
Under review as a conference paper at ICLR 2024

REDUCING THE NEED FOR BACKPROPAGATION AND
DISCOVERING BETTER OPTIMA WITH EXPLICIT
OPTIMIZATIONS OF NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Iterative differential approximation methods that rely upon backpropagation have
enabled the optimization of neural networks; however, at present, they remain
computationally expensive, especially when training models at scale. In this pa-
per, we propose a computationally efficient alternative for optimizing neural net-
works that can both reduce the costs of scaling neural networks and provide high-
efficiency optimizations for low-resource applications. We derive an explicit solu-
tion to a simple feed-forward language model (LM) by mathematically analyzing
its gradients. This solution generalizes from singlel-layer LMs to the class of
all single-layer feed-forward softmax-activated neural models trained on positive-
valued features, as is demonstrated by our extension of this solution application
to MNIST digit classification. For both LM and digit classifiers, we find compu-
tationally that explicit solutions perform near-optimality in experiments showing
that 1) iterative optimization only marginally improves the explicit solution pa-
rameters and 2) randomly initialized parameters iteratively optimize towards the
explicit solution. We also preliminarily apply the explicit solution locally by layer
in multi-layer networks and discuss how the solution’s computational savings in-
crease with model complexity—for both single- and mult-layer applications of
the explicit solution, we emphasize that the optima achieved cannot be reached by
backpropagation alone, i.e., better optima appear discoverable only after explicit
solutions are applied. Finally, we discuss the solution’s computational savings
alongside its impact on model interpretability and suggest future directions for the
derivation of explicit solutions to complex- and multi-layer architectures.

1 INTRODUCTION

The burgeoning field of artificial intelligence (AI) has seen a rapid expansion in the development
and training of increasingly large-scale models in the era of deep learning. With their escalating size
and complexity, these models have exhibited substantial improvements in performance, attracting
considerable research interest and investment. Among these models, two primary categories stand
out: large language models (LLMs), including GPT-3 (Brown et al., 2020), and LLaMA (Touvron
et al., 2023) (to name a few); and diffusion probabilistic models (Ho et al., 2020), such as DAll-E
(Ramesh et al., 2021) and Stable Diffusion (Rombach et al., 2022). Both paradigms demonstrate
superlative capabilities in their respective domains of natural language processing (NLP) and com-
puter vision. The potential of these models is further amplified by combining text, images and other
modalities to construct even more powerful models, exemplified by the likes of KOSMOS-1 (Huang
et al., 2023) and GPT-4 (OpenAI, 2023).

Despite making impressive strides in AI, our collective understanding of the inner workings of these
models is far from complete. The absence of a comprehensive understanding of their internal mech-
anisms impedes our ability to fully exploit their capabilities while simultaneously raising various
challenges (Bommasani et al., 2022). One of the primary concerns is the reliability and safety of
these models. LLMs are prone to generating biased and unreliable text, while diffusion models may
produce distorted images that conflict with basic human perception. The unpredictable behaviors of
these models in novel or unusual situations challenges their operational benefits to humans via their
(in)abilities to avoid inadvertent harms (Kenton et al., 2021; Weidinger et al., 2021)). Concurrently,

1



Under review as a conference paper at ICLR 2024

efficiency is another major concern (Shen et al., 2023). Backpropagation is their predominant train-
ing and optimizing method, and entails a high computational cost, particularly as models scale up
their iterative gradient computations for optimization ((Rumelhart et al., 1986a), (Rumelhart et al.,
1986b)). Training such large models requires a substantial amount of data, also necessitating signif-
icant efforts in data processing.

In light of these challenges, how can we ensure that these models are reliable, interpretable, and
efficient? We posit that understanding the optimization processes underlying these models is crucial.
Perhaps, grasping the intricacies of model optimization will allow a more straightforward approach,
requiring fewer iterations to achieve the same or better quality results? Furthermore, understanding
how models optimize allows us to adjust specific parameters in the weight matrices, enabling models
to perform in a desired manner. In this paper, we investigate by starting from a simple form of neural
network: the single-layer feed-forward neural network. We propose an “explicit” optimization of it,
and argue that explicit optimization offers a vital alternative to the current trends in neural network
training. By providing this computationally efficient and interpretable method of optimization, this
approach has the potential to significantly accelerate progress in the field of AI.

To substantiate our proposed solution to parameter optimization, we conduct computational exper-
iments on language modeling and digit classification to demonstrate its near-optimal performance.
Our findings indicate that iterative optimization (requiring backpropagation) only marginally im-
proves upon the parameters of the explicit solution, and that randomly initialized parameters grad-
ually converge towards the explicit solution through iterative optimization. By following a sim-
ilar experiment to our language modeling tests, we also conduct preliminary evaluations on the
MNIST (LeCun & Burges, 1998) dataset. These results demonstrate the encouraging usage of ex-
plicit optimization as a strategy for improving the efficiency of training neural networks, in general,
and at enhancing the interpretability of models. Furthermore, our findings underscore the potential
of explicit optimization as a viable and efficient method for more complex, multi-layer models.

