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Abstract

Vehicle Routing Problems (VRPs) with diverse real-world attributes have driven re-
cent interest in cross-problem learning approaches that efficiently generalize across
problem variants. We propose ARC (Attribute Representation via Compositional
Learning), a cross-problem learning framework that learns disentangled attribute
representations by decomposing them into two complementary components: an In-
trinsic Attribute Embedding (IAE) for invariant attribute semantics and a Contextual
Interaction Embedding (CIE) for attribute-combination effects. This disentangle-
ment is achieved by enforcing analogical consistency in the embedding space to
ensure the semantic transformation of adding an attribute (e.g., a length constraint)
remains invariant across different problem contexts. This enables our model to reuse
invariant semantics across trained variants and construct representations for unseen
combinations. ARC achieves state-of-the-art performance across in-distribution,
zero-shot generalization, few-shot adaptation, and real-world benchmarks.

1 Introduction

Capacitated Vehicle Routing Problem (CVRP) represents a fundamental NP-hard combinatorial
optimization challenge [7, [11} 25]]. While deep learning-based approximation algorithms within the
Neural Combinatorial Optimization (NCO) paradigm have demonstrated near-optimal performance
(el 120 131164 211 23], real-world routing applications must address diverse attributes such as time
windows [22]] or open routing [24]. To efficiently leverage information of shared attributes across
multiple VRP variants, recent research has focused on cross-problem learning, where a single unified
model is trained to solve multiple VRP variants defined by different attribute combinations [2} 14, 28],
improving efficiency and generalization compared to variant-specific models [[15]].

However, prior works [2} (14115 28]] often conflate invariant attribute semantics with contextual effects
among attributes, leading to entangled representations that hinder efficient knowledge sharing across
different VRP variants. To address this limitation, we propose ARC, which disentangles individual
attribute embeddings by decomposing representation into intrinsic components that remain consistent
across combinations and contextual components that capture combination-specific interactions. ARC
learns distinct attribute representations through analogical compositional learning, ensuring identical
attributes maintain their intrinsic semantics regardless of their combinations by enforcing analogous
transformations across different problem contexts. Contextual components then model attribute
interactions by leveraging the learned intrinsic representations within specific problem contexts This
disentanglement maximizes shared information across diverse problem variants, enabling efficient
cross-problem learning and zero-shot generalization to unseen combinations by composing learned
intrinsic representations.

Extensive experiments demonstrate that ARC outperforms existing baselines on trained configurations
while achieving robust zero-shot generalization to unseen attribute combinations and efficient few-
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shot adaptation to new attributes, with validation on real-world benchmarks. Our main contributions
are as followed:

* We propose ARC, a novel cross-problem learning framework that disentangles attribute repre-
sentations by decomposing them into intrinsic and contextual components, facilitating effective
knowledge sharing across different VRP variants.

* We introduce a compositional learning mechanism that enforces analogical embedding relation-
ships, establishing the first analogical embedding framework for NCO to our knowledge.

* We demonstrate superior performance across four scenarios: (1) in-distribution, (2) zero-shot
generalization to unseen attribute combinations, (3) few-shot adaptation to new attributes, and (4)
real-world benchmark, CVRPLIib.

2 Related Works

Cross-Problem CO Solvers  Recent work has shifted toward cross-problem learning, developing
universal architectures capable of solving diverse problems. This research spans two branches:
heterogeneous CO tasks [5) [20] and VRP variants with different attribute combinations, to which
our work belongs. Existing VRP approaches include joint training and Mixture-of-Experts [[15} 28],
foundation models [2], and attribute-aware attention mechanisms [[14]. However, these methods learn
mixed representations where shared attribute semantics are entangled with combination-specific
interactions, inducing inefficient knowledge sharing across attribute combinations. Our approach
explicitly decomposes attribute representations into intrinsic characteristics and interaction effects.

Compositional Learning  Compositional learning enables models to generalize to novel com-
binations by learning how individual elements can be systematically recombined. Prior approaches
include modular reasoning that decomposes problems into primitive operations [9, [10], algebraic
composition of value functions for skill reuse [[17, 26]], and representation-level compositionality
that enforces compositional structure in embedding spaces through analogy-based or contrastive
objectives [3l 14, [18]]. Our approach leverages analogy-based compositionality in the embedding space
for robust generalization across combinatorial tasks.

3 Preliminaries

3.1 Definition of VRP Variants

Each VRP variant, including the fundamental CVRP, is defined by the constraints that correspond to
the attributes activated from the set of attributes introduced below. A CVRP instance x = (¢;, 4;)icy
is defined on a complete graph G with a node set V = {0,1,..., N} and edge weights given by
Euclidean distances d;;, where a node 0 represents the depot and others correspond to customers.
Each node i € V is associated with coordinates ¢; € [0, 1]? and attribute features A; that define the

constraints specific to VRP. The goal of VRP is to find an optimal solution 7 = (74, ..., 7r), Where
71 = 7p = 0 and intermediate depot visits partition 7T into K routes. Every customer node must be
visited exactly once. The objective is to minimize the total travel distance c¢(7) = tT;ll Aryrpyis

while satisfying all constraints defined by the attribute features {4, };cy.

Attribute Compositions  VRP variants extend the CVRP, which includes Linehaul and Capacity
(@) attributes, by combining additional active attributes. Each variant must satisfy constraints from )
and the active attributes. We consider five attributes: Backhaul (B), Mixed Backhaul (MB), Open (O),
Time Window (TW), and Linehaul (L). All possible VRP variants and detailed attribute specifications
are provided in Appendix [A] For a instance x, active attributes are represented by a binary attribute
indicator vector I(x). For attributes B, MB, O, TW, and L, this vector is (I, Iyg, Io, Itw, IL.), where
I, is 1 if attribute A is active, O otherwise. For example, the Open Vehicle Routing Problem with Time
Windows (OVRPTW) includes O and TW, yielding (0,0, 1,1, 0).

3.2 Reinforcement Learning for Solving VRP Variants

We frame the VRP as a sequential decision-making process within a Markov Decision Process (MDP)
framework, where solutions are constructed autoregressively. This approach aligns with unified
modeling strategies for cross-problem learning explored in previous works [2, [14].
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Figure 2: Compositional attribute representation
Figure 1: Overall architecture for ARC. learning

Within the MDP formulation, at step ¢ the state s; = (@, 7;—1) consists of the instance  and the
partial solution 7v_1 = (71, ...,7:—1). The agent selects the next node a; = 7; subject to feasibility,
and the process starts with 79 = () and terminates at ¢ = T" with reward r(7) = —c(7).

We employ an autoregressive policy 7y with an encoder fy(x) and a decoder gy(s;). The policy
defines the conditional probability 7y (a¢|s:) = go(7¢| fo(x), T:—1), and the probability of generating

a solution 7 is mp(7|x) = Hthl 7o (a¢|st). Our goal is to maximize the expected reward J(6) =
Egnp()[Ermry(|2) [7(T)]]. We employ REINFORCE algorithm, augmented with the POMO [13]
and a per-variant reward normalization scheme [2].

4 Methods: Attribute Representation via Compositional learning (ARC)

Our approach integrates the ARC module into the encoder of a standard encoder-decoder architecture
(131, as depicted in Figure[I] We first identify two key properties of compositional VRPs that motivate
our design (Sec. 4.1). We then detail the ARC module, which decomposes attribute representations
into an Intrinsic Attribute Embedding (IAE) for invariant semantics and a Contextual Interaction
Embedding (CIE) for combination-specific effects (Sec. 4.2). Finally, we introduce the compositional
loss designed to learn the IAE by enforcing these properties (Sec. 4.3). Full implementation details
are deferred to Appendix [B]

4.1 Properties in Attributes for Compositional VRP Variants

P1: Intrinsic Semantics for Individual Attributes  An attribute possesses intrinsic and invariant
semantics, maintaining the same constraint definition across all attribute combinations. For example,
the attribute L enforces an identical maximum route length limit in both VRPL and OVRPL, despite
their distinct underlying problem structures.

P2: Contextual Cross-Attribute Interactions While attributes have invariant semantics (P1),
their composition yields contextual interactions beyond individual attribute effects. For instance, the
influence of the attribute L is significantly attenuated when co-occurring with the open-route attribute
O. This is because removing the depot return in OVRPL substantially relaxes the length constraint,
diminishing L’s impact compared to its role in VRPL.

