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Abstract

Vehicle Routing Problems (VRPs) with diverse real-world attributes have driven re-1

cent interest in cross-problem learning approaches that efficiently generalize across2

problem variants. We propose ARC (Attribute Representation via Compositional3

Learning), a cross-problem learning framework that learns disentangled attribute4

representations by decomposing them into two complementary components: an In-5

trinsic Attribute Embedding (IAE) for invariant attribute semantics and a Contextual6

Interaction Embedding (CIE) for attribute-combination effects. This disentangle-7

ment is achieved by enforcing analogical consistency in the embedding space to8

ensure the semantic transformation of adding an attribute (e.g., a length constraint)9

remains invariant across different problem contexts. This enables our model to reuse10

invariant semantics across trained variants and construct representations for unseen11

combinations. ARC achieves state-of-the-art performance across in-distribution,12

zero-shot generalization, few-shot adaptation, and real-world benchmarks.13

1 Introduction14

Capacitated Vehicle Routing Problem (CVRP) represents a fundamental NP-hard combinatorial15

optimization challenge [7, 11, 25]. While deep learning-based approximation algorithms within the16

Neural Combinatorial Optimization (NCO) paradigm have demonstrated near-optimal performance17

[1, 6, 12, 13, 16, 21, 23], real-world routing applications must address diverse attributes such as time18

windows [22] or open routing [24]. To efficiently leverage information of shared attributes across19

multiple VRP variants, recent research has focused on cross-problem learning, where a single unified20

model is trained to solve multiple VRP variants defined by different attribute combinations [2, 14, 28],21

improving efficiency and generalization compared to variant-specific models [15].22

However, prior works [2, 14, 15, 28] often conflate invariant attribute semantics with contextual effects23

among attributes, leading to entangled representations that hinder efficient knowledge sharing across24

different VRP variants. To address this limitation, we propose ARC, which disentangles individual25

attribute embeddings by decomposing representation into intrinsic components that remain consistent26

across combinations and contextual components that capture combination-specific interactions. ARC27

learns distinct attribute representations through analogical compositional learning, ensuring identical28

attributes maintain their intrinsic semantics regardless of their combinations by enforcing analogous29

transformations across different problem contexts. Contextual components then model attribute30

interactions by leveraging the learned intrinsic representations within specific problem contexts This31

disentanglement maximizes shared information across diverse problem variants, enabling efficient32

cross-problem learning and zero-shot generalization to unseen combinations by composing learned33

intrinsic representations.34

Extensive experiments demonstrate that ARC outperforms existing baselines on trained configurations35

while achieving robust zero-shot generalization to unseen attribute combinations and efficient few-36
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shot adaptation to new attributes, with validation on real-world benchmarks. Our main contributions37

are as followed:38

• We propose ARC, a novel cross-problem learning framework that disentangles attribute repre-39

sentations by decomposing them into intrinsic and contextual components, facilitating effective40

knowledge sharing across different VRP variants.41

• We introduce a compositional learning mechanism that enforces analogical embedding relation-42

ships, establishing the first analogical embedding framework for NCO to our knowledge.43

• We demonstrate superior performance across four scenarios: (1) in-distribution, (2) zero-shot44

generalization to unseen attribute combinations, (3) few-shot adaptation to new attributes, and (4)45

real-world benchmark, CVRPLib.46

2 Related Works47

Cross-Problem CO Solvers Recent work has shifted toward cross-problem learning, developing48

universal architectures capable of solving diverse problems. This research spans two branches:49

heterogeneous CO tasks [5, 20] and VRP variants with different attribute combinations, to which50

our work belongs. Existing VRP approaches include joint training and Mixture-of-Experts [15, 28],51

foundation models [2], and attribute-aware attention mechanisms [14]. However, these methods learn52

mixed representations where shared attribute semantics are entangled with combination-specific53

interactions, inducing inefficient knowledge sharing across attribute combinations. Our approach54

explicitly decomposes attribute representations into intrinsic characteristics and interaction effects.55

Compositional Learning Compositional learning enables models to generalize to novel com-56

binations by learning how individual elements can be systematically recombined. Prior approaches57

include modular reasoning that decomposes problems into primitive operations [9, 10], algebraic58

composition of value functions for skill reuse [17, 26], and representation-level compositionality59

that enforces compositional structure in embedding spaces through analogy-based or contrastive60

objectives [3, 4, 18]. Our approach leverages analogy-based compositionality in the embedding space61

for robust generalization across combinatorial tasks.62

3 Preliminaries63

3.1 Definition of VRP Variants64

Each VRP variant, including the fundamental CVRP, is defined by the constraints that correspond to65

the attributes activated from the set of attributes introduced below. A CVRP instance x = (ci, Ai)i∈V66

is defined on a complete graph G with a node set V = {0, 1, . . . , N} and edge weights given by67

Euclidean distances dij , where a node 0 represents the depot and others correspond to customers.68

Each node i ∈ V is associated with coordinates ci ∈ [0, 1]2 and attribute features Ai that define the69

constraints specific to VRP. The goal of VRP is to find an optimal solution τ = (τ1, . . . , τT ), where70

τ1 = τT = 0 and intermediate depot visits partition τ into K routes. Every customer node must be71

visited exactly once. The objective is to minimize the total travel distance c(τ ) =
∑T−1

t=1 dτt,τt+1
,72

while satisfying all constraints defined by the attribute features {Ai}i∈V .73

Attribute Compositions VRP variants extend the CVRP, which includes Linehaul and Capacity74

(Q) attributes, by combining additional active attributes. Each variant must satisfy constraints from Q75

and the active attributes. We consider five attributes: Backhaul (B), Mixed Backhaul (MB), Open (O),76

Time Window (TW), and Linehaul (L). All possible VRP variants and detailed attribute specifications77

are provided in Appendix A. For a instance x, active attributes are represented by a binary attribute78

indicator vector I(x). For attributes B, MB, O, TW, and L, this vector is (IB, IMB, IO, ITW, IL), where79

IA is 1 if attribute A is active, 0 otherwise. For example, the Open Vehicle Routing Problem with Time80

Windows (OVRPTW) includes O and TW, yielding (0, 0, 1, 1, 0).81

3.2 Reinforcement Learning for Solving VRP Variants82

We frame the VRP as a sequential decision-making process within a Markov Decision Process (MDP)83

framework, where solutions are constructed autoregressively. This approach aligns with unified84

modeling strategies for cross-problem learning explored in previous works [2, 14].85
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Figure 1: Overall architecture for ARC.
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Figure 2: Compositional attribute representation
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Within the MDP formulation, at step t the state st = (x, τt−1) consists of the instance x and the86

partial solution τt−1 = (τ1, . . . , τt−1). The agent selects the next node at = τt subject to feasibility,87

and the process starts with τ0 = ∅ and terminates at t = T with reward r(τ ) = −c(τ ).88

We employ an autoregressive policy πθ with an encoder fθ(x) and a decoder gθ(st). The policy89

defines the conditional probability πθ(at|st) = gθ(τt|fθ(x), τt−1), and the probability of generating90

a solution τ is πθ(τ |x) =
∏T

t=1 πθ(at|st). Our goal is to maximize the expected reward J(θ) =91

Ex∼P (·)[Eτ∼πθ(·|x)[r(τ )]]. We employ REINFORCE algorithm, augmented with the POMO [13]92

and a per-variant reward normalization scheme [2].93

4 Methods: Attribute Representation via Compositional learning (ARC)94

Our approach integrates the ARC module into the encoder of a standard encoder-decoder architecture95

[13], as depicted in Figure 1. We first identify two key properties of compositional VRPs that motivate96

our design (Sec. 4.1). We then detail the ARC module, which decomposes attribute representations97

into an Intrinsic Attribute Embedding (IAE) for invariant semantics and a Contextual Interaction98

Embedding (CIE) for combination-specific effects (Sec. 4.2). Finally, we introduce the compositional99

loss designed to learn the IAE by enforcing these properties (Sec. 4.3). Full implementation details100

are deferred to Appendix B.101

4.1 Properties in Attributes for Compositional VRP Variants102

P1: Intrinsic Semantics for Individual Attributes An attribute possesses intrinsic and invariant103

semantics, maintaining the same constraint definition across all attribute combinations. For example,104

the attribute L enforces an identical maximum route length limit in both VRPL and OVRPL, despite105

their distinct underlying problem structures.106

P2: Contextual Cross-Attribute Interactions While attributes have invariant semantics (P1),107

their composition yields contextual interactions beyond individual attribute effects. For instance, the108

influence of the attribute L is significantly attenuated when co-occurring with the open-route attribute109

O. This is because removing the depot return in OVRPL substantially relaxes the length constraint,110

diminishing L’s impact compared to its role in VRPL.111

4.2 Attribute Representation via Compositional Learning (ARC)112

To explicitly encode properties P1 and P2, our encoder decomposes the final representation fθ(x)113

into two components: an Intrinsic Attribute Embedding (IAE), hθ(x), and a Contextual Interaction114

Embedding (CIE), mθ(x), formulated as fθ(x) = hθ(x) +mθ(x). The IAE is trained via a com-115

positional loss (Sec. 4.3) to capture the intrinsic semantics of individual attributes (P1), ensuring a116

consistent representation for an attribute across all problem contexts. The CIE, in contrast, captures117

the contextual interactions (P2). Conditioned on the IAE, it utilizes an attention mechanism over118

contextual features (i.e., attribute indicators and global features) to produce context-specific represen-119

tations. This approach allows our model to reuse the invariant semantics across variants, overcoming120

a key limitation of prior methods that learn mixed representations.121
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4.3 Compositional Learning for Intrinsic Attribute Embeddings122

To disentangle semantic attribute representations, we enable the model to learn analogical concepts.123

This section introduces the concept of analogy relationships between attribute combinations and124

describes our compositional loss designed to encode these relationships in the embedding space.125

