
Flow Annealed Importance Sampling Bootstrap

Laurence I. Midgley∗
InstaDeep

University of Cambridge
laurencemidgley@gmail.com

Vincent Stimper∗
Max Planck Institute for Intelligent Systems

University of Cambridge
vs488@cam.ac.uk

Gregor N. C. Simm
University of Cambridge
gncs2@cam.ac.uk

Bernhard Schölkopf
Max Planck Institute

for Intelligent Systems
bs@tue.mpg.de
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Abstract

Normalizing flows are tractable density models that can approximate complicated
target distributions, e.g. Boltzmann distributions of physical systems. However,
current methods for training flows either suffer from mode-seeking behavior,
use samples from the target generated by expensive MCMC simulations, or use
stochastic losses that have high variance. To avoid these problems, we augment
flows with annealed importance sampling (AIS) and minimize the mass-covering
α-divergence with α = 2, which minimizes importance weight variance. Our
method, Flow AIS Bootstrap (FAB), uses AIS to generate samples in regions
where the flow is a poor approximation of the target, facilitating the discovery
of new modes. We apply FAB to complex multimodal targets and show that we
can approximate them accurately where previous methods fail. To the best of
our knowledge, we are the first to learn the Boltzmann distribution of the alanine
dipeptide molecule using only the unnormalized target density, without access to
samples generated via Molecular Dynamics (MD) simulations: FAB produces bet-
ter results than training via maximum likelihood on MD samples while using 100
times fewer target evaluations. After reweighting samples, we obtain unbiased
histograms of dihedral angles that are almost identical to the ground truth.

1 Introduction

Approximating intractable distributions is a challenging task whose solution has relevance in many
real-world applications. A prominent example involves approximating the Boltzmann distribution of
a given molecule. In this case, the unnormalized density can be obtained by physical modeling and is
given by e−u(x), where x are the 3D atomic coordinates and u(·) returns the dimensionless energy of
the system. Drawing independent samples from this distribution is difficult (Lelièvre et al., 2010).
It is typically done by running expensive Molecular Dynamics (MD) simulations (Leimkuhler &
Matthews, 2015), which yield highly correlated samples and require long simulation times.

An alternative is given by normalizing flows. These are tractable density models parameterized by
neural networks. They can generate a batch of independent samples with a single forward pass and
any bias in the samples can be eliminated by reweighting via importance sampling. Flows are called
Boltzmann generators when they approximate Boltzmann distributions (Noé et al., 2019). Recently,
there has been a growing interest in these methods (Dibak et al., 2022; Köhler et al., 2021; Liu et al.,
2022) as they have the potential to avoid the limitations of MD simulations. Most current approaches
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to train Boltzmann generators rely on MD samples since these are required for the estimation of
the flow parameters by maximum likelihood (ML) (Wu et al., 2020). Alternatively, flows can be
trained without MD samples by minimizing the Kullback–Leibler (KL) divergence with respect to
the target distribution (Wirnsberger et al., 2022). However, the KL divergence suffers from mode-
seeking behavior, which severely deteriorates the performance of this approach with multimodal
target distributions (Stimper et al., 2022). On the other side, mass-covering objective such as the
forward KL divergence suffer from the high variance of the samples from the flow.

To address these challenges, we present a new method for training flows: Flow AIS Bootstrap
(FAB). Our main contributions are as follows:

1. We propose to use the α-divergence with α = 2 as our training objective, which is mass-covering
and minimizes importance weight variance. We approximate this objective using annealed im-
portance sampling (AIS) with the flow as the initial distribution and the target set to the minimum
variance distribution for the estimation of the α-divergence via importance sampling. AIS returns
samples that provide a higher quality training signal than samples from the flow, as it focuses on
the regions that contribute the most to the α-divergence loss.

2. We reduce the computational cost of our method by introducing a scheme to re-use samples via
a prioritized replay buffer.

3. We apply FAB to a toy 2D Gaussian mixture distribution, the 32 dimensional “Many Well” prob-
lem2, and the Boltzmann distribution of alanine dipeptide. In these experiments, we outperform
competing approaches and, to the best of our knowledge, we are the first to successfully train a
Boltzmann generator on alanine dipeptide using only the unnormalized target density. In particu-
lar, we use over 100 times fewer target evaluations than a Boltzmann generator trained with MD
samples while producing a better approximation to the target.

2 Background

Normalizing flows Given a random variable z with distribution q(z), a normalizing flow (Tabak
& Vanden-Eijnden, 2010; Rezende & Mohamed, 2015; Papamakarios et al., 2021) uses an invertible
map F : Rd → Rd to transform z yielding the random variable x = F (z) with distribution

q(x) = q(z) |det(JF (z))|−1
, (1)

where JF (z) = ∂F/∂z is the Jacobian ofF . If we parameterize F , we can use the resulting model to
approximate a target distribution p. To simplify our notation, we will assume that the target density
p(x) is normalized, i.e., it integrates to 1, but the methods described here are equally applicable
when this is not the case. If samples from the target distribution are available, the flow can be
trained via ML. If only the target density p(x) is given, the flow can then be trained by minimizing
the reverse KL divergence3 between q and p, i.e., KL(q∥p) =

∫
x
q(x) log{p(x)/q(x)}dx, which is

estimated via Monte Carlo using samples from q.

Alpha divergence An alternative to the KL divergence is the α-divergence (Zhu & Rohwer,
1995; Minka, 2005; Müller et al., 2019; Bauer & Mnih, 2021; Campbell et al., 2021) defined by

Dα(p∥q) = −
∫
x
p(x)αq(x)1−α/Dx

α(1− α)
. (2)

The α-divergence is mode-seeking for α smaller than 0.5 and mass-covering for α larger than 0.5
(Minka, 2005), as shown in Figure 1. When α = 2, minimizing the α-divergence is equivalent
to minimizing the variance of the importance sampling weights wIS(x) = p(x)/q(x), which is
desirable if importance sampling will be used to eliminate bias in the samples from q.

Annealed importance sampling AIS begins by sampling from an initial distribution x1 ∼ p0 =
q, given by the flow in our case, and then transitioning via MCMC through a sequence of intermedi-
ate distributions, p1 to pN−1, to produce a sample xN closer to the target distribution pN = p (Neal,
2001). Each transition generates an intermediate sample xj by running a few steps of a Markov
chain that is initialized with the previous intermediate sample xj−1 and that leaves the intermediate

2This is not discussed in the main paper, but in Appendix E.
3We refer to reverse KL divergence as just “KL divergence”, following standard practice in literature.
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Figure 1: Unnormalized Gaussian approximating distributions q (red) minimizing the α-divergence
for different values of α with respect to a bimodal target distribution p (blue). The solutions q
transition from mode-seeking to mass-covering as α becomes larger than 0.5. The cases α→ 0 and
α→ 1 correspond to KL(q∥p) and KL(q∥p), respectively. Figure reproduced from (Minka, 2005).

distribution pj−1 invariant. Each pj is defined by interpolating between the initial and target log
densities: log pi(x) = βi log p0(x)+ (1−βi) log pN (x), where 1 = β0 > β1 > ... > βN = 0. AIS
provides an importance weight for the final resulting sample xN given by

wAIS(xN ) =
p1 (x1)

p0 (x1)

p2 (x2)

p1 (x2)
· · · pN−1 (xN−1)

pN−2 (xN−1)

pN (xN )

pN−1 (xN )
. (3)

These weights exhibit variance reduction compared to their importance sampling counterparts
wIS(x) = p(x)/q(x) (Neal, 2001). Hamiltonian Monte Carlo (HMC) is a suitable transition op-
erator for implementing AIS in challenging problems (Neal, 1995; Sohl-Dickstein & Culpepper,
2012).

3 Method

3.1 Flow annealed importance sampling bootstrap

FAB trains a flow q to approximate a target p by minimizing Dα=2(p∥q), which is estimated with
AIS using q as initial distribution and p2/q as target. The latter is the minimum variance importance
sampling distribution for Dα=2(p∥q). FAB performs bootstrapping since it fits the flow q using its
own samples after they have been improved with AIS to fit p2/q. FAB allows us to overcome the
challenges of training a mass-covering flow without access to samples from the target. Below we
provide a brief derivation of our training loss function and refer to Appendix A for the full derivation.

We consider q to be specified by some parameters θ and write qθ to make this explicit. We aim to
tune qθ by minimizing L(θ) ∝ Dα=2(p∥qθ) where L(θ) is our loss function. We can write our loss
as an expectation over some distribution g(x) by using importance sampling:

Dα=2(p∥qθ) ∝ L(θ) =
∫
p(x)2

qθ(x)
dx = Eg(x)

[
p(x)2

qθ(x)g(x)

]
. (4)

We consider setting g ∝ p2/qθ which minimizes4 the variance in the estimation of L(θ). Sampling
directly from g ∝ p2/qθ is intractable. Instead, we train the flow using an estimate of the loss based
on samples generated by AIS when targeting g ∝ p2/qθ and using qθ as the initial distribution.
These AIS samples have higher quality than those returned by the flow as they occur in regions
where the integrand in Equation (4) takes high values. These are regions where p and q have high
and low density, respectively. Another advantage of the AIS samples is that we can use the weights
returned by AIS to obtain an unbiased estimate of L(θ).
To obtain the gradient of Equation (4) with respect to θ, let us denote fθ(x) = p(x)2/qθ(x). Without
loss of generality5 we assume that

∫
fθ(x)dx = 1 and then set g(x) = fθ(x). First, we write the

4The importance sampling distribution g that minimizes the variance in the estimation of µ =∫
|f(x)|p(x)dx is given by g(x) ∝ |f(x)|p(x) (Kahn & Marshall, 1953; Owen, 2013). We note that this

is different from the distribution that minimizes variance for self-normalized importance sampling, which is
given by g(x) ∝ |f(x)− µ|p(x) (Hesterberg, 1988; Owen, 2013).

