
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARD GENERALIZABLE DEBLURRING: LEVERAG-
ING MASSIVE BLUR PRIORS WITH LINEAR ATTEN-
TION FOR REAL-WORLD SCENARIOS

Anonymous authors
Paper under double-blind review

(a) Deblurring Results on Challenging Real-World Scenes

Blur Input

(b) Performance Comparison across Multiple Datasets

Restormer MISC-Filter Hi-Diff Diff-Plugin Restormer MISC-Filter Hi-Diff Diff-Plugin Restormer MISC-Filter Hi-Diff Diff-Plugin

GLOWDeblur Output Blur Input GLOWDeblur Output Blur Input GLOWDeblur Output 

Figure 1: (a) Visual comparison on challenging real-world images: our GLOWDeblur effectively
restores a wide range of blur patterns, while prior methods often fail in complex scenarios. (b)
Quantitative comparison on diverse benchmarks: the left plot shows dataset scores computed by
ranking methods on each metric and averaging across metrics; the right plot reports average model
scores across all datasets, highlighting the strong generalization ability of GLOWDeblur.

ABSTRACT
Image deblurring has advanced rapidly with deep learning, yet most methods ex-
hibit poor generalization beyond their training datasets, with performance drop-
ping significantly in real-world scenarios. Our analysis shows this limitation stems
from two factors: datasets face an inherent trade-off between realism and cover-
age of diverse blur patterns, and algorithmic designs remain restrictive, as pixel-
wise losses drive models toward local detail recovery while overlooking structural
and semantic consistency, whereas diffusion-based approaches, though perceptu-
ally strong, still fail to generalize when trained on narrow datasets with simplistic
strategies. Through systematic investigation, we identify blur pattern diversity as
the decisive factor for robust generalization and propose Blur Pattern Pretraining
(BBP), which acquires blur priors from simulation datasets and transfers them
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through joint fine-tuning on real data. We further introduce Motion and Semantic
Guidance (MoSeG) to strengthen blur priors under severe degradation, and in-
tegrate it into GLOWDeblur, a Generalizable reaL-wOrld lightWeight Deblur
model that combines convolution-based pre-reconstruction & domain alignment
module with a lightweight diffusion backbone. Extensive experiments on six
widely-used benchmarks and two real-world datasets validate our approach, con-
firming the importance of blur priors for robust generalization and demonstrating
that the lightweight design of GLOWDeblur ensures practicality in real-world ap-
plications.

1 INTRODUCTION

In-Distribution Scenes

In-Distribution 
Example

Real-World Scenes

Diverse Scenes & 
Complex Blur Patterns

Non-generalizable Models GLOWDeblur

Non-generalizable Models GLOWDeblur

Figure 2: Challenges for Real-World Generalization

In recent years, image deblurring has made significant progress with the rapid development of deep
learning. A variety of high-quality datasets Nah et al. (2017); Shen et al. (2019); Nah et al. (2019);
Rim et al. (2020); Zhong et al. (2020); Rim et al. (2022); Lee et al. (2024) and advanced algo-
rithms Chen et al. (2023); Liu et al. (2024a); Gao et al. (2024) have been proposed, achieving
impressive performance across benchmarks. However, these advances have not resolved a central
limitation: most approaches are trained and evaluated on a limited set of datasets, leading to over-
fitting to their domain characteristics and specific blur patterns. As a result, their generalization
performance drops noticeably when applied to real-world scenarios, where blur is inherently more
diverse and complex. As illustrated in Fig. 1, where three real-world cases show that current state-
of-the-art methods fail to deliver satisfactory restorations not only in complex scenes but also in
a visually simple case, reflecting the inherent challenges of real-world blur. Moreover, substan-
tial gaps exist among current datasets, and naive mixed-dataset training not only fails to improve
generalization but often degrades performance on the original benchmarks. This raises a central
challenge: how to effectively organize existing datasets and design deblurring frameworks that can
substantially improve generalization, enabling models to robustly handle the diverse and complex
blur patterns encountered in real-world conditions.

