 2020). HyperModel (Dwaracherla et al., 2020) employs hypermodel
to represent epistemic uncertainty and facilitate exploration in bandit problem. However, implementing hypermodel across
entire based-model results in a significant number of parameters and optimization challenges. As a reuslts, applying
HyperModel to tackle large-scale problems, like Atari games, can prove to be exceedingly difficult, as highlighted in Li et al.
(2022). Additionally, HyperModel also encounters challenges in addressing the DeepSea problem due to its substantial
state space, even when the size is relatively small, as demonstrated in Appendix E.3. In contrast, HyperAgent offers the
advantage of computation efficiency as it only applies hypermodel to the last output layer of base-model, which maintains
constant parameters when scaling up the problem. HyperAgent aslo demonstrates superior data efficiency compared to
HyperModel, as evidenced in Figure 14.

Structural difference with Ensemble+ (Osband et al., 2018; 2019). Ensemble+ applies the bootstrapped ensemble
method to the entire based-model, which maintains an ensemble of M value networks {Qi(s, a), i = 1, . . . ,M}. When
combined with prior network, it has demonstrated effective exploration in chain environments with large sizes. Nevertheless,
to achieve effective exploration, Ensemble+ demands a relatively large ensemble size M (Osband et al., 2018), which raises
challenges analogous to those faced by the HyperModel. This involves managing numerous parameters and optimization
issues. We also evaluated Ensemble+ with a larger M = 16, and it still proved ineffective in solving the DeepSea, as
depicted in Figure 10, highlighting the superior data efficiency of HyperAgent.

Structural difference with hypermodel in HyperDQN (Li et al., 2022). HyperDQN shares a similar structure with
HyperAgent and has demonstrated promising results in exploration. Nevertheless, it struggles to handle the DeepSea,
which requires deep exploration, as depicted in Figure 3. We enhanced HyperDQN by simplifying the hypermodel, as
demonstrated in Equation (14). HyperAgent estimates the mean µ exclusively from the original input x and estimates the
variation σ using both the original input x and the random index ξ. In the implementation of HyperDQN, there are two
linear hypermodel fθ1(ξ) and fθ2(ξ).

fθ1(ξ) = A1ξ + b1; fθ2(ξ) = A2ξ + b2.

fθP
1
(ξ) = AP

1 ξ + bP1 ; fθP
2
(ξ) = AP

2 ξ + bP2 .

The hypermodel fθ1(ξ) outputs weights for last output layer of base-model, and hypermodel fθ2(ξ) outputs bias for
last output layer of base-model. The functions fθP

1
(ξ) and fθP

2
(ξ) are the prior network corresponding to trainable

linear hypermodel. These linear hypermodel contain trainable θ1 = {A1, b1}, θ2 = {A2, b2} and fixed parameters
θP1 = {AP

1 , b
P
1 }, θP2 = {AP

2 , b
P
2 }. Therefore, the implementation of HyperDQN can be formulated by

fHyperDQN(x, ξ) = ⟨fθ1(ξ), ϕw(x)⟩+ fθ2(ξ) + ⟨fθP
1
(ξ), ϕP

w(x)⟩+ fθP
2
(ξ)

= ⟨b1, ϕw(x)⟩︸ ︷︷ ︸
µL(x)

+ ⟨bP1 , ϕP
w(x)⟩︸ ︷︷ ︸

µP (x)

+ ⟨A1ξ, ϕw(x)⟩︸ ︷︷ ︸
σL
1 (,ξ)

+ ⟨AP
1 ξ, ϕ

P
w(x)⟩︸ ︷︷ ︸

σP
1 (,ξ)

+

A2ξ︸︷︷︸
σL
2 (ξ)

+AP
2 ξ︸︷︷︸

σP
2 (ξ)

+ b2︸︷︷︸
µL
3

+ bP2︸︷︷︸
µP
3

. (15)

22

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

As demonstrated in Equation (15), HyperDQN utilizes the hypermodel to generate both weights and bias for the output layer,
leading to redundant components, such as functions (σL

2 (ξ), σ
P
2 (ξ)) that rely solely on the random index ξ, or functions (µL

3 ,
µP
3) that do not depend on any inputs. These components lack a clear semantic explanation. We also found that initializing

the hypermodel with Xavier Normal can improve optimization. These modifications are some of the factors leading to
HyperAgent outperforming HyperDQN on both DeepSea and Atari games, as demonstrated in Section 5.

Structural difference with epinet in ENNDQN (Osband et al., 2023b;a). ENNDQN (Osband et al., 2023a), leveraging
the epinet (Osband et al., 2023b) structure, exhibits potential in capturing epistemic uncertainty and has showcased
effectiveness across diverse tasks. A notable difference is that ENNDQN use “stop gradient” between feature layers and
epinet. This indicates that the error feedback from epinet will not be back-propagated to the feature layers. Another
difference is about epinet structure where the original input x, feature ϕw(x), and random index ξ are concatenated as the
input of epinet. An ensemble prior function with size M is used for the output layer, but a separated prior feature network
is not present. This network structure results in larger parameters when handling tasks at a large scale, creating notable
computation and optimization challenges. For instance, in the case of DeepSea with a size of 20, the parameters of epinet
are nearly 20 times larger than those of HyperAgent. This is due to the raw state input x ∈ RN2

for DeepSea with size
N , whose dimension N2 is too large for the epinet to effectively process. As as results, epinet struggles with larger scale of
the problem, as evidenced in Figure 14. In contrast, HyperAgent takes only a random index ξ and feature ϕw(x) as input
for output layer, resulting in more efficient computation with fewer constant parameters.

Algorithmic difference with Ensemble+, HyperDQN and ENNDQN. For a transition tuple d = (s, a, r, s′, z) ∈ D and
given a single index ξ, with main hypermodel parameters θ and target hypermodel parameters θ−, the loss in these works
can be represented using our notion of hypermodel:

• The temporal difference (TD) loss for Ensemble+ (Osband et al., 2018; 2019) inherits the BootDQN (Osband et al.,
2016a),

ℓγEnsemble+(θ; θ
−, ξ, d) = (z⊤ξ)

(
fEnsemble+
θ (s, a, ξ)− (r + γmax

a′∈A
fEnsemble+
θ− (s′, a′, ξ))

)2

, (16)

where fEnsemble+ is the ensemble network structure, ξ ∼ Pξ := U({e1, . . . , eM}) where ei is the one-hot vector in
RM and z ∼ Pz, where zi sampled from 2 · Bernoulli(0.5) independently across entries i ∈ [M].

• The TD loss for HyperDQN (Li et al., 2022) is

ℓγ,σHyperDQN(θ; θ
−, ξ, d) =

(
fHyperDQN
θ (s, a, ξ)− (r + σz⊤ξγ +max

a′∈A
fHyperDQN
θ− (s′, a′, ξ))

)2

, (17)

where fHyperDQN is the network structure of HyperDQN, ξ ∼ Pξ := U(SM−1) and z ∼ Pz := U(SM−1).

• The TD loss for ENNDQN (Osband et al., 2023a) is

ℓγENNDQN(θ; θ
−, ξ, d) =

(
f epinet
θ (s, a, ξ)− (r + γmax

a′∈A
f epinet
θ− (s′, a′, ξ))

)2

, (18)

where f epinet is the epinet structure used in ENNDQN, ξ ∼ Pξ := N(0, IM).

As discussed in this section, fEnsemble+, fHyperDQN, f epinet can all be represented within our hypermodel framework
and our construction of hypermodel in HyperAgent has a few mentioned advantages. The key difference in these loss
functions Equations (16) to (18) is that the index ξ used for target computation is the same one as in main network; while in
Equation (11) of HyperAgent, we choose a index mapping ξ− in the target computation that is independent of ξ used in
main network.

The choice for independent ξ− is critical for theoretical analysis as closed-form solution under setting with fixed feature
mapping can be derived with Equation (11) of HyperAgent but can not be derived with Equations (16) to (18) of any
previous related works. The empirical difference for this issue will be discussed in ablation studies in Appendix E.3. Another
issue is that whether we need a additive perturbation. As stated in the incremental update Equation (6), the std of artificial
perturbation σ is important for our posterior approximation argument Lemma 4.1. However, in some practical problems
with deterministic transitions, do we really need this level of perturbations i.e., σ = 0 or σ > 0? If we need σ > 0, how
large should it be? This issue would be address in Appendix E.2.