2 DERIVING EXPLICIT OPTIMIZATION FOR A SINGLE-LAYER LM

This derivation originally began by analyzing word2vec’s continuous bag-of-words (CBOW) vari-
ant (Mikolov et al., 2013a;b). Following this, we not only generalized the analysis to simple single-
layer LMs, but ultimatly, to all feed-forward neural networks with arbitrary non-negative feature
sets, as it is now presented in Appendix A.

To define a single-layer model’s explicit solution, one must define the data of prediction. We assume
sequential data: a model’s objective is to reconstruct a matrix Y ∈ {0,1}M×N of unit-normalized
rows: ∥Ym,∶∥1 = 1, which correspond to the set of target elements for prediction in the sequence.
The sequence of predictions will be based on M sets of matrix-features, contained in a tensor storing
K numerical vector-features of dimension D for each m = 1,⋯,M : X ∈ RM×K×D. In other words,
each m-target Ym,∶ has a corresponding slice from Xm,∶,∶ ∈ RK×D that is a matrix of K vector
features, drawn from other rows of Y . Specifically, each m-prediction has each k = 1,⋯K of its
features drawn from the previous K rows in Y before the mth: Xm,k,∶ = Yim−k,∶, defining the auto-
regressive nature of the LM. Here, i ∈ {1,⋯,N}M is the vector of target indices for each prediction
in the sequence of M , and tokens early in documents—with m <K—are padded with "<pad>".

The derived statement of optimization is defined for a decoder-matrix, U ∈ RD×N under the action
of the softmax function: φ, defined as: Ŷm,∶ = φ(Hm,∶U), where hidden states for each prediction
are computed as the sum of vector-features: Hm,∶ = ∑K

k=1 Xm,k,∶. Under this notation, the LM is
optimized by the cross entropy loss, or, negative log-likelihood of model prediction probabilities:

L = −
M

∑
m=1

logφ(Hm,∶U)im (1)

2.1 AN EXPLICIT SOLUTION FOR SINGLE-LAYER OPTIMIZATION

To understand the explicit solution’s derivation and potential applications, it is helpful to state:

2



Under review as a conference paper at ICLR 2024

Definition: A data set of vector-inputs H ∈ RM×D and -outputs Y ∈ RM×N has generalized co-
occurrences F (H,Y ) ∈ RD×N between inputs and outputs defined by the sum of outer products:

F (H,Y ) =
M

∑
m=1

Hm,∶ ⊗Ym,∶ =HTY . (2)

In Appendix. A, we go on to show that this definition is critical to softmax-activated optimization:

Theorem: A softmax-activated feed-forward layer receiving K-norm non-negative D-dimensional
inputs Hm,∶ for each target of prediction Ym,∶ is approximately optimized by a column-wise trans-
lation of the layer’s generalized log-co-occurrence matrix: Uj,i = logF (H,Y )j,i +wi. The trans-
lating weights, wi, are defined by i-column (output) as: wi =

K−1
K

log(∑
D
d=1F (H,Y )d,i), defining

an explicit form for each of the layer’s j, i-parameters by the expression:

Uj,i = logF (H,Y )j,i −
K − 1

K
log(

D

∑
d=1

F (H,Y )d,i) (3)

Proof of the above is provided in Appendix A for reference. In general, we’ll refer to K as a priming
number. In circumstances where features are not unit-normalized (but still positive) the explicit
solution also appears to function quite well. However, one must extend the priming number from
the discrete number of features to an estimate of this as the average norm of a given feature vector:
K̂ = (∑

M
m=1∑

D
d=1Hm,d)/M . However, it turns out that the most critical knowledge required for the

explicit solution’s use in application is understanding explicit forms for given softmax classifier’s
inputs and outputs. For a decoder—such as U in the theorem—it is often quite clear what the
inputs (features) and outputs (supervising targets) are. While the explicit solution may be applied
locally, to individual layers of, multi-layer networks, compositional optimization (not covered in this
work) of multi-layer and attention-supported networks require further investigation. Regardless, one
assumption for this theorem should be empirically considered in computation alongside prediction
experiments using the explicit solution: the degree to which token counts scale with their average of
geometric means of co-occurrences.

2.2 EVALUATING THE MEAN CO-OCCURRENCE SCALING ASSUMPTION OVER DATA

Throughout this work, experiments will be focused on utilizing single-layer language models that
generalize as feed-forward neural networks, and the data that will be used for these experiments is
provided by the BabyLM Challenge (Warstadt et al., 2023; Gao et al., 2021), which is a shared lan-
guage modeling task that “challenges community members to train a language model from scratch
on the same amount of linguistic data available to a child.” We see this as both an excellent opportu-
nity to engage a current interest in language modeling, as well as demonstrate if explicit optimization
can produce more effective learning over little data. From this data set, we utilize the smallest train-
ing set of 10-million tokens, which is quite small from a language modeling perspective.

Before considering the performance of the feed-forward model’s explicit optimization, we first test
its assumption over the training data. This is done for radius: K = 1, and should be studied more
closely for other values in future work. As can be seen for K = 1, a scaling relationship is visibly
present in Fig. 1; however, since the slope observed likely doesn’t exactly fall along the line y = x
(slope 1), a better set of weights could likely be taken over the proven case, i.e., instead it may be
that wi ∝ f

(1−K−δ)/K
i is optimal, for some small, positive value of δ. Furthermore, since the exact

computation of wi—as the values ⟨EG [Fj,i ∣Hm,∶]⟩—requires essentially the same computational
cost as running a single training epoch of gradient-based optimization, one might ask: how much
additional optimization can be done on top of the solution provided by Eq. 5, provided iterative
optimization is used?