Analogy-Making over Attributes An analogy “A is to B as C is to D” (denoted as A:B::C:D)126

captures the relationship between pairs, suggesting that the transformation from A to B parallels that127

from C to D. Let x and y be two base VRP problem where an arbitrary attribute A is not active. We128

denote the extended VRP variants with attribute A activated as [x+A] and [y+A], respectively. The129

intrinsic semantic of A in both [x+A] and [y+A], as highlighted in (P1), can be expressed through130

the analogy: [x+A]:[x]::[y+A]:[y]. For example, if x represents CVRP, y represents OVRP,131

and A is length constraint L, this establishes the analogy VRPL:CVRP::OVRPL:OVRP. This analogical132

property can be expressed in the embedding space as: hθ(x+A)− hθ(x) ≈ hθ(y+A)− hθ(y).133

Learning Compositional Attribute Representation To enforce the aforementioned analogical134

consistency on the IAE (hθ(x)), we employ a contrastive learning objective, InfoNCE loss [19].135

The key insight is that the intrinsic semantic of an attribute A —represented by the attribute vector136

αA := hθ(x+ A)− hθ(x)—should be identifiable and consistent regardless of the base instance x137

or other activated attributes. It enforces this analogical consistency by distinguishing between same138

and different attribute semantics. As illustrated in Fig. 2, we firstly extract these attribute vectors by139

masking the attribute features from the same instance x. For a given attribute A, a transformation140

vector hθ(x
′ + A)− hθ(x

′) derived from a different instance x′ serves as a positive sample, while141

vectors corresponding to different attributes A′ form negative samples. This objective encourages142

the model to learn a context-invariant representation for each attribute’s intrinsic semantics. This143

compositional loss, LCompAttr(θ) (formally defined in Appendix B.3), is added to the reward J(θ):144

J(θ)− λ · LCompAttr(θ).145

5 Experiments146

Baselines We compare against PyVRP [8], a state-of-the-art hybrid genetic search metaheuristic147

based on HGS [27], and recent neural cross-problem VRP solvers: MTPOMO [15], MVMoE [28],148

RouteFinder (RF-TE) [2], and CaDA [14]. Since our method extends RouteFinder with an additional149

ARC module, RouteFinder can be considered an ablation of our method. Comparison with CaDA,150

which claims constraint-awareness, evaluates our embedding decomposition approach.151

Experimental Setup Following [2, 14], we train on graphs with N = 50 or 100 nodes using152

100,000 instances per epoch, with equal proportions across VRP variants. We evaluate on 1,000 test153

instances per variant and follow RouteFinder’s data generation and training protocols. The results of154

all neural approaches are averaged over three independent runs. Most neural baselines share a unified155

codebase1, and implementations of CaDA and our method are available2. Detailed hyperparameters156

are provided in Appendix C.1. We report Gap as the percentage cost increase relative to PyVRP’s157

best solution and Time as the total duration to solve all test instances in a single run.158

5.1 Experimental Scenarios159

In-distribution Models are trained and tested on the identical set of 16 VRP variants, encompassing160

all combinations of four base attributes (B, O, L, TW). This scenario evaluates the ability to capture161

shared attribute semantics and leverage cross-task knowledge from familiar variants.162

Out-of-distribution (1) Zero-shot Generalization. To evaluate performance when some attribute163

combinations are not provided during training, we restrict the training problem types based on the In-164

distribution setting. Models are trained on seven representative variants (CVRP, OVRP, VRPB, VRPL,165

VRPTW, OVRPTW, VRPBL), selected from the limited VRP variants in [28] with VRPBL added to166

maintain equal proportions across different attributes. We then evaluate zero-shot performance on the167

remaining nine variants to test compositional generalization to novel, complex attribute combinations.168

(2) Few-shot Adaptation. Models pre-trained on In-distribution setting are extended with Efficient169

Adapter Layers (EAL) [2] to address the unseen attribute, MB, then fine-tuned on 10,000 VRP170

1https://github.com/ai4co/routefinder
2https://anonymous.4open.science/r/compositional-co-30FE/
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Table 1: In-distribution Performance on 1K test instances. Bold and underline denote best and second-
best, respectively. * marks the reference solution used as baseline for gap calculations.

Solver n = 50 n = 100 Solver n = 50 n = 100

Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time

C
V

R
P

HGS-PyVRP * 10m * 21m

V
R

PT
W

HGS-PyVRP * 10m * 21m
MTPOMO 1.407 ± 0.01 1s 2.049 ± 0.04 7s MTPOMO 2.429 ± 0.01 1s 3.934 ± 0.01 8s
MVMoE 1.226 ± 0.00 2s 1.646 ± 0.02 9s MVMoE 2.337 ± 0.02 2s 3.876 ± 0.01 10s
RF-TE 1.239 ± 0.05 1s 1.559 ± 0.01 11s RF-TE 1.933 ± 0.04 1s 3.192 ± 0.06 10s
CaDA 1.259 ± 0.05 3s 1.513 ± 0.02 15s CaDA 1.927 ± 0.07 3s 3.025 ± 0.04 16s
ARC 1.154 ± 0.04 1s 1.429 ± 0.02 10s ARC 1.772 ± 0.07 1s 2.840 ± 0.04 11s

O
V

R
P

HGS-PyVRP * 10m * 21m

V
R

PL

HGS-PyVRP * 10m * 21m
MTPOMO 3.213 ± 0.02 1s 5.102 ± 0.05 7s MTPOMO 1.718 ± 0.03 1s 2.486 ± 0.04 7s
MVMoE 2.915 ± 0.03 2s 4.608 ± 0.02 9s MVMoE 1.508 ± 0.00 2s 2.065 ± 0.03 9s
RF-TE 2.645 ± 0.07 1s 4.133 ± 0.01 11s RF-TE 1.434 ± 0.07 1s 1.881 ± 0.02 9s
CaDA 2.626 ± 0.08 3s 4.029 ± 0.01 15s CaDA 1.481 ± 0.07 3s 1.848 ± 0.02 15s
ARC 2.497 ± 0.06 1s 3.915 ± 0.02 11s ARC 1.370 ± 0.07 1s 1.753 ± 0.02 11s

V
R

PB

HGS-PyVRP * 10m * 21m

O
V

R
PT

W

HGS-PyVRP * 10m * 21m
MTPOMO 3.612 ± 0.02 1s 4.986 ± 0.06 7s MTPOMO 1.564 ± 0.02 1s 3.023 ± 0.03 8s
MVMoE 3.234 ± 0.04 2s 4.484 ± 0.01 9s MVMoE 1.528 ± 0.03 2s 2.944 ± 0.06 10s
RF-TE 2.984 ± 0.08 1s 3.999 ± 0.02 9s RF-TE 1.285 ± 0.04 1s 2.353 ± 0.07 11s
CaDA 2.973 ± 0.09 3s 3.948 ± 0.02 15s CaDA 1.240 ± 0.04 3s 2.289 ± 0.06 16s
ARC 2.840 ± 0.10 1s 3.833 ± 0.04 11s ARC 1.087 ± 0.04 1s 1.968 ± 0.04 12s

V
R

PB
L

HGS-PyVRP * 10m * 21m

V
R

PB
LT

W

HGS-PyVRP * 10m * 21m
MTPOMO 4.681 ± 0.02 1s 6.304 ± 0.04 7s MTPOMO 2.154 ± 0.01 1s 3.791 ± 0.03 8s
MVMoE 4.283 ± 0.03 2s 5.718 ± 0.02 9s MVMoE 2.102 ± 0.02 2s 3.724 ± 0.03 10s
RF-TE 3.717 ± 0.11 1s 5.020 ± 0.03 10s RF-TE 1.754 ± 0.04 1s 2.950 ± 0.03 11s
CaDA 3.696 ± 0.10 3s 4.953 ± 0.03 15s CaDA 1.741 ± 0.05 4s 2.814 ± 0.05 16s
ARC 3.579 ± 0.13 1s 4.856 ± 0.01 11s ARC 1.599 ± 0.05 1s 2.613 ± 0.04 12s

V
R

PB
T

W

HGS-PyVRP * 10m * 21m

V
R

PL
T

W

HGS-PyVRP * 10m * 21m
MTPOMO 1.922 ± 0.01 1s 3.416 ± 0.03 8s MTPOMO 2.857 ± 0.02 1s 4.429 ± 0.01 8s
MVMoE 1.885 ± 0.03 2s 3.360 ± 0.04 10s MVMoE 2.747 ± 0.04 2s 4.343 ± 0.03 10s
RF-TE 1.534 ± 0.02 1s 2.597 ± 0.04 11s RF-TE 2.280 ± 0.05 1s 3.620 ± 0.06 11s
CaDA 1.527 ± 0.04 3s 2.451 ± 0.03 16s CaDA 2.322 ± 0.08 3s 3.453 ± 0.03 16s
ARC 1.375 ± 0.06 1s 2.281 ± 0.04 11s ARC 2.109 ± 0.06 1s 3.263 ± 0.05 11s

O
V

R
PB

HGS-PyVRP * 10m * 21m

O
V

R
PB

L

HGS-PyVRP * 10m * 21m
MTPOMO 3.000 ± 0.01 1s 5.344 ± 0.03 7s MTPOMO 3.087 ± 0.00 1s 5.434 ± 0.03 7s
MVMoE 2.706 ± 0.02 2s 4.791 ± 0.02 9s MVMoE 2.776 ± 0.04 2s 4.866 ± 0.00 9s
RF-TE 2.445 ± 0.10 1s 4.288 ± 0.06 10s RF-TE 2.463 ± 0.10 1s 4.301 ± 0.06 10s
CaDA 2.396 ± 0.09 3s 4.121 ± 0.03 15s CaDA 2.397 ± 0.09 3s 4.107 ± 0.02 15s
ARC 2.231 ± 0.10 1s 3.935 ± 0.04 11s ARC 2.236 ± 0.09 1s 3.936 ± 0.04 11s

