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ABSTRACT

The ability to perceive and reason about individual objects and their interactions
is a goal to be achieved for building intelligent artificial systems. State-of-the-art
approaches use a feedforward encoder to extract object embeddings and a latent
graph neural network to model the interaction between these object embeddings.
However, the feedforward encoder can not extract object-centric representations,
nor can it disentangle multiple objects with similar appearance. To solve these
issues, we introduce Slot Structured World Models (SSWM), a class of world
models that combines an object-centric encoder (based on Slot Attention) with
a latent graph-based dynamics model. We evaluate our method in the Spriteworld
benchmark with simple rules of physical interaction, where Slot Structured World
Models consistently outperform baselines on a range of (multi-step) prediction
tasks with action-conditional object interactions. All code to reproduce paper
experiments, including the Interactive Spriteworld benchmark, is available from
www.github.com/anonymized.

1 INTRODUCTION

The ability to distinguish individual components of a visual scene and reason about their interaction
is a key aspect of human cognition (Spelke & Kinzler, 2007). It allows us to build a solid compre-
hension of our environment and is therefore also considered an important requirement for artificially
intelligent systems (Battaglia et al., 2018). Ideally, we obtain models that take in raw images, flexi-
bly represent the objects in the scene, and can predict the effect of actions on individual objects and
their interactions (Ha & Schmidhuber, 2018; Moerland et al., 2023). Several papers have indeed
addressed this challenge (Van Steenkiste et al., 2018; Kipf et al., 2019; Watters et al., 2019b). A par-
ticularly successful idea is to extract the objects in the scene and use graph neural networks (GNN)
(Wu et al., 2020) to model the pairwise interaction between objects, which achieved state-of-the-art
results as ‘Contrastively Learned Structured World Models’ (C-SWM) (Kipf et al., 2019).

The current GNN-based approach does however have remaining challenges, as noted by the authors
of C-SWM as well (Kipf et al., 2019). The method uses a feedforward encoder to embed the scene
into a fixed set of embeddings for the latent GNN model, an approach that has several limitations.
First of all, the fixed feedforward encoder cannot disambiguate multiple objects with the (approxi-
mate) same appearance: they will be detected in the same feature map (see Fig. 1 for an illustration
of this problem). Moreover, the number of discoverable objects is fixed in the architecture and
cannot therefore vary at inference time.

To overcome the above limitations, we propose to instead feed the latent GNN-based transition
model with an object-centric encoder (Martin Engelcke, 2019; Klaus Greff, 2019; Christopher
P. Burgess, 2019; Locatello et al., 2020; Biza et al., 2023). Such encoders learn to return a set
of embeddings that each represent information about an individual object in the scene. One success-
ful approach is Slot Attention (SA) (Locatello et al., 2020), which utilizes an (iterative) competitive
attention mechanism between the object-specific slots to force individual objects into distinct slots.
These methods repeatedly apply the same encoder to extract each object (sharing information), can
disentangle similar objects due to the competitive attention, and can adjust the number of initialized
slots at inference time. As such, object-centric encoders such as Slot Attention provide the exact
characteristics we desire for downstream use in GNN-based dynamics models.

This paper therefore proposes a new type of dynamics model that embeds an object-centric encoder
and a GNN-based world model. In particular, we use Slot Attention to generate embeddings for a
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Figure 1: Comparison of object masks learned by C-SWM (baseline, top row) (Kipf et al., 2019)
on Shapes 2D and SSWM (our method, bottom row) on Interactive Spriteworld. The left image
of each row shows the input image, while the five images next to it show the learned object masks
(encoder output) that enter the GNN. Top: The input image contains two duplicate objects (red
circles and red triangles), which the C-SWM encoder cannot disentangle and instead conflates in a
single embedding (for example, the two red circles end up in both the first and fourth embedding).
These embeddings will make modeling of pairwise object interactions in the downstream GNN less
effective. Bottom: In contrast, our SSWM method can disentangle the duplicate items in the input
image (orange circles) into distinct slots, due to the object-centric competitive attention mechanism
in the Slot Attention encoder. This allows for more effective modeling of object interaction in the
downstream GNN, as we show in the Results section.

latent GNN dynamics model (inspired by C-SWM), which we call Slot Structured World Models
(SSWM). The high-level architecture of SSWM is shown in Fig. 2. However, note that the idea
to combine object-centric encoders and GNN-based dynamics models is more general, and one can
easily swap Slot Attention for any other object-centric embedding method (as long as the method
produces a set of feature vectors that bind individual objects).