3 COMPUTATIONAL EXPERIMENTS

The choice to utilize data from the BabyLM challenge for language modeling is twofold: as a
benchmark, BabyLM provides comparative information against systems submitting to the challenge,
while its relatively small size allows for rapid prototype iteration. Interested in the experimental

3



Under review as a conference paper at ICLR 2024

Figure 1: (Left) The Cat and Sum models are equivalent when K = 1 (depicted), and for this case
the scatter plot shows the scaling relationship between unigram frequency: fi = ∑

N
j=1F (H,Y )i,j

and the power mean of geometric averages of in-neighborhood co-occurrences, spanning the entire
training data set. (Right) Training set loss curves from iterative optimization in the case of cold
(random parameters) and warm (explicit solution parameters) start for the Cat model. Axes depict
the perplexity as a function of epoch (iteration) on a logarithmic scale for a total of 32 epochs. Note:
model loss prior to training is likewise reported in the loss curves, with values presented at epoch 0.5
for visual clarity, as a means of observing the degree of optimally achieved by the explicit solution
as a starting point. Additional loss curves are for the development set, as well as for both sets and
the Sum model in Supplementary Material Sec. B.

benefits offered by small size, we conduct all BabyLM experiments on its smallest training set of
10-million tokens, and then sample down to 10% of its development data to monitor the possibility of
early stopping. All language modeling experiments use Adagrad (Duchi et al., 2011) and a learning
rate of η = 0.01 to optimize models for 32 epochs (iterations) and use no dimensionality reduction,
which is left for future work (discussed in Sec. 5). However, this requires the use of a vocabulary-
sized embedding layer, which presents a hard constraint on the feasible vocabulary sizes that may be
used in system memory. Thus, we follow (Sennrich et al., 2016) and utilize the byte-pair encoding
algorithm for tokenization, limiting the number of merge rules to fix a vocabulary size of 212 + 2
tokens, reserving the +2/additional slots used for an out-of-vocabulary token and a padding token,
the latter of which assures all points of prediction are based on exactly r features. Finally, as a
demonstration of the feed-forward optimization’s generalization over data domains, this section’s
final sub-section will describe preliminary computational experiments on MNIST (LeCun & Burges,
1998), demonstrating the explicit optimization’s performance on handwritten digit classification.

3.1 LANGUAGE MODELING EXPERIMENTS

The architecture analyzed in Sec. 2 is augmented in two ways. First, since co-occurrence matri-
ces are sparse, LM-experiments require a model of noise to fill co-occurrence zeros with small
positive values. Second, alongside sum-based aggregation, we explore the improvements obtained
from radial-concatenation of inputs, which increases parameter complexity and performance, while
demonstrating the optimization’s capacity for architectural generalization.

3.1.1 MODELING NOISE IN OBSERVATIONS

To assure that generalized co-occurrence matrices are dense, we likewise densify vectors using a
model of noise. This is done by first computing a vector of token counts f = ∑M

m=1Ym,∶, and from
it, the average (un-noised) basis vector: e = (∑

N
n=1 fne

(n))/M , as well as a model: q ∈ (0,1)N ,

4



Under review as a conference paper at ICLR 2024

for the portion of occurrences that each n-token’s observations are (non-)erroneous. Assuming that
the highest-count tokens will be the least erroneously observed, we assume that only one error
will be observed relative to each token’s observed count, that is: qn = fn/(fn + 1). Next and
regardless of the token that is observed, we wish to modify its standard basis vector according to
the probabilities that any different, j-token, should have been observed, instead, which will take the
form of a normalized (∥p∥1 = 1) noise vector: p ∈ (0,1)N , defined to be near-uniform as: p = (1 −
e)/∥1 − e∥1. To understand p intuitively, we first note that 1-minus each of the average embedding
v’s (normalized) value is also a probability, which expresses the chance that a given dimension’s
magnitude is spurious (should not be observed). In application, the value of each embedding in the
matrix E ∈ RN×N , is finalized by adding noise to rows in an embedding layer:

En,∶ = qnEn,∶ + (1 − qn)p (4)

which is utilized to re-define the inputs-tensor densely: Xm,k,∶ = Eim−k for each k = 1,⋯,K of
token m’s input feature-vectors.

3.1.2 CONTEXT MODELS AND GENERALIZED CO-OCCURRENCES

To define features for each mth token according to its K previous, noisy/dense embedding-vectors,
we consider two conditions (architectural variants). The first considers the sum of vectors from E—
mapped into X—from the K previous tokens within the radius of K: Hm,∶ = ∑K

k=1 Xm,k,∶. We note
once again that tokens early in documents—with m < K—are padded with the "<pad>" token.
While aggregations defined by sums are indicated by Sum in tables, figures, and experiments; the
second variant considered featurizes each mth token according to E-vector concatenation, and so is
indicated by Cat in tables, figures, and experiments. Hidden states for Cat models are ultimately
expressed quite similarly: H(Cat)

m,∶ = [Xm,k,∶]
K
k=1. Regardless of featurization, a dense co-occurrence

matrix is now concisely expressed by the sum of outer products of standard-basis output vectors
with their dense input vectors, i.e., we compute the matrix F (H,Y ) for Sum-explicit solutions,
and instead compute F (H(Cat),Y ) for the Cat-model solutions.