O
V

R
PB

LT
W

HGS-PyVRP * 10m * 21m

O
V

R
PB

T
W

HGS-PyVRP * 10m * 21m
MTPOMO 1.317 ± 0.01 1s 2.649 ± 0.03 8s MTPOMO 1.295 ± 0.01 1s 2.622 ± 0.03 8s
MVMoE 1.289 ± 0.03 2s 2.615 ± 0.06 11s MVMoE 1.289 ± 0.04 2s 2.604 ± 0.07 11s
RF-TE 1.073 ± 0.02 1s 1.998 ± 0.06 11s RF-TE 1.059 ± 0.03 1s 1.997 ± 0.06 11s
CaDA 0.994 ± 0.03 4s 1.825 ± 0.05 16s CaDA 0.987 ± 0.03 4s 1.830 ± 0.05 16s
ARC 0.905 ± 0.05 1s 1.641 ± 0.03 12s ARC 0.902 ± 0.05 1s 1.639 ± 0.03 12s

O
V

R
PL

HGS-PyVRP * 10m * 21m

O
V

R
PL

T
W

HGS-PyVRP * 10m * 21m
MTPOMO 3.233 ± 0.04 1s 5.154 ± 0.06 7s MTPOMO 1.574 ± 0.01 1s 3.032 ± 0.03 8s
MVMoE 2.966 ± 0.02 2s 4.657 ± 0.02 9s MVMoE 1.549 ± 0.03 2s 2.963 ± 0.05 10s
RF-TE 2.636 ± 0.06 1s 4.129 ± 0.02 10s RF-TE 1.288 ± 0.04 1s 2.356 ± 0.07 11s
CaDA 2.635 ± 0.09 3s 4.029 ± 0.02 15s CaDA 1.249 ± 0.05 3s 2.290 ± 0.06 16s
ARC 2.510 ± 0.06 1s 3.916 ± 0.02 11s ARC 1.084 ± 0.04 1s 1.953 ± 0.04 12s

instances with the MB attribute over 10 epochs. We compare against EAL-compatible baselines171

RF-TE and CaDA to assess few-shot transfer to this new constraint. (3) Real-world Benchmark. To172

validate generalization of our synthetic-trained model to real-world instances with different scales and173

distributions, we evaluated on 115 instances from CVRPLib3 datasets featuring node sizes ranging174

from 16 to 200 and diverse distribution characteristics differing from the training data as in [14].175

5.2 Results176

In-distribution As shown in Table 1, ARC consistently outperforms all neural baselines across all 16177

VRP variants, achieving results of 1.828% and 2.861% for the instance sizes 50 and 100, respectively.178

This superior performance demonstrates that ARC structurally encodes VRP characteristics at the179

attribute level, effectively capturing shared semantic information to interpret complex VRP variants.180

These experimental results provide strong empirical evidence that our proposed ARC effectively181

addresses the limitations of existing SOTA baselines such as MVMoE, MTPOMO, RF-TE, and182

CaDA, which do not utilize explicit compositional learning like ours.183

Zero-shot Generalization Table 2 shows the average performance across multiple tasks in Zero-184

shot settings, with complete results provided in the appendix C.2. ARC achieves superior average185

performance, with MVMoE becoming the second-best algorithm compared to in-distribution results186

where CaDA was second-best. This shift demonstrates that compositional learning approaches187

3http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
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Table 2: Performance on 1K test Zero-shot in-
stances. (Bold: best, Underline: second-best)

Solver n = 50 n = 100
A

ve
ra

ge
MTPOMO 5.160 ± 0.69 7.630 ± 1.21
MVMoE 4.613 ± 0.59 7.524 ± 1.06
RF-TE 5.065 ± 0.67 7.843 ± 0.77
CaDA 6.740 ± 1.20 8.044 ± 1.39
ARC 4.078 ± 0.42 6.422 ± 0.74

Table 3: Performance on CVRPLib test instances.
Bold denotes best.

Group MTPOMO MVMoE RF-TE CaDA ARC

A 3.23% 3.07% 2.82% 3.25% 2.50%
B 3.80% 3.89% 2.58% 2.94% 2.42%
E 8.12% 7.38% 2.93% 3.81% 2.82%
F 10.52% 12.16% 12.95% 11.96% 8.93%
M 5.61% 5.31% 5.08% 5.54% 5.55%
P 7.87% 6.76% 4.57% 5.15% 3.22%
X 5.94% 5.23% 4.48% 4.57% 4.37%

Average 6.44% 6.26% 5.06% 5.32% 4.26%

CaDA ARC

CVRP
VRPB

VRPL
VRPBL

VRPTW
VRPBTW

VRPLTW
VRPBLTW

OVRP
OVRPB

OVRPL
OVRPBL

OVRPTW
OVRPBTW

OVRPLTW
OVRPBLTW

Figure 3: t-SNE of emb. across 16 VRP vari-
ants (N = 50): CaDA (left) vs. ARC (right).

IAE CIE

CVRP
VRPB

VRPL
VRPBL

VRPTW
VRPBTW

VRPLTW
VRPBLTW

OVRP
OVRPB

OVRPL
OVRPBL

OVRPTW
OVRPBTW

OVRPLTW
OVRPBLTW

Figure 4: t-SNE of ARC emb. across 16 VRP
variants (N = 50): IAE (left) vs. CIE (right)

(MVMoE and ARC) are more effective for generalization to unseen combinations, with ARC188

showing consistently strong performance across diverse tasks without large variance.189

Few-shot Adaptation Table 4 shows that our model consistently attains superior performance190

across all tasks with newly added attributes MB, significantly outperforming RF-TE and CaDA. Our191

attribute embeddings inherently preserve compatibility with unseen attribute combinations, enabling192

efficient reuse of learned representations for rapid adaptation to novel attributes.193

Real-World Benchmark We compared the test performance of In-distribution neural solvers194

trained on N = 100. As shown in Table 3, our method achieved the best performance across all195

sets except Group M. This demonstrates that learning attribute-specific characteristics helps achieve196

superior generalization to instances with different distributional properties than the training data.197

Visualizing Embeds To investigate the encoder’s representation, we apply t-SNE to visualize198

the embeddings fθ(x) of VRP instances across problem variants. Figure 3 shows ARC forms well-199

separated clusters corresponding to respective VRP variants, while CADA shows intermixed clusters200

with blurred attribute boundaries. Figure 4 confirms our decomposition: IAE clusters by attribute type201

while CIE shows mixed patterns, validating the separation of intrinsic and contextual components.202

Table 4: Few-shot Adaptation Performance on 1K test instances (N = 50). Bold denotes best.
Model OVRPMB OVRPMBL OVRPMBLTW OVRPMBTW VRPMB VRPMBL VRPMBLTW VRPMBTW

RF-TE 4.453 ± 0.13 4.511 ± 0.10 1.498 ± 0.02 1.486 ± 0.02 4.432 ± 0.13 3.456 ± 0.01 2.267 ± 0.02 1.945 ± 0.02
CaDA 6.440 ± 1.00 6.407 ± 0.99 1.406 ± 0.02 1.391 ± 0.02 4.160 ± 0.48 4.380 ± 0.51 2.166 ± 0.01 1.853 ± 0.01
ARC 1.475 ± 0.06 1.506 ± 0.06 1.277 ± 0.04 1.285 ± 0.05 1.677 ± 0.05 1.925 ± 0.08 2.062 ± 0.03 1.749 ± 0.06

6 Conclusion203

We introduced ARC, a compositional cross-problem learning framework for VRPs that disentangles204

attribute representations by decomposing them into intrinsic and contextual components. By enforcing205

analogical relationships in embedding spaces, ARC enables effective knowledge sharing across206

problem variants and achieves superior zero-shot generalization to unseen combinations. Extensive207

experiments demonstrate consistent improvements over existing baselines across in-distribution,208

zero-shot generalization, and few-shot adaptation, with validation on real-world benchmarks. This209

work establishes analogical embeddings as an effective approach for cross-problem learning in NCO.210

6



References211

[1] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial212

optimization: a methodological tour d’horizon. European Journal of Operational Research,213

290(2):405–421, 2021.214

[2] Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan,215

Kevin Tierney, and Jinkyoo Park. Routefinder: Towards foundation models for vehicle routing216

problems. In Proceedings of the ICML Workshop on Foundation Models in the Wild, 2024.217

[3] Sachin Chanchani and Ruihong Huang. Composition-contrastive learning for sentence em-218

beddings. In Proceedings of the 61st Annual Meeting of the Association for Computational219

Linguistics (Volume 1: Long Papers), pages 15836–15848. Association for Computational220

Linguistics, 2023.221

[4] Coline Devin, Daniel Geng, Pieter Abbeel, Trevor Darrell, and Sergey Levine. Plan arithmetic:222

compositional plan vectors for multi-task control. In Proceedings of the 33rd International223

Conference on Neural Information Processing Systems, pages 14989–15000, 2019.224

[5] Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. Goal: A generalist combinatorial opti-225

mization agent learner. In The Thirteenth International Conference on Learning Representations,226

2024.227

[6] Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco:228

Bisimulation quotienting for efficient neural combinatorial optimization. Advances in Neural229

Information Processing Systems, 36:77416–77429, 2023.230

[7] Michael R Garey and David S Johnson. Computers and Intractability: A Guide to the Theory of231

NP-Completeness. W. H. Freeman, 1979.232

[8] Maaike Hoogeboom, Francesco Corman, Wouter Kool, Yves Pochet, and Daniele Vigo. Pyvrp:233

A high-performance vrp solver package. Transportation Science, 2023.234

[9] Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning235

and compositional question answering. In Proceedings of the IEEE Conference on Computer236

Vision and Pattern Recognition, 2019.237

[10] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick,238

and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary239

visual reasoning. In Proceedings of the IEEE Conference on Computer Vision and Pattern240

Recognition, 2017.241

[11] Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural242

combinatorial optimization. Advances in Neural Information Processing Systems, 35:1936–243