To test our approach we extend the well-known Spriteworld benchmark (Watters et al., 2019a), in-
troduced for object-centric learning in COBRA (Watters et al., 2019b), with physical rules of inter-
action. While in the original Spriteworld an object pushed into another object would start to overlap,
in our new Interactive Spriteworld environment the second object will be pushed away. This ensures
objects actually interact with each other, and also demands richer representations (since the exact
shape of an object starts to matter, while in the previous setting their location and velocity would
suffice). Experimental evaluation on a range of Interactive Spriteworld tasks shows that SSWM con-
sistently outperforms the state-of-the-art baseline C-SWM in 1-step, 5-step, and 10-step predictive
accuracy. Quantitative evaluation indicates that SSWM indeed makes accurate predictions, although
slight deviations do start to accumulate over longer prediction horizons.

In summary, this paper proposes SSWM, the first learned dynamics model that:

• can isolate individual objects and reason about their (action-conditional) interactions from
raw pixel input

• can disambiguate between multiple objects with similar appearance

• numerically outperforms the state-of-the-art object-centric dynamics model C-SWM on
(multi-step) prediction tasks

2 BACKGROUND

The architecture presented by (Kipf et al., 2019) in C-SWM, is structured in three different sub-
modules: object extractor, object encoder, and relational transition model. The object extractor
is a function Eext(st) = {m1, ...,mk} mapping an RGB image st into a set of K feature maps
meant to represent a mask binding to one of the K objects (K is fixed). It is implemented as a fully
convolutional network whose last layer produces at least K feature maps (at least one per object) and
is activated by sigmoid (to obtain feature maps interpretable as masks). The object encoder shares
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Figure 2: Architectural design of Slot Structured World Models. Given an input image (left), we use
a pretrained Slot Attention encoder to produce a set of object-centric embeddings (zt) that capture
the objects (and background) in the scene. These latent embeddings are then fed together with the
chosen action into an iterative GNN transition module (defined in Algorithm 1) to predict the change
in the next latent state (∆zt). The graph-based transition model is trained to minimize the (object-
wise) L2-norm between the latent prediction (zt + ∆zt) and the Slot Attention embedding of the
true next state (zt+1).

parameters across the objects and is a function Eenc(mi) = zi embedding each of the K masks to a
latent vector zi ∈ RD. The relational transition model is a function T (zkt , a

k
t ) = ∆zkt computing the

update for each of the abstract representation zkt given an action akt associated. It is implemented as a
Graph Neural Network (GNN) (Scarselli et al., 2008) using the following message-passing updates:

e
(i,j)
t = fedge([z

i
t, z

j
t ]) (1)

where e(i,j)t is the edge (the relationship) between the nodes zit and zjt , and fedge([z
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j
t ]) is a simple

MLP taking as input the concatenation of the vectors zit and zjt .
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where ∆zjt is the update of the object zjt given the application of action ajt and the sum of its
incoming edges. The entire architecture is trained to minimize the loss function:

L = H +max(0, γ − H̃) (3)
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K
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k
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with H being the average Euclidean distance between the predicted next states (factorized) zkt +∆zkt
and the encoding of the real next states zkt+1. This part of the objective is used to optimize the
performance of the transition model. H̃ is the average Euclidean distance between the encoding of a
state s̃t randomly sampled from the experience replay. This part of the objective is meant to prevent
the encoder from similarly representing different states. In other words, the first part of the objective
moves the target towards positive examples while the second distances it from negative ones.

