SegmentMelfYouCan:
A Benchmark for Anomaly Segmentation
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Abstract

State-of-the-art semantic or instance segmentation deep neural networks (DNNs)
are usually trained on a closed set of semantic classes. As such, they are ill-equipped
to handle previously-unseen objects. However, detecting and localizing such
objects is crucial for safety-critical applications such as perception for automated
driving, especially if they appear on the road ahead. While some methods have
tackled the tasks of anomalous or out-of-distribution object segmentation, progress
remains slow, in large part due to the lack of solid benchmarks; existing datasets
either consist of synthetic data, or suffer from label inconsistencies. In this paper,
we bridge this gap by introducing the “SegmentMelfYouCan” benchmark. Our
benchmark addresses two tasks: Anomalous object segmentation, which considers
any previously-unseen object category; and road obstacle segmentation, which
focuses on any object on the road, may it be known or unknown. We provide two
corresponding datasets together with a test suite performing an in-depth method
analysis, considering both established pixel-wise performance metrics and recent
component-wise ones, which are insensitive to object sizes. We empirically evaluate
multiple state-of-the-art baseline methods, including several models specifically
designed for anomaly / obstacle segmentation, on our datasets and on public ones,
using our test suite. The anomaly and obstacle segmentation results show that our
datasets contribute to the diversity and difficulty of both data landscapes.

1 Introduction

The advent of high-quality publicly-available datasets, such as Cityscapes [1], BDD100k [2], A2D2
[3] and COCO [4] has hugely contributed to the progress in semantic segmentation. However, while
state-of-the-art deep neural networks (DNN5s) yield outstanding performance on these datasets, they
typically provide predictions for a closed set of semantic classes. Consequently, they are unable
to classify an object as none of the known categories [5]. Instead, they tend to be overconfident in
their predictions, even in the presence of previously-unseen objects [6], which precludes the use of
uncertainty to identify the corresponding anomalous regions.

Nevertheless, reliability in the presence of unknown objects is key to the success of applications
that have to face the diversity of the real world, e.g., perception in automated driving. This has
motivated the creation of benchmarks such as Fishyscapes [7] or CAOS [8]. While these benchmarks
have enabled interesting experiments, the limited real-world diversity in Fishyscapes, the lack of a
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Figure 1: Comparison of images from our and existing public datasets. Anomalies / obstacles are
highlighted in orange, darkened regions are excluded from the evaluation. In RoadAnomaly21,
anomalies may appear everywhere in the image. In contrast to Fishyscapes, where anomalous objects
are synthetic, all RoadAnomaly21 images are real. In RoadObstacle21, the region of interest is
restricted to the drivable area with obstacles ahead. This is comparable to LostAndFound, where the
labeling, however, is not always consistent, e.g. children are anomalies but other humans not.

public leader board and of a benchmark suite in CAOS, and the reliance on synthetic images in both
benchmarks hinder proper evaluation of and comparisons between the state-of-the-art methods.

In this paper, motivated by the limitations of existing anomaly segmentation datasets and by the
emerging body of works in this direction [7, 9, 10, 11, 12, 13, 14, 15, 16], we introduce the
SegmentMelfYouCan® benchmark. It is accompanied with two datasets, consisting of diverse and
manually annotated real images, a public leader board and an evaluation suite, providing in-depth
analysis and comparisons, to facilitate the development of road anomaly segmentation methods.

Our benchmark encompasses two separate tasks. The first one consists of strict anomaly segmentation,
where any previously-unseen object is considered as an anomaly. Furthermore, motivated by the
observation that the boundary between known and unknown classes can sometimes be fuzzy, for
instance for car vs. van, we introduce the task of obstacle segmentation, whose goal is to identify all
objects on the road, may they be from known classes or from unknown ones.

For the anomaly track, we provide a dataset of 100 images with pixel-wise annotations over two
classes (anomaly, not anomaly) and a void class, which, in analogy to Cityscapes, signals the pixels
that are excluded from the evaluation. We consider any object that strictly cannot be seen in the
Cityscapes data as anomalous, appearing anywhere in the image. For the obstacle track, our dataset
contains 327 images with analogous annotation (obstacle, not obstacle, void), and focuses only on the
road as region of interest. The focus in this track is of more practical need, e.g. for automated driving
systems, targeting obstacles that may cause hazardous street situations, see Figure 1. All images of
our datasets are publicly available for download?, together with a benchmark suite that computes
both established pixel-wise metrics and recent component-wise ones.

In the remainder of this paper, we first review existing anomaly detection datasets, methods and
evaluation metrics in more detail. We then describe our new benchmark and provide extensive
experiments comparing state-of-the-art road anomaly / obstacle segmentation methods on our datasets
and on other related ones, showing the difficulty of the models on the proposed benchmarks.

