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Abstract

Bayesian optimization involves “inner optimization” over a new-data acquisition
criterion which is non-convex/highly multi-modal, may be non-differentiable, or
may otherwise thwart local numerical optimizers. In such cases it is common
to replace continuous search with a discrete one over random candidates. Here
we propose using candidates based on a Delaunay triangulation of the existing
input design. We detail the construction of these “tricands” and demonstrate
empirically how they outperform both numerically optimized acquisitions and
random candidate-based alternatives, and are well-suited for hybrid schemes, on
benchmark synthetic and real simulation experiments.

1 Introduction

We address the continuous unconstrained optimization problem

x? = argmin
x2B

f(x) (1)

where the bounding box B is a hyperrectangle, often taken as [0, 1]d in coded inputs. The objective
f : B ! R is a blackbox function, meaning that we can only learn about its behavior through
expensive, often simulation-based, evaluation. Such problems are most challenging when f is highly
non-convex, and thus contains multiple local minima. A tacit goal of a solver is to minimize the
number of times that f is evaluated in search of a global solution.

The earliest papers on Bayesian optimization (BO) adapted statistical modeling and design principles
to tackle this optimization problem [Močkus, 1975, Jones et al., 1998]. Applications on physics-based
simulators f are provided by Pourmohamad and Lee [2021]; scenarios in machine learning are
reviewed by Garnett [2022]. BO is common in studies of engagement and user experiences in online
platforms [e.g., Letham and Bakshy, 2019], hyperparameter estimation for deep learning [e.g. Turner
et al., 2021, Feurer et al., 2018] and materials design [e.g. Zhang et al., 2020b], to name a few.

To illustrate BO and introduce our contributions, consider f(x) = sin(x) and B = [�1, 2⇡ + 1]
evaluated at six equally-spaced inputs x. Next fit a surrogate f̂n, to data (Xn, Yn), where yi = f(xi),
for i = 1, . . . , n = 6. We privilege Gaussian process (GP) based-surrogates [e.g., Gramacy, 2020],
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Figure 1: Predictive surface (left) via means (solid black), 90% intervals (dashed-red), and sample
paths (gray); EI (right) and resulting acquisition (green diamond).

but our methodology is agnostic to that choice so long as the predictive equations from f̂n have
similar features – e.g., non-linear predictive mean µn(x) and higher predictive uncertainty/standard
deviation �n(x) away from the training data sites.

The left panel of Figure 1 shows a fitted f̂6 via µ6 as solid black line with error bars µ6 ± 2�6 in
dashed-red. Each of the one-hundred gray lines is a sample from the predictive distribution. This
distribution interpolates the training data (black dots), a GP hallmark, yet our contributions are
not limited to noise free settings. (We entertain a noisy f in Section 3.2.) The current best run
fmin
n = min{y1, . . . , yn} is near x = 5, but there is considerable predictive uncertainty about other

parts of the input space B, relative to fmin
n . Locations in [�1, 0][ [4, 6][ [2⇡, 2⇡+ 1] are promising.

BO acquisition criteria serve to operationalize this notion. We shall focus on two and note that
several others are variations on similar themes. One is Thompson sampling [TS; Thompson, 1933],
and involves drawing from the predictive distribution Y (x) ⇠ f̂n | Xn, Yn and choosing xn+1 =
argminx2B Y (x). TS amounts to randomly selecting one of those gray lines and optimizing it in lieu
of the expensive f , so the criterion is inherently stochastic. The other is expected improvement [EI;
Jones et al., 1998]. Define improvement as I(x) = min{0, fmin

n � Y (x)} and take its expectation
with respect to Y (x) . If Y (x) ⇠ f̂n is Gaussian, as with GPs, then this has closed form:

EI(x) = E{I(X)} =

Z
I(x) dY (x) = (fmin

n � µn(x))�(zn(x)) + �n(x)�(zn(x)), (2)

where zn(x) = (fmin
n � µn(x))/�n(x) and �/� are the Gaussian cdf/pdf. For non-Gaussian f̂n, one

can always resort to Monte Carlo (MC) integration instead. The right panel of Figure 1 provides
EI for f̂6. Contrary to TS, the EI acquisition xn+1 = argmaxx2B EI(x) can be deterministic, if
properly solved. The maximum EI acquisition x7 is shown as a green diamond on the left panel.