3 RELATED WORK

Object-centric representation learning Several lines of work in this field proposed successful
unsupervised approaches in tasks such as object discovery. Some examples of these approaches are
Martin Engelcke (2019); Klaus Greff (2019); Christopher P. Burgess (2019); Locatello et al. (2020),
which learn to represent raw images as a set of latent vectors binding to individual objects. Different
from the other works mentioned (that use multiple encode-decode steps), Slot Attention (Locatello
et al., 2020) manages to perform just one encoding step thanks to a simple yet effective iterative
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attention module. This characteristic makes Slot Attention much more computationally efficient
than its precursors. For this and other reasons (such as data and training efficiency), we chose this
model for the scope of our work. For the same reasons, this approach has been further extended
by more recent works. In particular, works such as Chang et al. (2022); Jia et al. (2022) propose
extensions to improve the slot optimization process, while the more recent Invariant Slot Attention
(Biza et al., 2023) introduces a method to make Slot Attention’s representations invariant to features
such as position, scale, and rotation.

Object-based Models of Environments Given the structured nature of many environments where
multiple entities (agents and objects) interact, learning a robust and accurate model of such environ-
ments requires specific architectural biases. In line with this premise, numerous previous approaches
such as (Sukhbaatar et al., 2016; Chang et al., 2016; Battaglia et al., 2016; Watters et al., 2017;
Hoshen, 2017; Wang et al., 2018; Van Steenkiste et al., 2018; Kipf et al., 2018; Sanchez-Gonzalez
et al., 2018; Xu et al., 2019; Kipf et al., 2019) adopted solutions based on graph neural networks to
build structured world models. Among these methods, C-SWM stands out for the ability to learn
states’ representations and a transition model simultaneously and without relying on any pixel-based
loss. Yet this method presents an encoder that cannot separate the information of objects with iden-
tical appearances. Another relevant approach in this field is COBRA (Watters et al., 2019b), which,
similarly to our approach, adopts a pretrained object-centric model (MONet (Christopher P. Burgess,
2019)) to obtain structured representations. Unlike C-SWM and this work, COBRA does not model
relationships between objects, as its transition model is not implemented as a graph neural network.

4 ENVIRONMENT

The Spriteworld environment (Watters et al., 2019a), introduced in COBRA (Watters et al., 2019b),
is a visual benchmark task where objects of varying shapes and colors can be moved around. How-
ever, when two of these objects are pushed against each other, they start to overlap (instead of
pushing against each other). This lack of physical object interaction makes that the dynamics of
Spriteworld can be encoded by just the object positions (Watters et al., 2019b). To challenge our
models in a more complex environment that requires richer object representations, we therefore ex-
tend Spriteworld with simple rules of physics: Interactive Spriteworld, in which an embodied agent
can move objects around (Fig. 3).

The environment consists of a square arena with a black background and five objects. At the begin-
ning of every episode, the shape of each object is sampled from a discrete and uniform distribution
of three shapes (circle, square, and triangle), the position is sampled from a continuous distribution
covering the entire space, and the (plain) color is sampled from a continuous distribution along three
channels (HSV). The agent is represented by a white sprite of smaller size. This agent can take one
of four possible actions (move down, up, left, or right) and moves other objects by colliding with
them.

The first row of Figure 3 shows some example observations from Interactive Spriteworld. We can
clearly observe scenes with objects of similar or identical appearance, which we expect the C-SWM
encoder to struggle with (see Fig. 1). The second row illustrates the implemented simple rules of
physics: if a moving sprite/object A hits a static object B, B acquires A’s motion, and so on until the
chain stops. To model these dynamics, a learned transition model needs representations containing
information about each object’s position, shape, and size, to determine the exact moment of contact
between two objects.