3.2 MNIST HANDWRITTEN DIGIT CLASSIFICATION

For digit classification, MNIST requires determining a label from {0,1,2,3,4,5,6,7,8,9} for a data
set of M = 60,000 (non-sequentially ordered) images. Thus, we consider each m of MNIST’s train-
ing instances as having targets within a matrix Y ∈ {0,1}M×10, whose rows are unit-normalized:
∥Ym,∶∥1 = 1. The input images, themselves, are contained in a 28 × 28-slice of an input matrix
X ∈ RM×28×28. MNIST images are numerically structured as 28 × 28 matrices of integer values that
range over 0,⋯,255. To pre-process MNIST data, we translate all values by (add) 1 to ensure posi-
tivity, as well as normalize (divide) each integer by 256 to assure all input-values fall within the range
(0,1]; these are then flattened to define feature vectors in the matrix H ∈ (0,1]M×784 according to
the equation: Hm,∶ = flatten ((Xm,∶,∶ + 1)/256). The standard train-test split is then processed, using
the derived optimization presented in Sec. 2. Much as we do for LM’ing experiments, we likewise
present the results of backpropagation-based iterative optimization on MNIST models, following our
application of their explicit solutions. This includes our preliminary investigation into multi-layer
models, which uses the derived explicit solution locally by layer (see Sec. 3.3). However, to proceed
with any of these experiments more consideration is needed regarding MNIST’s pre-processing, e.g.,
since Hm,∶-input vectors don’t all have the same norm.

3.2.1 MNIST MODEL PRIMING

Without an available analytical defintion of K for the MNIST model’s architecture, we determined
to scan priming numbers and compare model accuracy. We generally hypothesize that the MNIST
model’s priming number is related to the norms of input vectors: Hm,∶. This was conducted over the
integer range of k ∈ {1,⋯,784}, whose upper limit is the flattened dimensionality—and maximum
norm of—of a pre-processed MNIST training instance (784). With these values of k, the priming
numbers our scan covered defined normalization weights as: k ↦ f

−(k−1)/k
i , which generalized our

interpret of the single-layer LM’s normalization being a function of the radius: K ↦ f
−(K−1)/K
i ,

which in that scenario is both the number of features per prediction and the 1-norm of each given
feature vector.

5



Under review as a conference paper at ICLR 2024

Table 1: Training (T) and development (D) set perplexities from language modeling experiments for
the Sum and Cat models. Suffix -p indicates the performance of pretrained models optimized by the
explicit solution prior to iterative optimization; suffix -c indicates cold-start models with randomly
initialized parameter matrices; suffix -w indicates warm-start models that use the explicit solution as
a starting point for iterative optimization. For -c and -w, perplexity is reported following 32 epochs
of optimization with the Adagrad optimizer and a learning rate of η = 0.01. Since Sum and Cat
are equivalent when r = 1, results are copied (not reran) between the two below to support trend
interpretation.

Sum Cat
K T-c D-c T-p D-p T-w D-w T-c D-c T-p D-p T-w D-w
1 51.4 56.4 85.4 91.8 40.1 45.7 51.4 56.4 85.4 91.8 40.1 45.7
2 47.6 56.3 104.0 121.5 41.0 51.3 30.0 35.6 52.0 61.8 25.8 33.0
4 60.7 75.0 144.0 176.9 53.8 72.2 24.6 31.6 40.3 55.4 20.7 31.2

3.3 LOCAL APPLICATIONS OF THE EXPLICIT SOLUTION TO MULTI-LAYER NETWORKS

To extend the explicit solution to multi-layer networks we take a naı̈ve first approach. This is for
both simplicity and the method’s potential utility, leaving detailed investigations into multi-layer
warm-starts and compositional optimization for future work. The explicit solution is specifically
known for softmax-based activation, and thus, one shouldn’t expect to find explicit solution values
perform well when an activation functions are changed. Likewise, since this work does not consider
dimensionality reduction, our current options are limited to the input and output dimensionalities,
which can’t create useful bottlenecks, which are likely need for truly enhanced multi-layer predic-
tion. Nevertheless, one can naı̈vely 1) train a single-layer classifier, U , and then 2) define second-
order hidden states: H(2) ∈ RM×N by first-layer outputs: H(2)

m,∶ = φ(Hm,∶U), and 3) subsequently
define a second layer’s decoder by applying the explicit solution over the co-occurrence matrix:
F (H(2),Y )↦ U (2) ∈ RN×N . This procedure is used to train all 2-layer warm-start models, which
are applied to MNIST experiments (only). While we consider if this local optimization strategy
using the explicit solution could be fully developed into a generalized multi-layer warm start, we
ultimately leave these questions to future work, since full functionality in multi-layer warm-starts
requires dimensionality reduction and more understanding in activation function processes.

