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Abstract

Among the thriving ecosystem of cloud computing and the proliferation of Large
Language Model (LLM)-based code generation tools, there is a lack of bench-
marking for code generation in cloud-native applications. In response to this
need, we present CloudEval-YAML, a practical benchmark for cloud configura-
tion generation. CloudEval-YAML tackles the diversity challenge by focusing
on YAML, the de facto standard of numerous cloud-native tools. We develop
the CloudEval-YAML benchmark with practicality in mind: the dataset consists
of hand-written problems with unit tests targeting practical scenarios. To im-
prove practicality during evaluation, we build a scalable evaluation platform for
CloudEval-YAML that achieves a 20 times speedup over a single machine. To
the best of our knowledge, the CloudEval-YAML dataset is the first hand-written
dataset targeting cloud-native applications. We present an in-depth evaluation of
13 LLMs, leading to a deeper understanding of the problems and LLMs, as well as
effective methods to improve task performance and reduce cost. The codebase is
released at https://github.com/alibaba/CloudEval-YAML,

1 Introduction

In this paper, we present CloudEval-YAML, a realistic and scalable benchmark for cloud configuration
generation. It tackles the diversity challenge between cloud computing and code generation by
focusing on YAML, the de facto standard of numerous cloud-native applications including Kubernetes,
Envoy, Cilium, Istio, Linkerd, etc. Among the top 100 starred cloud native applications, 90 of them
use more than 10 YAML files. We include more detailed statistics in Appendix [A]

The CloudEval-YAML dataset consists of 337 hand-written problems targeting realistic problems
from a wide range of sources. Each problem contains a natural language description, an optional
input YAML file, and a reference YAML file with labels and a unit test script. In addition, we build
a robust automated evaluation platform with unit tests to ensure functional correctness, as well as
a distributed evaluation cluster to score the generated code efficiently. With a cluster of 64 virtual
machines, we can complete the evaluation of 337 problems in 10 minutes, rather than several hours
on a single machine. We use various text-level, YAML-aware, and function-level metrics to evaluate
the performance of different LLMs, including BLEU, Edit Distance, Exact Match, Key-Value Match,
Key-Value Wildcard, and Unit Tests, for a comprehensive evaluation of the model. To the best of our
knowledge, CloudEval-YAML is the first hand-written dataset for cloud-native applications, with a
complete end-to-end evaluation platform and functional correctness evaluation.

We benchmark several popular open-source/proprietary code generation models on CloudEval-YAML,
including Llama/Llama?2 [} 2], Wizardcoder [3], Google PaLM-2 [4.|5] and OpenAl GPT-3.5/GPT-
4 6, [7]]. The benchmark leads to a series of notable observations, as listed in
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Figure 1: The structure of the CloudEval-YAML dataset, including problem specification in
natural language with an optional sample YAML file as prompt to LL.Ms, and reference YAML
and bash unit test file to evaluate the output YAML from the LLM.
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Figure 2: The workflow of the CloudEval-YAML benchmark platform.

2 The CloudEval-YAML Dataset

The overall structure of CloudEval-YAML dataset, illustrated with a simple example, is shown in
Figure [T} It consists of 4 major components: prompt template, natural Language (NL) problem
description plus optional input YAML, reference YAML with label, and test script. The details of
each component are provided in Appendix [B]

We collect problems from carefully selected sources to ensure the authenticity and practicality of the
dataset including official documentation websites, popular issues from StackOverflow, and highly-
ranked blog posts. The problems are hand-picked from the aforementioned sources based on the
following guidelines: 1) Clear definition and purpose, without ambiguous or heavy dependency on
other YAML files. 2) Diversity in cloud applications, difficulty levels, and task categories to ensure
the benchmark is comprehensive. 3) Focusing on testing YAML generation capabilities for cloud
applications. After picking a problem, we write the problem description, YAML file with label, and
unit tests. More samples of the dataset are shown in Appendix [H|for an in-depth view of the dataset.