1949, 2022.244

[12] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In245

Proceedings of the 6th International Conference on Learning Representations, 2018.246

[13] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai247

Min. Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in248

Neural Information Processing Systems, 33:21188–21198, 2020.249

[14] Han Li, Fei Liu, Zhi Zheng, Yu Zhang, and Zhenkun Wang. Cada: Cross-problem routing solver250

with constraint-aware dual-attention. arXiv preprint arXiv:2412.00346, 2024.251

[15] Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Tong Xialiang, and Mingxuan Yuan. Multi-task252

learning for routing problem with cross-problem zero-shot generalization. In Proceedings of the253

30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1898–1908,254

2024.255

[16] Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization256

with heavy decoder: Toward large scale generalization. Advances in Neural Information257

Processing Systems, 36:8845–8864, 2023.258

7



[17] Geraud Nangue Tasse, Steven James, and Benjamin Rosman. A boolean task algebra for259

reinforcement learning. Advances in Neural Information Processing Systems, 33:9497–9507,260

2020.261

[18] Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task generaliza-262

tion with multi-task deep reinforcement learning. In Proceedings of the 34th International263

Conference on Machine Learning, pages 2661–2670, 2017.264

[19] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive265

predictive coding. arXiv preprint arXiv:1807.03748, 2018.266

[20] Wenzheng Pan, Hao Xiong, Jiale Ma, Wentao Zhao, Yang Li, and Junchi Yan. Unico: On267

unified combinatorial optimization via problem reduction to matrix-encoded general tsp. In The268

Thirteenth International Conference on Learning Representations, 2025.269

[21] Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for270

combinatorial optimization problems. Advances in Neural Information Processing Systems,271

35:25531–25546, 2022.272

[22] Marius M Solomon. Algorithms for the vehicle routing and scheduling problems with time273

window constraints. Operations Research, 35(2):254–265, 1987.274

[23] Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial275

optimization. Advances in neural information processing systems, 36:3706–3731, 2023.276

[24] Christos D Tarantilis, George Ioannou, Chris T Kiranoudis, and Gregory P Prastacos. A277

threshold accepting approach to the open vehicle routing problem. RAIRO-Operations Research,278

38(4):345–360, 2004.279

[25] Paolo Toth and Daniele Vigo. Vehicle Routing Problems. SIAM, 2002.280

[26] Benjamin Van Niekerk, Steven James, Adam Earle, and Benjamin Rosman. Composing value281

functions in reinforcement learning. In Proceedings of the 36th International Conference on282

Machine Learning, pages 6401–6409, 2019.283

[27] Thibaut Vidal, Teodor G Crainic, Michel Gendreau, and Christian Prins. A unified hybrid284

genetic search for multi-depot vehicle routing problems. Computers & Operations Research,285

39(9):2289–2301, 2012.286

[28] Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Xu Chi.287

Mvmoe: Multi-task vehicle routing solver with mixture-of-experts. In Proceedings of the 41st288

International Conference on Machine Learning, pages 61804–61824, 2024.289

8



A Attributes290

In this section, we describe the details of attributes we utilized. We adopt the classical route-set291

notation, which is more convenient for presenting mathematical properties and constraints of VRP292

variants. In contrast, the main text described solutions using the sequence notation τ = (τ1, . . . , τT ),293

where depot visits partition the sequence into K vehicle routes, a representation well suited for294

reinforcement learning as it aligns with the step-by-step construction of solutions. Here, however,295

a solution is represented as τ = {τ1, τ2, . . . , τK}, consisting of K routes, where each route τk =296

(τk0 , τ
k
1 , . . . , τ

k
nk
) starts and ends at the depot (τk0 = τknk

= 0). Every customer node appears in297

exactly one route, and the total cost is c(τ ) =
∑K

k=1

∑nk−1
i=0 dτk

i ,τk
i+1

.298

Based on this notation, we now detail the attributes {Ai}i∈V that define different VRP variants.299

Linehaul and Capacity (Q) In CVRP, customer nodes (i > 0) have a non-negative demand qi,300

representing linehaul services (e.g., deliveries), with Ai = {qi}. Vehicles have uniform capacity301

Q > 0. The capacity attribute requires that for each route τk, the sum of customer demands302 ∑
j∈τk,j ̸=0 qj must not exceed Q.303

Open (O) Vehicles are not required to return to the depot after serving the last customer, i.e.,304

τknk
̸= 0.305

Backhaul (B) and Mixed Backhaul (MB) Unlike the CVRP where only linehaul customers306

(qi ≥ 0) are present, Backhaul or Mixed Backhaul variants also include backhaul customers (pickup,307

qi < 0), requiring transportation back to the depot. Each route τk must satisfy one of two mutually308

exclusive attributes: Backhaul (B), requiring all linehaul customers be visited before backhaul309

customers, or Mixed Backhaul (MB), allowing any order. This attribute, µ ∈ {0, 1} indicating B or310

MB, is a global feature included in A0 = {µ}.311

Time Window (TW) Each customer node i ̸= 0 must be visited within a time interval [ei, li] ∈312

[0, T ]2, with a service time si ∈ [0, T ]. Customer features are thus defined as Ai = {ei, li, si}.313

Vehicles arriving before the earliest available time ei must wait. Service takes si time units, after314

which the vehicle proceeds. The depot has a time window [0, T ], where T is the time horizon. If TW315

is not activated, ei = 0, li = ∞, si = 0 are set for all customers i.316

Duration Limit (L) Each route’s total cost c(τk) must not exceed a limit L, i.e., c(τk) ≤ L. If317

not activated, L = ∞. The global features A0 include L, i.e., A0 = {L}.318

Figure 5 provides a visual explanation of the attributes. The complete set of VRP variants that can be319

constructed using these attributes is shown in Table 5.

-0.2

0.2

-0.3

0.4
0.3

0.2

-0.3
-0.2

0.4
0.3

0.3

0.4

0.25

0.3

0.3

0.4

Backhaul (B) Mixed Backhaul (MB) Open (O)Duration Limit (L) Time Window (TW)

Depot BackhaulLinehaul Customer Time window Route

Figure 5: llustration of VRP attributes whose combinations define respective VRP variants.
320

B Architecture Details321

We employed a transformer-based attribute composition model, which represents a general architec-322

ture for cross-problem VRP variants [2, 14, 15]. This approach extends single-problem models to323

multi-task settings by incorporating various attribute information into the structure of single models324

[11, 12, 13].325
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Table 5: VRP Variants and Their Attribute Combinations
VRP Variant Capacity Open Route Backhaul Mixed Duration Limit Time Windows Multi-depot

(Q) (O) (B) (M) (L) (TW) (MD)
CVRP ✓
OVRP ✓ ✓
VRPB ✓ ✓
VRPL ✓ ✓
VRPTW ✓ ✓
OVRPTW ✓ ✓ ✓
OVRPB ✓ ✓ ✓
OVRPL ✓ ✓ ✓
VRPBL ✓ ✓ ✓
VRPBTW ✓ ✓ ✓
VRPLTW ✓ ✓ ✓
OVRPBL ✓ ✓ ✓ ✓
OVRPBTW ✓ ✓ ✓ ✓
OVRPLTW ✓ ✓ ✓ ✓
VRPBLTW ✓ ✓ ✓ ✓
OVRPBLTW ✓ ✓ ✓ ✓ ✓
VRPMB ✓ ✓ ✓
OVRPMB ✓ ✓ ✓ ✓
VRPMBL ✓ ✓ ✓ ✓
VRPMBTW ✓ ✓ ✓ ✓
OVRPMBL ✓ ✓ ✓ ✓ ✓
OVRPMBTW ✓ ✓ ✓ ✓ ✓
VRPMBLTW ✓ ✓ ✓ ✓ ✓
OVRPMBLTW ✓ ✓ ✓ ✓ ✓ ✓
MDCVRP ✓ ✓
MDOVRP ✓ ✓ ✓
MDVRPB ✓ ✓ ✓
MDVRPL ✓ ✓ ✓
MDVRPTW ✓ ✓ ✓
MDOVRPTW ✓ ✓ ✓ ✓
MDOVRPB ✓ ✓ ✓ ✓
MDOVRPL ✓ ✓ ✓ ✓
MDVRPBL ✓ ✓ ✓ ✓
MDVRPBTW ✓ ✓ ✓ ✓
MDVRPLTW ✓ ✓ ✓ ✓
MDOVRPBL ✓ ✓ ✓ ✓ ✓
MDOVRPBTW ✓ ✓ ✓ ✓ ✓
MDOVRPLTW ✓ ✓ ✓ ✓ ✓
MDVRPBLTW ✓ ✓ ✓ ✓ ✓
MDOVRPBLTW ✓ ✓ ✓ ✓ ✓ ✓
MDVRPMB ✓ ✓ ✓ ✓
MDOVRPMB ✓ ✓ ✓ ✓ ✓
MDVRPMBL ✓ ✓ ✓ ✓ ✓
MDVRPMBTW ✓ ✓ ✓ ✓ ✓
MDOVRPMBL ✓ ✓ ✓ ✓ ✓ ✓
MDOVRPMBTW ✓ ✓ ✓ ✓ ✓ ✓
MDVRPMBLTW ✓ ✓ ✓ ✓ ✓ ✓
MDOVRPMBLTW ✓ ✓ ✓ ✓ ✓ ✓ ✓

B.1 Encoder326

The encoder fθ comprises two principal structures: a Node Embedder hθ and an ARC module.327

The encoder separately processes two distinct categories of information: global and node-specific328

attributes. Global attributes including open o ∈ {0, 1}, duration limit dl ∈ {0, Lmax}, and mixed329

backhaul µ ∈ {0, 1}, (employed in EAL) represent problem-level constraints, whereas node-level330

constraints such as linehaul demand ql, backhaul demand qb, time window (start time e, end time331

s, and service time l) are associated with individual nodes. The global attribute information is332

incorporated into the depot representation, while node attribute information ϕn = {ϕn
0 , · · · , ϕn