5 METHODOLOGY

The overall architecture of Slot Structured World Models is shown in Fig. 2. We first encode the
input image (left part of the figure) with the object-centric Slot Attention encoder (Locatello et al.,
2020). This Slot Attention encoder is pretrained separately, with full details provided in Appendix
A.1. The output of the encoder is a set of object-centric representations (zt = {z1t , .., zKt }), where K
denotes the number of slots. These slot vectors are then fed into the graph neural network to model
the interaction between these objects (left-middle part of the figure). The output of the GNN is a
set of object-centric delta vectors (∆zt) that predict the change in each object’s latent representation
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Figure 3: Example states from Interactive Spriteworld. The top row shows five samples from dif-
ferent episodes. The bottom row shows five consecutive timesteps of a particular episode where the
agent (white circle) keeps moving down, carrying all objects in the scene down as well (since they
push against each other).

given the chosen action. We train the GNN on an object-wise L2 loss (right-middle of the figure)
between the predicted next states (zt+∆zt) and the encoding of the true next states (zt+1) (right-part
of the figure), similar to the first term of the loss in Eq. 3. We drop the second term of the contrastive
loss since the pretrained SA encoder already provides us with a well-structured latent representation
space. Note that our Slot Attention encoder is pretrained, but the whole architecture could also be
trained on the same loss in an end-to-end fashion.

SA design Since the loss of the transition model compares the predicted slot vectors with the ones
resulting from the encoding of the next state in a pair-wise fashion, we prefer to maintain their
ordering constant. This prevents computationally expensive sorting based on similarity metrics. For
this reason, we learn fixed slot initializations instead of sampling them from a (learned) normal
distribution. However, note that this choice does fix the number of slots at inference time in our
experiments.

GNN design We need to further adapted the C-SWM transition model to be suitable for a more
complex environment such as Interactive Spriteworld. As mentioned in Section 4, colliding objects
may cause a chain of movement in several objects. For this reason, a single round of message
passing is not sufficient to model the dynamics of the environment, and we need to iterate this
process multiple times. To allow the GNN to take into account previous node updates, the edge
function in Equation 1 is turned into fedge([z

i
t+1, z

j
t+1,∆zit]). The intuition is that the update ∆zit

contains information about the direction of the transition of zit into zit+1. Therefore, in case of
collision between zit+1 and zjt+1, the edge function can predict a relation vector e(i,j) that can be
interpreted as the force applied by zit+1 on zjt+1 given ∆zit. Finally, the node function then predicts
a node update based on the associated action and the sum of all its incoming edges.

Iterative GNN procedure The full iterative GNN procedure of SSWM is shown in Algorithm 1.
The module takes as input a set of K vectors zit ∈ RD and an action at (one-hot vector). Before
starting the loop, the algorithm builds a K ×K adjacency matrix with the diagonal set to zero (to
avoid relations between an object and itself) representing a fully connected graph, and initializes the
per-object updates ∆zi0 to zero (since no object has moved yet). At this point, the edge function is
fed with a set of K × (K − 1) vectors obtained as the concatenation of zi0, zj0, and ∆zi0 with the
auxiliary of the adjacency matrix. Then the node updates ∆zj1 are obtained as in Equation 2 and the
nodes zi1 are obtained by summing all the nodes zi0 with the corresponding updates ∆zi1. This first
phase before the loop is meant to predict the position of the agent after it takes action at, while the
iterative part is meant to predict the transition of every other object based on the forces they apply
to each other. For this reason, the actions to be fed to the node function are set to zero.
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Algorithm 1 Iterative GNN Module
Require: S = {z1, ..., zK} ∈ RK×D Slots vectors, at action

zi0 ← {0}D
i, j ← get inds from adj matrix(K)

e
(i,j)
0 ← fedge([z

i
0, z

j
0,∆zi0])

∆zj1 ← fnode([z
j
0, at,

∑
i ̸=j e

(i,j)
0 ])

zi1 ← zi0 +∆zi1
for n = 1→ K do

e
(i,j)
n ← fedge([z

i
n, z

j
n,∆zin])

∆zjn+1 ← fnode([z
j
n, {0}D,

∑
i ̸=j e

(i,j)
n ])

zin+1 ← zin +∆zin+1
end for

At every iteration n > 0 the edges are computed as e
(i,j)
t = fedge([z

i
n, z

j
n,∆zin]), the node tran-

sitions as ∆zjn+1 = fnode([z
j
n, 0,

∑
i ̸=j e

(i,j)
t ]), and the nodes as zin+1 = zin + ∆zin+1. Finally,

since in the worst case, the agent motion causes movement of all the other objects, the number of
iterations is set to K − 1 where K is the number of discoverable objects.