Statistics of the CloudEval-YAML dataset: We dedicated over 1200 human hours to create
CloudEval-YAML that consists of 337 carefully constructed problems targeting Cloud Applica-
tions including Kubernetes, Envoy, and Istio. The statistics of the dataset are shown in Table E}
It covers a variety of functionalities in Kubernetes, such as pod, daemonset, and job, while also
providing insights into other software like Envoy and Istio, offering a comprehensive overview of
each system software’s major features and applications. Aside from its wide coverage of real-world
applications, the dataset also includes practical problems that are more challenging than other hand-
written datasets such as HumanEval [8] and MBPP [9] in terms of problem/solution length. For
example, the average line of solution count of this dataset is 28.35, which is 4x as HumanEval (6.3)
and MBPP (6.7). We take extra caution in creating the dataset, including limit the maximum token
count (531) of solutions so it would not exceed the context length of small models, as well as detailed
unit tests (avg. 13.14 lines) to ensure the functional correctness of the generated answer.
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Table 1: Overall benchmark on different models (the higher the better)

Model Text-level Score YAML-Aware Score Function-level Score
. Open Edit Exact Key-value Key-value .
Name Size Soﬁrce BLEU Dist. Match ]gxact Wiyldcard Unit Test |
GPT-4 Turbo ? N 0.648 0.549 0.101 0.217 0.673 0.567
GPT-4 ? N 0.646 0.559 0.098 0.205 0.675 0.531
GPT-3.5 ? N 0.622 0.525 0.089 0.160 0.620 0.421
PalLM-2-bison ? N 0.558 0.454 0.050 0.110 0.525 0.356
Llama-2-70b-chat 70B Y 0.378 0.327 0.000 0.018 0.294 0.089
Llama-2-13b-chat 13B Y 0.352 0.307 0.000 0.018 0.276 0.077
Wizardcoder-34b-v1.0  34B Y 0.332 0.351 0.015 0.015 0.359 0.071
Llama-2-7b-chat 7B Y 0.318 0.262 0.000 0.015 0.220 0.039
Wizardcoder-15b-v1.0  15B Y 0.289 0.338 0.003 0.003 0.307 0.036
Llama-7b 7B Y 0.140 0.078 0.009 0.012 0.094 0.036
Llama-13b-lora 13B Y 0.108 0.061 0.003 0.009 0.088 0.024
Codellama-13b-instruct 13B Y 0.194 0.220 0.003 0.003 0.139 0.015
Codellama-7b-instruct 7B Y 0.163 0.176 0.000 0.000 0.120 0.015

3 The CloudEval-YAML Benchmark Platform
The overall framework of CloudEval-YAML is shown in Figure[2] It consists of three major parts:

YAML generation: As explained in §2] each problem in our dataset includes a problem description.
We create prompts for LLMs by combining the prompt template with the problem. These prompts are
then processed by the query module to generate a YAML file. The query module serves as a universal
interface for various local and remote models to simplify the API differences and optimize throughput
by parallelism. Afterwards, we apply the post-processing policies, as described in Appendix

Score calculation: We calculate comprehensive scores using three distinct methods that include
6 metrics to cover different aspects. The first method, known as the text-level score, uses metrics
such as BLEU, Edit Distance, and Exact Match. The second method referred to as the YAML-aware
score, uses the Key-Value Exact Match and Key-Value Wildcard Match. The third method, the
function-level score, uses Unit Tests. The calculation of each score is in Appendix [E]

Cloud evaluation: A practical challenge in running the unit tests in the real environment is time
efficiency. It usually takes several minutes to create the cluster, pull corresponding images, initialize
and apply configurations, and clear up the environment. This sequential process, especially when
scaled to hundreds of problems, becomes very time-consuming and can take hours to complete
on a single machine. To expedite the evaluation, we employed 2 techniques: scalable evaluation
cluster and docker image caching. Technical descriptions are included in Appendix [F] As a result,
CloudEval-YAML completes evaluations of all 337 problems in 10 minutes with an evaluation cluster
consisting of 64 workers each equipped with 4 CPU cores and 8GB memory, representing 60 x speed
up over a single machine, while ensuring unit test quality by removing the network bottleneck.