4.2 Attribute Representation via Compositional Learning (ARC)

To explicitly encode properties P1 and P2, our encoder decomposes the final representation fy(x)
into two components: an Intrinsic Attribute Embedding (IAE), hg(x), and a Contextual Interaction
Embedding (CIE), mg(x), formulated as fp(x) = hgo(x) + mg(x). The IAE is trained via a com-
positional loss (Sec. 4.3) to capture the intrinsic semantics of individual attributes (P1), ensuring a
consistent representation for an attribute across all problem contexts. The CIE, in contrast, captures
the contextual interactions (P2). Conditioned on the IAE, it utilizes an attention mechanism over
contextual features (i.e., attribute indicators and global features) to produce context-specific represen-
tations. This approach allows our model to reuse the invariant semantics across variants, overcoming
a key limitation of prior methods that learn mixed representations.
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4.3 Compositional Learning for Intrinsic Attribute Embeddings

To disentangle semantic attribute representations, we enable the model to learn analogical concepts.
This section introduces the concept of analogy relationships between attribute combinations and
describes our compositional loss designed to encode these relationships in the embedding space.

Analogy-Making over Attributes  An analogy “A is to B as C is to D” (denoted as A:B::C:D)
captures the relationship between pairs, suggesting that the transformation from A to B parallels that
from C to D. Let  and y be two base VRP problem where an arbitrary attribute A is not active. We
denote the extended VRP variants with attribute A activated as [x+A] and [y+A], respectively. The
intrinsic semantic of A in both [x+A] and [y+A], as highlighted in (P1), can be expressed through
the analogy: [x+A]: [x]::[y+A]: [y]. For example, if « represents CVRP, y represents OVRP,
and A is length constraint L, this establishes the analogy VRPL : CVRP::0VRPL : OVRP. This analogical
property can be expressed in the embedding space as: hg(z+A) — hg(x) = ho(y+A) — ho(y).

Learning Compositional Attribute Representation  To enforce the aforementioned analogical
consistency on the IAE (hgy(x)), we employ a contrastive learning objective, InfoNCE loss [19].
The key insight is that the intrinsic semantic of an attribute A —represented by the attribute vector
ay := ho(x + A) — hg(a)—should be identifiable and consistent regardless of the base instance x
or other activated attributes. It enforces this analogical consistency by distinguishing between same
and different attribute semantics. As illustrated in Fig.[2| we firstly extract these attribute vectors by
masking the attribute features from the same instance x. For a given attribute A, a transformation
vector hg(x’ + A) — hg(a’) derived from a different instance &’ serves as a positive sample, while
vectors corresponding to different attributes A’ form negative samples. This objective encourages
the model to learn a context-invariant representation for each attribute’s intrinsic semantics. This
compositional 1oss, Lcompaur(#) (formally defined in Appendix , is added to the reward J(0):
J(e) - A £CompAttr(9)~

S Experiments

Baselines We compare against PyVRP [§]], a state-of-the-art hybrid genetic search metaheuristic
based on HGS [27], and recent neural cross-problem VRP solvers: MTPOMO [15]], MVMOoE [28]],
RouteFinder (RF-TE) [2]], and CaDA [14]. Since our method extends RouteFinder with an additional
ARC module, RouteFinder can be considered an ablation of our method. Comparison with CaDA,
which claims constraint-awareness, evaluates our embedding decomposition approach.

Experimental Setup Following [2] [14], we train on graphs with N = 50 or 100 nodes using
100,000 instances per epoch, with equal proportions across VRP variants. We evaluate on 1,000 test
instances per variant and follow RouteFinder’s data generation and training protocols. The results of
all neural approaches are averaged over three independent runs. Most neural baselines share a unified
codebaseﬂ and implementations of CaDA and our method are availableﬂ Detailed hyperparameters
are provided in Appendix We report Gap as the percentage cost increase relative to PyVRP’s
best solution and Time as the total duration to solve all test instances in a single run.

5.1 Experimental Scenarios

In-distribution Models are trained and tested on the identical set of 16 VRP variants, encompassing
all combinations of four base attributes (B, O, L, TW). This scenario evaluates the ability to capture
shared attribute semantics and leverage cross-task knowledge from familiar variants.

Out-of-distribution (1) Zero-shot Generalization. To evaluate performance when some attribute
combinations are not provided during training, we restrict the training problem types based on the In-
distribution setting. Models are trained on seven representative variants (CVRP, OVRP, VRPB, VRPL,
VRPTW, OVRPTW, VRPBL), selected from the limited VRP variants in [28]] with VRPBL added to
maintain equal proportions across different attributes. We then evaluate zero-shot performance on the
remaining nine variants to test compositional generalization to novel, complex attribute combinations.
(2) Few-shot Adaptation. Models pre-trained on In-distribution setting are extended with Efficient
Adapter Layers (EAL) [2] to address the unseen attribute, MB, then fine-tuned on 10,000 VRP

"https://github.com/aidco/routefinder
“https://anonymous.4open.science/r/compositional-co-30FE/
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Table 1: In-distribution Performance on 1K test instances. Bold and underline denote best and second-
best, respectively. * marks the reference solution used as baseline for gap calculations.