6 EXPERIMENTS

6.1 METRICS

We adopt the same metric as used by Kipf et al. (2019), namely: Hits at rank k (H@k) and Mean
Reciprocal Rank (MMR). These metrics allow direct evaluation in latent space instead of having to
train a separate decoder.

• Hits at rank k: We first rank each predicted object vector based on its distance with the
full set of ground-truth encoded object vectors in the entire dataset (similar to Kipf et al.
(2019)). The H@k score per object vector is 1 when the rank of the inferred vector does
not exceed k, and 0 otherwise. We report the percentage of ‘Hits at rank 1’ over the entire
dataset.

• Mean Reciprocal Rank: The MRR is an aggregate of the above ranking, defined as the
average of the inverse rank of all the n samples present in the evaluation dataset: MRR =
1
N

∑N
n=1

1
rankn

, where rankn is the rank of the n-th sample.

Note that latent space evaluation metrics do have some edge cases, about which we further report in
Appendix A.2.

6.2 EXPERIMENTAL SETUP

All results are averaged over four independent repetitions, with hyperparameters reported in Ap-
pendix Table 4. As a baseline we use C-SWM with default feedforward encoder, augmented with
the iterative GNN module described Algorithm 1. We further augment the number of feature maps
from one to four per object to model the positional information (as in the original paper) as other rel-
evant information. The training dataset consists of 6 ·104 samples, one-third of which were collected
with a random policy acting in the environment, and the remaining part from human demonstration
to collect a diverse set of complex interactions (which does not occur with random action selection).
The test set is divided into three disjointed subsets sorted in ascending order of difficulty, each con-
taining 103 unseen samples structured in 10 episodes of 100 timesteps. The first set contains 10
”collision-free” trajectories where the agent is the only sprite moving, the second set includes sev-
eral sequences of steps (per episode) where the agent carries one sprite at once, and the last contains
complex trajectories where the agent can carry multiple sprites at once or in a chain. This division
is meant to highlight the strengths and limits of both classes of models and help to individuate and
interpret their behaviors under different settings.
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Table 1: Quantitative performance of SSWM and C-SWM on Interactive Spriteworld. Results are
reported over three prediction horizons (1, 5, and 10 steps) and over three test sets (collision-free,
single collision, chain of collisions). The best scores are highlighted in bold. We observe that SSWM
outperforms C-SWM on all test scenarios and prediction horizons, with a difference that becomes
more pronounced over longer horizons. Standard deviations over four runs are added in grey.

1 Step 5 Steps 10 Steps

Model H@1 MRR H@1 MRR H@1 MRR
te

st
1 SSWM 98.2±1.3 98.8±0.8 93.5±1.1 95.3±0.8 88.0±2.1 92.4±1.1

C-SWM 72.0±18.5 82.2±11.9 36.0±23.4 53.5±19.5 23.7±18.6 42.7±17.7

te
st

2 SSWM 97.5±1.1 97.9±0.9 86.8±0.8 90.2±1.0 73.8±1.6 81.2±0.5

C-SWM 89.7±7.4 94.2±4.1 50.0±14.9 69.6±10.0 20.3±13.2 48.0±10.0

te
st

3 SSWM 97.2±0.4 98.0±0.3 89.0±0.6 93.5±0.7 68.3±3.5 79.6±2.0

C-SWM 86.3±9.0 92.3±5.2 59.3±10.5 75.5±7.5 19.3±12.6 48.2±10.5

tr
ai

n SSWM 100±0.0 100±0.0 99.0±0.2 99.1±0.2 95.7±0.7 96.4±0.5

C-SWM 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0

6.3 QUANTITATIVE ANALYSIS

Table 1 shows quantitative performance measures for both SSWM and C-SWM on the three types
of prediction tasks in Interactive Spriteworld, split up into 1-step, 5-step, and 10-step prediction
horizons. We first of all observe an increase in performance of SSWM over C-SWM for all studied
settings. The first column shows the 1-step prediction accuracy, which achieves a score close to
100% on unseen instances of Interactive Spriteworld. Interestingly, the accuracy in scenarios where
the action only affects the agent (Test 1) is almost equal to the accuracy in scenarios where the agent
moves one object (Test 2) or multiple objects (Test 3). This suggests SSWM is able to accurately
generalize over object interactions.