4 Evaluations on CloudEval-YAML

4.1 Overall benchmark of different models

The results of our comprehensive benchmark are presented in Table[I] This benchmark includes a
variety of models of varying sizes, sourced from both open-source and proprietary platforms. The
models tested include GPT-3.5 [6l], GPT-4 [7]], GPT-4 Turbo [7]], PaLM 2 [[10], Llama [1]], Llama
2 [2], Code Llama [[11], and WizardCoder [3]. We focus on the "chat" or "instruct" version of models
to better fit in the Q/A nature of the configuration generation. The outcomes have led to several
interesting observations.

Observation 1 Proprietary models such as GPT-3.5, GPT-4 and GPT-4 Turbo are way ahead across
all metrics, and the gap between them and best performing open-source models is larger than similar
benchmarks like HumanEval [8]. On HumanEval, Llama 2 (70B) is able to achieve a score of 29.9
compared to 48.1 and 67.0 (1.61x and 2.24x) for GPT-3.5 and GPT-4, respectively. On the unit test
score of CloudEval-YAML, 11ama-2-70b-chat scores 0.089 whereas GPT-3.5 and GPT-4 score
0.421 and 0.531 (4.73x and 5.97 ).

Observation 2 Both exact match methods cannot provide enough signal to differentiate between
the performance of less efficient models. We then considered other options like BLEU, Edit-distance,



and Key-value Wildcard Match. We found the correlation values between these metrics and the Unit
Test score to be 0.93, 0.87, and 0.95 respectively. This indicates that the Key-value Wildcard Match
is the best choice overall, though it requires additional labeling.

Observation 3 Surprisingly, code LLMs typically perform poorly on CloudEval-YAML com-
pared to general LLMs with similar or even smaller sizes in terms of the Unit Test score, e.g.,
codellama-13b-instruct scores less than 11ama-2-7b-chat. It may be related to the dataset
used in the fine-tuning process. For example, the codellama-13b-instruct model is fine-tuned
on "interview-style programming questions”, which may differ from CloudEval-YAML.

4.2 Multi-sample generation

In real scenarios, users may not be satisfied with the first generated result and may want to generate
multiple samples to choose the best one. To evaluate the performance of models in this scenario, we
generate multiple samples and evaluate the performance of the models. We select the best-performing
open/closed-source models including Llama-2-70B, PaLM-2, GPT-3.5, and GPT-4 to evaluate their
performance with multi-sample generation. We leave parameters that control the randomness of
the output to default for proprietary models and set the values of Llama-2-70B to 0.75/0.9/50 for
temperature, top_p and top_k respectively. The result is shown in Figure [ﬂ We define pass@k
as a problem is considered solved if any of the k samples pass the unit test [[12].
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Figure 3: Pass@k scores of 4 models Figure 4: Failure analysis of different
in CloudEval-YAML. models, grouped in 6 modes.

Observation 4 20-sample generation could improve the unit test score of Llama-2-70B/PalLM-
2/GPT-3.5 by 28%/47%/42% respectively, indicating that multi-sample generation could be a good
choice to improve the performance if there is a unit test or the user can manually select the best result.
Observation 5 It is possible to achieve the same or even better level of performance with multiple
samples. For example, GPT-3.5 with 3 samples could beat GPT-4 with a single sample. Given the
30x cost differences [} it is worth considering using GPT-3.5 with multiple samples as an alternative
to GPT-4 with a single sample. Similarly, PaIM-2 could reach the GPT-3.5 level after 7 samples.