Hn−1}333

is integrated into each customer node i, yielding the initial node embedding e
(0)
i as follows:334

e
(0)
i =

{
Wg[c0, o, dl, µ, l0]

T if i = 0,

Wn[ci, q
l
i, q

b
i , ei, li, si]

T otherwise,
(1)
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where W g ∈ REe×(Hg+2) and Wn ∈ REe×(Hn+2) are learnable linear layers, Ee is the embedding335

dimension, Hg and Hn are the numbers of global and node-level attributes respectively, and l0 denotes336

the time window end value of the depot.337

B.1.1 Node Embedder338

The node embedding are passed through a NodeEmbedder hθ which consists of NE transformer-based339

NodeEmbBlocks with the following structure:340

e(NE) = hθ(e
(0)) (2)

= (NodeEmbBlockNE ◦ NodeEmbBlockNE−1 ◦ · · · ◦ NodeEmbBlock1)(e
(0)). (3)

Each NodeEmbBlock consists of two sub-layers: a Multi-Head Attention (MHA) layer and a Feed341

Forward ParallelGatedMLP layer. The MHA layer captures dependencies between different positions342

in the input sequence and the ParallelGatedMLP layer applies non-linear transformations to the343

features.344

ê(ℓ−1) = e(ℓ−1) + MHA(RMSNorm(e(ℓ−1)),RMSNorm(e(ℓ−1))), (4)

e(ℓ) = ê(ℓ−1) + ParallelGatedMLP(RMSNorm(ê(ℓ−1))), (5)

where e(ℓ−1) denotes the input to the ℓ-th NodeEmbBlock and MHA(a, b) denotes Multi-Head345

Attention of which a serves as the query, while b provides the keys and values, and RMSNorm is a346

RMS normalization.347

The ParallelGatedMLP function is defined as:348

ParallelGatedMLP(x) = Wp3
(SiLU(Wp1

x)⊙ (Wp2
x)), (6)

where ⊙ denotes element-wise multiplication, SiLU is the Sigmoid Linear Unit (Swish) activation349

function, and Wp1
, Wp2

, Wp3
are learnable linear layers. Consistent with prior work [2, 14], we use350

NE = 6 layers.351

B.1.2 ARC Module352

The ARC module utilizes the final output of Node Embedder (i.e., IAE), attribute indicator, and353

global attribute features. Given an input x with attribute indicator Iattr = (IB, IMB, IO, ITW, IL), where354

IA is 1 if attribute A is active and 0 otherwise, the initial CIE is defined as:355

m(0) = Wm2
LayerNorm(Wm1

· Concat[Iattr, o, dl, µ]T ), (7)

where Wm1
, Wm2

are learnable linear layers, Concat is a feature-wise concatenation and LayerNorm356

is a layer normalization.357

The layers of ARC module, composed of NA MixerBlocks, takes IAE e and CIE m as inputs358

and employs a structure similar to the Global Layer [14]. The ℓ-th layer MixerBlock takes global359

embedding m(ℓ−1) and IAE e(ℓ−1)
m as inputs (i.e., e(0)m = e(NE)), The MixerBlock is formulated as360

follows:361

m̂(ℓ−1) = GlobalModule(m(ℓ−1), e(ℓ−1)
m ), (8)

ê(ℓ−1)
m = GlobalModule(e(ℓ−1)

m ,m(ℓ−1)), (9)

m(ℓ) = m̂(ℓ−1) + (ê(ℓ−1)
m Wg1), (10)

e(ℓ)m = ê(ℓ−1)
m + (m̂(ℓ−1)Wg2), (11)
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with Wg1 and Wg2 are learnable linear layers. The GlobalModule(a, b), which takes primary input a362

and auxiliary input b to produce output â, is computed as follows:363

ã = RMSNorm (a+ MHA (a,Concat[a, b])) , (12)
â = RMSNorm (ã+ ParallelGatedMLP (ã)) . (13)

The final output embedding of our encoder, denoted as fθ(x), is computed by combining the IAE364

hθ(x) and the CIE mθ(x). Specifically, we sum these two outputs:365

fθ(x) = hθ(x) +mθ(x). (14)

B.2 Decoder366

The decoder outputs the action probability for each node at each t-th step based on the encoded node367

embeddings. We compute the context embedding gc using the embedding of the previously selected368

node τt−1 and the attribute feature values at t-th step as follows:369

gc = Wd · Concat[hτt−1
, clt, c

b
t , zt, lt, ot]

T , (15)

where clt, c
b
t are remaining capacity of vehicle for linehaul and backhaul, respectively and zt, lt, ot are370

current time, the remaining length of partial solution, and the indicator of the open route, respectively.371

We calculate the probability of selecting each node using the context embedding as a query and the372

previously encoded values h as key and value. To generate feasible solutions, we mask nodes that373

cannot be visited at each decoding step based on activated constraints. The probability values ui for374

actions are calculated as follows:375

qc = MHA(gc,h0:N ), (16)

ui =

{
ξ · tanh

(
qc(hi)

⊤
√

Eq

)
if i ∈ It,

−∞ otherwise,
(17)

where It is a feasible node set at step t, ξ is a clipping hyperparameter, and Eq is the dimension of376

query gc. We compute action probability by applying Softmax to probability value ui.377

B.3 Learning Compositional Attribute Representation378

Given a function A(·) that represents the set of activated attributes in a problem instance x from a379

batch containing instances of various problem types, we can extract an attribute vector α for any380

non-empty subset A ⊆ A(x) (where A(x) ̸= ∅) as follows:381

αA = hθ(x)− hθ(mask(x, A)), (18)

where hθ(·) is the Node Embedder and mask(x, A) is a masking function that removes the feature382

of attribute A from instance x. We construct an attribute pool P by collecting all attribute vectors383

from all instances in the batch. For any attribute vector α drawn from the pool, we classify attribute384

vectors corresponding to the same attribute types as the positive class and those corresponding to385

different attribute types as the negative class. We sample one attribute vector from the positive class386

as the positive sample α+. If the size of the negative class for α is B, we compute the compositional387

attribute loss as follows:388

LCompAttr(θ) = −Eα∼P

[
log

exp(f(α, α+)/β)

exp(f(α, α+)/β) +
∑B

j=1 exp(f(α, α
−
j )/β)

]
, (19)

where β is a temperature. The pseudocode for this process is presented in Algorithm 1.389
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Algorithm 1 Compute Compositional Loss.

Require: Batch {x1,x2, . . . ,xB}, temperature β, attribute function A(·)
1: P ← {} ▷ Initialize attribute pool
2: for i = 1 to B do
3: for A ∈ A(xi) do
4: α← hθ(xi)− hθ(mask(xi, A)) ▷ Extract attribute vector
5: P ← P ∪ {(α, A)}
6: end for
7: end for
8: L ← 0 ▷ Initialize Compositional Loss
9: for (α, A) ∈ P do

10: α+ ∼ {α′ | (α′, A′) ∈ P, A′ = A} \ {α} ▷ Sample a positive attribute vector
11: N ← {α′ | (α′, A′) ∈ P, A′ ̸= A} ▷ Get negative class
12: L ← L− log exp(f(α,α+)/β)

exp(f(α,α+)/β)+
∑

α−∈N exp(f(α,α−)/β)

13: end for
14: LCompAttr ← L/|P| ▷ Averaged loss
15: return LCompAttr
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C Experiments390

C.1 Hyperparameters391

To assess the performance differences based on hyperparameters in our proposed ARC, we compared392

the average gap across 1000 samples for all problems in the validation set, using a baseline model with393

node size N = 50, the number of ARC module layers NA = 1, loss weight λ = 1.0, temperature394

β = 0.1. The results are presented in Figure 6 through Figure 11. Figures 6 and 9 demonstrate395

performance differences based on the number of ARC module layers. Among the hyperparameters,396

the change in layer count NA had the most significant impact on the gap. For the In-distribution397

setting, stable and superior performance was observed when the number of layers was 3 or higher,398

whereas for the Zero-shot setting, performance significantly deteriorated with 4 or more layers. This399

indicates that while increasing model capacity does not reduce performance when all information is400

provided during training, our loss function can act as a regularizer for unseen combinations up to401

NA = 3, but cannot prevent performance degradation with further increases in model capacity.402

In our contrastive loss, β represents sensitivity to individual logit values, with larger values reducing403

this sensitivity. As shown in Figures 7 and 10, the standard error tends to decrease as β increases,404

with a substantial reduction observed at values above 0.14.405

However, excessively large β values may lead to performance trade-offs by treating all logit values406

similarly. In our experiments, we observed that the gap decreases up to β = 0.12 for the In-distribution407

setting and β = 0.14 for the Zero-shot setting, before increasing again. Therefore, appropriate β408

values should be selected based on the specific environment.409

Regarding the loss scaling parameter λ, Figures 8 and 11 show similar results for the In-distribution410

setting across different values, while for Zero-shot setting, comparable average values were observed411

except when selecting the very small value of 0.5. We used NA = 3, λ = 0.12, λ = 0.8, for all412

experiments, based on the the In-distribution results. Additional performance improvements may be413

possible through appropriate hyperparameter settings for specific experiments.414
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C.2 Performance on Training Problems415

Table 6 shows the total performance in Zero-shot settings, ARC achieves superior average perfor-416

mance, notably 4.078% for N = 50 and 6.422% for N = 100. It outperforms neural baselines by417

an even larger margin than in In-distribution. This robustness is particularly evident in challenging418

VRP variants like OVRPB and OVRPBL. For N = 50, ARC significantly surpasses these baselines,419

achieving 4.731% on OVRPB and 6.090% on OVRPBL, while the baseline performance ranges420

from 7.121% to 8.351% for OVRPB and from 7.686% to 10.984% for OVRPBL. This zero-shot421

generalization stems from ARC’s explicit learning of attribute compositions, which capture the422

semantic structure necessary for reasoning about unseen combinations. Unlike other baselines that423

only implicitly model such structures, our method directly encodes attribute relationships. This424

demonstrates the strong generalization potential derived from a precise semantic understanding of425

individual attributes when encountering novel VRP variants.426

Table 6: Performance on 1K test Zero-shot instances. Bold and underline denote best and second-best,
respectively. Parentheses indicate gap changes from seen performance.