4 EXPERIMENTAL RESULTS

In all MNIST experiment pre-processing, images were flattened, added to 1, and divided by 256,
which results in the training set’s average norm being approximately 105.99. We can immediately
see from the priming number scan (at right in Fig. 4) that the initial argmax value for a priming-
number is the average norm. Using the average norm, the explicit solution demonstrates non-trivial
MNIST classification, achieving 82.86% test set accuracy. At left in Fig. 4, the single-layer MNIST
cold-start required roughly 5 epochs of learning to reach the explicit solution’s starting accuracy
of roughly 82%, while the 2-layer (see Sec. 3.3) cold-start suffered from parameter disorientation
that ultimately left it performing poorly. Warm-starts, however, begin iterative optimization at 2–4-
times higher accuracy, and terminates early according to a naı̈ve early-stopping criterion (increased
value of cross-entropy loss) sooner. This property is observed for both 1- and 2-layer models, i.e.,
demonstrating no loss of performance for including a second layer when the warm-start is used.
While the single-layer warm-start’s early stopping resulted in roughly 4-times less computation,
requiring only 23 vs. 93 epochs of training for optimization, the two-layer cold-start never stopped.
In both 1- and 2-layer cases, warm-starts led to the highest accuracies: 92.57% for the 1-layer warm-
start, and 92.93% for the 2-layer warm start. These values ultimately compared to 91.68% for the
1-layer and 75.64% for the 2-layer cold-start.

Language modeling experiments are discussed in terms of average perplexity: eL/M for both of
the Sum and Cat model variants, which again, are equivalent when K = 1. Their hyperparametric
articulations are recorded both in Tab. 1 and in Fig. 1; this includes the scenario of models that are
pre-trained by the explicit solution prior to any iterative optimization (suffix -p in Tab. 1); cold-start
models, whose parameter matrices are randomly initialized (suffix -c); and warm-start models that
utilize the explicit solution as a starting point for subsequent iterative optimization (suffix -w). At a

6



Under review as a conference paper at ICLR 2024

high-level, we note that Cat-based models generally achieve lower perplexity (better performance)
than their Sum-based counterparts, and that explicit solutions initialized the best models, i.e., that
models could be improved beyond the point of explicit solution initialization.

Deriving the w-weights that optimize the FF-model’s solution required assuming that a scaling
relationship exists between an average of co-occurrence averages and token counts. The empirical
reality of this apparent-but-noisy relationship is depicted by the cone-shaped linearity in the left
panel of Fig. 1 for both/either of the Cat and Sum models, which are equivalent when K = 1. When
this same figure was depicted for larger-radius sum values (e.g., K = 2 and 4) in early testing, the
scaling relationship was noted diverge somewhat more; this notably appeared to correspond with
decreases in performance (increases in model perplexity) observed at larger radii in Tab. 1, where
perplexity values are stored. However, we note that when poorer-quality scaling relationships of the
kind depicted in Fig. 1 are observed (for larger radii), it doesn’t appear to invalidate the explicit
solution gravely, that is, the explicit solution still greatly improves performance over a cold-start.
Nevertheless, ramping up to full runs on BabyLM’s 10-million token training sample during this
work’s development made it clear that the scaling relationship likely stabilizes with bigger data.
This is a subject that could be interesting to follow up on in future studies. Finally, while the scaling
relationship appears to stabilize as data is increased, Fig. 1 also guides our future, more refined
analysis into the scaling relationship, as the slope of the scaling relationship is likely a small amount
shallower than the line y = x in Fig. 1. Put differently, refining the analysis of this relationship to
better reflect the empirical scaling relationship would likely lead to an improved explicit solution,
which could be a promising avenue for future study.

In Tab. 1, training and development set losses can clearly be seen to co-optimize, with larger per-
cent gaps between training and development loss appearing for larger context windows indicating
insufficient generalization, and perhaps the need for more training data when more features are used
(larger r-radius). Moreover, related effects can be observed when comparing the Sum and Cat mod-
els with increasing radius. Almost paradoxically, perplexity increases for the Sum model at larger
radii, while it progressively decreases for the Cat model as larger radii (more features) are utilized.
The pattern of loss-increase with radius can be seen throughout nearly all of the Sum experiments—
except the cold-start at k = 2—demonstrating the likely need for attention-upon-aggregation when
vectors are summed across position, in-line with the transformer-architectural developments, pre-
senting an architectural avenue of study for future work in reducing Sum-based architecture per-
plexities through integration and analysis of attentive mechanisms. Furthermore, we note that the
cold-start model performing ‘best’ at k = 2 is likely a sign of less-stable optimization, particularly,
since cold-starts are randomly initialized. This remark is parallel to our observation throughout test-
ing that explicit solutions demonstrate monotonic performance scaling, i.e., perplexity exclusively
increases or decreases as hyperparameters are increased. This observations is an indication of a
strong ablation advantage provided by the explicit solution—not only for its efficiency at producing
comparable models and evaluations, but moreover, for the deterministic consistency that its provides.
Juxtapose this to the erratic ablataion properties exhibited by the randomly-initialized models, i.e,
whose Sum models have lowest at a bounded value: K = 2. This likely spurious result may have
emerged from one ‘lucky’ initialization in the table’s 6 cold-start models. Comparatively, our ex-
perimentation with the explicit solution leading up to the Sum-Cat experiments left zero doubt by
demonstrating so much consistency Sum models performing worse with increased radius. Without
the explicit solution, this could well have misguided our investigation, e.g., away from considering
Cat-based models, and would have left us only with the option to ‘waste‘ computation on redundant
experiments averaging performance from different random initializations at much larger expense.