2 Related Work

In this section we first review previous datasets for anomaly detection, with some of them being
designed for road anomaly segmentation. Then we briefly describe some of the methods on anomaly
and obstacle segmentation.

2.1 Datasets and Benchmarks

Existing methods for anomaly detection have often been evaluated on their ability to separate images
from two different source distributions, such as separating MNIST from FashionMNIST [17, 18, 19],
NotMNIST [19], or Omniglot [20], and separating CIFAR-10 from SVHN [18, 19, 21] or LSUN [18,
21, 22]. Such experiments can be found in many works, including [17, 18, 19, 21, 22, 23].

*https://wuw.segmentmeifyoucan. com/



anomaly non-anomaly diverse different dataset  ground truth (gt) mean & std of gt size

Dataset pixels pixels scenes anomalies size components  relative to image size
Fishyscapes LostAndFound val [7] 0.23% 81.13% 12 7 373 165 0.13% + 0.23%
CAOS BDD-Anomaly test [8] 0.83%  81.28% 810 3 810 1231 0.55% + 1.84%
Ours: RoadAnomaly?21 test 13.83%  82.17% 100 26 100 262 4.12% + 7.29%
LostAndFound test (NoKnown) [25] | 0.12%  1531% 13(12) 9(7) 1203 (1043) 1864 (1709) 0.08% * 0.16%
LiDAR guided Small Obstacle test [26]| 0.07%  36.09% 2 6 491 1203 0.03% + 0.07%
Ours: RoadObstacle21 test 0.12%  39.08% 8 31 327 388 0.10% + 0.25%
Dataset (as above) larl)nreiisa are cgﬁ;[t}:s;s seography  1able 1: Main properties of comparable real-
Fishyscapes val | (V/in test sef) clear BE world anomaly (top three rows) and obstacle
CAOS BDD test X clear, snow, night, rain ~~ US (bottom three rows) segmentation datasets. Our
Ours: RA21 test v clear, snow global : . : : : :

LoF toct i o DE main contribution is t.he diversity of the anomaly
Small Obs. test X clear IN (or obstacle) categories and of the scenes. Note
Ours: RO21 test v clear, snow, night CH, DE

that “void” pixels are not included in this table.

For semantic segmentation, a similar task was therefore proposed by the WildDash benchmark [24]
that analyzes semantic segmentation methods trained for driving scenes on a range of failure sources,
including full-image anomalies, such as images from the beach. In our work, by contrast, we focus
on the problem of robustness to anomalies that only cover a small portion of the image, and on the
methods that aim to segment such anomalies, i.e. method for the task of anomaly segmentation.

One prominent dataset tackling the task of anomaly segmentation is LostAndFound [25], which
shares the same setup as Cityscapes [1] but includes anomalous objects / obstacles in various street
scenes in Germany. LostAndFound contains 9 different object types as anomalies, and only has
annotations for the anomaly and the road surface. Furthermore, it considers children and bicycles as
anomalies, even though they are part of the Cityscapes training set, and it contains several labeling
mistakes. Although we filter and refine LostAndFound in this work?, similar to Fishyscapes [7], the
low diversity of anomalies persists.

The CAOS BDD-Anomaly benchmark [8] suffers from a similar low-diversity issue, arising from its
use of only 3 object classes sourced from the BDD100k dataset [2] as anomalies (besides including
several labeling mistakes, see Appendix F.5). Both Fishyscapes and CAOS try to mitigate this low
diversity by complementing their real images with synthetic data. Such synthetic data, however, is
not realistic and not representative of the situations that can arise in the real world.

In general, the above works illustrate the shortage of diverse real-world data for anomaly segmentation.
Additional efforts in this regard have been made by sourcing and annotating images of animals in
street scenes [14], and by leveraging multiple sensors, including mainly LiDAR, to detect obstacles
on the road [26]. In any event, most of the above datasets are fully published with annotations,
allowing methods to overfit to the available anomalies. Furthermore, apart from Fishyscapes, we
did not find any public leader boards that allow for a trustworthy comparison of new methods. To
provide a more reliable test setup, we do not share the labels and request predictions of the shared
images to be submitted to our servers. Furthermore, we provide a leader board, which we publish
alongside two novel real-world datasets, namely RoadAnomaly21 and RoadObstacle21. A summary
of the main properties of the mentioned datasets is given in Table 1. Our main contribution in both
proposed datasets is the diversity of the anomaly categories and of the scenes.

In RoadAnomaly21, anomalies can appear anywhere in the image, which is comparable to Fishyscapes
LostAndFound [7] and CAOS BDD-Anomaly [8]. Although the latter two datasets are larger, their
images only show a limited diversity of anomaly types and scenes because they are usually frames of
videos captured in single scenes. By contrast, in our dataset every image shows a unique scene, with
at least one out of 26 different types of anomalous objects and each sample widely differs in size,
ranging from 0.5% to 40% of the image.