When we increase the prediction horizon to 5 (second column) and 10 (third column) steps, we see
that the prediction accuracy starts to decrease for both SSWM and C-SWM. This phenomenon is
probably due to compounding errors, a well-known phenomenon when unrolling multi-step predic-
tion models (Talvitie, 2014). We also see that SSWM starts to more strongly outperform C-SWM,
especially on the longest prediction horizon. This indicates SSWM has better generalization perfor-
mance about object interactions. Interestingly, C-SWM did manage to minimize the loss function
on the training data (bottom row), but did so without encoding indispensable information such as
the object shape (a topic to which we return in the next section). This should not be surprising as
the contrastive objective of C-SWM does not explicitly lead the encoder in that direction, and the
network can find many solutions to uniquely identify objects. In contrast, SSWM appears to better
encode all object properties, and as such is able to achieve more accurate long-range predictions.

6.4 QUALITATIVE ANALYSIS

We also want to qualitatively evaluate the predictions of our models, ideally in the original pixel
space (for interpretability). Therefore, we use the decoder obtained during the Slot Attention pre-
training phase to show the predictions SSWM makes. For these visualizations, we use the best
model obtained out of the four repetitions. Do note that the dynamics model was never explicitly
trained for these pixel space reconstructions, but only received a loss in latent space. For C-SWM,
we, of course, do not have this decoder, and instead show the masks produced by the object extractor
to evaluate the quality of the embeddings.

SSWM predictions Fig. 4 shows examples of predictions made by SSWM in the three test sce-
narios: only the agent moves (top-left 3x4 block), the agent moves a single object (top-right 3x4
block) or the agent moves multiple objects (bottom 3x4 block). In each block, the three rows show
an example of a 1-step (top row), 5-step (middle row), and 10-step (bottom row) prediction. The
four images next to each other for each setting display the start state, the predicted next state, the
true next state, and the error between both.
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Figure 4: Pixel space decoding of the learned latent space predictions of SSWM. The top-left 3x4
images show predictions when only the agent/sprite is moving, the top-right 3x4 images show pre-
dictions when the agent carries one object, and the bottom 3x4 images show predictions when the
agent moves multiple objects (that push against each other). For each 3x4 block, the three rows
show 1, 5, and 10-step predictions, respectively. The four images in each of these rows show the
true source state (‘State’), the decoded state predicted by SSWM (‘Pred. Next State’), the true state
reached after taking the actions (‘Next State’), and the prediction error between the latter two (‘Next
state - Pred’), where full black indicates no error.

When only the agent moves (top left block of the figure), we see the model predictions are accu-
rate, with a small difference between the predicted and observed next state. In accordance with the
quantitative results of the previous paragraph, the prediction does become less accurate as the num-
ber of steps increases (due to accumulating errors). The top-right block shows cases in which the
agent carriers a sprite in its movement. Again, we see how the model accurately captures the desired
movement of both the agent and the object it touches, but deviations accumulate over time. For the
10-step prediction, the model has slightly mispredicted the point of contact between the agent and
object (green triangle), and therefore the object ends up too high in the prediction.

The bottom block of the figure shows a scenario where the agent moves multiple objects, pushing
against the blue triangle which itself pushes the purple triangle. We can clearly see that SSWM
can model such multi-object interactions, since the purple triangle is indeed predicted to move in a
coherent fashion with the chosen action. We do again see some slight prediction error, in accordance
with earlier observations, that accumulates over time. In agreement with the quantitative results, the
compounding error increases faster when multiple objects interact (mostly since more objects can
be mispredicted).