5See Appendix A for the full derivation where we keep track of the normalizing constant.
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gradient as an expectation over g:

∇θL(θ) = Eg(x)

[
∇θfθ(x)

fθ(x)

]
= Eg(x) [∇θ log fθ(x)] = −Eg(x) [∇θ log qθ(x)] . (5)

We can then write this as an expectation over the AIS forward pass:

∇θL(θ) = −EAIS [wAIS∇θ log qθ(x̄AIS)] , (6)

where x̄AIS and wAIS are the samples and corresponding importance weights generated by AIS when
targeting g. We use the bar superscript to denote stopped gradients in the samples generated by
AIS, x̄AIS, with respect to θ. If we also stop the gradients of wAIS, we can then use the surrogate
loss function S(θ) = −EAIS [w̄AIS log qθ(x̄AIS)], which may then be estimated by Monte Carlo and
differentiated to obtain unbiased estimates of the gradient. In practice, we found that using the self-
normalized importance weights greatly improved training stability. We refer to the surrogate loss
with self-normalized importance weights as S ′(θ). Thus, we can use the following estimate of the
surrogate loss function for training:

S ′(θ) ≈ −
N∑
i

w̄
(i)
AIS∑N

i w̄
(i)
AIS

log qθ(x̄
(i)
AIS) , (7)

where w̄(i)
AIS and x̄

(i)
AIS are N samples and weights generated by AIS using g = p2/qθ as target distri-

bution. When evaluating the gradient of Equation (7) with respect to θ, gradients must be stopped
during the computation of the AIS samples and weights. In practice, we obtain good performance
with a relatively low number of intermediate AIS distributions, e.g., 1 for the Gaussian mixture
model problem and 8 for the dipeptide problem, see the following section. Moreover, we can use
AIS after training with target p to further reduce variance when approximating expectations over p.

Here we have focused on the minimization ofDα=2(p∥q) using an AIS bootstrapping approach with
p2/q as target distribution. However, our approach is general and could be used to minimize other
objectives and to train other models, such as those that combine flows with stochastic sampling steps
(Wu et al., 2020; Arbel et al., 2021; Matthews et al., 2022; Jing et al., 2022). We provide further
discussion and examples related to this in Appendix B.

In Appendix C we provide an analysis of the quality of the estimates of the gradient of Dα=2(p∥q)
produced by FAB and by importance sampling with samples from q or p. We focus on the FAB
gradient in the form from Equation (6), as it is easy to analyze. First, we show that in a simple
scenario where both q and p are 1D Gaussians, the signal-to-noise ratio of FAB with a small number
of AIS distributions is far superior to that of estimating Dα=2(p∥q) using samples from q or p. We
also study in Appendix C the performance of FAB as the dimensionality of the problem grows. In
a simple scenario, we show that the variance of our objective remains constant if we increase the
number of AIS distributions by the same factor by which the dimensionality increases.

3.2 Re-using samples through a replay buffer

Although AIS is relatively cheap, it is still significantly more expensive than directly sampling from
the flow as it requires additional flow and target evaluations. To speed up computations, we re-use
AIS samples during the flow updates by making use of a prioritized replay buffer analogous to the
one in (Mnih et al., 2015; Schaul et al., 2016).

Consider a replay buffer with a set of samples and corresponding AIS weights generated during a
single run of AIS with target g(x) = p(x)2/qθ(x), where qθ(x) is the flow at a point in training
specified by θ. We can approximate the gradient of Equation (7) using

∇θS ′(θ) ≈ −∇θ
1

N

N∑
i=1

log qθ(xi), (8)

where x1, . . . ,xN are sampled from the buffer with probability proportional to their AIS weights.
However, if the buffer data points have been generated with a previous value of θ, denoted θold,
we have to multiply their AIS weights with a correction factor wcorrection = qθold(x)/qθ(x) before
sampling, which requires to additionally store qθold(x) for each data point in the buffer. When draw-
ing a minibatch from the buffer, we do this with probability proportional to the old AIS weights
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Algorithm 1: FAB for the minimization of Dα=2(p∥q) with a prioritized replay buffer
Set target p
Initialize base q parameterized by θ
Initialize replay buffer to a fixed maximum size
for iteration = 1 to K do // Generate AIS samples and add to buffer

Sample x
(1:M)
q from qθ and evaluate log qθ(x

(1:M)
q )

Obtain x
(1:M)
AIS and logw

(1:M)
AIS using AIS with target p2/qθ and seed x

(1:M)
q and log qθ(x

(1:M)
q )

Add x
(1:M)
AIS , logw(1:M)

AIS and log qθ(x
(1:M)
AIS ) to replay buffer

for iteration = 1 to L do // Sample from buffer and update qθ
Sample x

(1:N)
AIS and log qθold(x

(1:N)
AIS ) from buffer with probability proportional to w

(1:N)
AIS

Calculate logw
(1:N)
correction = log qθold(x

(1:N)
AIS )− stop-grad(log qθ(x

(1:N)
AIS ))

Update logw
(1:N)
AIS and log qθold(x

1:N
AIS ) in buffer to logw

(1:N)
AIS + logw

(1:N)
correction and log qθ(x

1:N
AIS )

Calculate loss S ′(θ) = −1/N
∑N

i w
(i)
correction log qθ(x

(i)
AIS)

Perform gradient descent on S ′(θ) to update θ

and reweight each sample afterwards so that we do not have to correct every sample in the buffer.
Further, we set a maximum length for the buffer to limit its memory footprint.

The resulting procedure, shown in Algorithm 1, extracts data from the buffer in a prioritized manner:
We sample according to g, which favors points with low qθ and high p. As qθ is updated to fit
samples from the buffer, it will take higher values on those samples and their weights will gradually
be decreased to encourage drawing alternative samples. The buffer allows us to re-use old AIS
samples and does not require re-evaluating p(x), which could be expensive in some cases.

4 Experiments

4.1 Mixture of Gaussians in 2D

First, we consider a synthetic problem where p is a mixture of bivariate Gaussians with 40 mixture
components. We give the flow a pathological initialization where samples from qθ concentrate in a
small region of the sampling space, as illustrated in the top left plot in Figure 2.

Figure 2: Contour lines for the target distribution p and samples (blue discs) drawn from the approx-
imation qθ obtained by different methods on the mixture of Gaussians problem.
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Table 1: Results for the mixture of Gaussians problem. Our methods are marked in italic. Best
results are emphazised in bold. Log-likelihood values for the first two methods are NaN because
they assign zero density to samples from missing modes. Log-likelihood values for SNF and CRAFT
are N/A because this method does not provide density values for the generated samples. The CRAFT
implementation used does not allow for forward-KL to be estimated and this field is therefore N/A.

ESS (%) Ep(x) [log q(x)] KL(p||q) MAE (%) MAE w/o RW (%)

Flow w/ ML 54.3±10.4 −7.18±0.05 0.31±0.05 9.0±0.3 6.1±2.0
Flow w/ Dα=2 0.7±0.3 NaN±NaN NaN±NaN 99.5±0.2 99.6±0.1
Flow w/ KLD 55.0±20.8 NaN±NaN NaN±NaN 26.0±3.1 26.3±1.4
RBD w/ KLD 37.9±16.3 NaN±NaN NaN±NaN 68.3±18.1 92.1±1.9
SNF w/ KLD 43.0±21.3 N/A±N/A NaN±NaN 64.6±20.6 69.3±17.2
CRAFT 60.2±0.3 N/A±N/A N/A±N/A 98.8±0.0 99.1±0.0
FAB w/o buffer 31.1±6.8 −7.86±0.19 1.00±0.19 9.4±0.2 4.4±0.7
FAB w/ buffer 61.9±8.0 −7.16±0.07 0.30±0.07 8.9±0.1 8.9±0.5

We compare 1) FAB with a replay buffer as shown in Algorithm 1; 2) FAB without a replay buffer,
where we directly optimize Equation (7); 3) a flow model that minimizes KL(qθ∥p); 4) a flow
with a Resampled Base Distribution (RBD) (Stimper et al., 2022) that minimizes KL(qθ∥p); 5) a
Stochastic Normalizing Flow (SNF) model (Wu et al., 2020) that also minimizes KL(qθ∥p); 6) a
Continual Repeated Flow Annealed Transport (CRAFT) model (Matthews et al., 2022) that mini-
mizes a CRAFT specific version of KL divergence specified in Appendix B.1; 7) a flow model that
minimizes Dα=2(p∥qθ) estimated using samples from qθ (Müller et al., 2019), and 8) a flow trained
by ML using samples from p. We single out the results from this latter method in our tables with a
horizontal dashed line because these samples might not be available for complicated targets.

All methods use the same Real NVP flow architecture (Dinh et al., 2017). For the FAB-based
approaches, we run AIS with a single intermediate distribution (β = 0.5) and MCMC transitions
given by a single Metropolis-Hastings step, being a Gaussian perturbation and then an accept-reject
step. For FAB with prioritized buffer, we perform L = 4 gradient updates to qθ per AIS sampling
step. For the SNF and CRAFT, we do 1 Metropolis-Hastings step every 3 flow layers. All models are
trained for 2 ·107 flow evaluations. Further details on the hyper-parameters and architectures used in
each algorithm are provided in Appendix D.1. Moreover, the code to reproduce all our experiments
is publicly available on GitHub6.

Figure 2 shows that our two FAB-based methods and the flow trained by ML fit all modes in p. By
contrast, the other alternative methods cover only a small subset of the modes. The reason for this
is that such methods are trained only on samples from qθ and the poor initialization of qθ makes it
unlikely that they will ever generate samples from undiscovered modes.

For evaluation of trained models we compute the effective sample size (ESS) obtained when doing
importance sampling with qθ; the average log-likelihood of qθ on samples from p; the forward
KL divergence with respect to the target; and the mean absolute error (MAE) in the estimation of
Ep(x) [f(x)] by importance sampling with qθ, where f(x) is a toy quadratic function specified in
Appendix D. We express the MAE as a percentage of the true expectation to ease interpretability.
Finally, we also report the MAE that is obtained when we do not reweight samples according to the
importance weights. We provide further details on the evaluation setup in Appendix D.2.

Table 1 shows for each method average results and corresponding standard errors over 3 random
seeds. FAB with the buffer performs similarly to the benchmark of training the flow by ML. Both
of these methods are the best performing ones with the highest ESS, the highest log-likelihood on
samples from p and the lowest forward KL divergence and lowest MAE. FAB without a replay buffer
is the next best method while the others perform poorly. The non FAB/ML methods assign zero
density to points sampled from undiscovered modes of p, which is represented by writing NaN as
forward KL divergence and log-likelihood in the table. Note that the ESS for the SNF, CRAFT, RBD
and the flow trained by minimizing KL(qθ∥p) are spurious as these methods are missing modes.

6https://github.com/lollcat/fab-torch
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4.2 Alanine dipeptide

We now consider the 22 atom molecule alanine dipeptide, shown in Figure 3a, in an implicit solvent
at a temperature of T = 300K and aim to approximate its Boltzmann distribution given the 3D
atomic coordinates. This is a popular benchmark when considering Boltzmann generators (Wu et al.,
2020; Campbell et al., 2021; Dibak et al., 2022; Stimper et al., 2022). Previous works have used
a coordinate transformation to map some but not all Cartesian coordinates to internal coordinates,
which are normalized using their mean and standard deviation computed on samples generated by
MD (Noé et al., 2019). Since we aim to train models without using any data, we replace the mean by
the minimizer of the energy, which can be cheaply estimated through gradient descent with less than
100 gradient evaluations. Similarly, we replace the standard deviations with values reflecting the
typical order of magnitude of each variable. Furthermore, we represent the molecule with internal
coordinates only, thereby implicitly satisfying the system’s rotational and translational invariance.