Through systematic investigation, we find that this limitation arises from two key aspects: dataset
construction and algorithmic design. Current datasets face inherent constraints, making it diffi-
cult to achieve both realism and comprehensive coverage of blur patterns. Synthetic datasets such
as GoPro Nah et al. (2017) and REDS Nah et al. (2019) allow large-scale training but diverge
from real-world distributions, while real-captured datasets like RealBlur Rim et al. (2020) and RS-
Blur Rim et al. (2022) improve realism but remain limited in blur diversity and scene coverage. Even
simulation-based datasets such as GSBlur Lee et al. (2024) still differ significantly from real-world
degradations. Consequently, substantial gaps remain both across datasets and between synthetic
datasets and real-world blur, hindering models trained on a single dataset from achieving robust
generalization. Beyond the data, algorithmic choices also impose important constraints. Models
trained with pixel-wise losses (e.g., MSE) favor local details but overlook global structure and se-
mantics, leading to smooth outputs with poor generalization Zamir et al. (2022); Liu et al. (2024a);
Gao et al. (2024); Zhou et al. (2024). Diffusion models leverage strong priors for perceptually better
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results, but training on narrow datasets with simple strategies limits their ability to capture diverse
blur patterns Chen et al. (2023); Xia et al. (2023); Liu et al. (2024b).

Based on these observations, we first conduct a systematic analysis of dataset biases in deblur-
ring. While prior research has largely emphasized the realism of blur Rim et al. (2020); Zhong
et al. (2020); Rim et al. (2022), we find that the diversity and coverage of blur patterns—such as
their orientation and spatial distribution—are critical factors behind the gaps observed both across
datasets and between datasets and real-world blur. Motivated by this finding, we propose BBP (Blur
Pattern Pretraining): a data-centric strategy where models are first pretrained on large-scale simu-
lation datasets with comprehensive blur patterns to acquire strong blur priors, and are then jointly
fine-tuned on real-captured datasets. This process enables the model to leverage blur priors to bridge
dataset gaps, ultimately improving both robustness and applicability in real-world deblurring.

In terms of algorithm design, diffusion models offer strong prior modeling and the ability to in-
tegrate heterogeneous data sources, making them well suited for generalizable deblurring. How-
ever, their high complexity and resource demands hinder deployment in real-world applications
that require real-time efficiency, such as autonomous driving and mobile photography. To address
this, we propose GLOWDeblur, a Generalizable reaL-wOrld lightWeight Deblur model that com-
bines a convolution-based pre-reconstruction & domain-alignment module with a lightweight dif-
fusion model, which employs a Deep Compression AutoEncoder and Linear Attention. To further
strengthen the model’s ability to handle diverse and complex real-world blur, we incorporate motion
guidance and cross-modal semantic captions as complementary signals, enabling the model to better
adapt to varied blur patterns and recover severely degraded regions by leveraging the generative ca-
pacity of diffusion models. GLOWDeblur is trained with our Blur Pattern Pretraining (BBP) strategy
and extensively evaluated on six widely used benchmarks and two real-world datasets. Results show
that GLOWDeblur achieves superior cross-dataset and real-world generalization, underscoring blur
priors as the key to real-world deblurring.

In summary, this work makes the following contributions:
• Revealing the role of blur patterns. We systematically analyze dataset biases and reveal that the
diversity and coverage of blur patterns, rather than realism alone, are the decisive factors behind
cross-dataset gaps. Learning blur priors and leveraging them as guidance is shown to be essential
for achieving robust and quantifiable generalization.
• Data- and model-level priors for generalization. We introduce Blur Pattern Pretraining (BBP),
a data-centric strategy that first learns blur priors from large-scale simulation datasets and then
jointly fine-tunes on real-captured datasets. In parallel, we propose Motion and Semantic Guidance
(MoSeG) to reinforce blur priors and alleviate structural and semantic degradation under severe blur.
• A generalizable real-world deblurring model. We propose GLOWDeblur, a diffusion-based
framework that balances efficiency and effectiveness, achieving strong performance across six
benchmarks and two real-world datasets. Beyond results, it also serves as a practical testbed to
validate our insights and demonstrate real-world applicability.