23

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

C.4. Tabular representations

To understand and analyze the behavior of HyperAgent, we specify the algorithm in the tabular setups. Notice that the
closed-form iterative update rule derived here is general and can be applied for infinite-horizon and finite horizon problems.

Hypermodel in HyperAgent with tabular representation would be

fθ(s, a, ξ) = µsa +m⊤
saξ︸ ︷︷ ︸

Learnable fL
θ (s,a,ξ)

+ µ0,sa + σ0z
⊤
0,saξ︸ ︷︷ ︸

Fixed prior fP (s,a,ξ)

where θ = (µ ∈ R|S||A|,m ∈ R|S||A|×M) are the parameters to be learned, and z0,sa ∈ RM is a independent random vector
sampled from Pz and µ0,sa, σ0 is a prior mean and prior variance for each (s, a) ∈ S×A. The tabular representation is related
to the last-layer linear hypermodel assumption in Equation (14) when the hidden layer maps each state s to a fixed one-hot
feature ϕw(s) = ϕw0

(s) = 1s ∈ R|S|. The regularizer in Equation (4) then becomes β∥θ∥2 = β
∑

s,a

(
µ2
sa + ∥msa∥2

)
.

Derivations of Equations (6) to (8) in Section 4. The derivation is mainly from the separability of optimization problem
in tabular setup. Let θsa = (µsa,msa) be the optimization variable for specific (s, a) ∈ S ×A. As mentioned in Section 4,
at the beginning of episode k, with D = Hk and target noise mapping ξ− = ξk, we iterative solve Equation (4) by taking
target parameters θ− = θ

(i)
k as previous solved iterate starting from θ

(0)
k = θk−1 = (µk−1,mk−1) as the solution for

previous episode k − 1.

Let the optimal solution in (i)-th iteration be θ
(i+1)
k = argminθ L

γ,σ,β(θ; θ− = θ
(i)
k , ξ− = ξk,Hk). In tabular setting, by

the separability of the objective function in Equation (4), we have θk,sa = (µk,sa,mk,sa) = argminθsa Lsa(θsa; θ
− =

θ
(i)
k , ξ− = ξk,Hk)) where argminθsa Lsa(θsa; θ

−, ξ−,Hk) is defined as

argmin
θsa

Eξ∼Pξ

k−1∑
ℓ=1

∑
t∈Eℓ,sa

(fθ(Sℓ,t, Aℓ,t, ξ)− (σξ⊤zℓ,t+1 + yℓ,t+1(θ
−, ξ−)))2

+ β(µ2
sa + ∥msa∥2)

= argmin
θsa

Eξ∼Pξ

k−1∑
ℓ=1

∑
t∈Eℓ,sa

(fθ(s, a, ξ)− (σξ⊤zℓ,t+1 + yℓ,t+1(θ
−, ξ−)))2

+ β(µ2
sa + ∥msa∥2)

= argmin
(µsa,msa)

Eξ∼Pξ

k−1∑
ℓ=1

∑
t∈Eℓ,sa

((µsa + µ0,sa) + (msa + σ0z0,sa)
⊤ξ − (σξ⊤zℓ,t+1 + yℓ,t+1(θ

−, ξ−)))2


+ β(µ2

sa + ∥msa∥2)
where the target value is

yℓ,t+1(θ
−, ξ−) = Rℓ,t+1 + γmax

a′∈A
fθ−(Sℓ,t+1, a

′, ξ−(Sℓ,t+1)).

With some calculations, the closed form solution of θ(i+1)
k = (µ

(i+1)
k,sa ,mk,sa) is

mk,sa + σ0z0,sa =
σ
∑k−1

ℓ=1

∑
t∈Eℓ,sa

zℓ,t+1 + βσ0z0,sa

Nk,sa + β

=
(Nk−1,sa + β)(mk−1,sa + σ0z0,sa) + σ

∑
t∈Ek−1,sa

zk−1,t+1

Nk,sa + β
,

which derives the incremental update in Equation (6), and

µ
(i+1)
k,sa =

∑k−1
ℓ=1

∑
t∈Eℓ,sa

yℓ,t+1(θ
− = θ

(i)
k , ξ− = ξk) + βµ0,sa

Nk,sa + β
. (19)

Recall some short notations: (1) VQ is greedy value with respect to Q such that VQ(s) = maxa∈A Q(s, a) for all s ∈ S; (2)
fθ,ξ(s, a) = fθ(s, a, ξ(s)),∀(s, a) ∈ S ×A. Recall the stochastic bellman operator F γ

k induced by HyperAgent,

F γ
k Q(s, a) :=

βµ0,sa +Nk,sa(rsa + γV ⊤
Q P̂k,sa)

Nk,sa + β
+m⊤

k,saξk(s), ∀(s, a) ∈ S ×A.

24

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

With the following observation,

k−1∑
ℓ=1

∑
t∈Eℓ,sa

yℓ,t+1(θ
−, ξ−) = Nk,sa(rsa + γ

∑
s′∈S

P̂k,sa(s
′)(max

a′∈A
fθ−(s′, a′, ξ−(s′)))),

from Equation (19), we have for all pairs (s, a)

f
θ
(i+1)
k

(s, a, ξk) = µ
(i+1)
k,sa +m⊤

k,saξk(s) =

βµ0,sa +Nk,sa(rsa + γV ⊤
f
θ
(i)
k

,ξk

P̂k,sa)

Nk,sa + β
+m⊤

k,saξk(s),

which is essentially bellman iteration under stochastic bellman operator induced by HyperAgent,

f
θ
(i+1)
k ,ξk

= F γ
k fθ(i)

k ,ξk
.

Lemma C.1 (Contraction mapping). Let B(S × A) be the space of bounded functions Q : S × A → R. Let ρ be the
distance metric ρ(Q,Q′) = sup(s,a)∈S×A |Q(s, a)−Q′(s, a)|. For all k ∈ Z++ the Bellman operator of HyperAgent
F γ
k : B(S ×A)→ B(S ×A) is a contraction mapping with modulus γ ∈ [0, 1) in metric space (B(S ×A), ρ).

By Lemma C.1, since contraction mapping, the bellman operator of HyperAgent F γ
k has a unique fixed point and the

iterative process in Equation (7) can converge to a unique fixed point θk. Essentially, due the algorithmic randomness
introduced in the iterative process, fθk,ξk

is a randomized state-action value function.

Proof of Lemma C.1. By Blackwell’s sufficient conditions, we need to show that F γ
k satisfies the following two conditions:

1. Monotonicity: for all Q,Q′ ∈ B(S ×A), if Q(s, a) ≤ Q′(s, a) for all (s, a) ∈ S ×A, then

F γ
k Q(s, a) ≤ F γ

k Q
′(s, a)

2. Discounting: for all (s, a) ∈ S ×A, all c ≥ 0 and Q ∈ B(S ×A),

[F γ
k (Q+ c)](s, a)− [F γ

k Q](s, a) =

(
Nk,sa

Nk,sa + β

)
γc ≤ γc

True Bellman Operator. For any MDPM = (S,A, r, P, ρ, sterminal), consider a function Q ∈ B(S × A). The true
Bellman operator, when applied to Q, is defined as follows:

F γ
MQ(s, a) = rsa + γV ⊤

Q Psa, ∀(s, a) ∈ S ×A.

As will be introduced later, under Dirichlet prior Assumption D.8, given the randomness in P , F γ
M is essentially stochastic

in nature. When F γ
M acts upon a state-action value function Q ∈ B(S ×A), the result is a randomized state-action value

function.

D. Insight and Theoretical analysis of HyperAgent
D.1. Sequential posterior approximation argument in Lemma 4.1

We use short notation for [n] = {1, 2, . . . , n} and T = {0, 1, . . . , T} = {0} ∪ [T]. Before digging into the details of proof
of our key lemma, let us first introduce some useful probability tools developed for random projection recently.