) n =50 n = 100 n = 50 n = 100
Solver Solver
Gap (%) Time  Gap (%) Time Gap (%) Time Gap (%) Time
HGS-PyVRP * 10m * 2Im HGS-PyVRP * 10m * 21m
MTPOMO 1.407 £0.01 1Is 2049 £0.04 7s z MTPOMO 2429 £0.01 1s 3.934+001 8s
&  MVMoE 1.226 £ 0.00 2s 1.646+0.02 9s &= MVMoE 2.337+£0.02 2s 3.876+£0.01 10s
L>) RF-TE 1.239 £0.05 1s 1.559£0.01 11s % RE-TE 1933 +£0.04 Is 3.192+£0.06 10s
CaDA 1.259 £0.05 3s 1.5134+0.02 15s > CaDA 1.927 £0.07 3s 3.025+£0.04 16s
ARC 1154 £0.04 1s 1.429+0.02 10s ARC 1772 +£0.07 1s 2.840 £ 0.04 1ls
HGS-PyVRP * 10m * 21m HGS-PyVRP * 10m * 21m
MTPOMO 3213+£0.02 1Is 5102£0.05 7s MTPOMO 1718 £0.03 1s 2486 +£0.04 7s
& MVMoE 2915+0.03 2s 4.608 £0.02 9s =  MVMoE 1.508 £0.00 2s 2.065+0.03 9s
% RF-TE 2.645+0.07 1s 4.133£001 1ls § RF-TE 1434 +£0.07 1s 1.881£0.02 9s
CaDA 2.626 +0.08 3s  4.029 £0.01 15s CaDA 1.481 £0.07 3s 1.848 £0.02 15s
ARC 2497 £0.06 1s 3.915+£0.02 1ls ARC 1370 +£0.07 1s 1753 £0.02 1ls
HGS-PyVRP * 10m * 2Im HGS-PyVRP * 10m * 2Im
MTPOMO 3.612£0.02 Is 4986 +0.06 7Ts z  MTPOMO 1.564 £0.02 1s 3.023£0.03 8s
2 MVMoE 32344004 25 4484+0.01 9s 5 MVMoE 1528 £0.03 25 2944 +0.06 10s
§ RF-TE 2984 £0.08 1s 39994002 9s § RF-TE 1285+ 0.04 1s 23534+0.07 1ls
CaDA 2.973 £0.09 3s 3.948 £0.02 15s © CaDA 1.240 £ 0.04 35  2.289 +0.06 165
ARC 2.840 £0.10 1s 3.833 £0.04 11s ARC 1.087 £0.04 1s 1.968 £0.04 125
HGS-PyVRP * 10m * 21m HGS-PyVRP * 10m 21m
) MTPOMO 4.681 £0.02 1s 6.304+£004 7s z MTPOMO 2.154£0.01 1s 3791 +£0.03 8s
@  MVMoE 4283 +£0.03 2s 5718002 O9s 5  MVMoE 2.102£0.02 2s 3.724£0.03 10s
 RF-TE 3717 +£0.11 1s 5020+ 0.03 10s £ RFTE 1.754 £0.04 1s 2950 £0.03 Ils
~  CaDA 3.696 £0.10 3s 4.953 £0.03 15s § CaDA 1.741 £0.05 4s 2.814 £0.05 16s
ARC 3579 £ 013 1s  4.856+0.01 1ls ARC 1599 £0.05 1s 2.613+0.04 125
HGS-PyVRP * 10m * 21m HGS-PyVRP * 10m * 21m
= MTPOMO 1.9224+£0.01 1s 3.416+£0.03 8s = MTPOMO 2857 +£0.02 1s 4.4294+0.01 8s
E MVMoE 1.885£0.03 2s 3.360 £0.04 10s 5 MVMoE 2747 £0.04 2s 4343 +0.03 10s
% RETE 1.534 £0.02 1s 2597 £0.04 11s £ RFTE 2.280£0.05 1s 3.620+£0.06 1ls
> CaDA 1.527 £0.04 3s 2451+£0.03 16s >  CaDA 2322+£0.08 3s 3.453+0.03 16s
ARC 1.375+£0.06 1s 2281 +0.04 1ls ARC 2109 £0.06 1s 3.263£0.05 1ls
HGS-PyVRP * 10m * 2lm HGS-PyVRP * 10m * 2lm
n MTPOMO 3.000£0.01 1s 5.344£003 7s - MTPOMO 3.087 £0.00 Is 5434+0.03 7s
5 MVMoE 2706 £ 0.02 2s 4791 £0.02 9s £ MVMoE 2776 £0.04 2s 4.866+0.00 9s
> RF-TE 2.445+£0.10 1s 4.2884+0.06 10s % RF-TE 2463 £0.10 1s 4301 £0.06 10s
O caDA 2.396 £0.09 3s 4.121 £0.03 15s O  CaDA 2397 £0.09 3s 4.107 £0.02 15s
ARC 2231 £0.10 1s 3.935+£0.04 11s ARC 2236 £0.09 1s 3.936 +0.04 1ls
HGS-PyVRP * 10m * 2Im HGS-PyVRP * 10m * 2Im
E MTPOMO 1.317 £0.01 Is 2.649 £0.03 8s E MTPOMO 1.295£0.01 1s 2.622+0.03 8s
2 MVMoE 1.289 £0.03 2s 2.615+£0.06 1ls @ MVMoE 1.289 £0.04 2s 2.604 £0.07 Ils
& RF-TE 1.073 £0.02 1s 1998 +£0.06 1ls é RF-TE 1.059 £0.03 1s 1.997 £0.06 Ils
=  CaDA 0.994 +0.03 4s 1.825+0.05 16s % CaDA 0.987 £0.03 4s 1.8304+0.05 16s
~ ARC 0.905 £ 0.05 1s 1.641 £0.03 125 ARC 0.902 +0.05 1s 1.639+0.03 125
HGS-PyVRP * 10m * 2Im HGS-PyVRP 10m 2Im
a MTPOMO 3233 +£0.04 Is 5154£0.06 7Ts z MTPOMO 1574 £0.01 1s 3.032+£0.03 8s
5  MVMoE 2.966 +0.02 2s 4.657 £0.02 9s E MVMOoE 1.549£0.03 25 2963+0.05 10s
> RE-TE 2.636 £0.06 1s 4.1294+0.02 10s « RF-TE 1.288 £0.04 Is 2356 +0.07 1ls
O capA 2.635£0.09 3s 4.029 £0.02 15s % CaDA 1.249 £0.05 35 2.290 £ 0.06 16s
ARC 2510 £0.06 1s 3.916 +0.02 1ls ARC 1.084 +0.04 1s 1953 +0.04 125

instances with the MB attribute over 10 epochs. We compare against EAL-compatible baselines
RF-TE and CaDA to assess few-shot transfer to this new constraint. (3) Real-world Benchmark. To
validate generalization of our synthetic-trained model to real-world instances with different scales and
distributions, we evaluated on 115 instances from CVRPLi datasets featuring node sizes ranging
from 16 to 200 and diverse distribution characteristics differing from the training data as in [[14].

5.2 Results

In-distribution As shown in Table[I] ARC consistently outperforms all neural baselines across all 16
VRP variants, achieving results of 1.828% and 2.861% for the instance sizes 50 and 100, respectively.
This superior performance demonstrates that ARC structurally encodes VRP characteristics at the
attribute level, effectively capturing shared semantic information to interpret complex VRP variants.
These experimental results provide strong empirical evidence that our proposed ARC effectively
addresses the limitations of existing SOTA baselines such as MVMoE, MTPOMO, RF-TE, and
CaDA, which do not utilize explicit compositional learning like ours.

Zero-shot Generalization Table[2]shows the average performance across multiple tasks in Zero-
shot settings, with complete results provided in the appendix [C.2] ARC achieves superior average
performance, with MVMOE becoming the second-best algorithm compared to in-distribution results
where CaDA was second-best. This shift demonstrates that compositional learning approaches

*http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
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Table 2: Performance on 1K test Zero-shot in-
stances. (Bold: best, Underline: second-best)

Table 3: Performance on CVRPLIb test instances.
Bold denotes best.

Group ~ MTPOMO MVMoE RETE  CaDA  ARC
Solver n =50 n =100 A 3.23% 3.07% 2.82%  325%  2.50%
MTPOMO 5.160 + 0.69 7.630 & 1.21 v S0 S G U e
go MVMoE  4.613 4 0.59 7.524 £ 1.06 F 10.52% 12.16%  12.95% 11.96%  $.93%
5 RF-TE 5.065 £0.67 7.843 £0.77 M 5.61% 5.31% 508%  554%  5.55%
% CaDA 6.740 £ 1.20 8.044 + 1.39 P ;SZZO g;gj ji;j;“ 451';530 ﬁ;?
ARC 4.078 + 0.42 6.422 + 0.74 X 4% 2% A48%  ASTR 43T%
Average 6.44% 626%  506%  532%  4.26%
ARC IAE
5
¥oipy
9%
i 4 j &
W o
b g
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VRPBL ~ VRPBTW - VRPBLTW - OVRPB

Figure 3: t-SNE of emb. across 16 VRP vari-

ants (N — 50): CaDA (left) vs. ARC (right). Figure 4: t-SNE of ARC emb. across 16 VRP

variants (N = 50): IAE (left) vs. CIE (right)

(MVMOoE and ARC) are more effective for generalization to unseen combinations, with ARC
showing consistently strong performance across diverse tasks without large variance.

Few-shot Adaptation Table [ shows that our model consistently attains superior performance
across all tasks with newly added attributes MB, significantly outperforming RF-TE and CaDA. Our
attribute embeddings inherently preserve compatibility with unseen attribute combinations, enabling
efficient reuse of learned representations for rapid adaptation to novel attributes.

Real-World Benchmark  We compared the test performance of In-distribution neural solvers
trained on N = 100. As shown in Table [3| our method achieved the best performance across all
sets except Group M. This demonstrates that learning attribute-specific characteristics helps achieve
superior generalization to instances with different distributional properties than the training data.

Visualizing Embeds  To investigate the encoder’s representation, we apply t-SNE to visualize
the embeddings fy(x) of VRP instances across problem variants. Figure shows ARC forms well-
separated clusters corresponding to respective VRP variants, while CADA shows intermixed clusters
with blurred attribute boundaries. Figure ] confirms our decomposition: IAE clusters by attribute type
while CIE shows mixed patterns, validating the separation of intrinsic and contextual components.

Table 4: Few-shot Adaptation Performance on 1K test instances (N = 50). Bold denotes best.