C-SWM representations We hypothesized that the lack of generalization exhibited by the base-
line (C-SWM) is due to the poor quality of the learned embeddings. To investigate this hypothesis,
Fig. 7 shows the feature maps obtained per slot by the C-SWM encoder output. Note that each
slot consists of four feature maps, which we plot above each other. Clearly, the Interactive Sprite-
world tasks require the encoding to represent the exact shape of an object (to determine the point
of contact). However, from the visualization, we can clearly see that the C-SWM representations
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Figure 5: Visualization of the object masks produced by the C-SWM object extractor, for the input
images labeled as ‘State’ (left). We have six slots that each contain four feature maps, which we
display above each other. Ideally, each slot uniquely identifies an object and represents its shape,
which we need in the downstream prediction task. Instead, we see the model cannot detect exact
shapes, nor can it isolate objects per slot (in contrast to the Slot Attention encoder of SSWM, as
shown in Fig. 1). This suggests C-SWM learned a solution that does optimize the contrastive
objective of 3, but does not encode all relevant information.

do not represent their exact shape, nor do they even represent them individually. This suggests the
CNN-object extractor of C-SWM did not learn filters that isolate objects and contain the necessary
features for this task. This observation, together with the quantitative results reported in Table 1,
confirms the hypothesis that C-SWM learned a solution that does optimize the objective in Eq. 3
without encoding all relevant information. In contrast, the features learned by the Slot Attention
encoder of SSWM do isolate objects and capture their exact shape, as was already shown in the
bottom row of Fig. 1. This likely explains the better quantitative performance of SSWM visible in
Table 1.

7 CONCLUSION

This paper introduced Slot Structured World Models, a simple and flexible framework that combines
an object-centric encoder with a GNN-based latent transition model. The full SSWM architecture
outperforms the state-of-the-art object-centric dynamics model C-SWM by learning more informa-
tive representations, while it is also able to disambiguate multiple objects with similar appearances
in a scene. Qualitative analysis indicates that C-SWM overfits the training data without learning
meaningful latent representations, whereas SSWM learns better representations through Slot Atten-
tion which strongly improves prediction performance.

There are several directions for future work. First, we currently learn a fixed number of slot initial-
izations, since this allows us to directly construct the pairwise latent loss. However, object-centric
encoders such as Slot Attention naturally allow a change in the number of latent slots (discoverable
objects), by training a slot initialization distribution. We would then of course need to construct the
pairwise latent object loss based on similarity metrics, which might make optimization more unsta-
ble. Another solution would be to train the whole architecture in an end-to-end fashion. This might
also improve the qualitative pixel space predictions: we currently fully rely on the representations
learned by SA auto-encoding, but a dynamics loss on the change between frames might put more
emphasis on agent and object behavior. A third direction would be to improve multi-step prediction
performance, for which we could for example train on a multi-step objective (Abbeel & Ng, 2004).
Finally, it would also be interesting to test these models in downstream decision-making tasks, i.e.,
model-based reinforcement learning.
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A APPENDIX

A.1 SLOT ATTENTION

The Slot Attention module proposed in Slot Attention Locatello et al. (2020) takes as input a set
X ∈ RN×Dinput of N feature vectors augmented with positional embeddings, and produces a
set S̃ ∈ RK×D of K slots. The feature vectors are projected in a D-dimensional space through
learned linear transformations k and v (respectively keys and values), while the slots (queries) are
independently sampled from a Normal distribution defined by learnable parameters µ, σ ∈ RD. The
slots are then refined through an iterative mechanism involving multiple steps per iteration.

The first step consists of computing the attention matrix

A = Softmax(
k(x) · q(s)T√
Dslot

) (5)

where x are the input feature vectors and s the sampled slots. The dot product between the input
features and the slots relates each slot with parts of the image, then the resultant coefficients are
normalized by softmax over the queries to ensure competition between the slots for explaining
part of the image. At this point, the updates are obtained by combining the input values with the
attention matrix normalized over the slots:

U = WT · v(x), Wi,j =
Ai,j∑N
l=1Al,j

(6)

The final updates of each iteration are obtained by a passage of Gated-recurrent-Unit GRU followed
by an MLP with a residual connection.