Lemma D.1 (Distributional JL lemma (Johnson & Lindenstrauss, 1984)). For any 0 < ε, δ < 1/2 and d ≥ 1 there exists a
distribution Dε,δ on RM×d for M = O

(
ε−2 log(1/δ)

)
such that for any x ∈ Rd

P
Π∼Dε,δ

(
∥Πx∥22 /∈

[
(1− ε)∥x∥22, (1 + ε)∥x∥22

])
< δ

25

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

Theorem D.2 (Sequential random projection in adaptive process (Li, 2024a)). Let ε ∈ (0, 1) be fixed and (Ft)t≥0 be
a filtration. Let z0 ∈ RM be an F0-measurable random vector satisfies E

[
∥z0∥2

]
= 1 and |∥z0∥2 − 1| ≤ (ε/2). Let

(zt)t≥1 ⊂ RM be a stochastic process adapted to filtration (Ft)t≥1 such that it is
√
c0/M -sub-Gaussian and each zt is

unit-norm. Let (xt)t≥1 ⊂ R be a stochastic process adapted to filtration (Ft−1)t≥1 such that it is cx-bounded. Here, c0 and
cx are absolute constants. For any fixed x0 ∈ R, if the following condition is satisfied

M ≥ 16c0(1 + ε)

ε2

(
log

(
1

δ

)
+ log

(
1 +

cxT

x2
0

))
, (20)

we have, with probability at least 1− δ

∀t ∈ T , (1− ε)

(
t∑

i=0

x2
i

)
≤ ∥

t∑
i=0

xizi∥2 ≤ (1 + ε)

(
t∑

i=0

x2
i

)
. (21)

Remark D.3. Li (2024a) claims this is a “sequential random projection” argument because one can relate Theorem D.2 to
the traditional random projection (Lemma D.1) setting where Πt = (z0, . . . , zt) ∈ RM×t+1 is a random projection matrix
and xt = (x0, . . . , xt)

⊤ ∈ Rt+1 is the vector to be projected. The argument in Equation (21) translates to

∀t ∈ T , (1− ε)∥xt∥2 ≤ ∥Πtxt∥2 ≤ (1 + ε)∥xt∥2. (22)

When assuming independence between xt and Πt for all t ∈ T , by simply applying union bound over time index t ∈ T with
existing JL analysis, we can derive that the required dimension M = O(ε−2 log(T/δ)) is of the same order in Equation (20).
However, as discussed in (Li, 2024a), existing JL analytical techniques are not able to handle the sequential dependence in
our setup as xt is statistically dependent with Πt for t ∈ T . In short, the fundamental difficulties for adapting existing JL
techniques in our setup are (1) when conditioned on xt, the random variables (zs)s<t loss their independence; (2) there is
no characterization on the conditional distribution P(zs)s<t|xt

.

Proof of Lemma 4.1. Step 1: Prior approximation. We first show the prior approximation by the fixed prior model, i.e.
the event G1,sa(ε/2) = {|∥σ0z0,sa∥2 − σ2

0 | ≤ ε
2σ

2
0} holds for any (s, a). This is obvious true even for ε = 0 due to the fact

∥z0,sa∥ = 1 for all (s, a) ∈ S ×A as by the choice of the perturbation distribution Pz := U(SM−1).

Step 2: Posterior approximation. Recall that β = σ2/σ2
0 . To handle the posterior approximation, we first define a

sequence of indicator variables
xℓ,t = 1t∈Eℓ,sa

,

where Eℓ,sa is the collection of time steps in episode ℓ encountering state-action pair (s, a). We also define auxiliary
notations z0 := z0,sa and x0 =

√
β. Immediately, we could rewrite Equation (6) as

(Nk,sa + β)

σ
m̃k,sa = x0z0 +

k−1∑
ℓ=1

∑
t∈Eℓ

xℓ,tzℓ,t+1 (23)

The reorganization in Equation (23) is essential to reduce Lemma 4.1 to the following argument:

Remark D.4 (Reduction). In the following, we are going to prove with probability 1− δ, the Equation (24) holds for all
(s, a) ∈ S ×A and k ∈ [K] simultaneously:

(1− ε)(x2
0 +

k−1∑
ℓ=1

∑
t∈Eℓ

x2
t,ℓ) ≤ ∥x0z0 +

k−1∑
ℓ=1

∑
t∈Eℓ

xℓ,tzℓ,t+1∥2 ≤ (1 + ε)(x2
0 +

k−1∑
ℓ=1

∑
t∈Eℓ

x2
ℓ,t) (24)

Recall the notations Eℓ for the collection of time steps in episode ℓ and Eℓ,sa for the collection of time steps in episode ℓ.
Importantly, the sequential dependence structure in HyperAgent when interacting with environment is that

• xℓ,t := 1t∈Eℓ,sa
is dependent on the environmental and algorithmic randomness in all previous time steps:

z0, (x1,t′ , z1,t′+1)t′∈E1 , (x2,t′ , z2,t′+1)t′∈E2 , . . . , (xℓ,t′ , zℓ,t′+1)t′<t;

26

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

• zℓ,t+1 is independent of the environmental and algorithmic randomness in all previous time steps:

z0, (x1,t′ , z1,t′+1)t′∈E1 , (x2,t′ , z2,t′+1)t′∈E2 . . . , (xℓ,t′+1, zℓ,t′+1)t′<t, xℓ,t,

The difficulty of posterior approximation comes from the above dependence structure as we can not directly use argument
conditioning on the entire historyHℓ at once. This is because the conditional distributions of (zℓ′,t′) givenHℓ are changed
from the unconditional one, without clear characterization. Besides, the random variables ((zℓ′,t′) are not conditionally
independent given the historyHℓ.

These difficulties calls for the innovation on fundamental tools in probability with martingale analysis, as shown in
Theorem D.2 and Remark D.3.

Prior approximation guarantees the initial condition ∥z0∥2 = 1 for applying Theorem D.2. Observe that for all (k, s, a),
we have xℓ,t := 1t∈Eℓ,sa

≤ 1 bounded and
∑k−1

ℓ=1

∑
t∈Eℓ

x2
ℓ,t =

∑k−1
ℓ=1

∑
t∈Eℓ

1t∈Eℓ,sa
= Nk,sa. Also, as proved in (Li,

2024b;a), at each time step (ℓ, t), the perturbation random vector zℓ,t ∼ Pz := U(SM−1) is the 1√
M

-sub-Gaussian random
variable in RM . Now, we are ready to apply Theorem D.2 to the RHS of Equation (23) with sequence (zℓ,t) and (xℓ,t). This
yields the results P(∩K+1

k=1 Gk,sa(ε)) ≥ 1− δ if

M ≥ 16(1 + ε)

ε2

(
log

(
1

δ

)
+ log

(
1 +

T

β

))
,

where
∑K

k=1 |Ek| = T almost surely. Then, by union bound over the set S ×A, we conclude that if

M ≥ 16(1 + ε)

ε2

(
log

(|S||A|
δ

)
+ log

(
1 +

T

β

))
, (25)

then P
(
∩(s,a)∈S×A ∩K+1

k=1 Gk,sa(ε)
)
≥ 1− δ.

Remark D.5. According to the proof, the above sequential posterior approximation argument Lemma 4.1 holds for any
tabular MDP. It does not rely on any assumptions made latter for regret analysis. If the tabular MDP additionally satisfies
Assumption D.7, the same result in Lemma 4.1 holds when

M ≥M(ε) :=
16(1 + ε)

ε2

(
log

(|S||A|
δ

)
+ log

(
1 +

K

β

))
, (26)

where |S| = SH . The difference between Equation (26) and Equation (25) is in the log(1 +K/β) term. This difference
is due to the fact we apply Theorem D.2 for random variables only in a single stage t across episode ℓ = 1, . . . ,K under
Assumption D.7 since the visitation counts Nk,(t,x),a only takes the historical data in stage t into considerations for all
(t, x) ∈ St, a ∈ A and t ∈ {0, . . . ,H − 1}.

D.2. Insight: How does HyperAgent drives efficient deep exploration?

In this section, we highlight the key components of HyperAgent that enable efficient deep exploration. We consider
a simple example (adapted from (Osband et al., 2019)) to understand the HyperAgent’s learning rule in Equations (4)
and (5) and the role of hypermodel, and how they together drive efficient deep exploration.
Example D.6. Consider a fixed horizon MDPM with four states S = {1, 2, 3, 4}, two actions A = {up, down} and
a horizon of H = 6. Let us consider the scenario when the agent is at the beginning of k-th episode. Let Hk be the
history of all transitions observed prior to episode k, and let Hk,sa =

(
(ŝ, â, r, s′) ∈ Hk : (ŝ, â) = (s, a)

)
contain the

transitions from state-action pair (s, a) encountered before episode k. Suppose |Hk
4,down| = 1, while for every other pair

(s, a) ̸= (4, down), |Ds,a| is very large, virtually infinite. Hence, we are highly certain about the expected immediate
rewards and transition probabilities except for (4, down).