We use Neural Spline Flows with 12 rational quadratic spline coupling layers (Durkan et al., 2019).
Dihedral angles of those bonds that can move freely are treated as circular coordinates (Rezende
et al., 2020), while the others are considered as unbound. The models trained with FAB use 8
intermediate distributions. For FAB with the replay buffer, we do L = 8 gradient updates per AIS
forward pass. Alanine dipeptide is a chiral molecule, meaning that it can exist in two distinct forms
(L-form and D-form) that are mirror images of each other, as illustrated in Figure 13. In nature,
we find almost exclusively the L-form which is why only this form is considered in the literature.
During training, we filter the samples generated by our flows and keep only those for the L-form,
whereby the flow models learn to only generate this form. More details are given in Appendix F.1.

(a) (b)

Figure 3: (a) Visualization of alanine dipeptide and the dihedral angles ϕ and ψ for the Ramachan-
dran plot. (b) Marginal distribution of ϕ in log scale as given by the ground truth, the flow trained
with ML on MD samples, and FAB with a replay buffer. RW indicates whether samples have been
reweighted with importance sampling before generating the plot.

To evaluate our models, we generated samples using parallel tempering MD simulations, which
serve as ground truth. They are split into training and validation sets with 106 samples each and a
test set with 107 samples. We compare FAB to several baseline methods already mentioned in the
previous section, see Table 2 for the full list. The SNF method performs 10 Metropolis-Hastings
steps every two layers, meaning a total of 60 additional sampling steps. All methods are trained
for 2.5 × 108 flow evaluations except for the SNF, which uses 6 × 107 as it is more expensive in
terms of target evaluations. We compare methods using the ESS of importance sampling weights
and the average log-likelihood on the test set. Moreover, we generate Ramachandran plots, which
are histograms for the marginal distribution of the dihedral angles ϕ and ψ illustrated in Figure 3a.
We compute their KL divergence to the ground truth with and without reweighting. Our experiments
are repeated over 3 random seeds and average values and corresponding standard errors are given.

Table 2 shows our results. The flow trained by minimizing Dα=2(p∥qθ) with samples from qθ did
not converge due to the high gradient variance. Hence, it performs very poorly in practice, especially
in terms of ESS. The models trained by minimizing KL(q∥p) only approximate a subset of the target
modes, leading to poor test log-likelihood and KLD values, and spurious values for the ESS. The
flow trained by ML on MD samples obtains very good results in terms of test log-likelihood and
KLD values but struggles to model the dim mode at ϕ ≈ 1 correctly, as shown in Figures 3b and
4. Its ESS is low and, therefore, reweighting worsens performance. The models trained with FAB
have a higher ESS and test log-likelihood than all other methods. FAB with a buffer obtains lower

7



Figure 4: From left to right, Ramachandran plots of the ground truth generated by MD, a flow model
trained by ML on MD samples, and by FAB using a replay buffer before and after reweighting.

Table 2: ESS, log-likelihood on the test set, and KL divergence (KLD) of Ramachandran plots with
and without reweighting (RW) for each method. Our methods are marked in italic and best results
are emphasized in bold.

ESS (%) Ep(x) [log q(x)] KLD KLD w/ RW

Flow w/ ML 2.8±0.6 209.22±0.28 (7.57±3.80)×10−3 (2.58±0.80)× 10−2

Flow w/ Dα=2 (1±0)×10−4 73.5±1.3 2.96±0.13 17.5±0.2
Flow w/ KLD 54±12 100±32 3.17±0.20 3.15±0.19
RBD w/ KLD 44±18 143±22 3.00±0.05 3.00±0.04
SNF w/ KLD (2±1)×10−3 N/A±N/A 8.71±3.36 9.58±2.68
FAB w/o buffer 52.2±1.3 211.13±0.03 (6.28±0.33)× 10−2 (2.66±0.90)× 10−2

FAB w/ buffer 92.8±0.1 211.54±0.00 (3.42±0.45)×10−3 (2.51±0.39)×10−3

KLD values than the flow trained by ML. When the samples generated by this FAB version are
reweighted, the resulting distribution is nearly the same as the ground truth, as illustrated in Figures
3b and 4. These results show that FAB with a replay buffer outperforms the flow trained by ML on
MD samples while using 100 times fewer evaluations of the target density, as shown in Table 6.

5 Discussion and Related Work

Stochastic Normalizing Flows (SNFs) combine flows with MCMC methods by introducing sampling
layers between flow layers to improve model expressiveness (Wu et al., 2020; Nielsen et al., 2020).
SNFs have been extended in Continual Repeated Annealed Flow Transport Monte Carlo (CRAFT)
(Matthews et al., 2022; Arbel et al., 2021), where flows are combined with Sequential Monte Carlo
(SMC). In CRAFT, flows are used to transport SMC samples between consecutive intermediate
annealing distributions, with each flow being trained by minimizing a KL divergence with respect to
the next intermediate distribution. As the CRAFT model is more general and has more expressive
power than the flow models used in this paper, combining FAB with CRAFT would be a promising
avenue for future work. We outline a new FAB-flavored version of CRAFT in Appendix B.1.

Within the MCMC/AIS literature, significant work has focused on improving transition kernels
(Levy et al., 2018; Gabrié et al., 2022), intermediate distributions (Brekelmans et al., 2020) and
the extended target distribution (Doucet et al., 2022a,b) of AIS. These techniques are applicable to
FAB for improving the simple AIS procedure used within this paper. FAB does not differentiate
through AIS to obtain the gradient with respect to the flow, but doing so as in (Geffner & Domke,
2021; Zhang et al., 2021; Metz et al., 2021; Doucet et al., 2022a) may allow for a lower variance
gradient estimate. FAB does not use gradients of the target distribution when optimizing its loss
function, although such gradients are used in the sampling process by HMC. This is in contrast with
the alternative approach of training the flow by minimizing KL(qθ∥p), which does use these gra-
dients. Such gradient information could be included in FAB through force matching (Wang et al.,
2019; Köhler et al., 2021; Köhler et al., 2022) or the addition of a KL divergence loss term.
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6 Conclusions

We have proposed FAB, a method for training flows to approximate complicated multimodal target
distributions. FAB combines α-divergence minimization with α = 2 with an AIS bootstrapping
mechanism for improving the samples used for the loss estimate. By focusing on this divergence, we
favor mass-covering of multimodal distributions and minimize importance weight variance. Using
AIS, FAB targets the ratio between the squared target density and the flow density, which provides
a high quality training signal by focusing on the regions where the flow is a poor approximation of
the target. We have also proposed to use a prioritized replay buffer, which reduces the cost of FAB
and improves performance. Our experiments show that FAB can produce accurate approximations
of complex multimodal targets without using samples from such distributions, while alternative
approaches fail. Remarkably, for the alanine dipeptide, FAB produces better results than training
the flow by ML on samples generated via MD simulations while still using 100 fewer evaluations
of the target than the MD simulations. In future work, we hope to scale up our approach to more
challenging problems, such as the modelling of the Boltzmann distribution of large proteins.
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A Derivation of the loss

We consider the general case of training a parameterized probability distribution qθ to minimize a
loss function L(θ) =

∫
f(x, θ)dx, where f(x, θ) ≥ 0. Later, we will focus on the specific case of

Dα=2(p∥qθ) minimization, where f(x, θ) = p(x)2/qθ(x), however, the general case is interesting
as well and simplifies notation. Let us consider the gradient of L(θ) written as an expectation over
some distribution g(x):

∇θL(θ) =
∫
∇θf(x, θ)dx = Eg(x)

[
∇θf(x, θ)

g(x)

]
. (9)

We select g(x) to be the minimum variance importance sampling distribution given by g(x) =
f(x, θ)/Zf where Zf =

∫
f(x, θ)dx is the normalizing constant. Then, plugging in the identity

∇θ log f(x, θ) = ∇θf(x, θ)/f(x, θ), i.e., applying the log-derivative trick similar to REINFORCE
(Williams, 1992), we obtain

Eg(x)

[
∇θf(x, θ)

g(x)

]
= Zf Eg(x)

[
∇θf(x, θ)

f(x, θ)

]
= Zf Eg(x) [∇θ log f(x, θ)] . (10)

We may not generally be able to sample directly from g(x), but we can use AIS to estimate the
right part of Equation (10). To do this, we consider running AIS with p2/qθ as the target and qθ as
the initial distribution. We note that, when the target density is unnormalized, the AIS weights are
scaled by the target normalizing constant:

wAIS(xN ) =
p̃1 (x1)

p0 (x1)

p̃2 (x2)

p̃1 (x2)
· · · p̃N−1 (xN−1)

p̃N−2 (xN−1)

p̃N (xN )

p̃N−1 (xN )

=
Z1p1 (x1)

p0 (x1)

Z2p2 (x2)

Z1p1 (x2)
· · · ZN−1pN−1 (xN−1)

ZN−2pN−2 (xN−1)

ZNpN (xN )

ZN−1pN−1 (xN )

= ZN
p1 (x1)

p0 (x1)

p2 (x2)

p1 (x2)
· · · pN−1 (xN−1)

pN−2 (xN−1)

pN (xN )

pN−1 (xN )
,

(11)

where p̃i denotes the unnormalized density for the i-th intermediate AIS distribution and Zi is the
corresponding normalizing constant such that pi = p̃i/Zi.

We can then write Equation (10) as an expectation over the AIS forward pass

Zf Eg(x) [∇θ log f(x, θ)] = Zf

∫
f(x, θ)

Zf
∇θ log f(x, θ)dx

= Zf EAIS

[
wAIS

Zf
∇θ log f(x̄AIS, θ)

]
= EAIS [wAIS∇θ log f(x̄AIS, θ)] ,

(12)

where x̄AIS and wAIS are the samples and corresponding importance weights generated by AIS when
targeting g. We use the bar superscript to denote stopped gradients of the samples generated by
AIS, x̄AIS, with respect to the parameters θ. Now, returning to the case where we minimize L(θ) =
Dα=2(p∥qθ), we set f(x, θ) = p(x)2/qθ(x) to obtain

∇θDα=2(p∥qθ) = Zf Eg(x)

[
∇θ log

p(x)2

qθ(x)

]
= −Zf Eg(x) [∇θ log qθ(x)]

≈ − 1

N

N∑
i

w
(i)
AIS∇θ log qθ(x̄

(i)
AIS) ,

(13)

where w(i)
AIS and x

(i)
AIS are samples and weights generated by AIS with p2/qθ as target. Equation (13)

provides an unbiased estimate of∇θL(θ). If we also stop the gradients of wAIS, we can then use the
surrogate loss function

S(θ) = −EAIS [w̄AIS log qθ(x̄AIS)] , (14)
where∇θL(θ) = ∇θS(θ). The surrogate loss function may then be estimated using Monte Carlo.