Models on the Cat-side of Tab. 1’s experiments more-intuitively drop in perplexity as as the radius
is increased, and demonstrate the diminishing returns gained from increased positional informa-
tion, i.e., indicating that most predictive information is present close to the point of prediction.
The smooth reduction in perplexity—juxtaposed to increases seen for Sum models—indicates the
utility of the outer product as a lossless (sparse) featurization pre-processor for the integration of
independently-measured features; that is, since the concatenation of input vectors interacts with the
outer product of token type and position, independently (this is also why Cat models have K-times
the parameters of their Sum counterparts). In the right panel of Fig. 1, training loss by epoch is
presented for Cat models (see Supplementary Materials Sec. B for additional loss curves). Here,
the impact of a warm start can be seen on a logarithmic scale, where over the 32 iterations provided
for optimization, cold-start models ended not far from where warm-starts began. For small exper-

7



Under review as a conference paper at ICLR 2024

Figure 2: (left) Cold- and warm-start models for the MNIST data set and task for 1- and 2-layer
models. (right) Values of the priming number are scanned for a single-layer MNIST model and
compared on the basis of the explicit solution’s accuracy.

iments like these, the efficiency benefit is essentially a 50% reduction of training cost; however,
for larger/more-parametrically complex models trained over larger quantities of data, this reduction
may well magnify.

5 DISCUSSION

Our optimization of models that have been warmed-up by the explicit solution is equivalent to the
general case of 1) assuming (freezing) a matrix model (of co-occurrences) and then 2) determining
a best intercept for a feed-forward architecture. This separate-intercept implementation was actually
the intial (equivalent) formulation used for MNIST experiments, and both implementations are pro-
vided as software with this paper’s release. The relative ease of using the MNIST data set to train
a predictive model on an entirely different—numerical vectors vs, categorical text—data domain
underscores the potential breadth of application of which the explicit solution is capable. Thus, an
additional reason for performing MNIST’s experiments (and providing their software) using a dif-
ferent implementation is to present the explicit solution in the context of a general featurizer, which
could potentially be modified, e.g., to utilize a convolutional processing in the future. In fact, the
sliding window technically does this for language modeling over one dimension, using a padded and
uniform 1-dimensional convolution. We likewise present the explicit solution as a local optimizer,
demonstrating have warm starts can naı̈vely be applied to individual layers of parameters, from the
bottom of a given network. Thus, to produce more complex deep network architectures—as was pro-
posed in (Hinton, 2022)—one can apply the explicit solution, from the bottom up first, to optimize a
network non-iteratively/locally, and then subsequently—compositionally—apply backpropagation.
However, unlike (Hinton, 2022), our approach does not change the downstream objective (it is still
a softmax), allowing subsequent iterative optimization to be conducted to great effect, on top of
warm starts. This multi-layer process is efficient, since the explicit solution’s optimization requires
information transmission in only the forward direction; that is, it requires only a single pass over
the data for an accumulation of potentiation by its vector-statistics, even when applied to multi-layer
networks.

A chief limitation of this work is its use of high-dimensional embedding vectors (in E). While these
vectors, which are similar to standard basis vectors, provide a degree of transparency, an effective
dimensionality reduction strategy is critical. Ideally, since this approach advances local/independent
optimization for multi-layer networks, a dimensionality reduction procedure that reduces from the
standard-basis dimensionality must explicitly be predetermined and separate from the optimization
process. It is possible to assume pretrained vectors from other algorithms for a fixed vocabulary;
however, this assumption is challenged by the explicit solution’s need for positive-valued features.

8



Under review as a conference paper at ICLR 2024

In particular, low-dimensional token vectors obtained from GloVe, GPT-2, etc. will produce compo-
nents with negative values. Co-occurrences with the target one-hots and these negative values will
thus result in partially negative-valued co-occurrence matrices, and the explicit solution should be
proportional to the logarithm of these matrices. While the domain of the logarithm can be extended
to negative numbers via the complex number system, this would result in the need to formalize
softmax prediction as a function of the complex domain. Assuming U and H are taken over the
complex field C, one need only compute φφ∗(Hm,∶U), too, since φφ∗, or, the vector-output of
magnitudes of the values returned by the softmax function (complex conjugate products) is a prob-
ability distribution. This would undeniably present an underlying quantum nature—and perhaps
expressive benefits to prediction—which could well be considered in future extensions of this work.