Observe that TS and EI involve “inner-optimizations” over a criterion, a task that may be even more
challenging than the original problem (1). Each gray line is highly multi-modal, as is the EI surface.
Both have about as many local optima as there are training data points n, whereas f has only two
local minima in B. Speedy evaluation of µn(x) and �n(x) relative to f(x) saves us, but only partly.
We still desire good xn+1 without exhaustive search or cumbersome subroutines.

Two strategies are common, sometimes separately, sometimes in tandem as a hybrid. The simplest
option is to distribute N candidate points XN throughout the input space, evaluate the criterion on
XN , and thereby replace a continuous search with a discrete one. In low input dimension a dense grid
of candidates can be used effectively. In higher dimension one can populate XN with a space-filling
design like a random Latin hypercube sample [LHS; Mckay et al., 1979] to manage the computational
expense of evaluating the criterion exhaustively. A higher-powered approach is to locally apply a
smooth, convex optimization library such as L-BFGS-B [Byrd et al., 2003]. Derivatives may be
approximated by finite-differencing or autograd [Paszke et al., 2017], or may have a simple closed
form depending on the criterion and nature of f̂n. The former requires more computer work and some
consideration of numerical stability; the latter more researcher/programmer effort when possible.
(MC-based f̂n or EI challenges both approaches.) Pure candidate-based search is most common with
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TS because of its stochastic nature. Gradient-based continuous search is popular in simple GP/EI
setups, but a multi-start scheme is essential to avoid inferior local solutions. This is where the hybrids
come in: candidates seeding local solvers.

In this paper we contend that both strategies, random candidates and multi-start local optimization,
can be replaced by (or hybridized with) more thoughtfully chosen XN . In the 1d setting of Figure 1 we
could place candidates at the midway points between each of the existing n inputs and the boundary
B, implementing a kind of multi-pronged bisection search [Burden and Faires, 1985, Section 2.1]
and resulting in N = n+ 1 = 7 candidates. The best of those XN by either criterion may not give a
precise solution to the inner optimization, but it would be an effective one because EI and many of
the random gray lines indicate a solution close to one of those midway points. Such locations might
be much better than ones identified by a limited candidate or numerical local search.

This 1d example is overly simplistic. Going forward, we shall explicitly target two and higher
dimensions. In Section 2 we scale-up the midway candidate idea, also suggested by Scott et al.
[2011], to what we call “tricands”, based on Delaunay triangulation and the convex hull of Xn.
We explore tricands’ features and limitations and suggest remedies with the BO application in
mind. In Section 3 we demonstrate that tricands outperform both random LHS candidates and a
multi-start gradient-based numerical inner optimization in the conventional setting where surrogate
GP predictive equations are available in closed form. In Section 4 we consider two nonstationary
surrogates requiring Markov chain Monte Carlo (MCMC), for which closed-form acquisition criteria
are not readily available. Candidates are essential in this setting, and our tricands are better than
random space-filling ones. Our discussion in Section 5 emphasizes tricands’ “plug-n-play” nature –
they can be inserted into any candidate-based scheme – and suggests potential for extension.

2 Delaunay triangulation candidates

Many criteria for BO resemble Eq. (2), balancing exploitation (µn(x) below fmin
n ) with exploration

(large �n(x)). Most surrogates inflate predictive uncertainty (�n(x)) away from training data locations
Xn. In the case of GPs, this is what produces the “sausage shaped” predictive intervals shown as
red-dashed lines in Figure 1. Our main insight is that careful allocation of candidates between existing
training data locations, where �n(x) is high, allows for BO acquisitions that do not necessitate
cumbersome numerical optimization of posterior predictive quantities but still balance exploitation
and exploration. A hard statistical optimization can be replaced with an easier geometric one.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

internal and fringe without corners

design
cands

triangles
fringe

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

random subsetting

● random selections

Figure 2: Interior and fringe candidates (both), and randomly sub-sampled candidates (right).