In order to perform object discovery, the slots are decoded into images and masks that are then
combined and summed up to obtain a single image. The training objective is therefore to minimize
the mean squared error between the input image and the reconstructed one.

A.2 ADDITIONAL EXPERIMENTS

This section shows some additional experiments initially meant to solve the multi-step prediction
issue. Hence, in the first instance, we attributed the difficulty of SSWM in making predictions over
longer horizons to Slot Attention’s embeddings. We thought that having representations where all
the features are entangled (as those of Slot Attention) could be a limit for the latent transition model
accuracy (and generalization). Even though disentanglement is certainly a desired property, the next
experiments highlighted that the causes of the multi-step prediction issue reside somewhere else. In
addition, the next experiments show some limit cases where the metrics involved in our experiments
can lead to improper interpretations.

A.2.1 SSWM

The results shown in this subsection are obtained by replacing Slot Attention with DISA (Anony-
mous, 2024) which ensures disentangling features such as position, scale, shape, and texture.

The results observable in Table 2 may create the illusion that the disentangled representations pro-
vided by DISA suffice to solve the multi-step prediction problem. Unfortunately, Figure A.2.1
shows some visual examples highlighting a huge divergence with the quantitative measures. We
care to explain that we observed also very good qualitative examples using this Encoder, however,
we preferred showing our experiments with slot attention as the quantitative results are more in
accordance with what we observe in pixel space.
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Table 2: Results obtained by SSWM by replacing Slot Attention with DISA.
1 Step 5 Steps 10 Steps

Test Split H@1 MRR H@1 MRR H@1 MRR

test 1 100±0.0 100±0.0 90.0±0.0 95.0±0.0 100±0.0 100±0.0

test 2 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0

test 3 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0

Figure 6: Different visualizations of the behavior of SSWM under the configuration that achieved
the results in table 2.

As briefly mentioned in Section 6.3, the metrics used to evaluate the models’ performances in latent
space can be far from representing the true quality of the transition model. This can be explained by
the fact that the transition model is trained to minimize the distance between its predictions and the
true next state in latent space and if it generalizes well in this, it is likely to obtain optimal H@1 and
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MRR scores during evaluation. However, even if the distances between predictions and target are
insignificant for the metrics involved, in compact latent space (where the distance between different
states has a small order of magnitude), small perturbations may lead to drastic mispredictions in
pixel space as we observe in Figure

A.2.2 C-SWM

We replicated a similar outcome with the baseline using the same configuration in Table 4 and just
2 feature maps per object.

Table 3: Results obtained by C-SWM using the same configuration in Table 4 made an exception
for the number of feature maps per object that in this case is set to 2.

1 Step 5 Steps 10 Steps

Test Split H@1 MRR H@1 MRR H@1 MRR

test 1 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0

test 2 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0

test 3 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0

We observed similar qualitative results with respect to the baseline used in the main experiments.
We can indeed notice that the C-SWM encoder did not manage to represent useful information and
it fails in assigning each object to a single slot. In this configuration, we observed distances in latent
space between a state and its next with an average order of magnitude of 10−5.

A.3 HYPERPARAMETERS

Table 4: Hyperparameters for SSWM and C-SWM
Configurations SA-SWM C-SWM

Learning

lr 0.0005 0.0005
batch size 512 512

epochs 600 600
num objects (w/bg) 6 6

hinge margin - 1

CNN Encoder

layer1 activation - leaky relu
layer1 filter size - 9× 9 (zero padding)

layer1 features maps - 16
layer2 activations - sigmoid
layer2 filter sizes - 1× 1

layer2 features maps - 6× 4

MLP Encoder hidden dim - 512
embedding dim - 64

Slot Attention
Encoder

slots 6 -
iterations 3 -

embedding dim 64 -
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Figure 7: Visualization of the representations produced by C-SWM on different states under the
configuration that achieved the results in table 3
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