2 MOTIVATION

2.1 LIMITATIONS OF EXISTING MODELS IN REAL-WORLD BLUR SCENARIOS

Although recent methods have achieved remarkable progress, they still exhibit fundamental lim-
itations, particularly in generalizing to diverse real-world blur patterns. As illustrated in Fig. 1,
across three representative real-world scenes, current state-of-the-art methods fail to deliver satis-
factory restorations beyond the training distribution, not only under complex scenes but even in
visually simple ones. Fig. 2 further reinforces this observation: although existing methods handle
in-distribution blur reasonably well, they suffer severe failures when confronted with the diverse and
complex scenes and blur patterns of real-world scenarios. This indicates that current approaches rely
heavily on dataset-specific distributions rather than learning transferable representations of blur.

These observations motivate us to examine the roots of the generalization gap, revealing that explic-
itly modeling blur-pattern priors and organizing training data to capture their diversity are crucial
for robust real-world deblurring. Guided by these insights, we design improved training strategies
and a lightweight model that generalize effectively across diverse scenes and blur patterns (Fig. 2
GLOWDeblur), thereby overcoming the limitations of existing methods.
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2.2 DATASET BIAS AND BLUR PATTERN DISCREPANCIES

To understand the generalization gap, we conducted a series of cross-dataset experiments using
Restormer as a representative backbone. Models were first trained individually on six widely used
datasets and one simulation-based dataset constructed via 3D Gaussian Splatting, and then evaluated
across all datasets. As shown in Tab. 1, models trained on one dataset degrade notably on others,
underscoring a substantial cross-dataset distribution gap.

Table 1: Cross-dataset results (PSNR/SSIM) reveal severe generalization gaps, with red indicat-
ing the best in-dataset and blue the second-best cross-dataset result. Avg column reports mean
PSNR/SSIM across datasets.

Training Set \Test Set GoPro HIDE REDS RealBlur BSD RSBlur GSBlur Avg
GoPro (Synthetic) 32.92 / 0.94 31.22 (↓0.40)/ 0.92 26.93 (↓7.46) / 0.82 28.96 (↓3.13) / 0.88 24.43 (↓9.32) / 0.90 29.30 (↓3.68) / 0.86 24.94 (↓6.43) / 0.82 28.39 / 0.88
HIDE (Synthetic) 32.60 (↓0.32) / 0.94 31.62 / 0.93 26.68 (↓7.71) / 0.83 27.76 (↓4.33) / 0.86 25.34 (↓8.41) / 0.85 27.77 (↓5.21) / 0.83 23.40 (↓7.97) / 0.80 27.88 / 0.86
REDS (Synthetic) 26.21 (↓6.71) / 0.83 24.42 (↓7.20) / 0.80 34.39 / 0.94 28.72 (↓3.37) / 0.86 28.90 (↓4.85) / 0.84 28.09 (↓4.89) / 0.87 24.42 (↓6.95) / 0.80 27.88 / 0.85
RealBlur (Real) 24.50 (↓8.42) / 0.82 23.60 (↓8.02) / 0.81 25.85 (↓8.54) / 0.79 32.09 / 0.92 28.78 (↓4.97) / 0.91 29.65 (↓3.33) / 0.87 24.92 (↓6.45) / 0.81 27.06 / 0.85
BSD (Real) 27.27 (↓5.65) / 0.86 26.27 (↓5.35) / 0.85 28.20 (↓6.19) / 0.84 29.64 (↓2.45) / 0.89 33.75 / 0.96 30.45 (↓2.53) / 0.89 26.78 (↓4.59) / 0.85 28.91 / 0.88
RSBlur (Real) 27.55 (↓5.37) / 0.87 25.79 (↓5.83) / 0.84 28.08 (↓6.31) /0.84 30.41 (↓1.68) / 0.89 30.85 (↓2.90) / 0.94 32.98 / 0.93 27.63 (↓3.74) / 0.86 29.04 / 0.88
GSBlur (Simulated) 28.51 (↓4.41) / 0.90 26.12 (↓5.50) / 0.87 30.29 (↓4.10) / 0.90 30.06 (↓2.03) / 0.91 31.24 (↓2.51) / 0.94 32.01 (↓0.97) / 0.92 31.37 / 0.92 29.94 / 0.91