4.3 Failure analysis

The unit tests generate binary pass/fail outputs with the answer YAML, but not all failures are the
same: some are close to the correct answer, while others are completely wrong. To understand the
weaknesses of each model and find methods to improve the performance, we group the answers into
7 categories, sorted by how close they are to the correct answer: 1) empty or less than 3 lines; 2)
longer than 3 lines but does not contain the kind spaceE]; 3) contains kind but not a complete YAML
file; 4) valid YAML but kind space is incorrect; 5) valid YAML, kind space is correct but unit test
fails; 6) correct YAML that passes unit test. The statistics of the result are shown in Figure [ which
lead to the following observation:

Observation 6 An interesting fact is that the best performing model GPT-4 makes more category 1
errors (i.e. simple mistakes) than both Llama2-7B/70B. But given that such errors could be easily
filtered, we expect that the performance of GPT-4 could be further improved by implementing a basic
format check to filter out such errors and regenerate new ones. On the other hand, both Llama2-
7B/70B make a lot of category 5 errors, suggesting that they are able to get the general idea most of
the time, but are not accurate enough to pass the unit tests.

'We run GPT-4 for only 6 samples due to the API rate limit.

2As of 2023 Oct. 1, the cost for GPT-3.5 turbo with 4k context is $0.002 per 1k output tokens, while the cost
for GPT-4 with 8k context is $0.06 per 1k tokens.

3The field kind exists in most Kubernetes configurations. We search for static_resources field instead
for Envoy configurations.
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A YAML statistics

We surveyed the top 100 most starred GitHub repositories of Cloud Native Applications according to
the CNCF landscape [13]]. The result including the number of total/ YAML files is shown in Table [2]
90 out of the 100 applications contain more than 10 YAML files, thereby confirming its extensive
usage.

Table 2: Statistics of YAML files in top-100 most starred Cloud Native Apps.

Repo Github Total YAML Repo Github Total YAML Repo Github Total YAML
Name Stars  Files Files Name Stars Files Files Name Stars Files Files
GitLab 23368 58372 4721 |Dgraph 19620 2231 161 | Terraform 38875 5704 36
Kubernetes 101881 29662 4715 | Salt Project 13513 7242 153 |Flink 21993 27228 30
Elastic 65213 35747 3143 | Docker Compose 30543 466 147 | Apollo 28360 1512 28
GraphQL 30135 13667 2169 | Vitess 16897 5579 142 |gVisor 14172 3723 26
Istio 33694 6261 2081 |containerd 14857 6523 138 | Sentinel 21422 3487 25
Ansible 58659 7236 1914 | Serverless 45187 1805 131 |go-zero 25550 1382 22
ShardingSphere 18807 21945 1632 | CockroachDB 27828 18499 118 |Seata 24226 3904 21
Ilvm 21975 148442 1202 |k3s 24517 750 97 | Packer 14612 1450 20
Argo 14145 4172 1118 |Logstash 13639 3835 88 | Wasmer 16300 2007 19
Skaffold 14219 16345 1044 | Apache Spark 36800 24415 85 | Portainer 26644 3063 19
Kubespray 14472 2093 900 | Kong 35947 1888 75 | Golang 114620 14022 18
SkyWalking 22442 5999 802 |SST 17715 4683 73 | SOPS 13823 190 18
Cilium 16516 19972 780 |Rust 85579 46998 69 |Redis 61572 1679 16
MongoDB 24425 49784 743 | gRPC 39066 12629 68 |kratos 21387 861 16
Backstage 23285 12300 613 | Vault 27546 9175 66 | NATS 24451 580 16
Grafana Loki 20163 15520 554 |DragonflyDB 21064 615 64 | Zig 26009 16173 15
Helm 24953 1784 540 | Consul 26921 13084 62 |Jenkins 21453 13139 15
Envoy 22759 13470 520 | Keycloak 17472 14535 59 | Apache Hadoop 13858 9562 14
Pulumi 17622 8179 467 | Presto 15087 13493 57 | Dubbo 39400 5399 14
Teleport 14225 8884 419 | InfluxData 26133 2007 56 |TiDB 34880 6235 14
Traefik 44719 1870 339 | ORY Hydra 14434 2556 56 | OpenFaaS 23512 1100 14
minikube 27261 2368 316 | OpenAPI 27136 181 55 | emscripten 24266 9596 11
SlimToolkit 17269 6545 305 | Sentry 35169 14388 54 | OpenCV 71360 8613 10
Prometheus 49987 1389 255 | TDengine 21762 4620 51 | Caddy 49844 465 9
Grafana 57207 15782 242 | Jaeger 18318 1469 48 | Apache bRPC 15290 1632 9
Podman 19128 10589 203 |MinlO 40904 1391 46 | Firecracker 22578 822 8
ClickHouse 30874 27331 200 |Zipkin 16425 1076 43 | Nacos 27577 3501 6
Rancher K8s 21560 3655 196 | k6 21566 3382 40 | Kotlin 45845 98293 5
Netdata 65199 3069 190 | Nomad 13968 6080 39 |TiKV 13617 1705 3
Dapr 22320 2027 186 | Timescale 15534 2289 39 | Kafka 25883 7020 2
Trivy 18709 2250 178 |eted 44537 1600 38 | V8 21722 14237 1
Vector 14432 9320 174 | Gradle Build Tool ~ 15205 35647 38 | FFmpeg 38520 8287 1
JHipster 20853 3874 173 | Apache RocketMQ 19814 2985 36 | NGINX(Wasm) 19089 559 0
RethinkDB 26257 2121 165