From Equations (6) to (8), HyperAgent produces a sequence of action-value functions Q(i) := f
θ
(i)
k

for i = 0, 1, 2, . . . , 6

as shown in Figure 7 by iteratively solving Equation (4) starting from Q(0) = 0,

Q(i+1)(s, a) = F γ
k Q

(i)(s, a) =
βµ0,sa +Nk,sa(rsa + γV ⊤

Q(i) P̂k,sa)

Nk,sa + β
+ m̃⊤

k,saξk(s),

27

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

i=6 i=5 i=4 i=3 i=2 i=1

s=1

s=2

s=3

s=4
St
at
es

Figure 7. Example to illustrate how HyperAgent achieves deep exploration. We can see the propagation of uncertainty from later time
period to earlier time period in the figure. Darker shade indicates higher degree of uncertainty.

In Figure 7, each triangle in row s and column t contains two smaller triangles that are associated with action-values of up
and down actions at state s. The shade on the smaller triangle shows the uncertainty estimates in the Q(i)(s, a), specifically
the variance. The dotted lines show plausible transitions, except at (4, down). Since we are uncertain about (4, down), any
transition is plausible.

As shown in the Figure 7, when i = 1, since data size at (s, a) ̸= (4, down) tends to infinity, ∥m̃k,sa∥2 ≈ 0 from our
Lemma 4.1, thus almost zero variance and white colored at (s, a) ̸= (4, down); while (s, a) = (4, down) exhibits large
variance, thus dark share, due to the lack of data |Hk,(4,down)| = 1 and Lemma 4.1. By performing bellman update, the noise
term m̃⊤

k,saξk(s) at (s, a) = (4, down) is back-propagated to other states consecutively by the iterative process i = 2, 3, 4, 5.
This is because other state-action pairs may lead to the transition into (4, down), thus being influenced by the variance
introduced by the estimation of Q(1)(4, down). As traced in Figure 7, it’s clear that the propagation of noise affects the
value estimates in a pattern depicted by the figure’s shading.

This dynamic is crucial for fostering deep exploration. In essence, a sample Q(6)(s, a) with high variance may appear
excessively optimistic in certain episodes, incentivizing the agent to explore that action. Such exploration is justified by the
agent’s uncertainty about the true optimal value Q⋆(s, a) across the planning horizon. This incentive extends beyond just the
immediate reward and transition uncertainty. As depicted in Figure 7, the spread of uncertainty through the system creates
incentives for the agent to seek out information, potentially over several time steps, to make a informative observation. This
process underlines the core principle of deep exploration.

D.3. Provable scalability and efficiency of HyperAgent

The design goal of RL algorithm is to maximize the expected total reward up to episode K:
E
[∑K

k=1

∑τk
t=1 Rk,t | M, πagent

]
, which is equivalent to E

[∑K
k=1 V

πk

M (sk,0) | M, πagent

]
. Note that the expec-

tations are over the randomness from stochastic transitions P (· | ·) under the given MDP M, and the algorithmic
randomization introduced by agent. The expectation in the former one is also over the random termination time τk.

Next, we give some specific assumptions under which we simplify the exposition on the analysis.

D.3.1. ASSUMPTIONS

Assumption D.7 (Finite-horizon time-inhomogeneous MDPs). We consider a problem class that can be formulated as a
special case of the general formulation in Section 2. Assume the state space factorizes as S = S0 ∪ S1 ∪ S2 ∪ · · · ∪ SH−1

where the state always advances from some state st ∈ St to st+1 ∈ St+1 and the process terminates with probability 1 in
period H , i.e.,

∑
s′∈St+1

Psa (s
′) = 1 ∀t ∈ {0, . . . ,H − 2}, s ∈ St, a ∈ A

28

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

and ∑
s′∈S

Psa (s
′) = 0 ∀s ∈ SH−1, a ∈ A.

For notational convenience, we assume each set S0, . . . ,SH−1 contains an equal number of S elements. Each state s ∈ St
can be written as a pair s = (t, x) where t ∈ {0, . . . ,H − 1} and x ∈ X = {1, . . . , S} . That is, |S| = SH .

Our notation can be specialized to this time-inhomogenous problem, writing transition probabilities as Pt,xa (x
′) ≡

P(t,x),a ((t+ 1, x′)). For consistency, we also use different notation for the optimal value function, writing

V π
M,t(x) ≡ V π

M((t, x))

and define V ∗
M,t(x) := maxπ V

π
M,t(x). Similarly, we can define the state-action value function under the MDP at timestep

t ∈ {0, . . . ,H − 1} by

Q∗
M,t(x, a) = E

[
rt+1 + V ∗

M,t+1 (xt+1) | M, xt = x, at = a
]
∀x ∈ X , a ∈ A.

This is the expected reward accrued by taking action a in state x and proceeding optimally thereafter. Equivalently, the
process applying true bellman operator FM,tQ

∗
M,t+1(·, ·) := F γ

MQ∗
M((t + 1, ·), ·) when γ = 1, where F γ

M is defined
in Equation (9) yields a series of optimal state-action value functions, fulfilling Q∗

M,H = 0 and the Bellman equation
Q∗

M,t = FM,tQ
∗
M,t+1 for t < H .

Hyper-parameters Finite MDP with Horizon H

reference distribution Pξ N(0, IM)
perturbation distribution Pz U(SM−1)
level of perturbation σ2 6H2

prior variance σ2
0 6H2/β

prior regularization β β in Assumption D.8
index dimension M M(1/2) in Equation (26)
discount factor γ 1
target update freq 1
sample update ratio 1
training freq H

Table 6. Hyper-parameters of our Tabular-HyperAgent and corresponding update rules.

The agent designer’s prior beliefs over MDPs M is formalized with mild assumptions.

Assumption D.8 (Independent Dirichlet prior for outcomes). For each (s, a) ∈ S ×A, the outcome distribution is drawn
from a Dirichlet prior

Psa ∼ Dirichlet(α0,sa)

for α0,sa ∈ RS
+ and each Psa is drawn independently across (s, a). Assume there is β ≥ 3 such that 1⊤α0,sa = β for all

(s, a).

D.3.2. BAYESIAN ANALYSIS

Denote the short notation [n] = {1, . . . , n}. Let us define a filtration (Zk)k≥1 on the algorithmic random perturbation that
facilitates the analysis

Zk = σ((z0,sa)(s,a)∈S×A, (zℓ,t : ℓ ∈ [k − 1], t ∈ Eℓ)).

Specifically from this definition, m̃k,sa is (Hk,Zk)-measurable. As derived in Equation (8), the perturbation m̃⊤
k,s,aξk(s)

injected to the Bellman update is conditionally Gaussian distributed

m̃⊤
k,s,aξk(s) | Hk,Zk ∼ N(0, ∥m̃k,s,a∥2), (27)

due to the fact that for all s ∈ S, ξk(s) is independent ofHk,Zk and is Normal distributed.

29

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

Meanwhile, using notation s = (t, z) in the time-inhomogeneous setting where |Eℓ| = H for all ℓ, these injected
perturbation m̃⊤

k,(t,x),aξk((t, x)) are conditionally independent across (t, x) ∈ ([H − 1] ∪ {0})× X givenHt,Zt. From
Lemma 4.1 using M(1/2) in Equation (26), the noise level of m̃⊤

k,(t,x),aξk((t, x)) is a (1/2)-approximation of the noise
level of ωk(t, x, a) through out the entire learning process for all tuples (k, (t, x), a). Therefore, the role of the injected
perturbation m̃⊤

k,(t,x),aξk((t, x)) in the Bellman update of HyperAgent is essentially the same as the Gaussian noise
ωk(t, x, a) injected in the Bellman udpate of RLSVI.