Blur Pattern Distribution

Blur Orientations Blur Magnitudes

Examples

GoPro

Global vs. Local

Blur Pattern Distribution

Blur Orientations Blur Magnitudes

Examples

RealBlur

Global vs. Local

Blur Pattern Distribution

Blur Orientations Blur Magnitudes

Examples

RSBlur

Global vs. Local

Figure 3: Illustration of dataset-specific blur patterns, highlighting notable distribution differences.

Importantly, Our cross-dataset experiments further reveal two important observations. First, these
gaps exist not only between synthetic and real datasets, but also within the same category (synthetic
vs. synthetic or real vs. real), indicating that beyond realism there exist deeper sources of mismatch.
Second, despite limited realism in both scenes and blur in GSBlur, its broad coverage of blur patterns
allows models trained on it to achieve relatively stronger cross-dataset robustness. Collectively, these
results highlight that blur pattern diversity, insufficiently recognized in prior work, plays a dominant
role in causing the significant cross-dataset gap.

To validate this insight, we conducted a fine-grained analysis of blur characteristics across datasets.
As shown in Fig. 3, their blur patterns differ markedly in orientation, magnitude, and locality. In
particular, GoPro is dominated by horizontal blur while RealBlur is primarily vertical, yet prior work
has often attributed their discrepancy only to differences in realism.

In summary, our analysis shows that dataset bias in deblurring arises primarily from blur pattern
mismatches, thereby motivating our exploration of both data-centric strategies to mitigate cross-
dataset gaps and algorithmic frameworks that exploit blur priors for robust real-world generalization.
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3 METHODOLOGY
3.1 BLUR PATTERN PRETRAINING (BPP)

Since blur pattern diversity is key to generalization, we propose Blur Pattern Pretraining (BBP) that
uses datasets with broad blur coverage to enable models to learn blur pattern priors, thereby miti-
gating distribution gaps and enhancing both performance and generalization. Table 2 illustrates this
effectiveness using Restormer as a testbed. Pretraining on GSBlur, which offers diverse blur pat-
terns despite limited realism, and then fine-tuning on RealBlur, BSD, and RSBlur (a,b,c) consistently
boosts both in-dataset performance and cross-dataset generalization over direct training. And Naı̈ve
mixed training (d) not only fails to achieve strong results across the three datasets but also degrades
performance due to the pronounced gaps between them, whereas applying BBP before mixing (e)
effectively mitigates these gaps and yields comprehensive improvements on all datasets.

Table 2: Performance comparison on RealBlur-J, BSD, and RSBlur under different training settings.
No. Training set BBP RealBlur-J BSD RSBlur
(a) RealBlur ✓ 32.26 (↑0.17) / 0.93 (↑0.01) 29.76 (↓3.99) / 0.92 (↓0.04) 30.28 (↓2.70) / 0.89 (↓0.04)
(b) BSD ✓ 29.95 (↓2.14) / 0.90 (↓0.02) 34.21 (↑0.46) / 0.96 (±0.00) 31.15 (↓1.83) / 0.90 (↓0.03)
(c) RSBlur ✓ 30.63 (↓1.46) / 0.90 (↓0.02) 31.22 (↓2.53) / 0.95 (↓0.01) 33.69 (↑0.71) / 0.94 (↑0.01)
(d) RealBlur + BSD + RSBlur × 30.83 (↓1.26) / 0.89 (↓0.03) 31.99 (↓1.76) / 0.95 (↓0.01) 31.24 (↓1.74) / 0.90 (↓0.03)
(e) RealBlur + BSD + RSBlur ✓ 32.11 (↑0.02) / 0.93 (↑0.01) 33.62 (↓0.13) / 0.96 (±0.00) 33.65 (↑0.67) / 0.94 (↑0.01)