In RoadObstacle21, all anomalies (or obstacles) appear on the road, making this dataset comparable
to LostAndFound [25] and the LiDAR guided Small Obstacle dataset [26]. Again, the latter two
datasets contain more images than ours, however, the high numbers of images result from densely
sampling frames from videos. Consequently, those two datasets lack in object diversity (9 and 6
categories, respectively, compared to 31 in our dataset). Furthermore, the videos are recorded under
perfect weather conditions, while RoadObstacle21 shows scenes in diverse situations, including night,
dirty roads and snowy conditions.

3In the following, we refer to the LostAndFound subset without the images of children, bicycles and invalid
annotations as “LostAndFound-NoKnown”.
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Figure 2: Relative frequency of annotated anomaly / obstacle pixels within an image over the 100
images in the RoadAnomaly21 test dataset (left) and the 327 images in the RoadObstacle21 test
dataset (right), respectively. Here, the fraction of anomaly / obstacle pixels serves as a proxy for the
size of the objects of interest within an image. Note that the y-axes of the histograms are log scaled.

2.2 Anomaly and Obstacle Segmentation

Anomaly detection was initially tackled in the context of image classification, by developing post-
processing techniques aiming to adjust the confidence values produced by a classification DNN [6, 18,
21, 22, 23]. Although originally designed for image-level anomaly detection, most of these methods
can easily be adapted to anomaly segmentation [7, 9] by treating each individual pixel in an image as
a potential anomaly.

Another relevant approach consists of estimating the uncertainty of the predictions, leveraging the
intuition that anomalous image regions should correlate with high uncertainty. One way of doing so is
Bayesian (deep) learning [27, 28], where the model parameters are treated as distributions. Because
of the computational complexity, approximations to Bayesian inference have been developed [29, 30,
31, 32] and extended to semantic segmentation [33, 34, 35]. Instead of reasoning about uncertainty,
other non-Bayesian approaches tune previously-trained models to the task of anomaly detection by
either modifying its architecture or exploiting additional data. For example, in [36], anomaly scores
are learned by adding a separate branch to the DNN. Instead of modifying the DNNs’s architecture,
other approaches [18, 37] incorporate an auxiliary “out-of-distribution” (OoD) dataset during training,
which is disjoint from the actual training dataset. These ideas have been employed for anomaly
segmentation in [11, 13, 38].

A recent line of work performs anomaly segmentation via generative models that reconstruct /
resynthesize the original input image. The intuition is that the reconstructed images will better
preserve the appearance of regions containing known objects than those with unknown ones. Pixel-
wise anomaly detection is then performed by identifying the discrepancies between the original and
reconstructed image. This approach has been used not only for anomaly segmentation [14, 39, 40]
but also specifically for road obstacle detection [41, 42, 43].

It is important to note that there are some related works with different definitions of anomaly
segmentation. For example, [44] evaluates the segmentation of industrial production anomalies
like scratches, and in medical contexts anomaly segmentation can be understood as the detection
of diseased parts on e.g. tomography images [45] or brain MRIs [46]. What we define as anomaly
segmentation will be discussed in detail in the next Section 3.

3 Benchmark Description

The aim of our benchmark is two-fold. On one hand, by providing diverse data with consistent
annotations, we seek to facilitate progress in general semantic anomaly segmentation research. On
the other hand, by focusing on road scenes, we expect our benchmark to accelerate the progress
towards much needed segmentation/obstacle-detection methods for safe automated driving.

To achieve these goals, our benchmark covers two tasks. First, it tackles the general problem of
anomaly segmentation, aiming to identify the image regions containing object classes that have never
been seen during training, and thus for which semantic segmentation cannot be correct. This is
necessary for any reliable decision making process and it is of great importance to many computer
vision applications. Note that, in accordance to [7, 8], we define anomaly as objects that do not fit
any of the class definitions in the training data. In some works, anomaly may be used to describe
visually different inputs like e.g. a car in a novel color, which does not fit our definition.



This strict definition of semantic anomalies, however, can sometimes be ill-defined because (i)
existing semantic segmentation datasets, such as Cityscapes [1], often contain ambiguous and ignored
regions (annotated as void), which are not strictly anomalies since they are seen during training;
(ii) the boundary of some classes is fuzzy, e.g., cars vs. vans vs. rickshaws, making it unclear whether
some regions should be considered as anomalous or not. To address these issues, and to account for
the fact that automated driving systems need to make sure that the road ahead is free of any hazardous
objects, we further incorporate obstacle segmentation as a second task in our benchmark, whose
goal is to identify any non-drivable region on the road, may the non-drivable region correspond to
a known object class or an unknown one.