B Dataset component

Each problem in CloudEval-YAML dataset consists of following components:

* Prompt template: The prompt template is added to the beginning of each problem to provide
context for the model, as well as specify the output format of the desired answer [[14,[15]. We
use the same template for all problems, which can be found in Appendix [G|

* Natural Language (NL) problem description and optional input YAML: There are two
kinds of problem description in CloudEval-YAML that either consist of natural language only,
or combined with an optional YAML file as input so the LLMs have to do infill or modification
on the input YAML file.

¢ Reference YAML with label: The dataset also includes a reference YAML file. It serves
two purposes: firstly, could be used as a reference to evaluate the generated YAML file. For
example, one can calculate text-level similarities such as the BLEU metric. However, we find
that text-level metrics do not consider important properties of YAML such as object order does
not matter, but could significantly affect the BLUE score. We describe how we tailor the metrics
to YAML in To facilitate YAML-aware comparison, we include three kinds of labels as
comments in the YAML file: 1) wildcard match (labeled with # ); 2) exact match (default, no
labeling required); 3) conditional match (# v in [2,3,4]). Aside from text-level and YAML-aware



metrics, we also use the reference YAML file to facilitate the development and verification of
the unit test script.

* Test script: To benchmark the functional correctness of the generated YAML file, we write
automated test scripts to set up the environment and validate the functionality using assertions.
For example, the script echos unit_test_passed to a log file that is further processed and
aggregated by the scoring script. The test script also includes a clean-up function to tear up the
environment after completion, so the next test can start with a clean environment.

C Dataset statistics

The statistics of CloudEval-YAML are shown in Table 3]

Table 3: Statistics of CloudEval-YAML dataset

Statistics Kubernetes Envoy Istio Total/Avg.
pod daemonset service job deployment others / Max
Total Problem Count 48 55 20 19 19 122 41 13 337

Avg. Question Words 77.06  80.91 7135 73.74 94.84 69.48 275.56 73.00 99.40

Avg. Lines of Solution  18.67 23.58 15.00 20.37 29.00 19.74 85.85 14.92 28.35
Avg. Tokens of Solution 64.02  71.91 41.40 74.53 79.42 58.78 242.34 39.54 84.28
Max Tokens of Solution 150 111 83 163 140 194 531 53 531

Avg. Lines of Unit Test  8.52 8.58 11.25 17.68 12.53 17.74 11.56 20.00 13.14

D Post-processing policies

Although we explicitly require LLMs to answer with YAML only, the response often contains text
descriptions wrapped around a valid YAML file. We apply the following post-processing policies to
extract clean YAML files from such responses:

* Remove all content before the line with the keyword Here, as it is commonly found before the
YAML file in responses from several LLMs.

* Remove all content before the line with the keyword apiVersion: (for Kubernetes) or
static_resources: (for Envoy) since they typically mark the start of a YAML file.