Best same-dataset performance – 32.09 / 0.92 33.75 / 0.96 32.98 / 0.93

Because BBP proves highly effective in bridging distribution gaps and improving performance, we
incorporate it into the training of GLOWDeblur. As illustrated in Fig. 4, the model first performs
BBP on a simulated dataset that provides comprehensive blur pattern coverage, enabling GLOWDe-
blur to internalize essential blur-related knowledge and priors. In the subsequent stage, the model is
fine-tuned on multiple real-captured datasets, adapting the learned knowledge to close cross-dataset
gaps and further enhance both generalization and restoration performance.
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Figure 4: Overview of GLOWDeblur. The framework integrates a Pre-Reconstruction & Domain-
Alignment module with a lightweight diffusion framework, guided by motion maps and cross-modal
text semantics. Training involves pre-training on datasets with diverse blur patterns, followed by
joint fine-tuning on real-captured datasets.

3.2 MOTION AND SEMANTIC GUIDANCE (MOSEG)

While BBP equips models with transferable blur priors, challenges remain under severe or highly
diverse blur, where structural cues are ambiguous and low-level details are heavily lost. To address
this, we introduce Motion and Semantic Guidance (MoSeG), a conditional design that explicitly
reinforces blur priors during inference and training.

Motion Guidance (MoG): To strengthen the guidance of blur priors, we integrate a motion esti-
mation module. Estimation of motion trajectories provides a direct way to characterize blur pat-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

terns and enhance the model’s ability to generalize across diverse degradations. The blur can
be modeled as the accumulation of displaced sharp pixels along estimated trajectories: B(p0) =
1
N

∑N−1
n=0 Ls(p0 +∆Ptn) , where Ls is the latent sharp image and ∆Ptn the motion offset at tn.

Following prior work on motion offset estimation Zhang et al. (2021), we adopt a lightweight en-
coder–decoder that extracts hierarchical features and predicts dense motion fields ∆P . These offsets
are concatenated with blurred-image features and fed into the deblurring network as motion cues.

Semantic Guidance (SeG): In severely blurred regions where structural details are lost, we inject
high-level semantics as conditional signals to unleash the cross-modal capacity of diffusion mod-
els. Specifically, using QwenVL-2.5-7B Bai et al. (2025), we generate detailed captions describing
objects, scenes, context, and other high-level attributes, and feed their embeddings into Linear DiT
blocks, enabling the recovery of heavily degraded regions.

3.3 LIGHTWEIGHT PRE-ALIGNED LINEAR DIFFUSION FRAMEWORK
Real-world deblurring applications, ranging from autonomous driving to mobile photography, de-
mand models that are both highly efficient and compact. To this end, we design a lightweight frame-
work that integrates a Pre-Reconstruction & Domain-Alignment module with a Deep Compression
AutoEncoder and Linear DiT blocks, achieving both efficiency and strong performance.
Pre-Reconstruction & Domain-Alignment module: a conventional UNet architecture that pro-
vides coarse restoration and aligned intermediate representations, reducing the burden on the dif-
fusion backbone. To keep the design lightweight, we follow the philosophy of Chen et al. (2022),
simplifying architectures with two key modifications. First, nonlinear activations such as GELU are
replaced with a SimpleGate, where feature maps are split and fused via element-wise product:

SimpleGate(X,Y ) = X ⊙ Y, (1)

preserving gating capacity at negligible cost. Second, channel attention is reformulated as Simplified
Channel Attention (SCA), which aggregates global context through pooled descriptors and reweights
channels without redundant nonlinearities:

SCA(X) = X ⊙Wpool(X). (2)

Together, these modifications substantially reduce computation while retaining representational
power.

Lightweight Diffusion with Deep Compression AutoEncoder and Linear Attention: Latent dif-
fusion operates by compressing images into a latent space via an AutoEncoder and applying a DiT
for diffusion within this space, where the computational cost is largely influenced by the compres-
sion ratio and the complexity of attention mechanisms. To meet real-world efficiency demands, we
adopt lightweight adaptations inspired by Xie et al. (2024); Xiaohui Li (2025).