3.1 Benchmark Tracks and Datasets

‘We now present the two tracks in our benchmark, corresponding to the two tasks discussed above.
Each track contains its own dataset with different properties and is therefore evaluated separately in
our benchmark suite. An overview comparing our datasets to related public ones is given in Table 1.

RoadAnomaly21. The road anomaly track benchmarks general anomaly segmentation in full street
scenes. It consists of an evaluation dataset of 100 images with pixel-level annotations. The data
is an extension of the one introduced in [14], now including a broader collection of images and
finer-grain labeling. In particular, we removed low quality images and ones lacking clear road
scenes. Besides, we removed labeling mistakes, added the void class and included 68 newly collected
images. Each image contains at least one anomalous object, e.g., an animal or an unknown vehicle.
The anomalies can appear anywhere in the image, which were collected from web resources and
therefore depict a wide variety of environments. The distribution of object sizes and location is shown
in Figure 2(a). Moreover, we provide 10 additional images with annotations such that users can check
the compatibility of their methods with our benchmark implementation.

RoadObstacle21. The road obstacle track focuses on safety for automated driving. The objects to
segment in the evaluation data always appear on the road ahead, i.e. they represent realistic and haz-
ardous obstacles that are critical to detect. Our dataset consists of 222 new images taken by ourselves
and 105 from [42], summing up to a total of 327 evaluation images with pixel-level annotations.
The region of interest in these images is given by the road, which is assumed to belong to the known
classes on which the algorithm was trained. The obstacles in this dataset are chosen such that they
all can be understood as anomalous objects as well, e.g., stuffed toys, sleighs or tree stumps. They
appear at different distances (one distance per image) and are surrounded by road pixels. This allows
us to focus our evaluation on the obstacles, as other objects lie outside the region of interest. The
distribution of object sizes and location is shown in Figure 2(b). Moreover, this dataset incorporates
different road surfaces, lighting and weather conditions, thus encompassing a broad diversity of
scenes. An extra track of additional 85 images with scenes at night and in extreme weather, such as
snowstorms, is also available. However, the latter subset is excluded from our numerical experiments
due to the significant domain shift. Lastly, we provide 30 additional images with annotations such
that users can check the compatibility of their methods with our benchmark implementation.

Labeling Policy. In both datasets, the pixel-level annotations include three classes: 1) anomaly /
obstacle, 2) not anomaly / not obstacle, and 3) void.

In RoadAnomaly?21, the 19 Cityscapes evaluation classes [1], on which most semantic segmentation
DNNss are trained, serve as basis to judge whether an object is considered anomalous or not. Every-
thing that fits in the class definitions of Cityscapes is thus labeled as not anomaly. This track focuses
on the detection of objects which are semantically different from those in the Cityscapes training
data. Therefore, if image regions cannot be clearly assigned to any of the Cityscapes classes, they are
labeled as anomaly. The objects, which are not the main anomalies of interest in the context of street
scenes, are labeled as void and excluded from our evaluation. The latter class include, for instance,
mountains or water in the image background, and street lights. In ambiguous cases, which e.g. can
arise from a strong domain shift to Cityscapes, we assign the void class as well to properly evaluate
semantic anomaly segmentation.

In RoadObstacle21, the task is defined as distinguishing between drivable area and non-drivable area.
The goal is to make sure that the road ahead of the ego-car is free of any hazard, irrespective of the
object category of potential obstacles. Therefore, the drivable area is labeled as not obstacle. This
class particularly also includes regions on the road, which visually differ from the rest of the road.
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Figure 3: Illustration of the ordinary component-wise intersection over union (IoU) and the adjusted

one (sIoU). In both examples above, the prediction k (blue rectangle) is the same but covers different
targets (green rectangles). On the left, both IoU and sloU yield the same score. On the right, IoU
punishes the prediction as it does not cover each object precisely. By contrast, sloU checks how
much the predictions cover the ground-truth regions, independently of whether prediction/ground
truth belongs to a single or multiple objects. In automated driving, it is more important to detect
all anomalous regions (whether they belong to single or multiple objects), rather than to detect each
object precisely. Since two targets are separated by at least one pixel, IoU = sloU = 1 if and only

if the prediction covers one target perfectly.

Moreover, every object, which is visually enclosed in the drivable area, is labeled as obstacle. All
image regions outside the road are assigned to the void class and ignored in the evaluation.

As a quality assessment for both tracks, each labeled image was reviewed by at least three people in
order to guarantee the highest quality of labels.

3.2 Performance Metrics

For the sake of brevity, in what follows we refer to both anomalies and obstacles as anomalies.