Model OVRPMB OVRPMBL OVRPMBLTW OVRPMBTW VRPMB VRPMBL VRPMBLTW VRPMBTW

RF-TE 4.453 £0.13 4.511 +0.10 1.498 £0.02 1.486 +0.02 4.432 £ 0.13 3.456 +0.01 2.267 £0.02 1.945 4 0.02
CaDA 6.440 £ 1.00 6.407 +0.99 1.406 £0.02 1.391 +0.02 4.160 £ 0.48 4.380 +0.51 2.166 £ 0.01 1.853 4+ 0.01
ARC 1.475 1+ 0.06 1.506 + 0.06 1.277 +0.04 1.285 + 0.05 1.677 + 0.05 1.925 + 0.08 2.062 + 0.03 1.749 + 0.06

6 Conclusion

We introduced ARC, a compositional cross-problem learning framework for VRPs that disentangles
attribute representations by decomposing them into intrinsic and contextual components. By enforcing
analogical relationships in embedding spaces, ARC enables effective knowledge sharing across
problem variants and achieves superior zero-shot generalization to unseen combinations. Extensive
experiments demonstrate consistent improvements over existing baselines across in-distribution,
zero-shot generalization, and few-shot adaptation, with validation on real-world benchmarks. This
work establishes analogical embeddings as an effective approach for cross-problem learning in NCO.
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A Attributes

In this section, we describe the details of attributes we utilized. We adopt the classical route-set
notation, which is more convenient for presenting mathematical properties and constraints of VRP
variants. In contrast, the main text described solutions using the sequence notation 7 = (74,...,7r),
where depot visits partition the sequence into K vehicle routes, a representation well suited for
reinforcement learning as it aligns with the step-by-step construction of solutions. Here, however,
a solution is represented as T = {7'1, T2 ... , TK}, consisting of K routes, where each route Tk =

(&, 7F, ..., 7k ) starts and ends at the depot (7§ = 7F = 0). Every customer node appears in

. K nEg—1
exactly one route, and the total cost is ¢(7) = >, > %) Aok 7h, -
Based on this notation, we now detail the attributes { A;};cy that define different VRP variants.

Linehaul and Capacity (Q) In CVRP, customer nodes (¢ > 0) have a non-negative demand g;,
representing linehaul services (e.g., deliveries), with A; = {¢;}. Vehicles have uniform capacity
Q > 0. The capacity attribute requires that for each route 7%, the sum of customer demands
> jerk j4o4j must not exceed Q.

Open (O)
T,’fk # 0.

Backhaul (B) and Mixed Backhaul (MB) Unlike the CVRP where only linehaul customers
(g; > 0) are present, Backhaul or Mixed Backhaul variants also include backhaul customers (pickup,
¢; < 0), requiring transportation back to the depot. Each route 7% must satisfy one of two mutually
exclusive attributes: Backhaul (B), requiring all linehaul customers be visited before backhaul
customers, or Mixed Backhaul (MB), allowing any order. This attribute, 1 € {0, 1} indicating B or
MB, is a global feature included in Ag = {u}.

Time Window (TW) Each customer node i # 0 must be visited within a time interval [e;, [;] €
[0, T]?, with a service time s; € [0, T]. Customer features are thus defined as A; = {e;,;, s;}.
Vehicles arriving before the earliest available time e; must wait. Service takes s; time units, after
which the vehicle proceeds. The depot has a time window [0, 7], where T is the time horizon. If TW
is not activated, e; = 0,1; = oo, s; = 0 are set for all customers 7.

Duration Limit (L)  Each route’s total cost ¢(7*) must not exceed a limit L, i.e., c(7%) < L. If
not activated, L = oco. The global features A include L, i.e., Ag = {L}.

Vehicles are not required to return to the depot after serving the last customer, i.e.,

Figure 5] provides a visual explanation of the attributes. The complete set of VRP variants that can be
constructed using these attributes is shown in Table 3]

Backhaul (B) Mixed Backhaul (MB)  Duration Limit (L) Time Window (TW) Open (O)
04 03 04 03 03 H s H

V4 0.3 F O

oz s 0.25 H—t o
-0.3 D
03 0.4 7
0.4
o3 B —_ H
Depot V' Linehaul Backhaul () Customer = Time window Route

Figure 5: llustration of VRP attributes whose combinations define respective VRP variants.

B Architecture Details

We employed a transformer-based attribute composition model, which represents a general architec-
ture for cross-problem VRP variants [2, [14} [15]. This approach extends single-problem models to
multi-task settings by incorporating various attribute information into the structure of single models
(L1 2b 3.
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Table 5: VRP Variants and Their Attribute Combinations

VRP Variant Capacity Open Route Backhaul Mixed Duration Limit Time Windows Multi-depot
Q) (0) (B) (M) (L) (TW) (MD)

v

ANENEN
NN

AN NN N
AN N NN

OVRPBLTW
VRPMB
OVRPMB
VRPMBL
VRPMBTW
OVRPMBL
OVRPMBTW
VRPMBLTW
OVRPMBLTW
MDCVRP
MDOVRP
MDVRPB
MDVRPL
MDVRPTW
MDOVRPTW
MDOVRPB
MDOVRPL
MDVRPBL
MDVRPBTW
MDVRPLTW
MDOVRPBL
MDOVRPBTW
MDOVRPLTW
MDVRPBLTW
MDOVRPBLTW
MDVRPMB
MDOVRPMB
MDVRPMBL
MDVRPMBTW
MDOVRPMBL
MDOVRPMBTW
MDVRPMBLTW
MDOVRPMBLTW

NN NEN
N N N N N N N N N RN
SN NN NENEN

NN

EESENEN

N
RN

SNENEN
AN

A NN NN

AN N
NN NN

A N N N N N N N N N N N N N N N N N N N S NN NN
ANEN NN

A N N N R N N N N N N N N N N NN

N N N N N NN
SN NENENEN

SN NN
SENENEN

B.1 Encoder

The encoder fy comprises two principal structures: a Node Embedder hy and an ARC module.
The encoder separately processes two distinct categories of information: global and node-specific
attributes. Global attributes including open o € {0, 1}, duration limit d; € {0, Lyax }, and mixed
backhaul p € {0, 1}, (employed in EAL) represent problem-level constraints, whereas node-level
constraints such as linehaul demand ql, backhaul demand qb, time window (start time e, end time
s, and service time [) are associated with individual nodes. The global attribute information is
incorporated into the depot representation, while node attribute information ¢™ = {¢g,--- ,¢% _;}
(0)

is integrated into each customer node ¢, yielding the initial node embedding e; " as follows:

67(;0) _ {WQ[C()? 0, dlaule}T ifi = O, (1)

b T .
Whlei, di, 47y ei, li, 8|7 otherwise,
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where W9 € REx(Hs+2) and W € RE*(Hn+2) are Jearnable linear layers, E, is the embedding
dimension, H, and H,, are the numbers of global and node-level attributes respectively, and [y denotes
the time window end value of the depot.

B.1.1 Node Embedder

The node embedding are passed through a NodeEmbedder hg which consists of Ng transformer-based
NodeEmbBlocks with the following structure:

eMe) — h.g(e(o)) 2)
= (NodeEmbBlocky, o NodeEmbBlocky,_1 © - - - o NodeEmbBlock, ) (e(?)). 3)

Each NodeEmbBlock consists of two sub-layers: a Multi-Head Attention (MHA) layer and a Feed
Forward ParallelGatedMLP layer. The MHA layer captures dependencies between different positions
in the input sequence and the ParallelGatedMLP layer applies non-linear transformations to the
features.

e~V = e(*~1) L MHA(RMSNorm(e“~1), RMSNorm(e(*~1)), 4)
e¥) = e~ 4 parallelGatedMLP(RMSNorm(e!/~1)), 5)

where e!~1) denotes the input to the /-th NodeEmbBlock and MHA(a, b) denotes Multi-Head
Attention of which a serves as the query, while b provides the keys and values, and RMSNorm is a
RMS normalization.

The ParallelGatedMLP function is defined as:

ParallelGatedMLP(z) = W, (SILU(W,,z) ® (W, x)), (6)

where ® denotes element-wise multiplication, SiLU is the Sigmoid Linear Unit (Swish) activation
function, and Wy, , W,,,, W,,, are learnable linear layers. Consistent with prior work [2,[14], we use
Ng = 6 layers.

B.1.2 ARC Module

The ARC module utilizes the final output of Node Embedder (i.e., IAE), attribute indicator, and
global attribute features. Given an input & with attribute indicator I*"* = (Ig, Ig, lo, Itw, I.), where
I, is 1 if attribute A is active and O otherwise, the initial CIE is defined as:

m® = W,,, LayerNorm(W,,, - Concat[I**, o, di, )7, @)

where W,,,,, W,,,, are learnable linear layers, Concat is a feature-wise concatenation and LayerNorm
is a layer normalization.