Another limitation of this work is its local focus on applying the single-layer solution to multi-layer
models. While a local-optimization strategy for multi-layer networks works, it doesn’t allow for
useful transition to more efficient hidden activation functions, and moreover, compositional opti-
mizations of multilayer models have substantial performance benefits that should not be left un-
considered by mathematical analysis, i.e., there’s no reason to expect this work can be extended
to compositional explicit solutions for multi-layer structures. Similar analyses could be framed for
multi-layer models, but it must be noted that, locally, optimization takes the same form (i.e., the
proof generalizes) of log-conditional probability with respect to the given the inputs and outputs of
a softmax function. This is why (mathematically) it should be possible to chain local optimizations
of the derived solution for a first-order approximation of complex-model parameters. However, it
also means it would be possible to directly apply the explicit solution to attention distribution, if
one knew the ‘hidden’ targets of an attention distribution, i.e., answering “how should features be
weighted to improve performance?” Again, the local-optimizing approach does not capture com-
positional differential information, and so will always need to be followed by backpropagation to
achieve performant models. For fully compositional differential optimization, explicit solutions can
be set up as solutions to more complex sets of differential equations, and if not explicitly solved, at
least approached with the various high-performance differential equation approximators that exist.
These avenues can be considered in future work, and movement in this direction is critical for the
efficient optimization of neural architectures.

Alongside the generalization of the priming number to MNIST’s numerical feature-input, it is per-
haps the most surprising result from the language modeling experiments that the performance of the
Sum model of input-vector aggregation worsened as features were added (aggregated); this result
contrasts with the (expected) performance improvement realized with added features (radius size)
in the Cat model. This effect possibly occurs because the uniform aggregation in the Sum fails to
adequately weight the K features. This is precisely the ‘attention’ problem that culminated in the
use of self-attention, and the subsequent predominance of the transformer architecture. However,
this result is not simply an interesting observation but also an opportunity for derivations of explicit,
attention-based solutions to demonstrate performance improvements. Such a reduction in perplexity
with larger K values in a Sum model constitutes a ‘smoking gun’ for architects interested in extend-
ing this analysis to an explicit optimization of transformer-like architectures; however, it should be
noted that such directions likewise require explicit compositional optimization.

6 CONCLUSION

In this study, we introduced an explicit optimization method for single-layer feed-forward neural
networks, which moreover, demonstrated significant promise for generalized extension into multi-
layer networks. Our method, underpinned by insights from mathematical analyses, demonstrates
near-optimal performance, with iterative optimization offering only finer enhancements, and ran-
domly initialized parameters gradually converging towards the performance levels of explicit solu-
tions. This includes for iterative applications of explicit solution local optimizations in multi-layer
networks. We see our work as serving as a keystone, enhancing training efficiency and model inter-
pretability, while providing insight into model function. The efficacy of our solution is substantiated
through language modeling and digit classification tasks, underscoring its wide-ranging applicability
and generalization potential. We anticipate that this work will catalyze further research into the ap-
plication of explicit optimization methods to more intricate, compositional multi-layer architectures
and attention-based models, enriching the field with new perspectives and methods.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Ste-
fano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Pe-
ter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard,
Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte
Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya
Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li,
Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell,
Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie,
Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadim-
itriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob
Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré,
Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin,
Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun
Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael
Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang.
On the opportunities and risks of foundation models, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011. URL
http://jmlr.org/papers/v12/duchi11a.html.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot lan-
guage model evaluation, September 2021. URL https://doi.org/10.5281/zenodo.
5371628.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao, Saksham Singhal, Shuming Ma, Tengchao Lv,
Lei Cui, Owais Khan Mohammed, Barun Patra, Qiang Liu, Kriti Aggarwal, Zewen Chi, Johan
Bjorck, Vishrav Chaudhary, Subhojit Som, Xia Song, and Furu Wei. Language is not all you
need: Aligning perception with language models, 2023.

Zachary Kenton, Tom Everitt, Laura Weidinger, Iason Gabriel, Vladimir Mikulik, and Geoffrey
Irving. Alignment of language agents, 2021.

Cortes C. LeCun, Y. and C.J.C. Burges. MNIST handwritten digit database. 1998. URL http:
//yann.lecun.com/exdb/mnist/.

10

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


Under review as a conference paper at ICLR 2024

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. Distributed representa-
tions of words and phrases and their compositionality. In NeurIPS Proceedings, 26, Lake Tahoe,
Nevada, USA, 2013b. Advances in Neural Information Processing Systems.

OpenAI. Gpt-4 technical report, 2023.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal representations
by error propagation. 1986a.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323:533–536, 1986b.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words
with subword units. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin, Germany, August
2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL https:
//aclanthology.org/P16-1162.

Li Shen, Yan Sun, Zhiyuan Yu, Liang Ding, Xinmei Tian, and Dacheng Tao. On efficient training
of large-scale deep learning models: A literature review, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

Alex Warstadt, Leshem Choshen, Aaron Mueller, Adina Williams, Ethan Wilcox, and Chengxu
Zhuang. Call for papers – the babylm challenge: Sample-efficient pretraining on a developmen-
tally plausible corpus. Computing Research Repository, arXiv:2301.11796, 2023.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang,
Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, Zac Kenton, Sasha Brown, Will
Hawkins, Tom Stepleton, Courtney Biles, Abeba Birhane, Julia Haas, Laura Rimell, Lisa Anne
Hendricks, William Isaac, Sean Legassick, Geoffrey Irving, and Iason Gabriel. Ethical and social
risks of harm from language models, 2021.