Pixel level. Let Z denote the set of image pixel locations. A model with a binary classifier providing
anomaly scores s(z) € RIZ! for an image = € X' (from a dataset X C [0, 1]V*IZ1%3 of N images)
discriminates between the two classes anomaly and non-anomaly. We evaluate the separability of the
pixel-wise anomaly scores via the area under the precision-recall curve (AuPRC), where precision
and recall are considered as functions of some threshold § € R applied to s(z) V= € X. The
AuPRC puts emphasis on detecting the minority class, making it particularly well suited as our
main pixel-wise evaluation metric since the pixel-wise class distributions of RoadAnomaly21 and
RoadObstacle21 are considerably unbalanced, c.f. Table 1.

To consider the safety point of view, we also include the false positive rate at 95% true positive rate
(FPRg5) in our evaluation. The FPRg5 metric indicates how many false positive predictions must
be made to reach the desired true positive rate. Note that, any prediction which is contained in a
ground-truth labeled region of the class void is not counted as false positive, c.f. Section 3.1. In
particular for the RoadObstacle21 dataset the evaluation is therefore restricted to the road area.

Component level. From a practitioner’s perspective, it is very important to detect all anomalous
regions in the scene, regardless of their size, i.e., the number of pixels they cover. However, pixel-level
metrics may neglect small anomalies. While one could thus focus on object detection metrics, the
notion of individual objects is in fact not relevant for anomaly (region) detection. To satisfy these
requirements, we therefore consider performance metrics acting at the component level.

The main metrics for component-wise evaluation are the numbers of true-positives (TP), false-
negatives (FN) and false-positives (FP). Considering anomalies as the positive class, we use a
component-wise localization and classification quality measure to define the TP, FN and FP compo-
nents. Specifically, we define this measure as an adjusted version of the component-wise intersection
over union (sIoU), introduced in [47]. In particular, while in [47] the sIoU is computed for predicted
components , we consider the sloU for ground-truth components to compute TP and FN. To com-
pute FP, we employ the positive predictive value (PPV, or component-wise precision) for predicted
components as quality measure. We discuss the definitions of these quantities in more detail below.

Let Z, be the set of pixel locations labeled with class ¢ = “anomaly” in the dataset X'. We consider a
connected component of pixels (where the 8 pixels surrounding pixel z in image x € X" are taken to
be its neighbors) that share the same class label as a component. Then, let us denote by K C P(Z,),
with P(S) the power set of a set S, the set of anomaly components according to the ground truth, and

by K C P(Z.) the set of components predicted to be anomalous by some machine learning model.



Formally, the sIoU is a mapping sIoU : K — [0, 1]. For k € K, it is defined as

kN K(k X )
p |f(k()| p with K (k) = U k 1)
(kUK (k) \ Ak)| ok
and A(k) = {z € k' : k¥’ € K\ {k}}. With the adjustment .A(k), the pixels are excluded from the
union if and only if they correctly intersect with another ground-truth component k&’ € IC(x), which
is not equal to k. This may happen when one predicted component covers multiple ground-truth
components, as illustrated in Figure 3. Given some threshold 7 € [0, 1), we then call a target k € K
TP if sToU(k) > 7, and FN otherwise. We refer to Appendix C.2 for qualitative examples of the
difference between IoU and sloU.

sloU(k) :=

For the other error type, i.e., FP, we compute the PPV (or precision) for ke I@, which is defined as

5 kn K(k
PPV (k) = LIAESOly 2)
||
We then call a predicted component k € K FP if PPV (k) < 7.
As an overall metric, we additionally include the component-wise Fi-score defined as
2-TP(r
Fi(r): ) e [0.1], @

~ 2-TP(r) + FN(r) + FP(7)

which summarizes the TP, FN and FP quantities (that depend on 7). The component-level metrics
allow one to evaluate localization of objects irrespective of their size and hence big objects will not
dominate these metrics. In addition, while object detection metrics punish predictions that cover
multiple ground-truth objects or vice-versa, our component-level metric does not do so, c.f. Figure 3.

3.3 Evaluated Methods

Several anomaly segmentation methods have already been evaluated on our benchmark and constitute
our initial leader board. We evaluate at least one method per type discussed in Section 2.2, namely

e Methods originating from image classification: maximum softmax probability [23],
ODIN [22], Mahalanobis distance [21];

* Bayesian model uncertainty: Monte Carlo (MC) dropout [35], ensemble [32];

* Learning to identify anomalies: learned embedding density [7], void classifier [7], maxi-
mized softmax entropy [11];

* Reconstruction via generative models: image resynthesis [14], SynBoost [39] and road
inpainting (obstacle track only) [42].