The layers of ARC module, composed of Ny MixerBlocks, takes IAE e and CIE m as inputs
and employs a structure similar to the Global Layer [[14]]. The ¢-th layer MixerBlock takes global

embedding m—1 and TAE e,(ffl) as inputs (i.e., e$2) = e(NE)), The MixerBlock is formulated as
follows:

m“ = GlobalModule(m“~1), e(!~1), ®)
e!“~1) — GlobalModule(e(! ™), m(“~ 1), ©)
m® =m“Y 4+ @ Vw,), (10)
) =&+ @), "

11
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with Wy, and W, are learnable linear layers. The GlobalModule(a, b), which takes primary input a
and auxiliary input b to produce output a, is computed as follows:

a = RMSNorm (a + MHA (a, Concatla, b)) , (12)
a = RMSNorm (@ + ParallelGatedMLP (a)) . (13)

The final output embedding of our encoder, denoted as fy(x), is computed by combining the IAE
hg(x) and the CIE my(x). Specifically, we sum these two outputs:

fo(x) = ho(x) + me(x). (14)
B.2 Decoder

The decoder outputs the action probability for each node at each t-th step based on the encoded node
embeddings. We compute the context embedding g, using the embedding of the previously selected
node 7;_1 and the attribute feature values at ¢-th step as follows:

g. = W, - Concat[h

L b T
thlactactazhltaot] ) (15)

where ¢!, c? are remaining capacity of vehicle for linehaul and backhaul, respectively and z, 4, o, are

current time, the remaining length of partial solution, and the indicator of the open route, respectively.

We calculate the probability of selecting each node using the context embedding as a query and the
previously encoded values h as key and value. To generate feasible solutions, we mask nodes that
cannot be visited at each decoding step based on activated constraints. The probability values w; for
actions are calculated as follows:

de = MHA(gca hO:N)7 (16)
. qc(hi)T) e
wy = {f tanh( N 1fz€I.t, (17
—00 otherwise,

where I, is a feasible node set at step ¢, £ is a clipping hyperparameter, and E, is the dimension of
query g.. We compute action probability by applying Softmax to probability value u;.

B.3 Learning Compositional Attribute Representation

Given a function .A(+) that represents the set of activated attributes in a problem instance x from a
batch containing instances of various problem types, we can extract an attribute vector « for any
non-empty subset A C A(x) (where A(x) # 0) as follows:

ay = hg(x) — hg(mask(x, 4)), (18)

where hy(-) is the Node Embedder and mask(«, A) is a masking function that removes the feature
of attribute A from instance . We construct an attribute pool P by collecting all attribute vectors
from all instances in the batch. For any attribute vector o drawn from the pool, we classify attribute
vectors corresponding to the same attribute types as the positive class and those corresponding to
different attribute types as the negative class. We sample one attribute vector from the positive class
as the positive sample . If the size of the negative class for o is B, we compute the compositional
attribute loss as follows:

exp(f(a, o) /)
exp(f(a, a®)/B) + 351, exp(f (e a;)/B) |

where [3 is a temperature. The pseudocode for this process is presented in Algorithm ([T}

ECompAllr<9) = 7EOLNP IOg (19)

12



Algorithm 1 Compute Compositional Loss.

Require: Batch {x1,z2,...,xp}, temperature 3, attribute function .A(-)

I: P« {} > Initialize attribute pool
2: for:=1to Bdo

3: for A € A(x;) do

4: a < ho(x;) — ho(mask(x;, A)) > Extract attribute vector
5: P+ PU{(x,A)}

6: end for

7: end for

8 L+0 > Initialize Compositional Loss
9: for (a,A) € P do

10: at ~{o | (o/,A) € P,A" = A} \ {a} > Sample a positive attribute vector
11: N« {d|(,N)eP,N #A} > Get negative class

. exp(f a,at B

122 L+ L—log cxp(f(a7a+)/ﬁ)+(2(a—E,\>//cx)p(f<a7a’)/ﬁ)
13: end for
14: Lcompaur < L/|P] > Averaged loss
15: return Lcompattr

13
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C Experiments

C.1 Hyperparameters

To assess the performance differences based on hyperparameters in our proposed ARC, we compared
the average gap across 1000 samples for all problems in the validation set, using a baseline model with
node size N = 50, the number of ARC module layers N4 = 1, loss weight A = 1.0, temperature
B = 0.1. The results are presented in Figure [6] through Figure [T1] Figures [6] and [0] demonstrate
performance differences based on the number of ARC module layers. Among the hyperparameters,
the change in layer count V4 had the most significant impact on the gap. For the In-distribution
setting, stable and superior performance was observed when the number of layers was 3 or higher,
whereas for the Zero-shot setting, performance significantly deteriorated with 4 or more layers. This
indicates that while increasing model capacity does not reduce performance when all information is
provided during training, our loss function can act as a regularizer for unseen combinations up to
N4 = 3, but cannot prevent performance degradation with further increases in model capacity.

In our contrastive loss, 8 represents sensitivity to individual logit values, with larger values reducing
this sensitivity. As shown in Figures[7]and [I0] the standard error tends to decrease as /3 increases,
with a substantial reduction observed at values above 0.14.

However, excessively large § values may lead to performance trade-offs by treating all logit values
similarly. In our experiments, we observed that the gap decreases up to 8 = 0.12 for the In-distribution
setting and $ = 0.14 for the Zero-shot setting, before increasing again. Therefore, appropriate 3
values should be selected based on the specific environment.

Regarding the loss scaling parameter A, Figures|[8|and[IT] show similar results for the In-distribution
setting across different values, while for Zero-shot setting, comparable average values were observed
except when selecting the very small value of 0.5. We used Ny = 3, A = 0.12, X\ = 0.8, for all
experiments, based on the the In-distribution results. Additional performance improvements may be
possible through appropriate hyperparameter settings for specific experiments.

2.00 2.00 2.00
1.95 1.95 1.05
1.90 1.90 1.90
o 1.85 o 1.85 0 1.85
© © ©
O 180 O 180 O 1.80 I
1.75 1.75 1.75
1.70 1.70 1.70
1.65
1.65 1 2 3 4 5 6 1.65 0.09 0.10 0.11 0.12 0.13 0.14 0.15 05 06 07 08 09 1.0 11
# of Layers Temperature Lambda
Figure 6: Params. analysis: Figure 7: Params. analysis: Figure 8: Params. analysis:
# of Layers (ID, N = 50). Temperature 3 (ID, N = 50).  loss weight A (ID, N = 50).
4.00 4.00 4.00
3.75 l 3.75 3.75
Q_3 50 Q_3 50 D_3 50
© © ©
O 325 I I O 325 ] I O325 I I I I
3.00 i 3.00 1 l I T L 3.00 I I
2.75 2.75 2.75
2.50
2.50 1 2 3 4 5 6 2:50 0.09 0.10 0.11 0.12 0.13 0.14 0.15 05 06 07 08 09 1.0 11
# of Layers Temperature Lambda
Figure 9: Params. analysis: Figure 10: Params. analysis: ~ Figure 11: Params. analysis:

# of Layers (OOD, N = 50).  Temperature 3 (OOD, N = 50). loss weight A (OOD, N = 50).
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C.2 Performance on Training Problems

Table [6] shows the total performance in Zero-shot settings, ARC achieves superior average perfor-
mance, notably 4.078% for N = 50 and 6.422% for N = 100. It outperforms neural baselines by
an even larger margin than in In-distribution. This robustness is particularly evident in challenging
VRP variants like OVRPB and OVRPBL. For N = 50, ARC significantly surpasses these baselines,
achieving 4.731% on OVRPB and 6.090% on OVRPBL, while the baseline performance ranges
from 7.121% to 8.351% for OVRPB and from 7.686% to 10.984% for OVRPBL. This zero-shot
generalization stems from ARC’s explicit learning of attribute compositions, which capture the
semantic structure necessary for reasoning about unseen combinations. Unlike other baselines that
only implicitly model such structures, our method directly encodes attribute relationships. This
demonstrates the strong generalization potential derived from a precise semantic understanding of
individual attributes when encountering novel VRP variants.

Table 6: Performance on 1K test Zero-shot instances. Bold and underline denote best and second-best,
respectively. Parentheses indicate gap changes from seen performance.