In practice, we found that replacing the unnormalized weights in Equation (14) with the normalized
weights greatly improved training stability. We refer to the surrogate loss with normalized impor-
tance weights as S ′(θ). To normalize the weights we divide them by Z̄f = L̄(θ) = EAIS [w̄AIS] such
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that
∫
w̄AISdx = 1, where the bar superscripts denotes stopped gradients. The relationship between

S(θ) and S ′(θ) is therefore S ′(θ) = S(θ)/L̄(θ). The gradient of S ′(θ) has the same direction as
the gradient of the original surrogate loss, S(θ), but a has different magnitude. Using S ′(θ) instead
of S(θ) improves training stability by removing the effect of large fluctuations in the magnitude of
L(θ) = Dα=2(p∥qθ) without changing the direction of the gradient as training proceeds.

Thus, we use the following estimate of the surrogate loss function for training:

S ′(θ) = −
N∑
i

w̄
(i)
AIS∑N

i w̄
(i)
AIS

log qθ(x̄
(i)
AIS) , (15)

where w̄(i)
AIS and x̄

(i)
AIS are the samples and importance weights generated by AIS but evaluated in

practice using stopped gradients when computing the gradient of Equation (15). The use of self-
normalization in the loss function introduces bias for finite N for the estimation of S ′(θ). We use
qθ as the initial distribution for AIS, and a relatively small number of intermediate distributions to
prevent the AIS forward pass from becoming too computationally expensive.

B Variations of FAB

As mentioned above, in this paper we focus on the minimization of Dα=2(p∥qθ) as estimated with
our AIS bootstrap approach targeting p2/qθ. However, the general approach of improving gradient
estimation through the addition of the AIS bootstrap process may be applied in other settings. Firstly,
in Appendix A above, the loss function in Equation (12) is written in a general manner and could
therefore be used for any f(x, θ) ≥ 0 and not only Dα=2(p∥qθ). We could simply plug in into
Equation (12) other divergence measures in the form L(θ) =

∫
f(x, θ)dx and satisfying f(x, θ) ≥

0. We can also apply the proposed approach to other types of models. For example, in the section
below we show how we can obtain a FAB flavored version of Continual Repeated Annealed Flow
Transport Monte Carlo (CRAFT) (Matthews et al., 2022).

B.1 FAB applied to CRAFT

Continual Repeated Annealed Flow Transport Monte Carlo (CRAFT) is an extension of SNFs (Wu
et al., 2020; Nielsen et al., 2020) proposed by Matthews et al. (2022) which combines normalizing
flows with sequential Monte Carlo (SMC). Specifically, flows are used to transport samples between
consecutive annealing distributions in combination with SMC. CRAFT trains each of the flows by
minimizing the reverse KL divergence with respect to the next annealing distribution and gradients
are estimated using the samples generated by the flow transport step.

FAB could be combined with the CRAFT model. For example, the reverse KL divergence could be
replaced with a mass-covering divergence such as the α-divergence with α = 2. Furthermore, we
could improve the estimation of gradients by targeting with AIS the minimum variance distribution
for importance sampling instead of just the next annealing distribution.

A FAB style version of the CRAFT algorithm is described in algorithms 2 and 3. Each flow transport
step is now trained by minimizing the α-divergence with α = 2 and using samples generated by the
next immediate MCMC step ahead of the flow in the SMC process. Below, we briefly introduce
CRAFT with an emphasis on the loss function used. Next, we describe how FAB may be used to
improve training of the flow transport steps. We follow the notation from the CRAFT paper exactly
and use their pseudo code as a basis for our proposed algorithm indicating changes clearly. We refer
to (Matthews et al., 2022) for further details on the CRAFT algorithm.

B.1.1 Continual Repeated Annealed Flow Transport Monte Carlo

As in FAB, the aim of CRAFT is to approximate an intractable target distribution that we cannot
sample from and whose density can only be evaluated up to a normalizing constant. This target
distribution is denoted πK(x) (equivalent to p(x) in our notation). In CRAFT, SMC is run with
interleaved flow transport steps through a sequence of annealed distributions (πk(x))

K
k=0, each with

normalization constant Zk. The base distribution π0 is a tractable distribution (e.g., a Gaussian)
from which we can sample. Similarly to AIS, (πk(x))

K−1
k=1 are defined by interpolating between
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base and target log-densities, where the target density may be unnormalized. The SMC process in
CRAFT begins by sampling from the base distribution Xi

0∼π0. Then, for each distribution from
k = 1 to k = K, a flow Tk is trained to transport samples from πk−1(x) to πk(x). Additionally,
at each step from k = 1 to k = K, CRAFT utilises resampling and MCMC to bring the samples
closer to πk(x).

Similarly to AIS, the CRAFT algorithm returns a set of points and normalized importance weights
(Xi

K ,W
i
K)Ni=1, which may be used for approximating expectations with respect to the target. Each

pointXi
k has an associated normalized importance weightW i

K for importance sampling with respect
to the intermediate target distribution πk(x). We refer back to the CRAFT paper, and to the pseudo
code in Algorithm 2 for how these importance weights are calculated.

CRAFT minimizes the following training objective:

H =

K∑
k=1

KL[T#
k πk−1||πk] , (16)

where # denotes the push forward between distributions. The above objective trains each flow
transport step Tk to minimize the KL divergence between T#

k πk−1, i.e., the distribution of outputs
of the flow when given as input samples from πk−1, and the next intermediate distribution πk. The
gradient estimate used to train each flow transport step Tk is given by

∇θkH ≈
∑
i

W i
k−1∇θk

[
− log γk(Tk(X

i
k−1))− log |∇xTk(X

i
k−1

∣∣)] , (17)

where γk(x) ∝ πk(x). The flow is trained by passing it samplesXk−1 from the previous SMC step,
computing the corresponding output samples from the flow Tk(Xk−1) and using these to estimate
the gradient of KL[T#

k πk−1||πk]. The normalized importance weight in the loss W i
k−1 account for

the fact that the samples Xi
k−1 passed from the previous step in the SMC forward pass come from

an approximation to πk−1.

B.1.2 FAB-CRAFT

We now propose a FAB flavored version of CRAFT. First, we re-introduce some notation from our
paper: We use q to denote the initial distribution used in AIS and p to denote the target distribution
that we wish to approximate. Recall that q is trained to fit p. All other notation in this section follows
the CRAFT paper’s notation.

In our FAB-CRAFT method, we use the MCMC samples following each flow transport step in
CRAFT to update the flow to minimize Dα=2(p∥q), where q = T#

k πk−1 and p = πk. To do this
with minimal changes to the original CRAFT algorithm, we make the observation that sampling
from the initial distribution q and then running MCMC targeting p is equivalent to running AIS
targeting p2/q with 1 intermediate distribution at β = 0.5. Thus, the samples generated by the
MCMC steps following each flow transport step in CRAFT can be repurposed for an AIS bootstrap
estimate of the flow training loss. For training, the only adjustment to the SMC forward pass of
CRAFT is then to move the resampling step to occur after each MCMC step, where previously it
occurred after each flow transport step. At inference time the original CRAFT algorithm can be run
with the flows trained with our method in its exact original form. We describe this in more detail
below and provide pseudo code in Algorithm 2 and 3.

We begin by deriving the AIS importance weights when targeting p2/q with 1 intermediate distri-
bution and setting β = 0.5. For only 1 intermediate distribution, the AIS weights are given by

wAIS(x2) =
p1 (x1)

p0 (x1)

p2 (x2)

p1 (x2)
. (18)

As before, we set the intermediate distributions as interpolations between the base and the target:
log pi(x) = βi log p0(x) + (1 − βi) log pN (x). Now, if we set β1 = 0.5, then plugging in p0 = q,
p1 = q0.5(p2/q)0.5 = p and p2 = p2/q, we obtain the following AIS weights:

wAIS(x2) =
p (x1)

q (x1)

p (x2)

q (x2)
. (19)
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Recall that in CRAFT we set q = T#
k πk−1 and p = πk. AIS is then run by first sampling x1 from

q, which is done in practice by setting Y i
k ← Tk(X

i
k−1) where Xi

k−1 ∼ πk−1 and then generating
x2 from x1 by MCMC, which is done in practice by setting Xi

k ∼ Kk(Y
i
k ), where Kk is an MCMC

transition kernel that leaves πk invariant. The importance weights of Xi
k with respect to the AIS

target p2/q are then given by
wi

AIS,k = p(Y i
k )/q(Y

i
k )× p(Xi

k)/q(X
i
k) . (20)

Using the normalized importance weights W i
AIS,k = wi

AIS,k/
∑N

j=1 w
j
AIS,k, we can calculate the

FAB gradient estimate given by

ĥk = −
N∑
i

W i
AIS,k∇θk log qθk(X

i
k)

= −
N∑
i

W i
AIS,k∇θk

[
log γk−1(T

−1
θk

(Xi
k)) + log |∇xT

−1
θk

(Xi
k)|

]
.

(21)

This assumes that the samples passed to the flow are from the distribution πk−1. However, in
practice, these samples are passed from the previous SMC step which is an approximation to πk−1.
Similarly as in the original CRAFT loss, see Equation 17, we can correct for this by instead using

ĥk = −
N∑
i

W i
k−1W

i
AIS,k∇θk

[
log γk−1(T

−1
θk

(Xi
k)) + log |∇xT

−1
θk

(Xi
k)
]

(22)

where W i
k−1 accounts for Xi

k−1 coming from an approximation to πk−1.

Calculating the normalized AIS weights requires all the samples from the flow to be passed to the
MCMC step. Because of this, we move the SMC resampling step to take place after the MCMC step
instead of just after the flow transport step, see Algorithm 2. Note that the weightsWk for resampling
Xk are equal to the weights for resampling the corresponding flow outputs Yk that generate such
samples. This result is due to the MCMC kernel Kk leaving πk invariant. The resulting FAB flavor
of CRAFT is shown in algorithms 2 and 3.

Some final remarks: our goal has been to create a FAB flavored version of CRAFT while keeping
the algorithm as similar to the original version as possible. However, in practice, it would be better
to make further changes. For example, using a prioritized replay buffer would significantly decrease
the computational requirements of the algorithm. Furthermore, for updating each flow, it may also
be beneficial to consider samples across the whole chain of intermediate distributions, instead of
using only samples from the local MCMC step immediately following the flow.