All methods have an underlying semantic segmentation DNN trained on Cityscapes and provide
pixel-wise anomaly scores. A semantic segmentation DNN trained on Cityscapes is also our rec-
ommendation as underlying model, however, we leave it up to the participants which network and
training data they use. Furthermore, some evaluated methods additionally employ out-of-distribution
(OoD) data to tune the anomaly detector. For our set of methods, this would be any data with labels
semantically different from the Cityscapes train classes. OoD data is also allowed to be used to
alleviate the effects of a potential domain shift. For additional details on the methods, we refer the
reader to Appendix D.

4 Numerical Experiments

In our benchmark suite we integrate a default method to generate the anomaly segmentation from
pixel-wise anomaly scores. We choose the threshold §*, at which one pixel is classified as anomaly,
by means of the optimal pixel-wise F;-score, that we denote with F}. Then, 6* is computed as

0* = argmax 2 - precision(d) - recall(d) / (precision(d) + recall(4)) , 4)
SeR

subject to precision(d) + recall(d) > 0V 4. In Appendix E we provide a study where §* is varied.



I I Pixel-level I Component-level

requires Anomaly scores keK kek 7=025 7 =0.50 7=0.75
Method OoD data || AuPRC 1 FPRgs | Fy t|[sloUt PPV +|FN| FP| Fy t|EN| FP| Fy 1|EN| FP | Fy t|F} 1
Maximum softmax [23] X 28.0 72.0 342] 155 153 |[204 681 11.6]233 714 58 |256 744 1259
ODIN [22] X 33.1 717 39.1| 19.6 179 | 181 924 12.8]226 985 5.6 |254 1043 12| 6.0

Mahalanobis [21]
MC dropout [35]
Ensemble [32]

20.0 87.0 319( 148 102 |206 1433 6.4 | 241 1478 2.4 | 257 1512 0.6 | 2.9
28.9 69.5 39.0| 205 17.3 | 175 1320 10.4| 225 1391 4.4 | 252 1459 12|49
17.7 91.1 27.8| 164 20.8 | 197 1454 7.3 | 233 1511 3.2 | 254 1553 09 | 34

Void classifier [7] 36.8 635 443 21.1 221 | 181 797 142|219 845 7.5 (253 879 1.6 |76
Embedding density [7] 37.5 70.8 48.7| 33.8 20.5 | 107 1437 16.7| 176 1485 9.4 | 250 1592 1.3 | 9.2
Image resynthesis [14] 52.3 259 605 395 11.0 | 95 1187 20.7| 153 1225 13.7| 230 1294 4.0 |12.9

SynBoost [39]
Maximized entropy [11]

56.4 619 58.0| 350 183 | 109 1062 20.7| 178 1114 11.5|247 1216 2.0 |11.5
85.5 150 774 49.2 395 | 85 413 41.5| 115 421 354|163 439 24.8|34.5

NN X X N X X X

Table 2: Benchmark results for our RoadAnomaly21 dataset. This dataset contains 262 ground-truth
components in total. The main performance metrics are highlighted with gray columns.

I I Pixel-level I Component-level
requires || Anomaly (obstacle) scores|| k € KC kek 7=0.25 7 =0.50 7=0.75
Method OoD data||AuPRC 1 FPRgs | Fy 1 |[sloU + PPV 1|FN] FP| Fy1t|FN| FP| Fy1|FN| FP| Fy t|Fi 1
Maximum softmax [23] X 15.7 16.6 225 || 19.7 159 | 255 1494 132|326 1503 6.3 |372 1517 1.7 | 6.9
ODIN [22] X 21.2 154 292 || 207 185 | 260 1072 16.1|312 1079 9.9 |362 1093 3.5 |10.0
Mahalanobis [21] 20.9 131 258 || 140 21.8 | 293 1101 12.0|352 1104 4.7 |385 1116 04 |55
MC dropout [35] 3.7 50.6 8.0 6.3 5.8 | 351 2782 23 |375 2784 0.8 |386 2790 0.1 | 1.0
Ensemble [32] 1.1 77.2 3.1 8.6 47 |335 3758 25365 3768 1.1 |382 3782 03|13

Void classifier [7]
Embedding density [7]
Image resynthesis [14]
Road inpainting [42]
SynBoost [39]
Maximized entropy [11]

9.2 415 234 63 203 | 350 350 9.8 |365 350 6.0 381 353 19|59
0.8 46.4 2.0 356 29 | 145 10972 4.2 | 244 11037 2.5 |370 11191 0.3 | 2.4
37.2 4.7 38.8 16.6 205 | 286 743 165|334 773 89 374 824 23|95
52.6 47.1 67.5 || 57.6 395 | 79 580 484|131 586 41.8|240 o611 25.8(40.2
70.3 3.1 70.1 || 443 418 | 133 352 513|185 363 42.6|286 414 22.6|40.4
85.1 0.8 79.6 || 479 62.6 | 136 151 63.7| 177 158 557|247 174 40.1|54.2

NN X X% X N X X X%

Table 3: Benchmark results for our RoadObstacle21 dataset. This dataset contains 388 ground-truth
components in total. The main performance metrics are highlighted with gray columns.