The idea is sketched graphically in Figure 2, whose details will emerge over the next three subsections.
The existing design Xn is shown as open circles, and the selected candidates are closed red dots and
the tips of dashed arrows. We call these interior (Section 2.1) and fringe (Section 2.2) candidates,
respectively. Both are calculated based on Delaunay triangles and their convex hull, outlined by solid
black lines in the figure, and explained next. We provide this illustration in 2d to ease visualization;
however our Section 3–4 benchmarks include higher dimensional input spaces.
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2.1 Interior candidates

A Delaunay triangulation of Xn is an angle-maximizing set of d line-segments connecting geographi-
cally nearby points, such that no point lies inside the circumcircle of those points. Such triangulations
subdivide the interior of the convex hull of Xn, which is the the smallest (convex) set that contains
all points. In 2d, lines depicting those subdivisions form triangles. In higher dimension they form
tetrahedra, however one often abuses the nomenclature and still refers to triangles. For more details,
see, e.g., Lee and Schachter [1980]. The solid lines of Figure 2 indicate a triangulation for random
Xn (left) and an Xn derived after BO iterations (right), described in Section 3 .

There are fast algorithms for calculating Delaunay triangulations. In 2d, these have O(n log n)
runtimes. Higher dimensional analysis is complicated by the number of triangles, which depends
on the geometry of Xn, a topic we shall return to shortly. For R we use the geometry package on
CRAN [Habel et al., 2019]; for Python we use Delaunay in scipy.spatial [Virtanen et al., 2020].
Both are wrappers around the C library Qhull, implementing “quickhull” [Barber et al., 1996]. Bates
and Pronzato [2001] first suggested Delaunay triangulation for BO. That early work only explored
two input dimensions, possibly because they did not have convenient access to Qhull. They also did
not entertain the BO-specific extensions we provide here, particularly in Sections 2.2–2.3.

Let the triangles be denoted by Tj , for j = 1, . . . , nT . Each Tj is a (d+ 1)⇥ d matrix when Xn has
d columns. Create nT new candidates XnT where the jth candidate is located at the barycenter of Tj :

x̃j = T̄j =
1

d+ 1

d+1X

i=1

Tj [i, ] or x̃jk =
1

d+ 1

d+1X

i=1

Tj [i, k], for k = 1, . . . , d.

The left expression is vectorized over the second, column dimension of Tj . The second is explicit
about coordinates x̃>

j = (x̃j1, . . . , x̃jd). Red dots in Figure 2 provide a visual. These locations will
almost certainly not be the maximal points of �n(x) in the vicinity of Tj , but they will be close
because x̃j is within Tj but far from its edges. We refer to these XnT as “interior” candidates.

In 2d, Euler’s formula gives that nT = 2n� 2� h(Xn) where h(Xn) is the number of elements of
Xn on its convex hull. In Figure 2, n = 10 and h(Xn) = 6 so nT = 12. When d � 3, the number
of faces of the tetrahedra can grow as ndd/2e depending on the nature of Xn. Figure 3 provides
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Figure 3: Tricands N (left) over input dimension d and design size n, and compute time (right) using
a single core of an Intel i7-6900K CPU at 3.20GHz.

an empirical view of the number of candidates (left) and triangulation compute time (right), for
varying d and n where Xn is distributed uniformly at random in B = [0, 1]d. The dashed lines in the
left panel are log10 nT . Notice that when n is small, nT decreases as d increases. For fixed d, nT

steadily increases with n. In our BO context this is a good thing, because so too does the modality
of acquisition criterion. With nonparametric surrogates like GPs, the complexity of the response
surface can increase with training data size n. The search effort for the next acquisition should be
commensurate with this complexity, an innate characteristic of (interior) tricands. The right panel of
Figure 2, described later in Section 2.3, shows how this works after many iterations of EI acquisition.
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2.2 Fringe candidates

Having candidates XnT only in the interior of the convex hull could limit exploration if the comple-
ment of the volume of the hull and B is large. It could limit exploitation if the solution is on/near the
boundary of B. One remedy is to force Xn to contain boundary points, such as the corners of the
input space. This is not a bad approach in low dimension (e.g., in 2d there are only four corners), but
could be prohibitive in higher dimension. Later in Section 3 we consider a d = 8 example, having
256 corners in B = [0, 1]8, which would nearly blow our entire budget of runs.