Solver n = 50 n = 100 Solver n = 50 n = 100
MTPOMO 4276 4+ 0.07 (+2.354)  6.851 £ 0.10 (+3.435) MTPOMO 3.172 £ 0.02 (+0.315)  4.941 & 0.04 (+0.512)
E MVMoE 3917 4 0.08 (+2.032)  6.499 £ 0.00 (+3.138) E MVMoE  3.352 £ 0.13 (+0.604)  5.168 % 0.13 (+0.825)
2 RF-TE 4.035 £ 0.05 (+2.501)  6.240 £ 0.11 (+3.644) & RF-TE 3.765 £ 0.54 (+1.484)  6.230 4= 0.32 (+2.610)
ﬂ>4 CaDA 6.067 £ 1.94 (+4.540)  6.659 £ 0.19 (+4.208) g CaDA 2.840 £ 0.10 (+0.519)  4.488 £ 0.15 (+1.034)
ARC 4214 +£0.11 (+2.839)  6.697 £ 0.14 (+4.416) ARC 2.710 £ 0.07 (+0.601)  4.220 + 0.03 (+0.957)
MTPOMO 7.692 4 0.26 (+4.691)  13.735 £ 0.31 (+8.391) MTPOMO 9.027 £ 0.53 (+5.940) 13.730 £ 0.29 (+8.296)
2 MVMoE  7.214 £ 0.50 (+4.508)  12.404 £ 0.08 (+7.613) E MVMoE  7.686 £ 0.46 (+4.909) 13.082 £ 0.22 (+8.216)
& RF-TE 7.121 £ 0.76 (+4.676)  10.500 & 0.32 (+6.212) & RF-TE 8.564 £ 1.33 (+6.102) 11.991 + 1.09 (+7.690)
% CaDA 8.351 £ 1.45 (+5.955) 10.224 4 0.61 (+6.103) 5 CaDA 10.984 £ 2.08 (+8.587) 14.435 £ 2.45 (+10.328)
ARC 4.731 £ 0.28 (+2.500)  8.877 £ 0.35 (+4.942) ARC 6.090 £ 0.19 (+3.854)  9.694 + 0.54 (+5.758)
2z MTPOMO 6.377 £ 1.19 (+5.061)  6.402 &£ 0.50 (+3.753) = MTPOMO 3.507 £ 0.07 (+2.212)  5.960 % 0.07 (+3.339)
5 MVMoE  5.031 £0.76 (+3.742)  7.624 + 0.71 (+5.009) & MVMOoE  3.180 + 0.08 (+1.891)  5.685 =+ 0.12 (+3.081)
2 RF-TE 3.904 £ 0.59 (+2.831)  7.706 £ 0.23 (+5.708) & RE-TE 3.497 £ 0.07 (+2.438)  5.730 = 0.17 (+3.733)
§ CaDA 5.895 £ 1.00 (+4.901)  5.949 £ 0.13 (+4.125) °>‘ CaDA 3.591 £ 0.10 (+2.605)  5.673 £ 0.10 (+3.843)
O ARC 3.890 & 0.09 (+2.985)  6.587 £ 0.11 (+4.946) © ARC 3.749 £ 0.10 (+2.847)  6.334 = 0.11 (+4.695)
MTPOMO 3.764 4 0.01 (+0.531)  5.564 4 0.07 (+0.410) = MTPOMO 3.756 £ 0.90 (+2.182)  3.905 % 0.10 (+0.873)
= MVMoE 3472+ 0.02(+0.507)  5.105 £ 0.00 (+0.448) & MVMoE  2.823 £ 0.49 (+1.273)  4.403 £ 0.50 (+1.440)
g RF-TE 7.142 £ 3.17 (+4.506)  8.065 £ 1.94 (+3.936) 5 RF-TE 2.791 £ 0.68 (+1.503)  5.152 £ 0.26 (+2.796)
O CaDA 13.622 + 4.86 (+10.987) 14.696 + 5.24 (+10.667) = CaDA 4.962 4+ 1.32 (+3.714)  3.072 +£ 0.18 (+0.782)
ARC 4961 £ 0.40 (+2.451)  4.997 +0.19 (+1.081) © ARC 1.762 + 0.21 (+0.678)  2.656 + 0.16 (+0.703)
= MTPOMO 4.867 4 0.08 (+2.713)  7.587 £ 0.18 (+3.796) MTPOMO 5.160 £ 0.69 7.630 £+ 1.21
5 MVMoE  4.846 4 0.41 (+2.744)  7.749 £ 0.25 (+4.024) % MVMoE 4.613 +0.59 7.524 £+ 1.06
m RF-TE 4767 £ 0.49 (+3.013)  8.969 £ 0.58 (+6.019) 5 RF-TE 5.065 £ 0.67 7.843 £0.77
& CaDA 4.348 4+ 0.10 (+2.607)  7.198 + 0.08 (+4.385) % CaDA 6.740 £ 1.20 8.044 £ 1.39
> ARC 4.591 4+ 0.07 (+2.992)  7.736 £ 0.06 (+5.123) ARC 4.078 £ 0.42 6.422 + 0.74

Table[/|shows the performance of models trained with the Zero-shot setting on the problem variants
that were included in training: CVRP, OVRP, VRPL, VRPB, VRPTW, OVRPTW, and VRPBL.
Similar to Table[I] ARC achieved the best performance, followed by CaDA and RF-TE. Interestingly,
consistent patterns of performance improvement or deterioration compared to the In-distribution
setting were observed across problem types, regardless of the baseline model. For VRPTW, OVRP,
and OVRPTW, we can observe a general decline in neural solver performance compared to Table [T}
This performance decline, despite the increased number of samples per problem type, suggests that
learning from multiple problem combinations simultaneously provides greater benefits than simply
increasing the sample count for individual problem types. This suggests the effectiveness of the
cross-problem approach that utilizes a unified model for learning across problem variants. Analysis
of problems where our methodology showed significant improvement compared to other baselines is
presented in Appendix [D.1]

C.3 Real-World Dataset

To evaluate the scalability of our methodology in real-world settings, we present instance-level
performance on the X group from CVRPLib. Table g shows the evaluation results for instances with
node sizes below 251. Similar to Table [3] ARC demonstrated the best performance, followed by
RF-TE and CaDA in order of performance. Additionally, results for instances with node sizes above
500 are presented in Table[9] For these larger instances, RF-TE achieved the best performance with
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Table 7: Performance on 1K seen problem test instances of trained with the Zero-shot setting. Bold
and underline denote best and second-best, respectively. Parentheses indicate gap changes from seen
performance.