Moreover, for the anomaly track, components smaller than 500 pixels are discarded from the predicted
segmentation, and for the obstacle track, components smaller than 50 pixels are discarded. These
sizes are chosen based on the smallest ground-truth components. All methods presented in Section 3.3
produce anomaly scores for which we apply the default segmentation method. We emphasize that
using our proposed default method for anomaly segmentation masks is completely optional. We
provide results without filtering by predicted component sizes in Appendix E. We allow and encourage
competitors in the benchmark to submit their own anomaly segmentation masks generated via more
sophisticated image operations.

In our evaluation, we additionally include the average sloU per component sIoU, which can be
computed by averaging sIoU over all ground-truth components k£ € /. Analogously, we also include

the average PPV per component PPV for all predicted components k € K. As the number of
component-wise TP, FN and FP depends on some threshold 7 for sloU and PPV, respectively (see
Section 3.2), we average these quantities over different thresholds 7 € 7 = {0.25,0.30,...,0.75},

similarly to [4], yielding the averaged component-wise F score [} = ﬁ dorer Fi(7).

Discussion of the Results. Our benchmark results for RoadAnomaly21 and RoadObstacle21 are
summarized in Table 2 and Table 3, respectively. In general, we observe that methods originally
designed for image classification, including maximum softmax, ODIN, and Mahalanobis, do not
generalize well to anomaly and obstacle segmentation. For methods based on statistics of the
Cityscapes dataset, such as Mahalanobis as well as learned embedding density, anomaly detection is
typically degraded by the presence of a domain shift. This results in a poor performance, particularly
in RoadObstacle21, where various road surfaces can be observed. Interestingly, learned embedding
density, MC dropout and the void classifier yield worse performance than maximum softmax on
RoadObstacle21, whereas we observe the opposite on RoadAnomaly?21.

The detection methods based on generative models, namely image resynthesis and SynBoost, appear
to be better suited to both anomaly and obstacle segmentation at pixel as well as component level,
clearly being superior to all the approaches discussed previously. This observation also holds for road
inpainting in the obstacle track. These autoencoder-based methods are nonetheless limited by their



Image & annotation Mahalanobis MC dropout SynBoost Maximized entropy

Figure 4: Qualitative comparison of the anomaly scores produced by the methods introduced
in Section 3.3 for one example image of RoadAnomaly21 (top row) and one example image of
RoadObstacle21 (bottom row). Here, red indicates higher anomaly / obstacle scores and blue lower
ones. The ground-truth anomaly / obstacle component is indicated by green contours.

\ | RoadAnomaly | Fishyscapes LostAndFound Validation | RoadObstacle | LostAndFound test-NoKnown

| | | Pixel-level | Component-level | | Pixel-level | Component-level

OoD Anomaly scores |k € kek Anomaly scores |k € K kek
Method data|AuPRC T F; 1|AuPRCt FPR; ||sIoU 1 PPV 1 T 1| AuPRC 1 F; 1|AuPRC t FPRy; ||sIoU t DDV 4| F; 1
Maximum softmax [23] | X 28.0 59 5.6 40.5 35 95 1.8 15.7 6.9 30.1 332 142 622 [134
ODIN [22] X 33.1 6.0 15.5 38.4 9.9 219 97 212 100 51.0 30.7 389 48.0 |38.1
Mahalanobis [21] X 20.0 29 329 8.7 19.6 294 19.2| 209 55 55.0 12.9 338 31.7 (246
MC dropout [35] X 28.9 4.9 14.4 47.8 4.8 18.1 43 3.7 1.0 36.2 36.0 17.0 347 [14.7
Ensemble [32] X 17.7 34 0.3 90.4 3.1 1.1 04 1.1 1.3 29 82.0 6.7 76 |27
Void classifier [7] v 36.8 7.6 11.7 15.3 9.2 39.1 149 9.2 59 4.4 47.0 0.7 35.1 | 1.1
Embedding density [7] X 375 9.2 8.9 422 59 10.8 49 0.8 24 61.7 10.4 37.8 352 [30.8
Image resynthesis [14] X 523 129 5.1 29.8 5.1 126 4.1 37.2 9.5 57.1 8.8 272 30.7 |21.5
Road inpainting [42] X - - - - - - - 52.6 402| 83.0 35.7 49.2 60.7 [56.9
SynBoost [39] v 564 115 649 309 279 486 38.0) 703 404| 818 4.6 372 723 [53.0
Maximized entropy [11]| v 855 345 443 37.7 21.1 48.6 30.0/ 851 542, 779 9.7 459 63.1 |55.0