Solver n = 50 n = 100 Solver n = 50 n = 100

V
R

PB
T

W

MTPOMO 4.276 ± 0.07 (+2.354) 6.851 ± 0.10 (+3.435)

V
R

PL
T

W

MTPOMO 3.172 ± 0.02 (+0.315) 4.941 ± 0.04 (+0.512)
MVMoE 3.917 ± 0.08 (+2.032) 6.499 ± 0.00 (+3.138) MVMoE 3.352 ± 0.13 (+0.604) 5.168 ± 0.13 (+0.825)
RF-TE 4.035 ± 0.05 (+2.501) 6.240 ± 0.11 (+3.644) RF-TE 3.765 ± 0.54 (+1.484) 6.230 ± 0.32 (+2.610)
CaDA 6.067 ± 1.94 (+4.540) 6.659 ± 0.19 (+4.208) CaDA 2.840 ± 0.10 (+0.519) 4.488 ± 0.15 (+1.034)
ARC 4.214 ± 0.11 (+2.839) 6.697 ± 0.14 (+4.416) ARC 2.710 ± 0.07 (+0.601) 4.220 ± 0.03 (+0.957)

O
V

R
PB

MTPOMO 7.692 ± 0.26 (+4.691) 13.735 ± 0.31 (+8.391)
O

V
R

PB
L

MTPOMO 9.027 ± 0.53 (+5.940) 13.730 ± 0.29 (+8.296)
MVMoE 7.214 ± 0.50 (+4.508) 12.404 ± 0.08 (+7.613) MVMoE 7.686 ± 0.46 (+4.909) 13.082 ± 0.22 (+8.216)
RF-TE 7.121 ± 0.76 (+4.676) 10.500 ± 0.32 (+6.212) RF-TE 8.564 ± 1.33 (+6.102) 11.991 ± 1.09 (+7.690)
CaDA 8.351 ± 1.45 (+5.955) 10.224 ± 0.61 (+6.103) CaDA 10.984 ± 2.08 (+8.587) 14.435 ± 2.45 (+10.328)
ARC 4.731 ± 0.28 (+2.500) 8.877 ± 0.35 (+4.942) ARC 6.090 ± 0.19 (+3.854) 9.694 ± 0.54 (+5.758)

O
V

R
PB

LT
W MTPOMO 6.377 ± 1.19 (+5.061) 6.402 ± 0.50 (+3.753)

O
V

R
PB

T
W MTPOMO 3.507 ± 0.07 (+2.212) 5.960 ± 0.07 (+3.339)

MVMoE 5.031 ± 0.76 (+3.742) 7.624 ± 0.71 (+5.009) MVMoE 3.180 ± 0.08 (+1.891) 5.685 ± 0.12 (+3.081)
RF-TE 3.904 ± 0.59 (+2.831) 7.706 ± 0.23 (+5.708) RF-TE 3.497 ± 0.07 (+2.438) 5.730 ± 0.17 (+3.733)
CaDA 5.895 ± 1.00 (+4.901) 5.949 ± 0.13 (+4.125) CaDA 3.591 ± 0.10 (+2.605) 5.673 ± 0.10 (+3.843)
ARC 3.890 ± 0.09 (+2.985) 6.587 ± 0.11 (+4.946) ARC 3.749 ± 0.10 (+2.847) 6.334 ± 0.11 (+4.695)

O
V

R
PL

MTPOMO 3.764 ± 0.01 (+0.531) 5.564 ± 0.07 (+0.410)

O
V

R
PL

T
W

MTPOMO 3.756 ± 0.90 (+2.182) 3.905 ± 0.10 (+0.873)
MVMoE 3.472 ± 0.02 (+0.507) 5.105 ± 0.00 (+0.448) MVMoE 2.823 ± 0.49 (+1.273) 4.403 ± 0.50 (+1.440)
RF-TE 7.142 ± 3.17 (+4.506) 8.065 ± 1.94 (+3.936) RF-TE 2.791 ± 0.68 (+1.503) 5.152 ± 0.26 (+2.796)
CaDA 13.622 ± 4.86 (+10.987) 14.696 ± 5.24 (+10.667) CaDA 4.962 ± 1.32 (+3.714) 3.072 ± 0.18 (+0.782)
ARC 4.961 ± 0.40 (+2.451) 4.997 ± 0.19 (+1.081) ARC 1.762 ± 0.21 (+0.678) 2.656 ± 0.16 (+0.703)

V
R

PB
LT

W

MTPOMO 4.867 ± 0.08 (+2.713) 7.587 ± 0.18 (+3.796)

A
ve

ra
ge

MTPOMO 5.160 ± 0.69 7.630 ± 1.21
MVMoE 4.846 ± 0.41 (+2.744) 7.749 ± 0.25 (+4.024) MVMoE 4.613 ± 0.59 7.524 ± 1.06
RF-TE 4.767 ± 0.49 (+3.013) 8.969 ± 0.58 (+6.019) RF-TE 5.065 ± 0.67 7.843 ± 0.77
CaDA 4.348 ± 0.10 (+2.607) 7.198 ± 0.08 (+4.385) CaDA 6.740 ± 1.20 8.044 ± 1.39
ARC 4.591 ± 0.07 (+2.992) 7.736 ± 0.06 (+5.123) ARC 4.078 ± 0.42 6.422 ± 0.74

Table 7 shows the performance of models trained with the Zero-shot setting on the problem variants427

that were included in training: CVRP, OVRP, VRPL, VRPB, VRPTW, OVRPTW, and VRPBL.428

Similar to Table 1, ARC achieved the best performance, followed by CaDA and RF-TE. Interestingly,429

consistent patterns of performance improvement or deterioration compared to the In-distribution430

setting were observed across problem types, regardless of the baseline model. For VRPTW, OVRP,431

and OVRPTW, we can observe a general decline in neural solver performance compared to Table 1.432

This performance decline, despite the increased number of samples per problem type, suggests that433

learning from multiple problem combinations simultaneously provides greater benefits than simply434

increasing the sample count for individual problem types. This suggests the effectiveness of the435

cross-problem approach that utilizes a unified model for learning across problem variants. Analysis436

of problems where our methodology showed significant improvement compared to other baselines is437

presented in Appendix D.1.438

C.3 Real-World Dataset439

To evaluate the scalability of our methodology in real-world settings, we present instance-level440

performance on the X group from CVRPLib. Table 8 shows the evaluation results for instances with441

node sizes below 251. Similar to Table 3, ARC demonstrated the best performance, followed by442

RF-TE and CaDA in order of performance. Additionally, results for instances with node sizes above443

500 are presented in Table 9. For these larger instances, RF-TE achieved the best performance with444

15



Table 7: Performance on 1K seen problem test instances of trained with the Zero-shot setting. Bold
and underline denote best and second-best, respectively. Parentheses indicate gap changes from seen
performance.

Solver n = 50 n = 100 Solver n = 50 n = 100

C
V

R
P

MTPOMO 1.197 ± 0.01 (-0.210) 1.643 ± 0.03 (-0.406)

V
R

PT
W

MTPOMO 2.529 ± 0.03 (+0.100) 4.198 ± 0.02 (+0.264)
MVMoE 1.071 ± 0.01 (-0.155) 1.388 ± 0.01 (-0.258) MVMoE 2.494 ± 0.05 (+0.156) 4.156 ± 0.03 (+0.281)
RF-TE 1.129 ± 0.06 (-0.110) 1.360 ± 0.05 (-0.200) RF-TE 2.094 ± 0.07 (+0.161) 3.487 ± 0.07 (+0.295)
CaDA 1.156 ± 0.02 (-0.103) 1.306 ± 0.01 (-0.208) CaDA 2.157 ± 0.09 (+0.230) 3.254 ± 0.09 (+0.229)
ARC 1.034 ± 0.04 (-0.120) 1.225 ± 0.02 (-0.204) ARC 1.864 ± 0.05 (+0.092) 3.030 ± 0.06 (+0.190)

O
V

R
P

MTPOMO 3.529 ± 0.04 (+0.316) 5.336 ± 0.07 (+0.234)

V
R

PL

MTPOMO 1.486 ± 0.01 (-0.232) 2.076 ± 0.02 (-0.411)
MVMoE 3.204 ± 0.00 (+0.289) 4.883 ± 0.01 (+0.274) MVMoE 1.354 ± 0.02 (-0.154) 1.806 ± 0.02 (-0.259)
RF-TE 2.729 ± 0.09 (+0.084) 4.157 ± 0.04 (+0.024) RF-TE 1.304 ± 0.08 (-0.130) 1.655 ± 0.05 (-0.226)
CaDA 2.727 ± 0.05 (+0.101) 4.027 ± 0.04 (-0.002) CaDA 1.357 ± 0.04 (-0.123) 1.604 ± 0.02 (-0.243)
ARC 2.504 ± 0.07 (+0.007) 3.938 ± 0.05 (+0.023) ARC 1.192 ± 0.05 (-0.178) 1.526 ± 0.01 (-0.228)

V
R

PB

MTPOMO 3.110 ± 0.02 (-0.501) 4.395 ± 0.02 (-0.591)

O
V

R
PT

W

MTPOMO 1.774 ± 0.01 (+0.209) 3.394 ± 0.04 (+0.371)
MVMoE 2.855 ± 0.02 (-0.379) 3.986 ± 0.04 (-0.498) MVMoE 1.776 ± 0.04 (+0.248) 3.342 ± 0.03 (+0.398)
RF-TE 2.794 ± 0.10 (-0.191) 3.733 ± 0.05 (-0.266) RF-TE 1.447 ± 0.06 (+0.162) 2.663 ± 0.06 (+0.309)
CaDA 2.829 ± 0.07 (-0.144) 3.645 ± 0.01 (-0.303) CaDA 1.485 ± 0.08 (+0.245) 2.458 ± 0.08 (+0.170)
ARC 2.556 ± 0.08 (-0.284) 3.538 ± 0.03 (-0.295) ARC 1.215 ± 0.03 (+0.128) 2.198 ± 0.04 (+0.230)