We instead prefer the “fringe” candidates pointed to by the dashed arrows in Figure 2. There is one of
these for each facet (edge in 2d) of the convex hull, extending perpendicularly from middle of the
facet half way to the boundary of B = [0, 1]d. The Qhull library furnishes both ingredients: d⇥ d

facets Fj and normal d-vectors ~vj for j = 1, . . . , nF . Using these quantities, let F̄j =
1
d

Pd
i=1 Fj [j, ]

denote the coordinates of the middle of facet j. Then, the jth fringe candidate in XnF is

~xj = F̄j +
1
2↵j~vj where ↵j = min

�
I{~vj>0} � F̄j~vj

 
.

Above, “min” is picking out the nearest boundary to F̄j . Division by two mirrors the bisection search
analogy for interior candidates, but this could be a tuning parameter. Non-unit rectangular B is doable,
but requires a more convoluted formula. More general B may present challenges.

Fringe and interior candidates may be combined: XN = [XnT ;XnF ], stacked row-wise to form an
N ⇥ d matrix with N = nT + nF . The number of fringe candidates nF is generally small compared
to nT . This is shown empirically in the left panel of Figure 3, where N is indicated by the solid line,
and nT by the dashed one. As n increases, the gap between N and nT , indicating nF , narrows.

2.3 Targeted sub-sampling

Having N grow exponentially in n may not suit all applications. Entertaining N ⇡ 10,000 candidates
when n = 100 and d = 6, referring to Figure 3, is cumbersome and potentially overkill. One way
to limit N is random sub-sampling: simply calculate the full XN based on Xn and downsample,
uniformly at random, a subset of size Nsub < N . Since our triangulation strategy was designed to
focus on exploration (finding locally high �n(x)) via midway candidates, we find it advantageous to
guarantee retaining some of those candidates which are promising for exploitation (low µn(x)), still
without any explicit numerical optimization – only geometry.

One of the rows of Xn corresponds to fmin
n , the best input found so far: xmin

n = xi s.t. i =
argmini=1,...,n yi (or µn(xi) in the noisy case). Let T min

n = {Tj : xmin
n 2 Tj , j = 1, . . . , nT }

denote the set of triangles containing xmin
n , and similarly let Xmin

n = {x̃j 2 XN : Tj 2 T
min
n }

denote the candidates associated with those triangles. Those are, in a geometric sense, adjacent to
xmin
n . A fringe candidate may also be considered adjacent in an analogous way, however we place

them in the complement XN \ X
min
n . Now, rather than sub-sample uniformly from the full set XN ,

we partition sampling from points adjacent to xmin
n , i.e., from X

min
n , and from points farther afield in

XN \ X
min
n . In so doing, we guarantee that our Nsub candidates cover potential for exploitation and

exploration, respectively. We prefer a 10:90 split, with up to 10% of Nsub coming from candidates
adjacent to xmin

n , fewer if |Xmin
n | < Nsub, and likewise 90% from its complement.

The right panel of Figure 2 provides an illustration after n = 30 runs optimizing the Goldstein–Price
function with EI under random initialization (details in Section 3.1). When n = 30 we have N ⇡ 60,
with the precise value depending on h(Xn). Here we consider Nsub = 30. Observe how randomly
sub-sampled candidates XNsub , circling the original red candidates XN in green, concentrate near
the global minimum (0.5, 0.25) because xmin

n is in the vicinity. Other sub-sampled candidates are
spread out more widely. This figure illustrates how acquisitions, and thus candidates, gravitate toward
promising regions for exploitation without neglecting areas of potential exploration. A ridge of local
minima may be found in the banana-shaped region traced out by a concentration of Xn and XN .