Table 4: Benchmark results for Fishyscapes LostAndFound validation and LostAndFound test-
NoKnown, containing 165 and 1709 ground-truth components in total, respectively. In this table
the pixel-wise AuPRC and the component-wise F from RoadAnomaly21 and RoadObstacle21, c.f.
Table 2 and Table 3, are additionally included for cross evaluation (gray columns).

discrepancy module, and they are outperformed in our experiments by maximized softmax entropy,
which peaks at an AuPRC of 86% and a component-wise F; of 49%. This highlights the importance
of anomaly and obstacle proxy data. Illustrative example score maps produced by the discussed
methods are shown in Figure 4.

In summary, the component-level evaluation highlights the methods’ weaknesses even more clearly
than the pixel-wise evaluation, the latter giving a stronger weight to larger anomalies and obstacles.
All methods indeed tend to face difficulties in the presence of smaller anomalies and obstacles, as we
demonstrate in more detail in Appendix H. In addition, we observe a much lower component-wise
F score than a pixel-wise F}', demonstrating the importance of evaluating at component level. The
results w.r.t. the different categories of methods are challenging for models, hence leaving room for
improvement.

Our benchmark suite enables a unified evaluation across different datasets whenever ground truth is
available. In Table 4 we summarize our results for Fishyscapes LostAndFound [7], a validation set of
100 LostAndFound images [25] with refined labels fitting the anomaly track, and the LostAndFound
test split, with original labels fitting the obstacle track. Note that, for the LostAndFound test split,
we filtered out all images that contain humans and bicycles labeled as obstacles (therefore called
LostAndFound test-NoKnown) because we applied anomaly segmentation methods out of the box to
the task of obstacle segmentation, and these methods focus on previously-unseen objects.

In comparison to our datasets, for both LostAndFound datasets we observe a less pronounced gap,
in terms of both main performance metrics, the pixel-level AuPRC and component-level Fy scores,
between the methods orignially designed for image classification, especially ODIN and Mahalanobis,
and those specifically designed for anomaly segmentation, especially road inpainting and maximized
entropy. This signals that both of our datasets contribute new challenges for anomaly and obstacle



segmentation. In Appendix H and Appendix I we provide further and more fragmented results in
terms of both objects sizes and object categories.

Finally, we also applied our benchmark suite to the LIDAR guided Small obstacle Segmentation
dataset [26]. Our main findings are that our whole set of methods yields weak performance on that
dataset. The main purpose of this dataset is the detection of small obstacles from multiple sensors
including LiDAR. Hence, the conditions for the other sensor modalities are purposely challenging
(e.g., low illumination), making this dataset less suitable to camera-only methods. We present the
corresponding results in Appendix F.4.

5 Conclusion

In this work, we have introduced a unified and publicly available benchmark suite that evaluates
a method’s performance for anomaly segmentation with established pixel level as well as recent
component level metrics. Our benchmark suite is applicable in a plug and play fashion to any dataset
for anomaly segmentation that comes with ground truth, such as LostAndFound and Fishyscapes
LostAndFound, allowing for a better comparison of new methods. Moreover, our benchmark is
accompanied with two publicly available datasets, RoadAnomaly21 for anomaly segmentation and
RoadObstacle21 for obstacle segmentation.

These two datasets challenge two important abilities of computer vision systems: On one hand their
ability to detect and localize unknown objects; on the other hand their ability to reliably detect and
localize obstacles on the road, may they be known or unknown. Our datasets consist of real images
with pixel-level annotations and depict street scenes with higher variability in object types and object
sizes than existing datasets. Our experiments have demonstrated that both of our datasets show a
distinct separation in terms of performance between the methods that are specifically designed for
anomaly / obstacle segmentation and those that are not. However, there remains much room for
performance improvement, particularly in terms of component-wise metrics, which stresses the need
for future research in the direction of anomaly segmentation.

The images of the datasets and the software are available at https://www.segmentmeifyoucan.com/.

Broader Impact

This benchmark advances research towards the safe deployment of autonomous vehicles. This
ultimately will have many consequences, e.g., reducing the number of jobs in the transport sector.
More immediately, the benchmark measures the reliability of algorithms and therefore may be
misunderstood as giving safety guarantees. This benchmark however only works for the specified
training regime i.e. it cannot certify fitness for real-world deployment and should not be misunderstood
as such. In particular, while our datasets greatly contribute to the diversity of anomalies, the scale of
the datasets is still not even close to sufficient in order to represent every possible type of an anomaly.
Furthermore, although we do not publicly provide test labels, there remains a risk, common to any
other benchmark, of the community designing methods that overfit on our benchmark tasks.
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