C Analysis of FAB

C.1 Gradient estimation performance

We first analyze the quality of the noisy gradients provided by the proposed AIS bootstrap method.
For this, we consider a toy problem in which qθ and p are unit variance 1D Gaussians with means 0.5
and−0.5, respectively, as shown in Figure 5a. We estimate the gradient ofDα=2(p∥qθ) with respect
to the mean of qθ and compare different methods: first, importance sampling (IS) with samples from
qθ; second, IS with samples from p; third, AIS with p as target and qθ as initial distribution; and
fourth, our proposed method using AIS with p2/qθ as target and qθ as initial distribution. For AIS
we use 3 intermediate distributions and, as transition operator, HMC with 5 leapfrog steps and
resampling of momentum variables once per intermediate AIS distribution.

Figure 5b shows the Signal-to-noise ratio (SNR) for the different gradient estimators as a function
of the number of samples used. AIS bootstrap is clearly the best method. IS with qθ performs very
poorly and it is outperformed by both IS with p and AIS targeting p, with these two latter techniques
performing similarly but way worse than AIS bootstrap. Figure 5c shows that the quality of the
proposed method increases fast as the number of intermediate AIS distributions grows, with IS with
samples from p being outperformed quite early in the plot while still using a rather small number of
distributions. It is important to note, however, that in more challenging problems, it is unlikely that
our AIS bootstrap method will outperform IS with samples from p, especially early in training when
qθ is a poor approximation to p.
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Algorithm 2: SMC-NF-step for FAB-CRAFT: Additions are in green and removals in red
.

1: Input: Approximations (πN
k−1, Z

N
k−1) to (πk−1, Zk−1), normalizing flows Tk, unnormalized

annealed targets γk−1 and γk and resampling threshold A ∈ [1/N, 1).
2: Output: Gradient ĥk of FAB loss w.r.t θk, particles at iteration k: πN

k = (Xi
k,W

i
k)

N
i=1,

approximation ZN
k to Zk.

3: Transport particles: Y i
k = Tk(X

i
k−1).

4: Compute IS weights:
wi

k ←W i
k−1Gk(X

i
k−1) // unnormalized

W i
k ← wi

k/
∑N

j=1 w
j
k // normalized

5: Estimate normalizing constant Zk:
ZN
k ← ZN

k−1

(∑N
i=1 w

i
k

)
.

6: Compute effective sample size ESSN
k .

7: if ESSN
k ≤ NA then

8: Resample N particles denoted abusively also Y i
k according to the weights W i

k, then set
W i

k = 1
N .

9: end if
10: Generate samples and IS weights via AIS targetting p2/qθk with 1 intermediate distribution,

where p = πk and q = T#
k πk−1. By setting β = 0.5 we simply run the original CRAFT

MCMC transition kernel with p as a target.
Sample Xi

k ∼ Kk(Y
i
k , ·). // MCMC

wi
AIS,k ← p(Y i

k )/q(Y
i
k )× p(Xi

k)/q(X
i
k)

W i
AIS,k ← wi

AIS,k/
∑N

j=1 w
j
AIS,k

11: Estimate gradient of FAB objective
ĥk = −

∑N
i W i

k−1W
i
AIS,k∇θk

[
log γk−1(T

−1
θk

(Xi
k)) + log |∇xT

−1
θk

(Xi
k)
]

12: if ESSN
k ≤ NA then

13: Resample N particles denoted abusively also Xi
k according to the weights W i

k, then set
W i

k = 1
N .

14: end if
15: Return

(
πN
k , Z

N
k , ĥk

)
.

C.2 Scaling FAB to higher dimensions

Now we consider how the performance of FAB is affected by an increasing problem dimensionality.
To investigate this, we analyse a simple scenario where we assume p and q to be factorised, with
each marginal of q having its own separate parameters (no parameter sharing between dimensions).
We acknowledge that these are strong simplifying assumptions and leave a more general analysis to
future work. Given these assumptions, we show the following: 1) The variance in the estimates of
the gradient of Dα=2 by importance sampling with samples from q and p increases exponentially
with respect to the dimensionality of the problem. 2) The variance in the corresponding estimates
obtained with FAB can remain constant if the number of AIS intermediate distributions increases
linearly with the dimensionality of the problem.

C.2.1 Theoretical analysis on factorized p and q

We consider the problem of estimating the gradient of Dα=2 where both p and q are factorized
distributions: they are equal to the product of their marginals. To further simplify the analysis, we
consider the gradient with respect to the parameters of the j-th dimension of q and assume that there
is no parameter sharing across dimensions of q. In this case, Dα=2 is given by

µ =

∫
p(x)2

q(x)
dx =

D∏
d

∫
pd(xd)

2

qd(xd)
dxd , (23)
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Algorithm 3: CRAFT-training: Additions are shown in green and removals in red

1: Input: Initial NFs {Tk}1:N , number of particles N , unnormalized annealed targets {γk}Kk=0
with γ0=π0 and γK=γ, resampling threshold A ∈ [1/N, 1).

2: Output: Learned flows Tk and length J sequence of approximations (πN
K , Z

N
K ) to (πK , ZK).

3: for j = 1, . . . , J do
4: Sample Xi

0∼π0 and set W i
0=

1
N and ZN

0 =1.
5: for k = 1, . . . ,K do
6: ĥk ← flow-grad

(
Tk, π

N
k−1

)
using eqn (17).

7:
(
πN
k , Z

N
k , ĥk

)
← SMC-NF-step

(
πN
k−1, Z

N
k−1, Tk

)
8: Update the flow Tk using gradient ĥk.
9: end for

10: Yield (πN
K , Z

N
K ) and continue for loop.

11: end for
12: Return learned flows {Tk}Kk=1.

(a) (b) (c)

Figure 5: (a) Target and approximating densities p and q, respectively. (b) Signal-to-noise ratio
(SNR) of various gradient estimators as a function of the number of samples used. (c) SNR as a
function of the number of intermediate AIS distributions when using 100 samples. Legend as in (b).

where pd and qd are the marginal distributions for dimension d. The gradient of this quantity with
respect to the parameters θj of the j-th marginal of q is given by,

∇θjµ = ∇θj

∫
pj(xj)

2

qj(xj)
dxj ×

D∏
d ̸=j

∫
pd(xd)

2

qd(xd)
dxd . (24)

We are interested in studying how the variance in our estimate of∇θjµ scales withD. Equation (24)
shows that each additional dimension d ̸= j adds an extra factor µd =

∫
pd(xd)

2/qd(xd) dxd in the
gradient expression. To eliminate the effect of this change in the gradient as D increases, we focus
our analysis on Var[∇θj µ̄/

∏D
d̸=j µd], where µ̄ is an estimate of µ and

∏D
d̸=j µd is a normalization

factor that cancels the effect of the additional dimensions.

Importance Sampling with q: We consider first how increasing D affects the variance in the
estimation of the gradient of Dα=2 by importance sampling with samples from q. The importance
sampling estimate of Dα=2 with N samples from q is given by

µ̄q =
1

N

N∑
n=1

w(xn)
2 , (25)

17



where w(xn) = p(xn)/q(xn) and xn ∼ q. Now, let us define wd(xn,d) = pd(xn,d)/qd(xn,d),
where xn,d is the d-th entry in xn. We then obtain

∇θj µ̄q =
1

N
∇θj

∑
n

D∏
d

wd(xn,d)
2 =

1

N

∑
n

∇θjwj(xn,j)
2
∏
d̸=j

wd(xn,d)
2 . (26)

The variance of this estimate, after dividing by the aforementioned normalization factor, is given by

N Var

[
∇θj µ̄q∏D
d ̸=j µd

]
= Eqj

[{
∇θjwj(xn,j)

2
}2

]
×

D∏
d̸=j

Eqd

[
wd(xd,n)

4
]

µ2
d

− (∇θjµj)
2 . (27)

Since Varqd
[
wd(xd,n)

2
]
= Eqd

[
wd(xd,n)

4
]
− µ2

d > 0, we have that Eqd

[
wd(xd,n)

4
]
/µ2

d ≥ 1.
Thus, the first factor in Equation (27) is multiplied in this equation by D − 1 factors all larger than
1, which implies that the variance of this estimator increases exponentially as a function of D. This
is a well-known problem of importance sampling.

Importance Sampling with p: Interestingly, we get a similar result when estimating Dα=2 by
importance sampling with samples from p. The estimate for the gradient of Dα=2 with respect to
the j-th dimension of q is now

∇θj µ̄p =
1

N

∑
n

∇θjwj(xn,j)
∏
d ̸=j

wd(xn,d) , (28)

where xn,d ∼ pd. The variance of this gradient estimate, after dividing by the normalization factor,
is given by

N Var

[
∇θj µ̄p∏D
d̸=j µd

]
= Epj

[{
∇θjwj(xn,j)

}2
]
×

D∏
d ̸=j

Epd

[
wd(xn,d)

2
]

µ2
d

− (∇θjµj)
2. (29)

Since Varpd
[wd(xd,n)] = Epd

[
wd(xd,n)

2
]
−µ2

d > 0, we have that Epd

[
wd(xd,n)

2
]
/µ2

d ≥ 1. Thus,
the first factor in Equation (29) is again multiplied by D − 1 factors all larger than 1, which implies
that the variance of this estimator increases exponentially as a function of D, albeit at a lower rate
than in the case of importance sampling with q. This implies that, even with access to ground truth
samples from p, the number N of samples required to keep the variance of the gradient estimates of
Dα=2 constant grows exponentially as a function of the problem dimensionality D.

FAB: We now apply the same type of analysis to the estimates of the gradient given by FAB. We
consider the FAB gradient estimate from Equation (13), which is equal in expectation to ∇θµ. This
estimate relies on the raw importance weights from AIS rather than the self-normalized importance
weights, which makes it easier to analyze. The FAB estimate of the gradient of Dα=2 with respect
to the parameters of the j-th marginal of q is given by

∇θj µ̄FAB =
1

N
∇θj

∑
n

log q(xn)w̄(xn)

=
1

N

∑
n

∇θj log qj(xn,j)w̄j(xn,j)×
∏
d̸=j

w̄d(xn,d) ,
(30)

where w̄ are the importance weights from AIS with stopped gradients and we have decomposed
the AIS weights into the contributions from each dimension: w̄(xn) =

∏
d w̄d(xn,d). Note that,

since p and q are factorized, we have that all the intermediate AIS distributions are factorized as
well. If we assume that the MCMC transition kernels in AIS produce independent samples from the
ground truth intermediate target distributions, we have that xn,1, . . . , xn,D are independent random
variables. The variance of∇θj µ̄FAB after dividing by the normalization factor is then given by

N Var

[
∇θj µ̄FAB∏D

d̸=j µd

]
= EAISj

[{
∇θj log qj(xj,n)w̄j(xn,j)

}2
]
×

D∏
d̸=j

EAISd

[
w̄d(xn,d)

2
]

µ2
d

− (∇θjµj)
2 , (31)

where EAIS denotes the expectation with respect to the AIS forward pass. The first expectation
in the equation above is constant as D increases. Therefore, we focus on the contributions of the
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other expectations for the importance weights of dimensions d ̸= j. As in the previous cases where
we used importance sampling with samples from q and p, the variance in Equation (31) will again
increase exponentially with D. However, under the assumption that the MCMC transitions produce
independent samples from the intermediate AIS distributions, Neal (2001) shows that the variance
in the log importance weights of AIS is proportional toD/K whereK is the number of intermediate
AIS distributions. This implies that

∏D
d̸=j EAISd

[w̄d(xn,d)
2]/µ2

d will remain roughly constant if we
increase the number K of AIS distributions by the same factor as the dimensionality of the problem.
In this case, the variance of∇θj µ̄FAB will remain constant as we increase D and the cost of the FAB
gradient estimator will only increase linearly as D increases.