2.4 Implementation and software

Our implementation, provided for Python and R in our git repository,1 is relatively tidy. For
example, tricands.R therein contains just 71 lines of code, eleven of which are to support optional

1http://bitbucket.org/gramacylab/tricands
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visualizations in 2d such as those in Figure 2. The heavy lifting is done by Qhull. When performing
Delaunay triangulations, we provide option "Q12" to work around numerical instabilities that
sometimes arise. When calculating convex hulls, option "n" returns normal vectors used in calculating
fringe candidates (Section 2.2).

Defaults yield both fringe and interior candidates and fix a maximum candidate size of max= Nsub =
100d, but these are user-adjustable. In experiments coming shortly, we deliberately limit Nsub even
further so that a fairer comparison can be made to other continuous search and candidate-based
methods. When N  Nsub, all interior and fringe candidates are returned. The user may supplement
these with additional Nsub �N random candidates if desired. If Nsub < N , the execution flow looks
for a variable best, providing the index of xmin

n in Xn, making sure about 10% of tricands come
from adjacent triangles. When best=NULL, tricands are sub-sampled at random.

3 Classical GP benchmarking

In this first of two sections on benchmarking, we focus on BO via traditional GP surrogates. We
follow a homework problem in Section 7.4 of Gramacy [2020], which piggy-backs off of GP, EI, and
TS demonstrations earlier in the chapter. Software and other particulars are relegated to Appendix
A.1. All of our examples are fully reproducible using the code provided in our git repository. We
consider three methods for solving EI acquisitions: a continuous search of the criterion via L-BFGS-B
with 5-multi-starts, LHS candidates, and tricands. For TS acquisitions, we similarly employ both
LHS candidates and tricands. As non-BO (not surrogate-based) comparators, serving primarily as
benchmarks, we entertain “raw” L-BFGS-B and Nelder–Mead [Nelder and Mead, 1965].

Two examples are showcased here, with a third example relegated to Appendix A.2. Our synthetic
fs, including those in Section 4, are described in more detail on the pages of the Virtual Library for
Simulation Experiments [VLSE; Surjanovic and Bingham, 2013]. In all of our experiments we code
inputs to [0, 1]d and summarize results for 100 random restarts where each surrogate is initialized
with the same (unique to each random restart) starting design of size n0 = 12, except in Section 3.2
where we use n0 = 60. This design is taken uniformly at random following the advice of Zhang et al.
[2021] who caution that small space-filling initial designs can spark pathological behavior in BO. We
track “best observed value” (BOV) fmin

n as a measure of progress which is summarized by median
over n = 1, . . . , nend and by boxplots for particular n along the way.

3.1 Goldstein–Price

The Goldstein–Price function is a popular low-dimensional (2d) benchmark for BO [e.g., Picheny
et al., 2012]. A total of nend = 50 acquisitions are entertained, and all candidate-based methods
(tricands and LHS) are limited to fifty candidates. This means max = Nsub = 50 for tricands, with
fewer candidates when N < Nsub. The top row of Figure 4 summarizes results in three views. In
the top-left panel, median progress in BOV is shown over increasing budgets of evaluations (n) as if
each subsequent acquisition were the last. In the top-middle and right panels, boxplots capture the
distribution of BOV at n = 30 and n = 50, respectively. In the top-left panel, methods based on a
multi-start numerical local search use solid lines; those based on tricands are dashed; those based
on LHS candidates are dotted. (Nelder–Mead is an exception, being red-dashed.) In the boxplots,
tricands use slightly heavier ink so that they stand out. Text printed at the top of the top-right panel
indicates the average number of times the criterion, EI or TS, was evaluated in solving the inner
optimization sub-problem(s), cumulative over all acquisitions. In the case of a numerically optimized
EI (labeled “EI”), these happen within iterations of L-BFGS-B search.