 Extract text enclosed by the following delimiters:

<code> and </code>
\begin{code} and \end{code}
START SOLUTION and END SOLUTION

E Score Calculation Scheme
Here’s how we calculate each score:

* BLEU: Bilingual Evaluation Understudy [[16] is a common metric used to evaluate the quality
of machine-generated translations. It measures the similarity between the generated YAML and
the reference YAML. We use the standard implementation from the NLTK [17]]. The BLEU
score ranges from O to 1, the higher the better.

» Edit Distance: In some scenarios even imperfect configuration could still be useful if users can
fix the error by modifying a few words. The Edit Distance metric is calculated by comparing
the number of lines to edit between the generated YAML and the reference YAML using Python
standard library difflib.Differ. We scale the edit distance by the size of the reference
YAML using 1 - edit_distance / len(reference_YAML). As a result, the edit distance
score ranges from O to 1, the higher the better.



» Exact Match: Opposite to edit distance, the exact match score is a very strict metric that
requires the generated YAML to be exactly the same as the reference YAML. The output is
either O (not match) or 1 (exact match).

* Key-Value Exact Match: Different from Exact match that ignores the fact that order doesn’t
matter in YAML, Key-value exact match load both the generated/reference YAML into dictio-
naries and check the resulting dictionaries are the same or not, so the output is either 0 (not
match) or 1 (exact match).

* Key-Value Wildcard Match: Similar to the key-value exact match, we also load both YAML
files into the dictionary. However, with the help of labeling in the reference YAML file, we
can tell what matters and what is not critical. For example, sometimes it is acceptable to start
a cluster with image: ubuntu:22.04 or ubuntu:20.04, so the label in reference YAML
could be image: ubuntu:22.04 # v in [€20.04’, €22.04’] and either version will be
considered correct. We implement this key-value wildcard match using a tree with leaf nodes
marked in exact/set/wildcard match and then calculate the IoU (intersection over union) of
dictionaries from the generated and reference YAML. The score ranges from O to 1, with the
higher scores being more desirable.

Unit Test: CloudEval-YAML ensures the functional correctness of the generated YAML files
by running unit test scripts crafted by domain experts. For Kubernetes-focused applications,
including Kubernetes and Istio, Minikube [18] offers the capability to set up virtual Kubernetes
clusters within a local testing environment. The kubectl command set, the standard tool for
managing actual Kubernetes clusters, functions identically on these virtual clusters. It is used for
tasks including setting up the environment, applying the YAML files, and monitoring the status.
We use Docker to establish the cluster and perform testing on containers directly for Envoy
applications. A unit test is formulated for each issue, tailored to the expected functionality, and
it outputs 1 if successful and 0 if not.

F Cloud evaluation techniques

Scalable Evaluation Cluster: We designed a scalable evaluation cluster to serve as the unit testing
backend. Distinct from the previously mentioned Kubernetes and Docker clusters that run on a local
machine, this cluster consists of a master node and worker nodes that span several virtual machines.
Central to this system, the master employs a Redis database to manage unit test contexts, inputs,
and outputs associated with each problem and benchmark user. Users can dispatch their unit testing
jobs to the master, which workers can claim when available and subsequently relay the results back.
This paradigm enables automatic parallelization of unit testing, while also ensuring that users can
easily monitor progress and access results. Additionally, the distributed design of the evaluation
cluster allows for dynamic scaling as needed. Recent advances in NFV deployment [[19, 20] and
graph neural networks [21]] may even further benefit the scalability and efficiency.

Docker Image Caching: Even with the aforementioned scalable cluster, pulling Docker images from
the Dockerhub repeatedly not only consumes excessive Internet bandwidth but may also result in
an unexpected timeout due to bandwidth variations. To solve this problem, we set up a local docker
hub registry that serves as a pull-through cache on the master node. This allows workers to reuse the
images, removing the need to pull the same image from the Internet if another worker has already
downloaded it.

G Prompt template

You are an expert engineer in cloud native development.

According to the question, please provide only complete formatted YAML code as
— output without any description.