Basically, as long as the sequential approximation argument in Lemma 4.1 is established, the regret analysis follows analysis
of RLSVI in the Section 6 of (Osband et al., 2019). Still, we want to emphasize a key argument that enables efficient deep
exploration is the stochastic optimism of HyperAgent by a selection on σ2 = 6H2 which is a double of the number of σ2

selected in (Osband et al., 2019). The rest of the analysis follows Section 6.4 (Optimism and regret decompositions) and
Section 6.6 (Analysis of on-policy Bellman error) in (Osband et al., 2019).

Definition D.9 (Stochastic optimism). A random variable X is stochastically optimistic with respect to another random
variable Y , written X ≥SO Y , if for all convex increasing functions u : R→ R

E[u(X)] ≥ E[u(Y)].

We show that HyperAgent is stochastic optimistic in the sense that it overestimates the value of each state-action pairs in
expectation. This is formalized in the following proposition.

Proposition D.10. If Assumptions D.7 and D.8 hold and tabular HyperAgent is applied with planning horizon H and
parameters parameters (M,µ0, σ, σ0) satisfying M = M(1/2) defined in Equation (26), (σ2/σ2

0) = β, σ ≥
√
6H and

mins,a µ0,s,a ≥ H ,

fθk(s, a, ξk(s)) | (Hk,Zk) ⪰SO Q∗
M(s, a) | (Hk,Zk), ∀(s, a) ∈ S ×A (28)

holds for all episode k ∈ {0, . . . ,K} simultaneously with probability at least (1− δ).

The following Lemma D.11 about the stochastic optimistic operators is also built upon our sequential posterior approximation
argument in Lemma 4.1. As long as Lemma D.11 is established, the proof of Proposition D.10 follows the proof of Corollary
2 in (Osband et al., 2019).

Lemma D.11 (δ-approximate stochastically optimistic operators). If Assumption D.8 holds and HyperAgent is applied
with (M,µ0, σ, σ0) satisfying M = M(1/2) defined in Equation (25) or Equation (26), σ2/σ2

0 = β, σ ≥
√
6γ Span(VQ)

and mins,a µ0(s, a) ≥ γmaxs∈S VQ(s) + 1,

F γ
k Q(s, a) | (Hk,Zk) ⪰SO F γ

MQ(s, a) | (Hk,Zk), ∀(s, a) ∈ S ×A. (29)

holds for all episode k ∈ {0, · · · ,K} simultaneously with probability at least (1− δ).

Remark D.12. The Lemma D.11 with M(1/2) in Equation (25) does not require time-inhomogeneity Assumption D.7
and holds with any fixed γ ≥ 0. In the time-inhomogeneous problem, one can set M(1/2) in Equation (26), γ = 1 and
Span(VQ) ≤ maxs VQ ≤ H − 1 as VQ is from the case that {t = 1, . . . ,H − 1}.

Proof of Lemma D.11. Recall from Equation (9), we have

F γ
MQ(s, a) = rsa + γV ⊤

Q Psa = (rsa1+ γVQ)
⊤Psa,

where 1 is the all one vector in R|S|. Notice that by Assumption D.8, for each pair (s, a), the transition vector Psa ⊥⊥ Zk | Hk

and the conditional distribution is

P(Psa ∈ · | (Hk,Zk)) = P(Psa ∈ · | Hk) = Dirichlet(αk,sa),

where αk,sa = α0,sa +Nk,saP̂k,sa ∈ RS . Define the posterior mean of the transition vector as

P̄k,sa := E [Psa | Hk] =
α0,sa +Nk,saP̂k,sa

β +Nk,sa
∈ R|S|, (30)

30

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

which can be interpreted as the empirical transition P̂s,a but with a slight regularization towards the prior mean µ0,sa by
weights β = 1⊤α0,sa.

As mentioned in Section 4 and Equation (27), from Equation (8)

F γ
k Q(s, a) | (Hk,Zk) ∼ N(µk,sa, ∥m̃k,sa∥2)

where the conditional mean µk,sa is

µk,sa = (rsa1+ γVQ)
⊤P̄k,sa +

βµ0,sa − βrsa − γV ⊤
Q α0,sa

β +Nk,sa
. (31)

From our established Lemma 4.1, when M = M(ε), the joint event ∩(k,s,a)∈[K]×S×AGk,sa(ε) holds with probability 1− δ.
Specifically, Gk,sa(1/2) ∈ σ(Hk,Zk) implies that

∥m̃k,sa∥2 ≥ (1/2)σ2/(β +Nk,sa).

Under the above established event, the result follows from Lemma D.13 if we establish on conditional variance ∥m̃k,sa∥2 ≥
6(1⊤αk,sa)

−1 Span(rsa1 + γVQ)
2 and on conditional mean µk,sa ≥ (1⊤αk,sa)

−1(rsa1 + γVQ)
⊤αk,sa = (rsa1 +

γVQ)
⊤P̄k,sa since 1⊤α0,sa = β for all (s, a). That is, for conditional variance

3 · Span(rsa1+ γVQ)
2

(1⊤αk,sa)
≤ 3γ2 · Span(VQ)

2

β +Nk,sa

(1)

≤ (1/2)σ2

β +Nk,sa

(2)

≤ ∥m̃k,sa∥2,

where (1) is from the condition of σ in Lemma D.11 and (2) holds true under the event Gk,sa(1/2). Next we have the
conditional mean µk,sa dominating the posterior mean of true bellman update E [F γ

MQ | Hk] = (rsa1+ γVQ)
⊤P̄k,sa,

µk,sa − (rsa1+ γVQ)
⊤P̄k,sa =

βµ0,sa − βrsa − γV ⊤
Q α0,sa

β +Nk,sa

≥ βµ0,sa − β(γmaxs∈S VQ(s) + 1)

β +Nk,sa

≥ 0

because of the condition in Lemma D.11 that minsa µ0,sa ≥ γmaxs VQ(s) + 1.

Lemma D.13 (Gaussian vs Dirichlet optimism, Lemma 4 in (Osband et al., 2019)). Let Y = p⊤v for v ∈ Rn fixed
and p ∼ Dirichlet(α) with α ∈ Rn

+ and
∑n

i=1 αi ≥ 3. Let X ∼ N
(
µ, σ2

)
with µ ≥ (

∑n
i=1 αi)

−1
∑n

i=1 αiVi, σ
2 ≥

3 (
∑n

i=1 αi)
−1

Span(V)2, then X ⪰SO Y . Thus, p⊤v is sub-Gaussian with parameter σ2.

31

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

E. Understanding HyperAgent via comprehensive studies on DeepSea
In this section, we present insightful experiments to demonstrate the impact of critical components on HyperAgent.
Specifically, we employ DeepSea to validate the theoretical insights of our method, discuss the sampling schemes for
Q-target computation and action selection, introduce methods for achieving accurate posterior approximation, and compare
with additional baselines within the hypermodel framework as discussed in Appendix C.3.2.

E.1. Validating theoretical insights through experimentation

Empirical validation of theoretical insights on the index dimension M . According to the theoretical analysis in
Lemma 4.1, increasing the index dimension M can enhance the approximation of posterior covariance under closed-form
solution of Equation (4), where its expectation is precisely computed, thereby facilitating deep exploration.

In this experiment, we set the number of indices |Ξ̃| of Equation (5) to 20 for all index dimensions {1, 2, 4, 8}. Let us
first discuss the case M = 1, it can be regarded as an incremental updated RLSVI point estimate without resampling the
perturbation and re-solving the least-square for the entire history. As evidenced by the results in Figure 8, the incremental
version of RLSVI cannot fully solve DeepSea tasks starting from size of 30, indicating dimension M > 1 is necessary and
increasing a bit on M benefits deep exploration, possibly from more accurate posterior approximation by larger M .

20 30 40 50 60 70 80 90 100
Size

0

2

4

6

8

10

E
p

is
od

es
to

L
ea

rn

×103 DeepSea

M = 1 M = 2 M = 4 M = 8

Figure 8. Ablation results on the impact of index dimension M . HyperAgent exhibits improved performance when M exceeds 1,
aligning with our theoretical analysis.