V
R

PB
L

MTPOMO 4.236 ± 0.03 (-0.445) 5.692 ± 0.03 (-0.612)

A
ve

ra
ge

MTPOMO 2.551 ± 0.43 3.819 ± 0.58
MVMoE 3.955 ± 0.02 (-0.328) 5.248 ± 0.05 (-0.470) MVMoE 2.387 ± 0.39 3.544 ± 0.56
RF-TE 3.510 ± 0.13 (-0.206) 4.716 ± 0.05 (-0.304) RF-TE 2.144 ± 0.34 3.110 ± 0.48
CaDa 3.563 ± 0.04 (-0.132) 4.585 ± 0.03 (-0.368) CaDa 2.182 ± 0.34 2.983 ± 0.47
ARC 3.185 ± 0.12 (-0.394) 4.435 ± 0.06 (-0.421) ARC 1.936 ± 0.31 2.841 ± 0.46

an average gap of 12.319%, compared to our method’s 12.506%. This suggests that while our method445

generalizes well to distributions different from the training set, it does not perform as exceptionally446

on very large-sized problems. This suggests that further research on improving scalability to larger447

problem sizes could be beneficial.448

Table 8: Performance on CVRPLib instances (N ≤ 251).

Set-X MTPOMO MVMoE RF-TE CaDA ARC
Instance Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

X-n101-k25 29399 6.553% 29076 5.382% 29035 5.234% 29185 5.777% 28927 4.842%
X-n106-k14 28029 6.323% 27443 4.101% 27150 2.989% 26952 2.238% 26852 1.859%
X-n110-k13 15100 0.862% 15327 2.378% 15314 2.291% 15262 1.944% 15309 2.258%
X-n115-k10 13412 5.217% 13475 5.711% 13338 4.636% 13169 3.311% 13458 5.578%
X-n120-k6 14051 5.393% 13782 3.375% 13765 3.248% 13735 3.023% 13659 2.453%
X-n125-k30 59015 6.259% 58430 5.205% 58522 5.371% 57405 3.360% 57936 4.316%
X-n129-k18 30176 4.271% 29334 1.361% 29598 2.274% 29397 1.579% 29536 2.059%
X-n134-k13 11707 7.246% 11462 5.002% 11585 6.129% 11512 5.460% 11605 6.312%
X-n139-k10 14058 3.444% 14099 3.745% 13812 1.634% 13877 2.112% 13962 2.737%
X-n143-k7 16626 5.898% 16349 4.134% 16257 3.548% 16195 3.153% 16185 3.089%
X-n148-k46 46648 7.365% 45857 5.545% 45036 3.655% 45761 5.324% 45243 4.131%
X-n153-k22 23514 10.811% 23649 11.447% 23478 10.641% 23154 9.114% 23299 9.797%
X-n157-k13 17886 5.985% 17493 3.656% 17339 2.744% 17344 2.773% 17230 2.098%
X-n162-k11 14486 2.461% 14705 4.010% 14664 3.720% 14814 4.781% 14642 3.565%
X-n167-k10 21662 5.375% 21503 4.602% 21412 4.159% 21437 4.281% 21226 3.254%
X-n172-k51 48560 6.475% 47883 4.990% 48118 5.506% 48181 5.644% 48022 5.295%
X-n176-k26 51989 8.736% 52117 9.004% 51400 7.504% 52698 10.219% 52400 9.596%
X-n181-k23 26572 3.923% 26417 3.317% 26097 2.065% 26099 2.073% 26249 2.659%
X-n186-k15 25236 4.519% 25151 4.166% 25140 4.121% 25461 5.450% 25277 4.688%
X-n190-k8 18222 7.314% 18988 11.826% 17892 5.371% 18470 8.775% 17877 5.283%
X-n195-k51 48829 10.410% 47201 6.729% 47390 7.157% 46726 5.655% 46649 5.481%
X-n200-k36 62050 5.927% 61720 5.364% 61199 4.474% 61198 4.473% 61330 4.698%
X-n204-k19 20643 5.510% 20584 5.208% 20608 5.331% 20497 4.764% 20631 5.449%
X-n209-k16 32298 5.356% 32358 5.552% 31876 3.980% 32092 4.684% 32170 4.939%
X-n214-k11 11699 7.765% 11597 6.826% 11670 7.498% 11812 8.806% 11713 7.894%
X-n219-k73 122070 3.805% 124451 5.830% 120348 2.341% 120464 2.440% 120158 2.180%
X-n223-k34 43123 6.642% 42695 5.584% 42251 4.486% 42359 4.753% 42337 4.699%
X-n228-k23 28233 9.677% 28171 9.436% 28798 11.872% 27988 8.725% 28098 9.152%
X-n233-k16 20644 7.353% 20656 7.415% 20758 7.946% 20638 7.322% 20739 7.847%
X-n237-k14 30066 11.183% 29778 10.118% 29595 9.441% 30451 12.606% 29759 10.047%
X-n242-k48 88666 7.148% 87281 5.474% 85704 3.569% 85780 3.660% 85952 3.868%
X-n247-k50 41610 11.633% 41345 10.922% 40639 9.028% 41037 10.096% 40817 9.505%
X-n251-k28 41206 6.519% 41347 6.884% 40399 4.433% 40663 5.116% 40466 4.607%

Average Gap 6.465% 5.888% 5.103% 5.257% 5.037%
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Table 9: Performance on CVRPLib instances (N ≥ 500).

Set-X MTPOMO MVMoE RF-TE CaDA ARC
Instance Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

X-n502-k39 75858 9.580% 77037 11.283% 71836 3.770% 72427 4.624% 72357 4.523%
X-n513-k21 34192 41.283% 32695 35.098% 28566 18.036% 30037 24.115% 29084 20.177%
X-n524-k153 176706 14.304% 171622 11.015% 174075 12.602% 171656 11.037% 168443 8.959%
X-n536-k96 109781 15.747% 106205 11.976% 103337 8.952% 102768 8.352% 102899 8.491%
X-n548-k50 110634 27.606% 104455 20.479% 100914 16.394% 102813 18.585% 101488 17.057%
X-n561-k42 55564 30.075% 53385 24.974% 49455 15.774% 50410 18.009% 49376 15.589%
X-n573-k30 60460 19.314% 61611 21.585% 55937 10.388% 56622 11.740% 54785 8.115%
X-n586-k159 226529 19.028% 213299 12.076% 205770 8.120% 205385 7.918% 204824 7.623%
X-n599-k92 130376 20.217% 126678 16.807% 116819 7.716% 117727 8.553% 117498 8.342%
X-n613-k62 78323 31.558% 73687 23.771% 67347 13.122% 68696 15.388% 68850 15.646%
X-n627-k43 77282 24.320% 70710 13.748% 67339 8.325% 68838 10.736% 68295 9.863%
X-n641-k35 83223 30.681% 72080 13.184% 70687 10.996% 73329 15.145% 71792 12.732%
X-n655-k131 121032 13.347% 119388 11.807% 112087 4.970% 110761 3.728% 110721 3.691%
X-n670-k130 182652 24.820% 166856 14.026% 169056 15.529% 165711 13.243% 162787 11.245%
X-n685-k75 93216 36.670% 82525 20.996% 77687 13.902% 78145 14.574% 78560 15.182%
X-n701-k44 92855 13.344% 90220 10.128% 90970 11.043% 92254 12.611% 91299 11.445%
X-n716-k35 59066 36.181% 52582 21.232% 49709 14.608% 51313 18.306% 49981 15.235%
X-n733-k159 175228 28.667% 156453 14.881% 148786 9.251% 148357 8.936% 147100 8.013%
X-n749-k98 102540 32.705% 92308 19.463% 85048 10.067% 85634 10.826% 85627 10.817%
X-n766-k71 133109 16.337% 129647 13.311% 130052 13.665% 128140 11.994% 129370 13.069%
X-n783-k48 107925 49.097% 96175 32.864% 83165 14.891% 84805 17.157% 83808 15.779%
X-n801-k40 92027 25.530% 87149 18.876% 86024 17.341% 89329 21.849% 87830 19.805%
X-n819-k171 192568 21.785% 178857 13.114% 174609 10.427% 173461 9.701% 172161 8.879%
X-n837-k142 230660 19.058% 230022 18.729% 208252 7.492% 208225 7.478% 209050 7.904%
X-n856-k95 118219 32.883% 105661 18.767% 98393 10.597% 100057 12.468% 100648 13.132%
X-n876-k59 114340 15.147% 114169 14.975% 107229 7.986% 110332 11.111% 108640 9.407%
X-n895-k37 106400 97.549% 70002 29.970% 64525 19.801% 67511 25.345% 65160 20.980%
X-n916-k207 388519 18.027% 373542 13.477% 352732 7.155% 353009 7.239% 352056 6.950%
X-n936-k151 200710 51.234% 161068 21.364% 163073 22.875% 154841 16.672% 157210 18.457%
X-n957-k87 126800 48.365% 123712 44.752% 102964 20.475% 105200 23.091% 103485 21.085%
X-n979-k58 139389 17.157% 131894 10.858% 129770 9.072% 133144 11.908% 131469 10.500%
X-n1001-k43 133680 84.756% 89126 23.179% 85998 18.856% 89231 23.324% 87914 21.504%

Average Gap 30.199% 18.836% 12.319% 13.618% 12.506%
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D Analysis449

D.1 In-Distribution Performance: Visual Comparison of Gap Ratio450

Figure 12 illustrates the gap ratios between our method ARC and comparable baselines RF-TE and451

CaDA, based on the performance gaps reported in Table 1. The results demonstrate consistently452

superior performance across all problems that simultaneously incorporate both O and TW attributes453

(i.e., OVRPTW, OVRPLTW, OVRPBTW, OVRPBLTW). As noted in Appendix C.2, problems such as454

VRPTW, OVRP, and OVRPTW showed performance improvements by leveraging information from455

problem instances with different combinations. This suggests that ARC achieves substantial perfor-456

mance gains on problems incorporating these attributes by effectively leveraging O and TW attribute457

information from various problem combinations through our compositional learning methodology.458
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Figure 12: Visualizing Gap ratio

18



D.2 Train/Test Efficiency459
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Figure 13: Computational Efficiency Comparison. Training time per epoch (left), inference time
(middle), and training time by number of layers (right).