C.2.2 Empirical analysis on toy problem

We now run an empirical analysis to assess the performance of the FAB gradient estimator as D
increases. We consider the case where q and p are both factorized Gaussians with unit marginal
variances and with mean vectors equal to 0.5×1D and−0.5×1D, where 1D is a vector of dimension
D with all of its entries equal to one. For the FAB gradient estimate, we increase the number of AIS
distributions by the same factor as the dimensionality of the problem. We analyze the SNR in the
estimates of the gradient of the mean for the first marginal of q as the dimensionality of the problem
increases. The AIS transition operators are performed by running a single iteration of HMC, with
5 leapfrog steps, with a step size of 0.5. We found our results to be sensitive to the choice of step
size. In practice, we selected this value by trial and error, assessing the quality of the AIS samples
by looking at their empirical histogram, as shown in Figure 7.

Figure 6a shows that, when using importance sampling with samples from p, the log-weight variance
increases linearly as the number of dimensions increases. By contrast, this variance remains constant
with FAB. This is achieved by fixing the number of AIS intermediate distributions to be equal to the
number of dimensions. This result is consistent with the analysis from the previous section and with
the results of Neal (2001). Furthermore, in Figure 6b we see that the SNR remains roughly flat for
FAB (stays within a single order of magnitude), while it quickly decreases for importance sampling
with samples from p. If the same results were to hold in more complex problems, this would imply
that we could safely apply FAB in those settings by linearly increasing the number of intermediate
AIS distributions as the dimensionality of the problem grows.

(a) (b)

Figure 6: Analysis of efficiency of AIS bootstrap with increasing dimensionality. For AIS, we set the
number of AIS distributions to be equal to the number of dimensions of the problem—which results
in a linearly increasing compute cost as the dimension scales. (a) Variance in the log importance
weights, for the AIS bootstrap vs importance sampling with p. (b) Signal-to-noise ratio (SNR) for
gradient estimation with the AIS bootstrap vs importance sampling with p. Legend as in (a).
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Figure 7: Histogram of samples from AIS targetting p and p2/q compared to the PDF of p, q and
(normalized) p2/q. The AIS samples are generated with the tuned HMC step size of 0.5. This tuning
was performed by trial and error using the displayed histogram. AIS is run with 4 intermediate
distributions, and the transition to each intermediate distribution is performed by running a single
iteration of HMC with 5 leapfrog steps.

D Mixture of Gaussians experiments

D.1 Training Setup

All flow models have 15 RealNVP layers (Dinh et al., 2017), with a 2 layer (80 unit layer width)
MLP for the conditioner. The flow is initialized to the identity transformation, so qθ is initially a
standard Gaussian distribution. Training is performed with a batch size of 128, using the Adam
optimizer (Kingma & Ba, 2015) with a learning rate of 1× 10−4 and we clip the gradient norm to a
maximum value of 100. For training the flow by ML, we draw new samples from the target for each
loss estimation. The model that uses a RBD uses an acceptance function composed of a residual
network with three blocks containing 512 hidden units per layer. The truncation parameter is set
to the common value T = 100. For the SNF and CRAFT methods, we do 1 Metropolis-Hastings
step every three flow layers. We used a fixed step size of σ = 5.0 for the Gaussian perturbation of
the Metropolis-Hastings step, which is the same as what is used within AIS for FAB. This means
that the SNF and CRAFT models has 5 stochastic Metropolis-Hastings steps in total. The CRAFT
model uses 6 annealing temperatures with geometric spacing, and a resampling threshold of 0.3. We
use the code provided by (Matthews et al., 2022) at https://github.com/deepmind/annealed_
flow_transport for training the CRAFT model. We train all models for 2× 107 flow evaluations.
For each method, we train 3 models, each with a different random seed, and results are reported as
averages over these seeds.

FAB specific details: The batch size for both the AIS forward pass (M ) and sampling from the
buffer (N ) is equal to 128. We run AIS with a single intermediate distribution (β = 0.5) and
MCMC transitions are given by a single Metropolis-Hastings step: a Gaussian perturbation and
then an accept-reject step. We used a fixed step size of σ = 5.0 for the Gaussian perturbation.
We initialize the buffer with 1280 samples from the initialized flow-AIS combination and use a
maximum buffer length of 12800. We do not use any clipping when computing wcorrection.

D.2 Evaluation Setup

For each method, we compute after training the effective sample size (ESS) obtained when doing
importance sampling with qθ; the average log-likelihood of qθ on samples from p; the forward
KL divergence with respect to the target; and the mean absolute error (MAE) in the estimation of
Ep(x) [f(x)] by importance sampling with 1000 samples from qθ, where f(x) = aT (x− 2b) +

2 (x− 2b)
T
C (x− 2b), with the entries in vectors a and b and matrix C randomly initialized by

sampling from a standard Gaussian then kept fixed to such values during all the experiments. We
express the MAE as a percentage of the true expectation to make it easier to interpret. We also report
the MAE that is obtained when we do not reweight samples according to the importance weights.
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Table 3: Number of flow and target evaluations during training for each method on the mixture of
Gaussians problem.

Number of flow evaluations Number of target evaluations
Flow w/ ML 2 · 107 2 · 107
Flow w/ Dα=2 2 · 107 2 · 107
Flow w/ KLD 2 · 107 2 · 107
RBD w/ KLD 2 · 107 2 · 107
SNF w/ KLD 2 · 107 108

CRAFT 2 · 107 108

FAB w/o buffer 2 · 107 2 · 107
FAB w/ buffer 2 · 107 6.6 · ×106

The ESS is calculated using 5 × 104 samples from qθ. The MAE is calculated by averaging over
100 repetitions.

D.3 Further Results

Figure 8 shows a plot of samples from each trained model on the mixture of Gaussians problem, with
the target contours in the background. We see that the FAB based methods and the flow trained with
ML cover all the modes in the target distribution. All the other methods fit a subset of the modes.
The flow trained with Dα=2 minimization exhibited highly unstable behavior during training and,
thus, is the worst performing model.

Figure 8: Contour lines for the target distribution p and samples (blue discs) drawn from the approx-
imation qθ obtained by different methods on the mixture of Gaussians problem.

E Many Well experiments

E.1 Description and Results

We consider another synthetic problem that is significantly more difficult than the GMM problem:
approximating the 32-dimensional “Many Well” distribution given by the product of 16 copies of
the 2-dimensional Double Well distribution7 from Wu et al. (2020); Noé et al. (2019):

log p(x1, x2) = −x41 + 6x21 + 1/2x1 − 1/2x22 + constant , (32)
7We use the Double Well distribution from the code provided in Wu et al. (2020), which has different

coefficients to the Noé et al. (2019).
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where each copy of the Double Well is evaluated on a different pair of the 32 inputs to the Many
Well. The original Double Well has two modes as shown in the top-right contour plot in Figure 9.
Therefore, our 32-dimensional Many Well has 216 = 65536 modes, one for each possible choice of
mode in each of the 16 copies of the Double Well. We obtain exact samples from the Many Well
by sampling from each independent copy of the Double Well. Exact samples from the Double Well
are obtained by sampling from each independent marginal distribution. The first marginal p(x1) can
be sampled from exactly using rejection sampling (see Appendix E.2), while the second marginal
distribution p(x2) can be sampled from directly as it is a (unnormalized) standard Gaussian. These
samples are cheap to produce. We use them for training a flow by ML as well as for the evaluation
of the different methods. Additionally, we created an artificial test set for evaluation purposes by
manually placing a point on each of the 216 modes. By computing log-likelihoods on this test set, we
can then check if a method is covering the entire target distribution, as any missing mode will result
in very low log-likelihood values. We can calculate the normalizing constant for each marginal
of the Double Well problem via numerical integration (for p(x1)) and analytical integration (for
p(x2)), and use this to obtain the normalizing constant of the Many Well distribution (see Appendix
E.2). This may then be used to obtain the normalized probability density function of the Many Well
distribution, which is useful for model evaluation. We can also compare models on how accurately
they estimate the normalizing constant as the average unnormalized importance weights. For each
model, we report the MAE in the estimation of the Many Well’s normalizing constant using 1000
samples, averaged over 100 runs. We express this as a percentage of the true value of the normalizing
constant.

Table 4: Results on the 32 dimensional Many Well Problem. Our methods are marked in italic. Best
results are emphasized in bold.

ESS (%) Ep(x) [log q(x)] Mean log q(xmodes) KL[p||q] MAE (%)

Flow w/ ML 80.6±2.1 −27.6±0.01 −21.3±0.0 0.1±0.0 1.2±0.0
Flow w/ Dα=2 0.0±0.0 NaN±NaN NaN±NaN NaN±NaN NaN±NaN
Flow w/ KLD 27.7±6.0 −176.9±18.08 −536.6±41.2 149.4±18.1 89.2±1.2
RBD w/ KLD 51.9±16.8 −183.8±21.8 −533.7±73.2 156.2±21.8 88.9±2.2
SNF w/ KLD 15.1±9.7 N/A±N/A N/A±N/A 167.9±12.8 88.9±0.0
FAB w/o buffer 4.7±0.9 −29.8±0.23 −28.0±43.0 2.3±0.2 12.7±1.9
FAB w/ buffer 78.9±1.6 −27.6±0.01 −21.3±0.0 0.1±0.0 1.4±0.1

We compare FAB to the same alternative approaches as in the mixture of Gaussians problem ex-
cluding CRAFT8 and use also the same Real NVP flow architecture as before. For the the model
that uses a RBD, we use the same architecture as before, with an acceptance function composed of a
residual network with three blocks containing 512 hidden units per layer. The truncation parameter
is set to the common value T = 100. For FAB based methods, we use AIS with 4 intermediate
distributions (linearly spaced) and with a HMC transition operator containing a single iteration with
5 leapfrog steps. For FAB with prioritized buffer we use L = 8. The SNF model uses 1 step of HMC
with 5 inner leapfrog steps every 2 layers. As before, when training the flow by ML we draw new
samples from the target for each loss estimation. All models are trained for 1010 flow evaluations
with the number of target evaluations by each method being reported in Table 5. Further details on
the hyper-parameters and architectures used by each algorithm are provided in Appendix E.3.