445
446
447
448

Solver n = 50 n = 100 Solver n = 50 n = 100
MTPOMO 1.197 £ 0.01 (-0.210) 1.643 + 0.03 (-0.406) MTPOMO 2.529 + 0.03 (+0.100) 4.198 + 0.02 (+0.264)
a, MVMoE  1.071 4 0.01 (-0.155) 1.388 4 0.01 (-0.258) & MVMOoOE  2.494 = 0.05 (+0.156) 4.156 =& 0.03 (+0.281)
§ RF-TE 1.129 £ 0.06 (-0.110) 1.360 =+ 0.05 (-0.200) £ RE-TE 2.094 £ 0.07 (+0.161) 3.487 £ 0.07 (+0.295)
O CaDA 1.156 £ 0.02 (-0.103) 1.306 + 0.01 (-0.208) g CaDA 2.157 £ 0.09 (+0.230) 3.254 &£ 0.09 (+0.229)
ARC 1.034 4 0.04 (-0.120) 1.225 £ 0.02 (-0.204) ARC 1.864 £ 0.05 (+0.092) 3.030 =+ 0.06 (+0.190)
MTPOMO 3.529 + 0.04 (+0.316) 5.336 & 0.07 (+0.234) MTPOMO 1.486 + 0.01 (-0.232) 2.076 &£ 0.02 (-0.411)
a, MVMoOE  3.204 £ 0.00 (+0.289) 4.883 £ 0.01 (+0.274) ; MVMOoE  1.354 £ 0.02 (-0.154) 1.806 + 0.02 (-0.259)
§ RF-TE 2.729 £ 0.09 (+0.084) 4.157 £ 0.04 (+0.024) & RF-TE 1.304 £ 0.08 (-0.130) 1.655 = 0.05 (-0.226)
O CaDA 2.727 4 0.05 (+0.101) 4.027 £ 0.04 (-0.002) » CaDA 1.357 £ 0.04 (-0.123) 1.604 +£ 0.02 (-0.243)
ARC 2.504 £ 0.07 (+0.007) 3.938 £ 0.05 (+0.023) ARC 1.192 4 0.05 (-0.178) 1.526 =+ 0.01 (-0.228)
MTPOMO 3.110 £ 0.02 (-0.501) 4.395 + 0.02 (-0.591) MTPOMO 1.774 £ 0.01 (+0.209) 3.394 + 0.04 (+0.371)
n MVMOoE  2.855 £ 0.02 (-0.379) 3.986 £ 0.04 (-0.498) E MVMOoE  1.776 &+ 0.04 (+0.248) 3.342 &+ 0.03 (+0.398)
& RF-TE 2.794 £ 0.10 (-0.191) 3.733 &£ 0.05 (-0.266) & RF-TE 1.447 &£ 0.06 (+0.162) 2.663 = 0.06 (+0.309)
> CaDA 2.829 + 0.07 (-0.144) 3.645 + 0.01 (-0.303) 5 CaDA 1.485 + 0.08 (+0.245) 2.458 + 0.08 (+0.170)
ARC 2.556 + 0.08 (-0.284) 3.538 £ 0.03 (-0.295) ARC 1.215 + 0.03 (+0.128) 2.198 + 0.04 (+0.230)
MTPOMO 4.236 + 0.03 (-0.445) 5.692 + 0.03 (-0.612) MTPOMO 2.5514+043 3.819 £ 0.58
é MVMOoE  3.955 + 0.02 (-0.328) 5.248 &+ 0.05 (-0.470) &, MVMOoE 2.387 £ 0.39 3.544 £+ 0.56
& RF-TE 3.510 &+ 0.13 (-0.206) 4.716 &£ 0.05 (-0.304) g RF-TE 2.144 £ 0.34 3.110 £ 0.48
CaDa 3.563 £ 0.04 (-0.132) 4.585 + 0.03 (-0.368) & CaDa 2.182 £0.34 2.983 £ 0.47
> 4.965 £ V.05 < 2789 L VA7
ARC 3.185 £ 0.12 (-0.394) 4.435 £ 0.06 (-0.421) ARC 1.936 + 0.31 2.841 £ 0.46

an average gap of 12.319%, compared to our method’s 12.506%. This suggests that while our method
generalizes well to distributions different from the training set, it does not perform as exceptionally
on very large-sized problems. This suggests that further research on improving scalability to larger

problem sizes could be beneficial.

Table 8: Performance on CVRPLIb instances (N < 251).

Set-X MTPOMO MVMOoE RF-TE CaDA ARC
Instance Ob;. Gap Ob;. Gap Ob;. Gap Ob;. Gap Ob;. Gap
X-n101-k25 29399 6.553% 29076 5.382% 29035 5.234% 29185 5.777% 28927 4.842%
X-n106-k14 28029 6.323% 27443 4.101% 27150 2.989% 26952 2.238% 26852 1.859%
X-n110-k13 15100 0.862% 15327 2.378% 15314 2.291% 15262 1.944% 15309 2.258%
X-n115-k10 13412 5.217% 13475 5.711% 13338 4.636% 13169 3.311% 13458 5.578%
X-n120-k6 14051 5.393% 13782 3.375% 13765 3.248% 13735 3.023% 13659 2.453%
X-n125-k30 59015 6.259% 58430 5.205% 58522 5.371% 57405 3.360% 57936 4.316%
X-n129-k18 30176 4.271% 29334 1.361% 29598 2.274% 29397 1.579% 29536 2.059%
X-n134-k13 11707 7.246% 11462 5.002% 11585 6.129% 11512 5.460% 11605 6.312%
X-n139-k10 14058 3.444% 14099 3.745% 13812 1.634% 13877 2.112% 13962 2.737%
X-n143-k7 16626 5.898% 16349 4.134% 16257 3.548% 16195 3.153% 16185 3.089%
X-n148-k46 46648 7.365% 45857 5.545% 45036 3.655% 45761 5.324% 45243 4.131%
X-n153-k22 23514 10.811% 23649 11.447% 23478 10.641% 23154 9.114% 23299 9.797%
X-n157-k13 17886 5.985% 17493 3.656% 17339 2.744% 17344 2.773% 17230 2.098%
X-n162-k11 14486 2.461% 14705 4.010% 14664 3.720% 14814 4.781% 14642 3.565%
X-n167-k10 21662 5.375% 21503 4.602% 21412 4.159% 21437 4.281% 21226 3.254%
X-n172-k51 48560 6.475% 47883 4.990% 48118 5.506% 48181 5.644% 48022 5.295%
X-n176-k26 51989 8.736% 52117 9.004% 51400 7.504% 52698 10.219% 52400 9.596%
X-n181-k23 26572 3.923% 26417 3.317% 26097 2.065% 26099 2.073% 26249 2.659%
X-n186-k15 25236 4.519% 25151 4.166% 25140 4.121% 25461 5.450% 25271 4.688%
X-n190-k8 18222 7.314% 18988 11.826% 17892 5.371% 18470 8.775% 17877 5.283%
X-n195-k51 48829 10.410% 47201 6.729% 47390 7.157% 46726 5.655% 46649 5.481%
X-n200-k36 62050 5.927% 61720 5.364% 61199 4.474% 61198 4.473% 61330 4.698%
X-n204-k19 20643 5.510% 20584 5.208% 20608 5.331% 20497 4.764% 20631 5.449%
X-n209-k16 32298 5.356% 32358 5.552% 31876 3.980% 32092 4.684% 32170 4.939%
X-n214-k11 11699 7.765% 11597 6.826% 11670 7.498% 11812 8.806% 11713 7.894%
X-n219-k73 122070 3.805% 124451 5.830% 120348 2.341% 120464 2.440% 120158 2.180%
X-n223-k34 43123 6.642% 42695 5.584% 42251 4.486% 42359 4.753% 42337 4.699%
X-n228-k23 28233 9.677% 28171 9.436% 28798 11.872% 27988 8.725% 28098 9.152%
X-n233-k16 20644 7.353% 20656 7.415% 20758 7.946% 20638 7.322% 20739 7.847%
X-n237-k14 30066 11.183% 29778 10.118% 29595 9.441% 30451 12.606% 29759 10.047%
X-n242-k48 88666 7.148% 87281 5.474% 85704 3.569% 85780 3.660% 85952 3.868%
X-n247-k50 41610 11.633% 41345 10.922% 40639 9.028% 41037 10.096% 40817 9.505%
X-n251-k28 41206 6.519% 41347 6.884% 40399 4.433% 40663 5.116% 40466 4.607%
Average Gap 6.465% 5.888% 5.103% 5.257% 5.037%
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Table 9: Performance on CVRPLIb instances (N > 500).