We compared the time required per epoch during training (100,000 instances) and evaluation (1,000460

instances) for our proposed model with node sizes N = 50 and N = 100 illustrated in Figure 13. All461

experiments were conducted on a single NVIDIA Tesla A40 GPU and two CPU cores of AMD EPYC462

7413 24-Core Processor for both training and testing. For traditional solvers, we allocated 16 CPU463

cores As shown in the left panel, while our method requires longer training time than RF-TE, training464

for N = 100 can be completed within a single day. Furthermore, the middle panel demonstrates465

that the computation of LCompAttr is only required during training, resulting in significantly faster466

inference times. The right panel shows differences in training speed based on the number of ARC467

module layers. Due to the time-intensive nature of the sequential solution selection in the decoding468

step, the difference between layer counts of 1 and 6 are only 0.19 and 0.33 minutes for N = 50 and469

N = 100, respectively.470
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NeurIPS Paper Checklist471

The checklist is designed to encourage best practices for responsible machine learning research,472

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove473

the checklist: The papers not including the checklist will be desk rejected. The checklist should474

follow the references and follow the (optional) supplemental material. The checklist does NOT count475

towards the page limit.476

Please read the checklist guidelines carefully for information on how to answer these questions. For477

each question in the checklist:478

• You should answer [Yes] , [No] , or [NA] .479

• [NA] means either that the question is Not Applicable for that particular paper or the480

relevant information is Not Available.481

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).482

The checklist answers are an integral part of your paper submission. They are visible to the483

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it484

(after eventual revisions) with the final version of your paper, and its final version will be published485

with the paper.486

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.487

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a488

proper justification is given (e.g., "error bars are not reported because it would be too computationally489

expensive" or "we were unable to find the license for the dataset we used"). In general, answering490

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we491

acknowledge that the true answer is often more nuanced, so please just use your best judgment and492

write a justification to elaborate. All supporting evidence can appear either in the main paper or the493

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification494

please point to the section(s) where related material for the question can be found.495

IMPORTANT, please:496

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",497

• Keep the checklist subsection headings, questions/answers and guidelines below.498

• Do not modify the questions and only use the provided macros for your answers.499

1. Claims500

Question: Do the main claims made in the abstract and introduction accurately reflect the501

paper’s contributions and scope?502

Answer: [Yes]503

Justification: Abstract and Introduction (Section 1) state the importance of the compositional504

learning of the attributes and summarize the main contributions, a novel cross-problem505

learning solver for VRPs decomposing embeddings into intrinsic and contextual embed-506

dings to disentangle attribute representations. They also claim superior performance and507

generalization capabilities.508

2. Limitations509

Question: Does the paper discuss the limitations of the work performed by the authors?510

Answer: [Yes]511

Justification: While a dedicated "Limitations" section is not present, the paper discusses512

some limitations. For instance, Appendix C.3 (Real-World Dataset) notes that the model "it513

does not perform as exceptionally on very large-sized problems".514

3. Theory assumptions and proofs515

Question: For each theoretical result, does the paper provide the full set of assumptions and516

a complete (and correct) proof?517

Answer: [NA]518
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Justification: The paper primarily presents an empirical study introducing a novel architecture519

and learning methodology. It does not focus on presenting new theoretical results that would520

require formal proofs. The methodological foundations, including Properties (P1) and (P2)521

that motivate the design, are described in Section 4, Methods, but these are not presented as522

formal theorems.523

4. Experimental result reproducibility524

Question: Does the paper fully disclose all the information needed to reproduce the main ex-525

perimental results of the paper to the extent that it affects the main claims and/or conclusions526

of the paper (regardless of whether the code and data are provided or not)?527

Answer: [Yes]528

Justification: The paper disclose detailed experiment settings in Section 5 and Pseudocode529

in Appendix. The model architecture is also described well in Section 4.530

5. Open access to data and code531

Question: Does the paper provide open access to the data and code, with sufficient instruc-532

tions to faithfully reproduce the main experimental results, as described in supplemental533

material?534

Answer: [Yes]535

Justification: The paper provides a URL: "https://anonymous.4open.science/r/compositional-536

co-30FE/". Details on data generation are notes that we "follow RouteFinder’s data genera-537

tion and training protocols" in Section 5.538

6. Experimental setting/details539

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-540

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the541

results?542

Answer: [Yes]543

Justification: Their experimental settings also described in Section 5 and Appendix. Section 5544

describes the number of training, test instances, including graph size. Due to spce limitations,545

details are notes that we "follow RouteFinder’s data generation and training protocols" in546

Section 5. Appendix C is referenced for further details on hyperparameters and related547

studies. The experimental settings (In-distribution, Zero-shot Generalization, Few-shot548

Adaptation, Real-world Benchmark) are clearly defined in Section 5.549

7. Experiment statistical significance550

Question: Does the paper report error bars suitably and correctly defined or other appropriate551

information about the statistical significance of the experiments?552

Answer: [Yes]553

Justification: Tables 1, 2, 4, 6, and 7 report results with what appear to be standard deviations.554

The paper also states, "For neural methods, results are averaged over 3 runs with different555

random seeds".556

8. Experiments compute resources557

Question: For each experiment, does the paper provide sufficient information on the computer558

resources (type of compute workers, memory, time of execution) needed to reproduce the559

experiments?560

Answer: [Yes]561

Justification: We descrbied in Appendix D.2 as "All experiments were conducted on a single562

NVIDIA Tesla A40 GPU and two CPU cores of AMD EPYC 7413 24-Core Processor for563

both training and testing. For traditional solvers, we allocated 16 CPU cores". Execution564

time is noted in Appendix.565

9. Code of ethics566

Question: Does the research conducted in the paper conform, in every respect, with the567

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?568

Answer: [Yes]569
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Justification: The research focuses on algorithmic development for Vehicle Routing Prob-570

lems, a subfield of combinatorial optimization. Based on the paper’s content, there is no571

indication of ethical violations related to data privacy, bias, or harm as outlined in the572

NeurIPS Code of Ethics.573

10. Broader impacts574

Question: Does the paper discuss both potential positive societal impacts and negative575

societal impacts of the work performed?576

Answer: [No]577

Justification: The paper does not include a dedicated section discussing broader societal578

impacts. While the research could lead to positive impacts by improving efficiency in579

logistics and transportation (potentially reducing costs and emissions), these are not explicitly580

detailed, nor are potential negative societal impacts discussed. The primary focus is on the581

technical contributions of the ARC model.582

11. Safeguards583

Question: Does the paper describe safeguards that have been put in place for responsible584

release of data or models that have a high risk for misuse (e.g., pretrained language models,585

image generators, or scraped datasets)?586

Answer: [Yes]587

Justification: The research involves models for solving Vehicle Routing Problems. These588

models and the data do not inherently pose a high risk for misuse in the sense typically589

associated with large language models or image generation models. Therefore, specific590

safeguards beyond standard academic open-sourcing practices are not directly applicable.591

12. Licenses for existing assets592

Question: Are the creators or original owners of assets (e.g., code, data, models), used in593

the paper, properly credited and are the license and terms of use explicitly mentioned and594

properly respected?595

Answer: [Yes]596

Justification: The paper cites numerous existing works and baselines, such as PyVRP,597

MTPOMO, MVMoE, RouteFinder, and CaDA. It also uses the CVRPLib benchmark, which598

is cited with a URL footnote 3. The use of a unified codebase from RouteFinder for some599

baselines is mentioned in Section 5.600

13. New assets601

Question: Are new assets introduced in the paper well documented and is the documentation602

provided alongside the assets?603

Answer: [Yes]604

Justification: The primary new asset introduced is the ARC model and its implementation.605

The paper provides a detailed description of the model architecture, the learning method-606

ology, and the experimental setup. A link to an anonymized code repository is provided,607

suggesting that documentation would be available with the code release.608

14. Crowdsourcing and research with human subjects609

Question: For crowdsourcing experiments and research with human subjects, does the paper610

include the full text of instructions given to participants and screenshots, if applicable, as611

well as details about compensation (if any)?612

Answer: [NA]613

Justification: The research described in the paper does not involve crowdsourcing or experi-614

ments with human subjects. It is focused on algorithmic development and evaluation using615

synthetic and benchmark datasets.616

15. Institutional review board (IRB) approvals or equivalent for research with human617

subjects618
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Question: Does the paper describe potential risks incurred by study participants, whether619

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)620

approvals (or an equivalent approval/review based on the requirements of your country or621

institution) were obtained?622

Answer: [NA]623

Justification: The research does not involve human subjects; therefore, IRB approval or624

discussion of participant risks is not applicable.625

16. Declaration of LLM usage626

Question: Does the paper describe the usage of LLMs if it is an important, original, or627

non-standard component of the core methods in this research? Note that if the LLM is used628

only for writing, editing, or formatting purposes and does not impact the core methodology,629

scientific rigorousness, or originality of the research, declaration is not required.630

Answer: [NA]631

Justification: The core methodology of the research focuses on a novel neural network632

architecture and compositional learning for Vehicle Routing Problems. There is no mention633

or indication in the paper that Large Language Models (LLMs) are an important, original, or634

non-standard component of these core research methods.635
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