Figure 9 shows contour plots for several two-dimensional marginals of the Many Well target. Each
plot is obtained by scanning two variables that are inputs to different Double Well factors in the
Many Well distribution while the other variables are kept fixed to zero. We also show in this figure
samples generated by FAB with a replay buffer (left) and by the method that tunes qθ by minimizing
KL(q∥p) (right). We see that FAB generates samples on each of the contour modes while this is
not the case for the alternative baseline, which misses several modes. Additional plots for all other
methods can be found in Appendix E.4.

Table 4 shows for each method 1) the ESS when doing importance sampling with qθ; the average
log-likelihoods for qθ 2) on samples from the target and 3) on test points placed on the modes of

8For CRAFT we plugged in the code provided by Matthews et al. (2022) for the GMM problem only, to
provide a basic comparison.
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the Many Well distribution; 4) the forward KL divergence with respect to the target; and 5) the
MAE in the estimation of the May Well normalizing constant. Average log-likelihoods and ESS are
calculated with 5 × 104 samples. All the results in the table are averages across 3 random seeds.
We see similar results as in the previous experiment: FAB with a buffer performs similarly to the
benchmark of training the flow by ML. These are the two best performing methods, obtaining the
highest ESS and average log-likelihoods and the lowest forward KL divergence and MAE values.
The next best method is FAB without buffer, while the other methods perform very poorly since
they miss many modes from the Many Well distribution. The method that minimizes Dα=2(p∥qθ)
as estimated by sampling from qθ diverged early in training and always returned NaN values. The
ESS for the flow trained by minimizing KL(qθ∥p), RBD and the SNF are spurious, as they are
missing modes (see Figure 9 and 11). After training, we may combine the trained flows with AIS
to further improve the ESS. If we run AIS as during training but targeting p instead of p2/q, the
ESS is 89.9% and 13.6% for the FAB flows trained with and without a buffer, respectively. The
log-likelihood of p on samples from p and on the test set with points at the modes are -27.4 and
-20.9, respectively. These values are very close to the ones obtained by FAB with buffer, showing
that this method produces highly accurate approximations to the target distribution.

Figure 9: Samples from qθ and target contours for marginal distributions over the first four elements
of x in the 32 dimensional Many Well Problem. The flow trained with FAB with buffer (left)
captures the target far better than the flow trained by minimizing KL(q∥p) (right), which misses
several modes.

E.2 Obtaining the normalizing constant and exact samples

In this section, we describe how to obtain the exact normalizing constant and exact samples from
the Double Well distribution. These allow us to obtain the normalizing constant and exact samples
from the Many Well distribution.

The Double Well log-density is given by

log p(x1, x2) = −x41 + 6x21 + 1/2x1 − 1/2x22 + constant . (33)

By noting that x1 and x2 are independent, we see that their distribution factorises as p(x1, x2) =
p(x1)p(x2). Thus, the normalizing constant of p(x1, x2) is given by the product of the normalizing
constants of each marginal distribution. Furthermore, samples from p(x1, x2) may be obtained
by sampling independently from each marginal. By inspection, we see that the marginal p(x2) is
standard Gaussian. Thus, its normalizing constant is given by

√
2π, and samples from this marginal
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may be obtained trivially. The normalizing constant of the second marginal distribution may be
calculated via numerical integration Z1 = 11784.51. We obtain exact samples from p(x1) by
using rejection sampling, a visual summary of this is provided in Figure 10. For the rejection
sampling proposal distribution, denoted q, we use a two-component Gaussian mixture distribution
with mixture weights (0.2, 0.8), means (−1.7, 1.7) and standard deviations equal to 0.5. For the
comparison function kq(x1), we set k = 3Z1 to ensure that kq(x1) > p(x1) .

Figure 10: Using rejection sampling to obtain exact samples from the first marginal of the Double
Well distribution. (LHS) We see that kq(x1) > p(x1). (RHS) Sample density (normalized histogram
using 10000 samples) vs. the normalized probability density of p. We see that rejection sampling
provides exact samples from p(x1).

E.3 Setup

All flow models have 10 RealNVP layers (Dinh et al., 2017), with a 2 layer (320 unit layer width)
MLP for the conditioner. The flow is initialized to the identity transformation and, consequently,
qθ is initially a standard Gaussian distribution. Training is performed with a batch size of 2048
and using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 3 × 10−4. We clip
the gradient norm to a maximum value of 100. For the SNF method, we do 10 Metropolis-Hastings
steps every two flow layers. We train all models for 1010 flow evaluations. For each method, we train
3 models using different random seeds. Results are reported as averages over these three models.

FAB specific details: In FAB, the batch sizes for the AIS forward pass (M ) and sampling from
the buffer (N ) are both equal to 2048. We run AIS using four intermediate distributions with linear
spacing. Each MCMC transition is given by a single Hamiltonian Monte Carlo step consisting of
5 leapfrog steps. The momentum variable for HMC is sampled from a standard Gaussian and it is
not tuned throughout training. However, an important parameter to tune in HMC is the step size
parameter for the leapfrog integrator. We do tune this parameter for each intermediate distribution.
This is done by using a parametrization of step sizes that includes coefficients that are specific and
shared across intermediate distributions. In more detail, we define the HMC step size for the n-
th intermediate AIS distribution as ϵn = ϵshared + ϵ̂n, where we define ϵshared and ϵ̂n as follows:
ϵshared is a shared parameter across all AIS transitions, and is updated at the transition for every
intermediate distribution. This allows for faster adaption of the step size if the step sizes for all
transition kernels are “too big” or “too small”, which is common at the start of training. ϵ̂n is a
parameter specific to each n-th intermediate distribution, and is only updated during its specific
transition. This allows for ϵn to be tailored to the specific n-th intermediate distribution transition.
We found this parameter sharing to improve performance in practice. The HMC transition kernel
for each intermediate distribution is initialized with a step size of 1.0, where we set ϵshared = 0.1
and ϵ̂1:N−1 = 0.9. The step size is then tuned to target a Metropolis acceptance probability of
0.65. For the transition corresponding to each intermediate distribution, if the average acceptance
probability across the batch is greater than 0.65, we set ϵ̂n = 1.05ϵ̂n, and ϵshared = 1.02ϵshared. If
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the average acceptance probability across a batch is lower than 0.65, we set ϵ̂n = ϵ̂n/1.05, and
ϵshared = ϵshared/1.02.

In FAB with prioritized buffer, we use a total of L = 8 gradient update steps per AIS sampling step.
We initialise the buffer with 65, 536 samples from the initialized flow-AIS combination and use a
maximum buffer length of 512, 000. We do not use any clipping for wcorrection.

Table 5: Number of flow and target evaluations during training for each method on the Many Well
Problem.

Number of flow evaluations Number of target evaluations
Flow w/ ML 1010 107

Flow w/ Dα=2 1010 1010

Flow w/ KLD 1010 1010

Flow w/ RBD 1010 1010

SNF w/ KLD 1010 2.5× 1011

FAB w/o buffer 1010 1010

FAB w/ buffer 1010 7.2× 1010

E.4 Further Results

Figure 11 and Figure 12 show contour plots of 2D marginals from the 32 dimensional Many Well
target. The contours are for pairs of variables in the first four elements of x belonging to different
copies of the Double Well distribution. Each plot is obtained by scanning two variables while the
other ones are kept fixed to zero. These figures also shows samples from each analyzed method.
FAB based methods and the flow trained by ML place samples at each of the modes in the contour
plots, while the other methods fail to do so.
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Figure 11: Target contours and model samples for 2D marginals over the first four elements of x in
the 32 dimensional Many Well Problem. The plots are for pairs of variables belonging to different
copies of the Double Well distribution. For Dα=2(p∥qθ) minimization with samples from the flow,
we plot results at iteration 56 of training as the final model samples were outside of the plotting
regions due to training instabilities.
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Figure 12: Target contours and model samples for 2D marginals over the first four elements of x in
the 32 dimensional Many Well Problem for the Resampling Base Distribution (RBD) flow model
trained with the KL divergence.
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F Alanine dipeptide experiments

F.1 Setup

Coordinate transformation Boltzmann generators usually do not operate on Cartesian coordi-
nates. In particular, Noé et al. (2019) introduced a coordinate transformation whereby a subset of
the coordinates are mapped to internal coordinates, i.e., bond lengths, bond angles, and dihedral an-
gles. The internal coordinates are normalized and the respective means and standard deviations for
these coordinates are computed on samples from the target distribution generated with MD. For the
remaining Cartesian coordinates, principal component analysis is applied to the samples and the six
coordinates with the lowest variance are eliminated. The rationale behind this is that the Boltzmann
distribution is invariant in six degrees of freedom, i.e., three of translation and three of rotation, and
consequently, the corresponding unnecessary coordinates should be removed. However, the map-
ping of vectors onto a fixed set of principal components is generally neither invariant to translations
nor to rotations, and, therefore, the transformed coordinates do not satisfy these invariances. When
training Boltzmann generators with samples, this is not a problem since the flow will learn to gen-
erate molecular configurations for a specific rotation or translation, but when only using the target
distribution to train the flow, the model will spend some of its capacity to sample different transla-
tional and rotational states, which is unnecessary since they can easily be sampled independently.
This will harm performance.

Instead, we transform all Cartesian coordinates to internal coordinates, which is a representation
invariant to translations and rotations. Since we do not want to use MD samples for our model,
we use the position with the minimum energy instead as shift and fix values for the scale when
normalizing the coordinates. The former can be easily estimated with gradient descent using less
than 100 steps. As scale parameters, we used 0.005 nm for the bond lengths, 0.15 rad for the bond
angles, and 0.2 rad for the dihedral angles. Coordinates which are treated as circular are not scaled.

Model architecture We use Neural Spline Flows with rational quadratic splines having 8 bins
each. The parameter mapping is done through coupling (Durkan et al., 2019). Dihedral angles which
can freely rotate, e.g., because it is not a double bond, are treated as periodic coordinates (Rezende
et al., 2020). For these coordinates, we use a uniform base distribution, while we pick a Gaussian
for the other ones. The flow has 12 layers and the parameter maps are residual networks with one
residual block, while the two linear layers in each block have 256 hidden units. The flow layers were
initialized in a way that they correspond to the identity map.

One model uses a RBD, which has a residual network with two blocks having 512 hidden units per
layer as acceptance function. The truncation parameter is set to the common value T = 100.