Set-X MTPOMO MVMOoE RF-TE CaDA ARC
Instance Ob;. Gap Ob;. Gap Ob;. Gap Ob;. Gap Ob;. Gap
X-n502-k39 75858 9.580% 77037 11.283% 71836 3.770% 72427 4.624% 72357 4.523%
X-n513-k21 34192 41.283% 32695 35.098% 28566 18.036% 30037 24.115% 29084 20.177%
X-n524-k153 176706  14.304% 171622  11.015% 174075  12.602% 171656  11.037% 168443 8.959%
X-n536-k96 109781  15747% 106205  11.976% 103337 8.952% 102768 8.352% 102899 8.491%
X-n548-k50 110634  27.606% 104455  20.479% 100914  16.394% 102813  18.585% 101488  17.057%
X-n561-k42 55564 30.075% 53385 24.974% 49455 15.774% 50410 18.009% 49376 15.589%
X-n573-k30 60460 19.314% 61611 21.585% 55937 10.388% 56622 11.740% 54785 8.115%
X-n586-k159 226529  19.028% 213299  12.076% 205770 8.120% 205385 7.918% 204824 7.623%
X-n599-k92 130376  20.217% 126678  16.807% 116819 7.716% 117727 8.553% 117498 8.342%
X-n613-k62 78323 31.558% 73687 23.771% 67347 13.122% 68696 15.388% 68850 15.646%
X-n627-k43 77282 24.320% 70710 13.748% 67339 8.325% 68838 10.736% 68295 9.863%
X-n641-k35 83223 30.681% 72080 13.184% 70687 10.996% 73329 15.145% 71792 12.732%
X-n655-k131 121032 13.347% 119388  11.807% 112087 4.970% 110761 3.728% 110721 3.691%
X-n670-k130 182652  24.820% 166856  14.026% 169056  15.529% 165711  13.243% 162787  11.245%
X-n685-k75 93216 36.670% 82525 20.996% 77687 13.902% 78145 14.574% 78560 15.182%
X-n701-k44 92855 13.344% 90220 10.128% 90970 11.043% 92254 12.611% 91299 11.445%
X-n716-k35 59066 36.181% 52582 21.232% 49709 14.608% 51313 18.306% 49981 15.235%
X-n733-k159 175228  28.667% 156453  14.881% 148786 9.251% 148357 8.936% 147100 8.013%
X-n749-k98 102540  32.705% 92308 19.463% 85048 10.067% 85634 10.826% 85627 10.817%
X-n766-k71 133109 16.337% 129647  13311% 130052  13.665% 128140  11.994% 129370  13.069%
X-n783-k48 107925  49.097% 96175 32.864% 83165 14.891% 84805 17.157% 83808 15.779%
X-n801-k40 92027 25.530% 87149 18.876% 86024 17.341% 89329 21.849% 87830 19.805%
X-n819-k171 192568  21.785% 178857  13.114% 174609  10427% 173461 9.701% 172161 8.879%
X-n837-k142 230660  19.058% 230022  18.729% 208252 7.492% 208225 7.478% 209050 7.904%
X-n856-k95 118219  32.883% 105661 18.767% 98393 10.597% 100057  12.468% 100648  13.132%
X-n876-k59 114340  15.147% 114169  14.975% 107229 7.986% 110332 11.111% 108640 9.407%
X-n895-k37 106400  97.549% 70002 29.970% 64525 19.801% 67511 25.345% 65160 20.980%
X-n916-k207 388519  18.027% 373542  13.477% 352732 7.155% 353009 7.239% 352056 6.950%
X-n936-k151 200710  51.234% 161068  21.364% 163073  22.875% 154841  16.672% 157210  18.457%
X-n957-k87 126800  48.365% 123712 44.752% 102964  20.475% 105200  23.091% 103485  21.085%
X-n979-k58 139389  17.157% 131894  10.858% 129770 9.072% 133144 11.908% 131469  10.500%
X-n1001-k43 133680  84.756% 89126 23.179% 85998 18.856% 89231 23.324% 87914 21.504%
Average Gap 30.199% 18.836% 12.319% 13.618% 12.506%
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D Analysis

D.1 In-Distribution Performance: Visual Comparison of Gap Ratio

Figure[12)illustrates the gap ratios between our method ARC and comparable baselines RF-TE and
CaDA, based on the performance gaps reported in Table [T} The results demonstrate consistently
superior performance across all problems that simultaneously incorporate both O and TW attributes
(i.e., OVRPTW, OVRPLTW, OVRPBTW, OVRPBLTW). As noted in Appendix[C.2] problems such as
VRPTW, OVRP, and OVRPTW showed performance improvements by leveraging information from
problem instances with different combinations. This suggests that ARC achieves substantial perfor-
mance gains on problems incorporating these attributes by effectively leveraging O and TW attribute
information from various problem combinations through our compositional learning methodology.
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Figure 12: Visualizing Gap ratio

18



459

460
461
462
463
464
465

467
468
469
470

D.2 Train/Test Efficiency
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Figure 13: Computational Efficiency Comparison. Training time per epoch (left), inference time
(middle), and training time by number of layers (right).

We compared the time required per epoch during training (100,000 instances) and evaluation (1,000
instances) for our proposed model with node sizes N = 50 and N = 100 illustrated in Figure[I3] All
experiments were conducted on a single NVIDIA Tesla A40 GPU and two CPU cores of AMD EPYC
7413 24-Core Processor for both training and testing. For traditional solvers, we allocated 16 CPU
cores As shown in the left panel, while our method requires longer training time than RF-TE, training
for N = 100 can be completed within a single day. Furthermore, the middle panel demonstrates
that the computation of Lcompar 18 only required during training, resulting in significantly faster
inference times. The right panel shows differences in training speed based on the number of ARC
module layers. Due to the time-intensive nature of the sequential solution selection in the decoding
step, the difference between layer counts of 1 and 6 are only 0.19 and 0.33 minutes for N = 50 and
N = 100, respectively.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Abstract and Introduction (Section 1) state the importance of the compositional
learning of the attributes and summarize the main contributions, a novel cross-problem
learning solver for VRPs decomposing embeddings into intrinsic and contextual embed-
dings to disentangle attribute representations. They also claim superior performance and
generalization capabilities.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: While a dedicated "Limitations" section is not present, the paper discusses
some limitations. For instance, Appendix C.3 (Real-World Dataset) notes that the model "it
does not perform as exceptionally on very large-sized problems".

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA|
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Justification: The paper primarily presents an empirical study introducing a novel architecture
and learning methodology. It does not focus on presenting new theoretical results that would
require formal proofs. The methodological foundations, including Properties (P1) and (P2)
that motivate the design, are described in Section 4, Methods, but these are not presented as
formal theorems.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper disclose detailed experiment settings in Section 5 and Pseudocode
in Appendix. The model architecture is also described well in Section 4.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides a URL: "https://anonymous.4open.science/r/compositional-
co-30FE/". Details on data generation are notes that we "follow RouteFinder’s data genera-
tion and training protocols" in Section 5.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Their experimental settings also described in Section 5 and Appendix. Section 5
describes the number of training, test instances, including graph size. Due to spce limitations,
details are notes that we "follow RouteFinder’s data generation and training protocols" in
Section 5. Appendix C is referenced for further details on hyperparameters and related
studies. The experimental settings (In-distribution, Zero-shot Generalization, Few-shot
Adaptation, Real-world Benchmark) are clearly defined in Section 5.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Tables 1, 2, 4, 6, and 7 report results with what appear to be standard deviations.
The paper also states, "For neural methods, results are averaged over 3 runs with different
random seeds".

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We descrbied in Appendix D.2 as "All experiments were conducted on a single
NVIDIA Tesla A40 GPU and two CPU cores of AMD EPYC 7413 24-Core Processor for
both training and testing. For traditional solvers, we allocated 16 CPU cores". Execution
time is noted in Appendix.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
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Justification: The research focuses on algorithmic development for Vehicle Routing Prob-
lems, a subfield of combinatorial optimization. Based on the paper’s content, there is no
indication of ethical violations related to data privacy, bias, or harm as outlined in the
NeurIPS Code of Ethics.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The paper does not include a dedicated section discussing broader societal
impacts. While the research could lead to positive impacts by improving efficiency in
logistics and transportation (potentially reducing costs and emissions), these are not explicitly
detailed, nor are potential negative societal impacts discussed. The primary focus is on the
technical contributions of the ARC model.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The research involves models for solving Vehicle Routing Problems. These
models and the data do not inherently pose a high risk for misuse in the sense typically
associated with large language models or image generation models. Therefore, specific
safeguards beyond standard academic open-sourcing practices are not directly applicable.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cites numerous existing works and baselines, such as PyVRP,
MTPOMO, MVMOoE, RouteFinder, and CaDA. It also uses the CVRPLib benchmark, which
is cited with a URL footnote 3. The use of a unified codebase from RouteFinder for some
baselines is mentioned in Section 5.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The primary new asset introduced is the ARC model and its implementation.
The paper provides a detailed description of the model architecture, the learning method-
ology, and the experimental setup. A link to an anonymized code repository is provided,
suggesting that documentation would be available with the code release.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|

Justification: The research described in the paper does not involve crowdsourcing or experi-
ments with human subjects. It is focused on algorithmic development and evaluation using
synthetic and benchmark datasets.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research does not involve human subjects; therefore, IRB approval or
discussion of participant risks is not applicable.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|

Justification: The core methodology of the research focuses on a novel neural network
architecture and compositional learning for Vehicle Routing Problems. There is no mention
or indication in the paper that Large Language Models (LLMs) are an important, original, or
non-standard component of these core research methods.
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