Ablation experiment on different sampling schemes for ξ. We have two sampling schemes for ξ in the computation of
the Q-target and action selection: state-independent ξ sampling and state-dependent ξ sampling, see detailed description
in Appendix C.2. In our implementation by default, HyperAgent employs the state-independent ξ for action selection,
where we use the same index ξk(S) = ξk for each state within episode k. Whereas, HyperAgent utilizes state-dependent
ξ for Q-target computation, where we sample independent ξ ∼ Pξ when computing the Q-target for each transition tuple in
mini-batches. To systematically compare the index sampling schemes on action selection and Q-target computation, two
variants are created.

• HyperAgent with state-independent ξ: applying state-independent ξ sampling to both Q-target computation and
action selection.

• HyperAgent with state-dependent ξ: applying state-dependent ξ sampling to both Q-target computation and action
selection.

As illustrated in Figure 9, these distinct index sampling schemes for ξ exhibit nearly identical performance.

Comparative results on optimistic index sampling. Introduced in C.2, optimistic index sampling (OIS) for action
selection and Q-target computation is another index sampling scheme in HyperAgent framework, naming HyperAgent
w. OIS. As shown in Figure 10(a), HyperAgent w. OIS outperforms HyperAgent by leveraging the OIS method to

32

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

20 30 40 50 60 70 80 90 100
Size

0

2

4

6

8

10

E
p

is
od

es
to

L
ea

rn

×103 DeepSea

HyperAgent w. state-independent ξ

HyperAgent w. state-dependent ξ

HyperAgent

Figure 9. Ablation results for the sampling schemes used in Q-target computation. Both sampling schemes achieve similar performance.

generate more optimistic estimates, thereby enhancing exploration. The OIS method incurs minimal additional computation,
as we have set the dimension M to 4.

The empirical implementation of LSVI-PHE (Ishfaq et al., 2021) also utilizes the similar optimistic sampling (OS) method
with ensemble networks as described in Appendix A. Since no official implementation of LSVI-PHE is available, we apply
the OIS to the Ensemble+ (Osband et al., 2018; 2019), denoted as Ensemble+ w. OS, representing the LSVI-PHE. A critical
difference between LSVI-PHE and HyperAgent w. OIS is that LSVI-PHE performs maximum value over M separately
trained ensemble models, while HyperAgent w. OIS has the computation advantage that we can sample as many as
indices from reference distribution Pξ to form the optimistic estimation of value function even when the index dimension M
is small.

When M = 4, both Ensemble+ and Ensemble+ w. OS demonstrates subpar performance. According to Osband et al. (2018)
and the observation in Figure 10, a larger ensemble size (M = 16) can lead to improved performance. When M = 16, both
Ensemble+ w. OS (LSVI-PHE) has a bit better performance compared with Ensemble+. The result of Ensemble+ w. OS
(M = 16) and HyperAgent w. OIS demonstrates enhanced deep exploration via optimistic value estimation, which is
aligned with our theoretical insights.

In another dimension of comparison, As depicted in Figure 10(b), Ensemble+ w. OS (M = 16) still fails to solve the
large-size DeepSea. This further showcases the exploration efficiency of HyperAgent.

20 30 40 50 60 70 80 90 100
Size

0

2

4

6

8

10

E
p

is
od

es
to

L
ea

rn

×103 DeepSea

Ensemble+

Ensemble+ w. OS

HyperAgent

HyperAgent w. OIS

(a) We set M = 4 for all algorithms. HyperAgent w. OIS
achieves the best performance.

20 30 40 50 60 70 80 90 100
Size

0

2

4

6

8

10

E
p

is
od

es
to

L
ea

rn

×103 DeepSea

Ensemble+ (M=16)

Ensemble+ w. OS (M=16)

HyperAgent

(b) We set M = 16 for algorithms with ensemble network, and
keep M = 4 for HyperAgent.

Figure 10. Results on different action selection schemes. The OIS method can achieve better performance due to the optimistic estimates.

33

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

E.2. Ablation studies on implementation settings and hyper-parameters

Sampling-based approximation. HyperAgent by default uses Gaussian reference distribution Pξ = N(0, IM), which
requires sampling-based approximation Equations (4) and (5). Therefore, it is imperative to set the number of indices
|Ξ̃| of Equation (5) to be sufficiently large for a good approximation given index dimension M . |Ξ̃| = 20 falls short of
delivering satisfactory results when M = 16 as illustrated in Figure 11. For this scenario, increasing the number of indices
|Ξ̃| can alleviate performance degradation as depicted in Figure 12, facilitating deep exploration empirically. To achieve
accurate approximation, |Ξ̃| may need to grow exponentially with M , but this comes at the cost of increased computation.
To balance accuracy and computation, we have chosen M = 4 and |Ξ̃| = 20 as the default hyper-parameters, which already
demonstrate superior performance in Figure 3.

20 30 40 50 60 70 80 90 100
Size

0

2

4

6

8

10

E
p

is
od

es
to

L
ea

rn

×103 DeepSea

HyperAgent (M=16) HyperAgent (M=4)

Figure 11. Results of HyperAgent with large index dimension.
In both settings, we set |Ξ̃| = 20, which fails to achieve satisfac-
tory performance for M = 16.

20 30 40 50 60 70 80 90 100
Size

0

2

4

6

8

10

E
p

is
od

es
to

L
ea

rn

×103 DeepSea

|Ξ̃| = 20 |Ξ̃| = 40 |Ξ̃| = 80

Figure 12. Results of HyperAgent with index dimension M =
16. We can increase the number of indices |Ξ̃| to alleviate perfor-
mance degradation,

Ablation results for other hyper-parameters. In addition, we have also investigated the effect of the σ of Equation (11)
on our method, as shown in Figure 13. HyperAgent is not sensitive to this hyper-parameter, and we have selected
σ = 0.0001 as the default hyper-parameter.

20 30 40 50 60 70 80 90 100
Size

0

2

4

6

8

10

E
p

is
od

es
to

L
ea

rn

×103 DeepSea

σ = 0.0 σ = 0.0001 σ = 0.001

Figure 13. Ablation results on the σ = 0.0001 of Equation (11). We set σ = 0.0001 as the default setting.

E.3. Additional results with algorithms using hypermodel framework

Experiment investigating different network structures within the hypermodel framework. We perform an ablation
experiment examining various network structures, (1) HyperModel (Dwaracherla et al., 2020) (2) epinet (Osband et al.,
2023b), outlined in Appendix C.3.2 with the same hyper-parameters, same algorithmic update rule, same target computation
rule and same action selection rule.

The comparison results are presented in Figure 14. HyperModel is unable to solve DeepSea, even with a size of 20, while
ENNDQN cannot solve DeepSea when the size exceeds 30. Overall, HyperAgent demonstrates superb efficiency and

34

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

scalability, as it efficiently solves DeepSea instances of size 1002 that previous literature has never achieved.

20 30 40 50 60 70 80 90 100
Size

0

2

4

6

8

10

E
p

is
od

es
to

L
ea

rn

×103 DeepSea

epinet HyperModel HyperAgent

Figure 14. Results from various network structures using the hypermodel framework. HyperAgent demonstrates superior data and
computational efficiency compared to other methods.

Ablation experiment on Q-target computation. Several methods, including HyperDQN, ENNDQN, and Ensemble+,
employ the injected index to achieve posterior approximation and utilize the same index to compute the Q-target as described
in Appendix C.3.2. They apply the same index for both main Q-value and target Q-value computation, which we refer
to as dependent Q-target computation. In contrast, HyperAgent employs independent Q-target computation, where it
independently samples different indices to compute the target Q-value, a strategy supported by theoretical analysis. We
contrast these two Q-target computation methods within the HyperAgent framework and introduce the HyperAgent
w. dependent Q-target. As depicted in Figure 15, HyperAgent w. dependent Q-target demonstrates improved results,
prompting further analysis of the underlying reasons in future research.

20 30 40 50 60 70 80 90 100
Size

0

2

4

6

8

10

E
p

is
od

es
to

L
ea

rn

×103 DeepSea

HyperAgent w. dependent Q-target HyperAgent

Figure 15. Ablation results on different Q-target computation methods. The method of dependent Q-target computation can achieve
better results inspiring future research.

35

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

F. Additional Results on Atari
We demonstrated the efficiency of HyperAgent in handling data and computation in Section 5.2. Here, we present
comprehensive results for each environment to further establish the superiority of our approach.