Beginning with medians over n in the top-left panel, observe that the dashed lines (those based on
tricands) are uniformly superior to all other comparators. EI with tricands is slightly better than TS
with tricands. Only at the very end of the run does the raw Nelder–Mead alternative look competitive.
At the 30th evaluation (top-middle) the boxplots indicate that there are some MC repetitions where
BOV based on tricands are underperforming. However, more than half of the time these are the best
two (i.e., both EI and TS with tricands) of all. TS with tricands is the winner in terms of best-case
performance, whereas the EI version has slightly better worst-case behavior. Neither local optimizer
(red) is competitive. Finally, in the top-right panel we see that the story is similar, except that now EI
with tricands edges out its TS analog. Although median performance for Nelder–Mead is competitive,
more than half of the time its BOV at nend = 50 is among the two worst in the experiment.
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Figure 4: Goldstein–Price (top) and ATO (bottom) BOV over 100 MC trials: median (left panel) and
distribution at intermediate (middle) and final (right) acquisitions. Suffixes “-tri” or “-lhs” denote a
candidate search. Absence of a suffix (e.g., “EI” alone) indicates multi-start L-BFGS-B.

Perhaps the most striking result from the figure is that tricands-based EI (“EI-tri”) outperforms its
multi-start numerical analog (“EI”) despite a factor of five fewer evaluations of the EI criterion
(about 9000 compared to 1700). A more aggressive, gradient-based search misutilizes computational
resources. Finding a precise solution – ultimately furnishing a maximal local value in an inferior
domain of attraction – may come at the expense of finding an accurate approximation near a global
solution. The same is true, but to a lesser extent, when comparing TS variations (5% reduction).

See Appendix A.2 for nearly identical results with the higher dimensional Hartmann 6 function.

3.2 Assemble to order (ATO)

The assemble-to-order (ATO) simulator [Hong and Nelson, 2006] deploys a queuing system vir-
tualizing a manufacturer receiving orders for a variety of widgets, each with different demand for
component parts. Target inventory levels for eight parts comprise the controllable inputs (d = 8). The
output is profit, a scalar distilling inventory and order fulfillment costs under random orders for parts,
fulfillment and inventory replenishment times. ATO is coded in Matlab and exhibits input-dependent
noise. Although it is reasonably fast (seconds per evaluation), relatively large n is required to separate
signal from noise (n0 = 80 and nend = 300). Cubic computational bottlnecks for GP inference are
in play here, despite using a thrifty heteroskedastic GP [Binois et al., 2018]. More details, including
software, are provided in Appendix A.1. Since our Matlab licenses prevented us from running
parallel instances, we had to limit our experiment somewhat to obtain results in a reasonable amount
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of time. Therefore we only entertained three acquisition alternatives: random multi-start numerically
optimized EI, tricands with the default Nsub = 100d = 800, and a hybrid using the best tricands
candidate to initialize a local numerically optimized EI (“EI-hyb”).

The bottom panels of Figure 4 track BOV for these three alternatives in a view similar to the panels
above. Note that the original ATO problem involves maximization, so we have negated the output
and also scaled it so that its units were more similar to our other benchmark problems. Since the
output is random, the BOVs are estimates. We used the surrogate fit at nend to assign in-sample
predictions via µnend(xi). Otherwise, the story is similar to our earlier synthetic results. Tricands’
progress is initially slower than numerically optimized EI, but eventually gives lower BOV values.
The difference at nend is slight, but statistically significant. A paired Wilcox test with alternative
hypothesis that BOV for “EI-tri” is below “EI” has a p-value of 0.0037. The hybrid is even better,
beating pure tricands and pure numerical optimization 85 and 88 out of 100 times, respectively.

4 Sampling-based surrogates

Tricands are most valuable when the inner-optimization problem cannot be solved by library-based
numerical methods, even locally. This happens when the surrogate predictive surface is discontinuous
and/or when inference requires MCMC. Our examples here involve response surfaces exhibiting
nonstationarity, meaning that the input–output dynamics evolve over the input space. This demands a
more elaborate surrogate. We consider two. A treed Gaussian process [TGP; Gramacy and Lee, 2008]
uses axis-aligned partitioning with GPs. Such divide-and-conquer excels when dynamics change
abruptly across individual inputs creating distinct regimes. MCMC can average over the location of
probable partition boundaries. We use the R package tgp on CRAN [Gramacy, 2007], following
Section 4 of Gramacy and Taddy [2010] for candidate-based EI acquisition.