The models trained with FAB do AIS with 8 intermediate distributions, which are linear interpola-
tions between the flow and target log-densities (Neal, 2001), where the latter one is unnormalized.
We use HMC with 4 Leapfrog steps as the MCMC operator in AIS. The same procedure is used
when we use AIS in the other baseline models, see Table 7, Figure 17, Figure 18, and Figure 21.
The HMC parameters are initialized and tuned using the same procedure as the Many Well problem,
see Appendix E.3. The SNF model does additionally 10 Metropolis-Hastings steps every two flow
layers. Since this renders sampling from this model already expensive, we do not do AIS with this
model.

Dataset Since the energy surface of alanine dipeptide in an implicit solvent has several modes of
different sizes with large energy barriers between them, see Figure 16, a very long MD simulation
would be required to obtain samples that represent the target distribution well. To get around this
problem, which is well known in computational physics and chemistry, we do a replica exchange
MD simulation (Mori & Okamoto, 2010), which is a parallel tempering technique (Earl & Deem,
2005). We use 21 replicas starting at a temperature of 300K and increasing the temperature by
an increment of 50K. The replicas are exchanged every 200 iterations and use the state at each
multiple of 1000 time steps as samples. To reduce the time it takes to generate the data, we run
many of these simulations in parallel with different seeds. Since the initial condition is always the
same, i.e., the position with minimum energy as it is usually done, we let the system equilibrate for
2× 105 iterations and run the simulation subsequently for 2× 106 iterations.

We split the data into 1) a training set, which consists of 106 samples and is only used to train the
baseline flow model with ML; 2) a validation set consisting of 106 samples as well, which is used to
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Figure 13: Visualization of alanine dipeptide in its two chiral forms. In nature, we see almost
exclusively the L-form and, likewise, we aim to only generate samples of this form.

find a suitable set of hyperparameters for our experiments; and 3) a test set with 107 samples, which
is used to evaluate all models.

To generate the training data alone we had to evaluate the target distribution and its gradients
2.3× 1010 times, which is what we report as cost in terms of target evaluations in Table 6.

Filtering chiral forms As mentioned in Section 4.2, alanine dipeptide is a chiral molecule, i.e.,
it can occur in two different forms that are mirror images of each other, see Figure 13. They cannot
be easily converted into each other as this would involve breaking existing and forming new bonds.
In nature, we find almost exclusively, while the D-form typically only exists in synthetically created
compounds. Hence, whenever alanine dipeptide is considered in the literature, it is almost always
as the L-form (Wu et al., 2020; Campbell et al., 2021; Stimper et al., 2022; Dibak et al., 2022;
Köhler et al., 2022). Therefore, we aim to train our model on only this form as well. However, since
the energy of the molecule does not change when creating a mirror image of it, models trained to
approximate its Boltzmann distribution will a priori learn to generate both forms.

The two forms can be separated by using the following procedure. The two chiral forms differ by
the positioning of the neighboring atoms at a chiral center, i.e., the center carbon atom. Hence, the
difference of the dihedral angles of those atoms with respect to a fixed reference will differ relative to
each other, i.e., their difference will change. Hence, we compute this difference and check whether
it is close to a reference configuration for which we know that it corresponds to the L-form. As
reference configuration, we use the position with minimum energy, which we already determined
for the coordinate transformation.

We use this procedure to filter the configurations generated by the flow model during training and
included only the samples that correspond to the L-form when computing the loss. Thereby, the
model learns to only generate this chiral form.

In Appendix F.2 we will investigate a model trained on both chiral forms and compare it to one that
was only trained on the L-form.

Training All models were trained using the Adam optimizer (Kingma & Ba, 2015) with a batch
size of 1024. A learning rate of 5 × 10−4 is initially linearly warmed up over 1000 iterations and
decayed with a cosine annealing schedule over the course of training. We use a weight decay of
10−5 and clip gradients at a value of 103. When training the models with the prioritized replay
buffer, we ensured a minimum buffer length of 64 batches and started replacing the oldest samples
once its length reached 512 batches.

Evaluation To evaluate the models, we draw 107 samples from the models with and without
the use of AIS. Since there were some outliers of the importance weights due to flow numerics, we
took the 103 highest weights and clipped them to the lowest value in this set to compute the ESS
(Koblents & Mı́guez, 2015; Dibak et al., 2022). This corresponds to a fraction of 10−4, or 0.01%,
of the weights. For the flow trained with the α-divergence with α = 2, the resulting ESS is close to
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Figure 14: Marginal distribution of the dihedral angle ϕ for selected models. The visualized data is
the same as in Figure 3b, but here a normal scale instead of a log scale is used for the density.

10−4, indicating that the true ESS is even lower. We estimated the Ramachandran plots, i.e., made
a histogram of the dihedral angles ϕ and ψ, see Figure 3a, with 100 × 100 bins, and used them to
compute the KL divergence between the test samples and the samples from the model. We repeated
this with the reweighted samples, whereby we also used the clipped weights. We computed the
log-likelihood on the test set with the models, but we did not do so for the SNF, as it only computes
importance weights and does not directly estimate the density.

Table 6: Number of flow and target evaluations needed to train the models. For the flow being trained
with ML on MD samples, we report the number of target evaluations that are needed to generate the
training dataset with MD. Our methods are marked in italic.

Number of flow evaluations Number of target evaluations
Flow w/ ML 2.5× 108 2.3× 1010

Flow w/ Dα=2 2.5× 108 2.5× 108

Flow w/ KLD 2.5× 108 2.5× 108

SNF w/ KLD 6.0× 107 3.6× 109

FAB w/o buffer 2.5× 108 2.5× 108

FAB w/ buffer 2.5× 108 2.0× 108

Computational cost The two main contributors to the computational expenses necessary to train
flows approximating Boltzmann distributions are the number of evaluations of the flow and the
target. Typically, we need both the value and the gradient and, hence, we regard obtaining them as
one operation. The number of flow and target evaluations for each model and training procedure are
listed in Table 6. In general, we trained all models using an equal number of flow evaluations, with
the exception of SNF. SNF requires a large number of target evaluations due to the sampling layers.
Because of this, we reduced the number of flow evaluations done in total by this method.

Computational resources To generate the MD dataset, we ran the replica exchange MD sim-
ulations on servers with an Intel Xeon IceLake-SP 8360Y processors having 72 cores and 256 GB
RAM. We used a total of 100 nodes of the course of 16 h adding up to about 115k CPU h. The flow
models were trained on servers with an NVIDIA V100 GPU and an Intel Xeon Gold 6148 processor
with 20 cores and 96 GB RAM. Training each model took around 2 days except the SNFs, which
took around 8 days, totaling to around 1.3k GPU h.

F.2 Further results

Model trained on both chiral forms To demonstrate the importance of filtering for the L-form
during training, we trained a model on both chiral forms using FAB with a replay buffer with the
same setting as in the other experiments. We drew 107 samples from the model and found exactly
50% of them correspond to the L- and 50% to the D-form. As can be seen in Figure 15, the marginal
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Figure 15: Marginal distribution of the dihedral angles ψ and ϕ of a model which has been trained
on both chiral forms of the alanine dipeptide, i.e., the L- and D-form. We plot the density obtained
with all samples from the model in blue and separate the samples in the two forms, yielding the pink
and green curves. The distributions of the two forms are mirror images of each other.

distributions of the dihedral angles ψ and ϕ for the two forms are mirror images of each other, while
the flow model, generating both forms, is a mixture of the two.

The log-likelihood on the test set is 210.80, which is 0.74 less than the corresponding model only
trained on the L-form. This is close to log(2) ≈ 0.69, i.e. the density is roughly by a factor of two
lower, confirming once more that the flow density is a mixture of the density of the two forms.

Model performance with AIS As mentioned in the previous section, we do AIS with all our
trained models except the SNF, which already involves sampling layers. We adopt the same AIS
setting used for training the flow models with FAB, i.e., we use 8 intermediate distributions given by
linear interpolations between the flow and the target distributions and sample from them with HMC
performing 4 Leapfrog steps. The results are shown in Table 7. When comparing tables 2 and 7, we
observe that AIS improves performance for those models that approximate the target distribution at
least fairly well. Again, the flow trained with FAB with a replay buffer outperforms the baselines.

Table 7: ESS, and the KL divergence of the Ramachandran plots with and without reweighting (RW)
for flow models when sampling from them with AIS. The results are averages over 3 runs and the
standard error is given as uncertainty. Our methods are marked in italic and the highest ESS or
log-likelihood or lowest KL divergence values are emphasized in bold.

ESS (%) KLD KLD w/ RW

Flow w/ ML 11.5±0.5 (4.92±2.13)×10−3 (1.88±0.75)× 10−2

Flow w/ Dα=2 10−4±0.0 2.52±0.06 11.3±0.2
Flow w/ KLD 80±8 2.99±0.19 2.95±0.19
RBD w/ KLD 61±23 2.84±0.05 2.81±0.04
FAB w/o buffer 70.6±0.7 (2.65±0.12)× 10−2 (2.45±0.91)× 10−2

FAB w/ buffer 96.7±0.2 (2.53±0.41)×10−3 (2.17±0.15)×10−3

Ramachandran plots Figure 16 shows the Ramachandran plot of the test set and Figure 17,
Figure 18, Figure 19, Figure 20, Figure 21, Figure 22, and Figure 23 show the Ramachandran plots
of all the models we trained for the first run, including the samples drawn from them via AIS.
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Figure 16: Ramachandran plot of the test data.

(a) Flow (b) Flow, reweighted

(c) AIS (d) AIS, reweighted

Figure 17: Ramachandran plots of a flow trained with the α = 2-divergence.
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(a) Flow (b) Flow, reweighted

(c) AIS (d) AIS, reweighted

Figure 18: Ramachandran plots of a flow trained with the KL divergence.
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(a) Flow (b) Flow, reweighted

(c) AIS (d) AIS, reweighted

Figure 19: Ramachandran plots of a flow with a resampled base distribution trained with the KL
divergence.

(a) SNF (b) SNF, reweighted

Figure 20: Ramachandran plots of a SNF trained with the KL divergence. Since the SNF already
has layers which do sampling, we did not do AIS with it.
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(a) Flow (b) Flow, reweighted

(c) AIS (d) AIS, reweighted

Figure 21: Ramachandran plots of the flows trained with ML.
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(a) Flow (b) Flow, reweighted

(c) AIS (d) AIS, reweighted

Figure 22: Ramachandran plots of the flows trained with FAB without the use of a replay buffer.
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(a) Flow (b) Flow, reweighted

(c) AIS (d) AIS, reweighted

Figure 23: Ramachandran plots of the flows trained with FAB with the use of a replay buffer.
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