Detailed results on each game. We adhere to the evaluation protocol described in Appendix B.1 to obtain the best score
achieved in each game with 2M steps of HyperAgent, as presented in Table 7. The sources of the compared baseline
results can also be found in Appendix B.2.

Game Random Human DDQN† DER Rainbow HyperDQN HyperAgent

Alien 227.8 7127.7 722.7 1642.2 1167.1 862.0 1830.2
Amidar 5.8 1719.5 61.4 476.0 374.0 140.0 800.4
Assault 222.4 742.0 815.3 488.3 2725.2 494.2 3276.2
Asterix 210.0 8503.3 2471.1 1305.3 3213.3 713.3 2370.2
BankHeist 14.2 753.1 7.4 460.5 411.1 272.7 430.3
BattleZone 2360.0 37187.5 3925.0 19202.5 19379.7 11266.7 29399.0
Boxing 0.1 12.1 26.7 1.7 69.9 6.8 74.0
Breakout 1.7 30.5 2.0 6.5 137.3 11.9 54.8
ChopperCommand 811.0 7387.8 354.6 1488.9 1769.4 846.7 2957.2
CrazyClimber 10780.5 35829. 53166.5 36311.1 110215.8 42586.7 121855.8
DemonAttack 152.1 1971.0 1030.8 955.3 45961.3 2197.7 5852.0
Freeway 0.0 29.6 5.1 32.8 32.4 30.9 32.2
Frostbite 65.2 4334.7 358.3 3628.3 3648.7 724.7 4583.9
Gopher 257.6 2412.5 569.8 742.1 4938.0 1880.0 7365.8
Hero 1027.0 30826.4 2772.9 15409.4 11202.3 9140.3 12324.7
Jamesbond 29.0 302.8 15.0 462.1 773.1 386.7 951.6
Kangaroo 52.0 3035.0 134.9 8852.3 6456.1 3393.3 8517.1
Krull 1598.0 2665.5 6583.3 3786.7 8328.5 5488.7 8222.6
KungFuMaster 258.5 22736.3 12497.2 15457.0 25257.8 12940.0 23821.2
MsPacman 307.3 6951.6 1912.3 2333.7 1861.1 1305.3 3182.3
Pong -20.7 14.6 -15.4 20.6 5.1 20.5 20.5
PrivateEye 24.9 69571.3 37.8 900.9 100.0 64.5 171.9
Qbert 163.9 13455.0 1319.4 12345.5 7885.3 5793.3 12021.9
RoadRunner 11.5 7845.0 3693.5 14663.0 33851.0 7000.0 28789.4
Seaquest 68.4 42054.7 367.6 662.0 1524.7 370.7 2732.4
UpNDown 533.4 11693.2 3422.8 6806.3 39187.1 4080.7 19719.2

Table 7. The averaged score over 200 evaluation episodes for the best policy in hindsight (after 2M steps) for 26 Atari games. The
performance of the random policy and the human expert is from dqn zoo Quan & Ostrovski (2020).

We also present the relative improvement of HyperAgent in comparison to other baselines for each game, which is
determined by the given following equation as per (Wang et al., 2016):

relative improvement =
proposed− baseline

max(human, baseline)− human
.

Our classification of environments into three groups, namely “hard exploration (dense reward)”, “hard exploration (sparse
reward)” and “easy exploration”, is based on the taxonomy proposed by (Bellemare et al., 2016). The overall results are
illustrated in Figures 16 to 19.

HyperAgent algorithm exhibits significant improvement compared to DDQN†, DER, and HyperDQN in environments
with “easy exploration”, and overall it performs better in all environments. This indicates that HyperAgent has better
generalization and exploration abilities. On the other hand, when compared to Rainbow, our algorithm performs better
in environments which are in the group of “hard exploration (dense reward)”, demonstrating its superior exploration

36

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

as
te

ri
x

p
ri

va
te

ey
e

se
aq

u
es

t

al
ie

n

m
sp

ac
m

an

h
er

o

kr
u

ll

ch
op

p
er

co
m

m
an

d

am
id

ar

ku
n

gf
u

m
as

te
r

b
an

kh
ei

st

b
at

tl
ez

on
e

qb
er

t

fr
ee

w
ay

fr
os

tb
it

e

p
on

g

u
p

n
d

ow
n

cr
az

yc
lim

b
er

b
ox

in
g

b
re

ak
ou

t

d
em

on
at

ta
ck

ka
n

ga
ro

o

go
p

h
er

ro
ad

ru
n

n
er

ja
m

es
b

on
d

as
sa

u
lt

-100

0

100

200

300

400

500

R
el

at
iv

e
S

co
re

Relative Score of HyperAgent Compared with DDQN†

Easy Exploration

Hard Exploration (Sparse Reward)

Hard Exploration (Dense Reward)

Figure 16. Relative improvement of HyperAgent compared with DDQN†

h
er

o

b
an

kh
ei

st

ka
n

ga
ro

o

qb
er

t

fr
ee

w
ay

p
ri

va
te

ey
e

p
on

g

al
ie

n

se
aq

u
es

t

m
sp

ac
m

an

as
te

ri
x

am
id

ar

ch
op

p
er

co
m

m
an

d

fr
os

tb
it

e

b
at

tl
ez

on
e

ku
n

gf
u

m
as

te
r

ro
ad

ru
n

n
er

ja
m

es
b

on
d

u
p

n
d

ow
n

b
re

ak
ou

t

kr
u

ll

d
em

on
at

ta
ck

go
p

h
er

cr
az

yc
lim

b
er

as
sa

u
lt

b
ox

in
g-100

0

140

280

420

560

700

R
el

at
iv

e
S

co
re

Relative Score of HyperAgent Compared with DER

Easy Exploration

Hard Exploration (Sparse Reward)

Hard Exploration (Dense Reward)

Figure 17. Relative improvement of HyperAgent compared with DER

37

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

p
on

g

p
ri

va
te

ey
e

fr
ee

w
ay

se
aq

u
es

t

h
er

o

al
ie

n

as
te

ri
x

b
an

kh
ei

st

m
sp

ac
m

an

ch
op

p
er

co
m

m
an

d

am
id

ar

qb
er

t

ku
n

gf
u

m
as

te
r

b
at

tl
ez

on
e

kr
u

ll

fr
os

tb
it

e

u
p

n
d

ow
n

b
re

ak
ou

t

ka
n

ga
ro

o

ja
m

es
b

on
d

d
em

on
at

ta
ck

cr
az

yc
lim

b
er

go
p

h
er

ro
ad

ru
n

n
er

as
sa

u
lt

b
ox

in
g-100

0

120

240

360

480

600

R
el

at
iv

e
S

co
re

Relative Score of HyperAgent Compared with HyperDQN

Easy Exploration

Hard Exploration (Sparse Reward)

Hard Exploration (Dense Reward)

Figure 18. Relative improvement of HyperAgent compared with HyperDQN

d
em

on
at

ta
ck

b
re

ak
ou

t

u
p

n
d

ow
n

ro
ad

ru
n

n
er

as
te

ri
x

ku
n

gf
u

m
as

te
r

kr
u

ll

fr
ee

w
ay

p
ri

va
te

ey
e

b
an

kh
ei

st

se
aq

u
es

t

h
er

o

b
ox

in
g

al
ie

n

cr
az

yc
lim

b
er

ch
op

p
er

co
m

m
an

d

m
sp

ac
m

an

fr
os

tb
it

e

as
sa

u
lt

ja
m

es
b

on
d

am
id

ar

b
at

tl
ez

on
e

qb
er

t

ka
n

ga
ro

o

p
on

g

go
p

h
er

-100

0

20

40

60

80

100

R
el

at
iv

e
S

co
re

Relative Score of HyperAgent Compared with Rainbow

Easy Exploration

Hard Exploration (Sparse Reward)

Hard Exploration (Dense Reward)