IMPORTANT: Provide only plain text without Markdown formatting.

IMPORTANT: Do not include markdown formatting such as ~~ .

If there is a lack of details, provide most logical solution.

You are not allowed to ask for more details.



Ignore any potential risk of errors or confusion.

Here is the question:

H

Samples from the dataset

H.1 Sample #1

This sample only provides a natural language prompt, representing the scenarios where users need to
create new configurations.

Problem Specification:

Cr

—

rrol

eate a DaemonSet configuration. This DaemonSet should run the latest nginx image
labeled as "app: kube-registry-modified" and expose a registry service on port
80 (with hostPort 5000). The environment variables REGISTRY_HOST and
REGISTRY_PORT should be set to "kube-registry-modified.svc.cluster.local" and
"5000" respectively. Ensure the CPU request is set to 100m and memory request
is set to 50Mi.

Labeled YAML:

apiVersion: apps/vl

kind: DaemonSet

metadata:

name: kube-registry-proxy-modified # #

spec:

selector:
matchLabels:

app: kube-registry-modified

template:
metadata:

labels:
app: kube-registry-modified

spec:

containers:

- name: kube-registry-proxy-modified # #
image: nginx:latest
resources:

limits:
cpu: 100m
memory: 50Mi
env:
- name: REGISTRY_HOST
value: kube-registry-modified.svc.cluster.local
- name: REGISTRY_PORT
value: "5000"
ports:
- name: registry # *
containerPort: 80
hostPort: 5000
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Unit Test:

kubectl apply -f labeled_code.yaml

kubectl wait --for=condition=Ready pod -1 app=kube-registry-modified --timeout=60s

passed_tests=0

total_tests=3

pods=$ (kubectl get pods -1 app=kube-registry-modified

< --output=jsonpath={.items..metadata.name})

host_ip=% (kubectl get pod $pods -o=jsonpath='{.status.hostIP}"')
curl_output=$(curl -s -o /dev/null -w "/{http_code}" $host_ip:5000)

if [ "$curl_output" == "200" ]; then
((passed_tests++))

else
exit 1

fi

env_vars=$ (kubectl get pods --selector=app=kube-registry-modified
— -o=jsonpath='{.items[0].spec.containers[0].env[*].name}"')

if [[ $env_vars == *"REGISTRY_HOST"* && $env_vars == *"REGISTRY_PORT"* ]]; then

((passed_tests++))

fi

cpu_limit=$(kubectl get pod $pods

— -o=jsonpath='{.spec.containers[0].resources.limits.cpu}')

memory_limit=$(kubectl get pod $pods

— -o=jsonpath='{.spec.containers[0].resources.limits.memory}"')

if [ "$cpu_limit" == "100m" ] && [ "$memory_limit" == "50Mi" ]; then
((passed_tests++))

fi

if [ $passed_tests -eq $total_tests ]; then
echo unit_test_passed

fi

H.2 Sample #2

This sample provides a context YAML and seeks functionality extensions.

Problem Specification:

Given the following YAML, please help me create a service with load balancer that

— uses the nginx selector, exposed on port 80.
It should be accessible via browser.

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-deployment
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
labels:

11



app: nginx
spec:

containers:

- name: nginx-container
image: nginx:latest
ports:

- containerPort: 80

Labeled YAML:

apiVersion: vl
kind: Service
metadata:
name: nginx-service # ¥
spec:
selector:
app: nginx

ports:
- name: http
port: 80

targetPort: 80
type: LoadBalancer

Unit Test:

echo "apiVersion: apps/vl

kind: Deployment

[... the same as the YAML context in problem specification, omitted by brevity]
- containerPort: 80" | kubectl apply -f -

kubectl wait --for=condition=ready deployment --all --timeout=15s

kubectl apply -f labeled_code.yaml

sleep 15

kubectl get svc

timeout -s INT 8s minikube service nginx-service > bash_output.txt 2>&1

cat bash_output.txt

grep "Opening service default/nginx-service in default browser..." bash_output.txt

— && echo unit_test_passed

H.3 Sample #3

This is a debugging query sourced from StackOverflow. The raw YAML is included along with
the error report. Typically, the response includes an error analysis unless restricted by the prompt
template.