A PROOF OF EXPLICIT FEED-FORWARD OPTIMIZATION

Theorem: A softmax-activated feed-forward layer receiving K-norm non-negative D-dimensional
inputs Hm,∶ for each target of prediction Ym,∶ is approximately optimized by a column-wise transla-
tion of the layer’s generalized log-co-occurrence matrix: Uj,i = logF (H,Y )j,i+logwi. The trans-
lating weights, logwi, are defined by i-column (output) as: logwi =

K−1
K

log(∑
D
d=1F (H,Y )d,i),

defining an explicit form for each of the layer’s j, i-parameters by the expression:

Uj,i = logF (H,Y )j,i −
K − 1

K
log(

D

∑
d=1

F (H,Y )d,i) (5)

Proof: Abbreviating F (H,Y ) by simply F for concise notation, first re-arrange the starting ex-
pression for a j, i-index pair of U is:

Uj,i = logwiFj,i (6)

11

https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162


Under review as a conference paper at ICLR 2024

It is a matter of algebra to reduce the the likelihood function’s general form with w to an expression
only dependent on w’s components in the denominator-factors:

eL =
M

∏
m=1

eHm,∶U∶,im

∑
N
n=1 eHm,∶U∶,n

=
M

∏
m=1

∏
D
d=1F

Hm,d

d,im

w−Kim ∑
N
n=1wK

n ∏
D
d=1F

Hm,d

d,n

(7)

Above, the expression shows that one need only minimize the denominator at right to maximize the
overall expression, i.e., optimize the likelihood. Since the logarithm is a monotone function, this is
likewise equivalent to maximizing the logarithm of the denominator, which we denote by Υ:

Υ =
M

∑
m=1

ϵm =
M

∑
m=1

log [w−Kim
N

∑
n=1

wK
n

D

∏
d=1

F
Hm,d

d,n ] (8)

We then proceed directly, by differentially optimizing Υ and compute partial derivatives of ϵm:

∂ϵm
∂wi
∣
im=i
=

KwK−1
i ∏

D
d=1F

Hm,d

d,i

∑
N
n=1wK

n ∏
D
d=1F

Hm,d

d,n

−
K

wi
;

∂ϵm
∂wi
∣
im≠i
=

KwK−1
i ∏

D
d=1F

Hm,d

d,i

∑
N
n=1wn∏

D
d=1F

Hm,d

d,n

(9)

Putting these pieces together in-sum produces the expression:

∂Υ

∂wi
= −

Kfi

wi
+

M

∑
m=1

KwK−1
i ∏

D
d=1F

Hm,d

d,i

∑
N
n=1wn∏

D
d=1F

Hm,d

d,n

(10)

it becomes helpful now to identify a weighted, geometric mean of co-occurrences with token i over
the mth instance’s features: EG[Fj,i ∣ Hm,∶] = (∏D

d=1 F
Hm,d

d,i )1/K . Provided their inner product
with the weights is approximately a constant c ∈ R:

N

∑
n=1

wnEG[Fj,n ∣Hm,∶] ≈ c, (11)

solving for ∂Υ
∂wi
= 0 results in the following proportionality for each token-index, i:

fi

wK
i

=
M

∑
m=1

EG[Fj,i ∣Hm,∶]K

∑
N
n=1wnEG[Fj,n ∣Hm,∶]K

∝
M

∑
m=1

EG[Fj,i ∣Hm,∶]K (12)

Each EG[Fj,i ∣Hm,∶] likely correlates to fi, and their sum further integrates a broader average:

M

∑
m=1

EG[Fj,i ∣Hm,∶]K =M⟨EG[Fj,i ∣Hm,∶]⟩K (13)

Here, the expression ⟨EG[Fj,i ∣ Hm,∶]⟩ indicates the K-power mean of the geometric means of
co-occurrences with token i. We thus find that an explicit form for wi’s proportionality is:

wi ∝
f
1/K
i

⟨EG[Fj,i ∣Hm,∶]⟩
∝ f

1−K
K

i = (
D

∑
d=1

F (H,Y )d,i)

1−K
K

, (14)

dependent on the double-averaged denominators scaling with count: ⟨EG[Fj,i ∣Hm,∶]⟩∝ fi. ∎

B ADDITIONAL LOSS CURVES

12



Under review as a conference paper at ICLR 2024

Figure 3: Development set loss curves from iterative optimization in the case of cold (random
parameters) and warm (explicit solution parameters) start for the Cat model, alongside similar plots
for both training and development sets and the Sum model. Axes depict the perplexity as a function
of epoch (iteration) on a logarithmic scale for a total of 32 epochs. Note: model loss prior to
training is likewise reported in the loss curves, with values presented at epoch 0.5 for visual clarity,
as a means of observing the degree of optimally achieved by the explicit solution as a starting point.

13


	Introduction
	Deriving explicit optimization for a single-layer LM
	An explicit solution for single-layer optimization
	Evaluating the mean co-occurrence scaling assumption over data

	Computational experiments
	Language modeling experiments
	Modeling noise in observations
	Context models and generalized co-occurrences

	MNIST handwritten digit classification
	MNIST model priming

	Local applications of the explicit solution to multi-layer networks

	Experimental results
	Discussion
	Conclusion
	Proof of explicit feed-forward optimization
	Additional loss curves