Deep Gaussian processes [DGPs; Damianou and Lawrence, 2013] warp inputs to accommodate a
more subtle evolution of dynamics in the input space compared to the abrupt regime changes of
TGP. Although variational inference is popular for DGPs [Salimbeni and Deisenroth, 2017], Sauer
et al. [2020] argue that in active learning contexts, such as BO, full posterior integration leads to
better uncertainty quantification, and thus better acquisitions. Here we use the R package deepgp on
CRAN [Sauer, 2021] which supports EI evaluation on candidates.

Unfortunately, neither tgp nor deepgp facilitate TS acquisition for BO. However, the tgp package
furnishes a maximum a posteriori sample which can be used as the basis of a local search [Gramacy
and Taddy, 2010, Section 4]. Here we show that tricands provides better candidates for both pure
candidate EI search and this hybrid scheme.

4.1 Abrupt changes

The Gramacy & Lee (G&L) function benefits from a model supporting hard breaks even though
its dynamics evolve smoothly. The 2d input domain (coded to [0, 1]2) is mostly flat except in one
quadrant where a local maximum is twinned with a (global) minimum. The domain of attraction of
that global minimum covers only about 10% of the input space. It is easily missed by random initial
designs and candidate sets. TGP is able to isolate the interesting quadrant with just two axis aligned
partitions, thus recognizing that sampling effort should be concentrated there.

The top row of Figure 5 shows results in the same three views as earlier. The number of candidates
is limited to twenty, otherwise the setup is unchanged. First ignore the red lines and boxplots
(those labeled “hyb-”) and focus on the black (TGP) and green (DGP). Notice that in both cases the
tricands-based comparators, dashed and/or bolded, outperform their LHS-based analogues. In terms
of medians over n (top-left panel), that dominance is uniform. In terms of boxplots, the disparity is
stark with the exception of a few outlying DGP-based BOV values with tricands. TGP seems to edge
out DGP (with tricands) which we attribute to the abrupt change between the interesting quadrant
and the rest of the input space. Now focus on the red “hyb-” results. These are the ones where TGP
candidate-based search is finished with a gradient-based EI search on the maximum a posteriori
model. Again, tricands wins. To supplement the visuals, we report that the tricands hybrid BOV
value was lowest in 97/100 reps (top-right).

A higher dimensional example using the Michaelwicz function is provided in Appendix A.3.
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Figure 5: Gramacy & Lee (top) and 5d Levy (bottom) with MCMC-based comparators.

4.2 Smooth changes

The Levy function is defined in arbitrary dimension. It is ruffled with many peaks and valleys. Here
we consider d = 5 for variety; see the bottom row of Figure 5. Commensurate with our other
examples, we consider two hundred candidates and nend = 75.

Both candidate DGP variations outperform their TGP counterparts. Slowly/smoothly varying dy-
namics favor warping inputs as opposed to hard partitioning. This is evident in both median and
full distribution (boxplot) views. In the median view (bottom-left), notice that the dashed lines are
uniformly under the solid ones of the same color. Tricands are providing better median performance
over all n. Although the preeminence of tricands is apparent visually, we report that it provided better
BOV in 81/100 MC restarts among the best (DGP) comparators. When tricands are involved, the
hybrid candidate/numerical option is not discernibly better than the pure candidate alternative.

5 Discussion

We offer a novel take on space-filling candidates for acquisition in BO. The idea is to fill the spaces
in-between previous acquisitions. This is motivated by an analogy to bisection search, but also by
the nature of GP predictive surfaces which often serve as surrogates in BO. GP surrogates have
organically inflated uncertainty between training data sites, which makes those spots attractive for BO
acquisition. This notion is extended to the space between the convex hull of existing training data and
the boundary B of the study region. In an array of benchmark exercises we have demonstrated that
these tricands lead to superior performance in BO compared to both higher-powered gradient-based
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acquisition schemes and simpler space-filling candidates. Tricands’ main attraction is that they mimic
the behavior of higher-powered searches with the implementation simplicity of candidates. That
simplicity means that tricands may be deployed where the higher-powered alternatives cannot, such
as when the surrogate is not continuous or requires MCMC.

Additional discussion on high input dimension and other extensions is provided in Appendix B.
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