Problem Specification:

Given the following YAML which is not functionally correct:

apiVersion: networking.k8s.io/v1
kind: Ingress

12
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metadata:
name: test-ingress
annotations:

nginx.ingress.kubernetes.io/rewrite-target: /

spec:
rules:
- http:
paths:
- path: /
backend:

serviceName: test-app
servicePort: 5000

When executing it, it would report the error:

Error from server (BadRequest): error when creating "wrong.yaml": Ingress in
— version "v1" cannot be handled as a Ingress: strict decoding error: unknown

field "annotations", unknown field

rr

"spec.rules[0] .http.paths[0] .backend.serviceName", unknown field
"spec.rules[0] .http.paths[0] .backend.servicePort"

Please debug it to make it valid. Please provide the entire YAML.

Labeled YAML:

apiVersion: networking.k8s.io/v1l
kind: Ingress
metadata:

name: minimal-ingress

annotations:
nginx.ingress.kubernetes.io/rewrite-target: /
spec:
rules:
- http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: test-app
port:
number: 5000
Unit Test:

kubectl apply -f labeled_code.yaml

kubectl wait --namespace default --for=condition=SYNCED ingress --all

— --timeout=15s

kubectl describe ingress minimal-ingress | grep "test-app:5000" && echo

— unit_test_passed
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I Related works

CloudEval-YAML is a hand-written dataset that allows us to customize to specific domains and focus
on real-world problems, leading to a more realistic evaluation. There are several other hand-written
benchmarks, including HumanEval [8], MBPP [9] and WikiSQL [22]]. HumanEval contains 164 hand-
written Python programming problems that benchmark language comprehension, algorithms, and
simple mathematics, and MBPP [9] contains 974 entry-level Python problems, while WikiSQL [22]]
is a hand-annotated benchmark dataset aimed at converting natural language queries into SQL queries.
None of these benchmarks is targeting cloud applications.

Aside from that, there are many non-hand written datasets that are derived from online sources,
including APPS [23]], CoNaLa [24] 23], Django [26]], Shellcode_IA32 [27], CodeXGLUE [2§]],
DRB-ML[29]], HPC-GPT[30], CONCODE [31], DS-1000 [32]], and Ansible-YAML [33]]. Among
them, DS-1000 [32]] is a dataset of Python data science problems collected from StackOverflow.
Ansible-YAML [33]] focuses on the development of Ansible Wisdom, a natural language to Ansible-
YAML code generation tool, both works inspire the design of CloudEval-YAML, but we choose to
focus on the hand-written, realistic problems that focus on real cloud application and are not common
in the public datasets. A detailed comparison is provided in Table

Table 4: Comparison of CloudEval-YAML to other benchmarks for code generation.

Dataset Problem Domain  Special Eval. Metric !  # of Problems Data Source
HumanEval [8] Python algorithm Unit tests 164 Hand-written
MBPP [9] Basic Python Unit tests 974 Hand-verified
WikiSQL [22] SQL query Execution Accuracy 88k Hand-annotated
APPS [23] Python Unit tests 10k Codeforces, Kattis
CoNal.a [24, 23] Python / Java - 2879 StackOverflow
Django [26] Python Django Human study 19k Django codebase
Shellcode_IA32 [27]] Assembly - 3200 shell-storm, Exploit
CodeXGLUE [28]] Python / Java - 645k 2 Various sources
CONCODE [31] Java classes - 100k GitHub repositories
DS-1000 [32] Python data science Unit tests 1000 StackOverflow
Ansible-YAML [33]  YAML for Ansible K-V match 112k Github, Gitlab
CloudEval-YAML  YAML for Cloud apps Unit tests, K-V wildcard 300 Hand-written

! We exclude widely used text-level evaluation metrics such as exact match and BLEU.
2 We include the text-code category only, excluding code-code, code-text and text-text.
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