Figure 19. Relative improvement of HyperAgent compared with Rainbow

38

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

0 0.5M 1.0M 1.5M 2M
0

500

1000

1500
E

p
is

o
d

e
R

et
u

rn

Alien

0 0.5M 1.0M 1.5M 2M

0

200

400

600

800

Amidar

0 0.5M 1.0M 1.5M 2M

0

1000

2000

3000

Assault

0 0.5M 1.0M 1.5M 2M

1000

2000

Asterix

0 0.5M 1.0M 1.5M 2M

0

200

400

E
p

is
o
d

e
R

et
u

rn

BankHeist

0 0.5M 1.0M 1.5M 2M

0

10000

20000

30000

BattleZone

0 0.5M 1.0M 1.5M 2M

−50

0

50

Boxing

0 0.5M 1.0M 1.5M 2M

0

20

40

Breakout

0 0.5M 1.0M 1.5M 2M

1000

2000

3000

E
p

is
o
d

e
R

et
u

rn

ChopperCommand

0 0.5M 1.0M 1.5M 2M

0

50000

100000

CrazyClimber

0 0.5M 1.0M 1.5M 2M

0

2000

4000

6000

DemonAttack

0 0.5M 1.0M 1.5M 2M

10

20

30

Freeway

0 0.5M 1.0M 1.5M 2M

0

2000

4000

E
p

is
o
d

e
R

et
u

rn

Frostbite

0 0.5M 1.0M 1.5M 2M

0

5000

10000

15000

Gopher

0 0.5M 1.0M 1.5M 2M

0

5000

10000

15000

Hero

0 0.5M 1.0M 1.5M 2M

0

500

1000

Jamesbond

0 0.5M 1.0M 1.5M 2M

0

2500

5000

7500

10000

E
p

is
o
d

e
R

et
u

rn

Kangaroo

0 0.5M 1.0M 1.5M 2M

2000

4000

6000

8000

Krull

0 0.5M 1.0M 1.5M 2M

0

10000

20000

KungFuMaster

0 0.5M 1.0M 1.5M 2M

0

1000

2000

3000

MsPacman

0 0.5M 1.0M 1.5M 2M

−20

−10

0

10

20

E
p

is
o
d

e
R

et
u

rn

Pong

0 0.5M 1.0M 1.5M 2M

−500

−250

0

250

500

PrivateEye

0 0.5M 1.0M 1.5M 2M

Num of Steps

0

5000

10000

Qbert

0 0.5M 1.0M 1.5M 2M

Num of Steps

0

10000

20000

30000

RoadRunner

0 0.5M 1.0M 1.5M 2M

Num of Steps

0

1000

2000

3000

E
p

is
o
d

e
R

et
u

rn

Seaquest

0 0.5M 1.0M 1.5M 2M

Num of Steps

0

5000

10000

15000

20000

UpNDown

DDQN(ours) HyperAgent w. OIS HyperAgent

Figure 20. Learning curve for each game.

39

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

capabilities. In the case of Freeway, which belongs to the “hard exploration (sparse reward)” group, both HyperAgent and
Rainbow achieve similar optimal scores (as shown in Table 7). However, HyperAgent demonstrates faster convergence,
as evidenced in Figure 4. Overall, HyperAgent showcases better generalization and exploration efficiency than other
baselines.

We also evaluate the OIS method across the 26 Atari games, as illustrated in Table 8. Our findings indicate that the OIS
method does not generate significant differences in complex networks like Convolutional layers.

Method IQM Median Mean

HyperAgent 1.22 (1.15, 1.30) 1.07 (1.03, 1.14) 1.97 (1.89, 2.07)
HyperAgent w. OIS 1.15 (1.09, 1.22) 1.12 (1.02, 1.18) 2.02 (1.91, 2.16)

Table 8. Comparable results achieved using the OIS method in Atari games. The data in parentheses represent the 95% confidence interval.

Furthermore, we present the learning curve for each game in Figure 20. It is evident that HyperAgent has demonstrated
superior performance compared to DDQN(ours), attributed to the integration of hypermodel that enhances exploration.
Moreover, it is worth highlighting that the learning curve of HyperAgent continues to rise in specific environments,
indicating that it can achieve even better performance with additional training.

Additional results about exploration on Atari. To further demonstrate the exploration efficiency of HyperAgent,
we compare it with additional baselines, including AdamLMCDQN (Ishfaq et al., 2024), LangevinAdam (Dwaracherla
& Van Roy, 2021), HyperDQN (Li et al., 2022) and our variant HyperAgent w. OIS. As depicted in Figure 21, both
HyperDQN and HyperAgent demonstrate improved results, indicating that applying hypermodel can lead to better
posterior approximation and consequently enhance exploration.

0 0.5M 1.0M 1.5M 2M

0

500

1000

1500

2000

2500

E
p

is
o
d

e
R

et
u

rn

Alien

0 0.5M 1.0M 1.5M 2M

0

10

20

30

Freeway

0 0.5M 1.0M 1.5M 2M

0

200

400

600

800
Gravitar

0 0.5M 1.0M 1.5M 2M

0

5000

10000

15000

Hero

0 0.5M 1.0M 1.5M 2M

Num of Steps

−1250

−1000

−750

−500

−250

0

E
p

is
o
d

e
R

et
u

rn

Pitfall

0 0.5M 1.0M 1.5M 2M

Num of Steps

0

5000

10000

15000

Qbert

0 0.5M 1.0M 1.5M 2M

Num of Steps

0

1000

2000

3000

Solaris

0 0.5M 1.0M 1.5M 2M

Num of Steps

0

100

200

300

400

Venture

LangevinAdam AdamLMCDQN HyperDQN HyperAgent w. OIS HyperAgent

Figure 21. Comparative results on 8 hardest exploration games with more baselines.

Additional results on other 29 Atari games. To further showcase the robustness and scalability of HyperAgent, we
conduct experiments on all 55 Atari games using identical settings (see Table 4). We present the best score achieved in these
29 environments using 2M steps in Table 9, with 5 seeds repeated for each environment. HyperAgent outperforms others
in over half of these 29 environments, delivering top performance in 31 out of 55 Atari games.

40

HyperAgent- Approximate Posterior Sampling over Q-Star: Simple, Scalable, Efficient

Game Random Human DDQN† Rainbow HyperDQN HyperAgent

Asteroids 210.0 47388.7 520.8 969.4 1044.7 1176.6
Atlantis 12850.0 29028.1 5771.3 528642.7 370160.0 793851.9
BeamRider 363.9 16926.5 464.4 10408.0 981.9 6749.2
Berzerk 123.7 2630.4 566.6 822.7 336.7 840.5
Bowling 23.1 160.7 12.6 27.7 14.8 61.3
Centipede 2090.9 12017.0 4343.2 5352.1 2071.5 4121.9
Defender 2874.5 18688.9 2978.4 25457.1 4063.3 21422.7
DoubleDunk -18.6 -16.4 -21.2 -2.2 -17.7 -1.7
Enduro 0.0 860.5 338.7 1496.6 201.0 1223.0
FishingDerby -91.7 -38.7 -78.1 -22.4 -74.3 -0.7
Gravitar 173.0 3351.4 2.6 372.0 300.0 629.5
IceHockey -11.2 0.9 -12.4 -7.0 -11.6 -3.8
NameThisGame 2292.3 8049.0 5870.3 9547.2 3628.0 5916.4
Phoenix 761.4 7242.6 3806.2 6325.0 3270.0 4941.9
Pitfall -229.4 6463.7 -55.5 -0.1 -13.0 -11.2
Riverraid 1338.5 17118.0 3406.2 5627.9 4233.3 6896.3
Robotank 2.2 11.9 7.8 22.4 3.1 37.2
Skiing -17098.1 -4336.9 -22960.7 -16884.8 -29975.0 -11654.4
Solaris 1236.3 12326.7 390.2 1185.9 1173.3 941.3
SpaceInvaders 148.0 1668.7 356.1 742.2 425.3 762.2
StarGunner 664.0 10250.0 346.3 11142.3 1113.3 6135.7
Tennis -23.8 -8.3 -10.1 0.0 -17.0 -1.4
TimePilot 3568.0 5229.2 2204.6 3763.8 3106.7 6006.1
Tutankham 11.4 167.6 108.6 104.1 93.0 116.2
Venture 0.0 1187.5 21.5 0.0 26.7 163.9
VideoPinball 16256.9 17667.9 10557.5 49982.2 24859.2 29674.8
WizardOfWor 563.5 4756.5 275.7 3770.9 1393.3 4019.5
YarsRevenge 3092.9 54576.9 10485.5 10195.6 4263.1 28805.5
Zaxxon 32.5 9173.3 2.1 7344.1 3093.3 7688.1

Table 9. The evaluated score of other 29 games from ALE suite.

41