While mainstream designs typically adopt an 8× AutoEncoder for latent compression, we employ
a more aggressive 32× Deep Compression AutoEncoder. With sufficient performance maintained,
this design reduces the number of tokens and significantly lowers memory and computation.

Traditional Diffusion Transformers (DiTs) adopt the standard softmax attention mechanism with
quadratic complexity O(N2), which is computationally expensive. we further replace the quadratic
self-attention in the DiT with a linear variant, reducing the complexity to O(N).

Given query Q ∈ RN×d, key K ∈ RN×d, and value V ∈ RN×d, the linear attention output is
defined as:

Oi =

N∑
j=1

ReLU(Qi)ReLU(Kj)
⊤Vj∑N

j=1 ReLU(Qi)ReLU(Kj)⊤
=

ReLU(Qi)
(∑N

j=1 ReLU(Kj)
⊤Vj

)
ReLU(Qi)

(∑N
j=1 ReLU(Kj)⊤

) . (3)

Instead of computing attention weights for every query–key pair, the shared terms∑N
j=1 ReLU(Kj)

⊤Vj ∈ Rd×d and
∑N

j=1 ReLU(Kj)
⊤ ∈ Rd×1 are computed only once, result-

ing in a lightweight and effective Linear DiT Block.

Finally, we adopt a lightweight fusion strategy that concatenates shallow convolutional features with
motion guidance and latent representations before processing by the Linear DiT block, effectively
integrating complementary cues while preserving efficiency.
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4 EXPERIMENTS
4.1 EXPERIMENT SETTINGS

Training proceeds in two stages. First, BBP is performed on simulated datasets, including GSBlur
(3D Gaussian Splatting with randomized camera trajectories) and an augmented subset of LSDIR Li
et al. (2023) (by simply adding Gaussian and motion blur at different levels). Although less realistic,
these datasets provide broad blur pattern coverage . Second, we jointly fine-tune on GoPro, HIDE,
REDS, RealBlur, BSD, and RSBlur to align these priors with real-world distributions and enhance
restoration quality. More implementation details are given in the Appendix B.
Table 3: Quantitative comparison with state-of-the-art deblurring methods on six widely used bench-
marks. Higher values indicate better performance for ↑ metrics, and lower values for ↓.

Dataset Metric Restormer* HI-Diff DiffIR MISC-Filter MLWNet FPro Diff-Plugin Ours
Zamir et al. (2022) Chen et al. (2023) Xia et al. (2023) Liu et al. (2024a) Gao et al. (2024) Zhou et al. (2024) Liu et al. (2024b)

GoPro
Nah et al. (2017)

PSNR ↑ 33.07 33.33 33.20 34.10 24.60 33.05 25.64 25.21
SSIM ↑ 0.943 0.964 0.963 0.969 0.83 0.943 0.793 0.787

MANIQA ↑ 0.353 0.492 0.535 0.458 0.497 0.518 0.346 0.538
LIQE ↑ 1.455 1.350 1.589 1.172 1.353 1.491 1.092 1.502

NRQM ↑ 4.748 5.047 5.051 4.339 4.750 4.915 3.886 5.252
CLIP-IQA ↑ 0.243 0.250 0.258 0.214 0.257 0.250 0.190 0.239

PI ↓ 5.308 5.159 5.135 5.464 5.363 5.151 6.202 4.846
BRISQUE ↓ 46.715 46.418 46.721 46.095 49.638 49.121 51.018 39.732

NIQE ↓ 5.534 5.504 5.466 5.461 5.650 5.377 6.146 5.120
ILNIQE ↓ 33.354 32.710 33.408 33.071 32.535 32.701 42.474 26.464

HIDE
Shen et al. (2019)

PSNR ↑ 31.81 31.46 31.55 31.66 23.95 30.70 23.95 24.12
SSIM ↑ 0.933 0.945 0.947 0.946 0.819 0.921 0.763 0.763

MANIQA ↑ 0.453 0.535 0.592 0.498 0.509 0.572 0.362 0.583
LIQE ↑ 1.113 1.621 1.977 1.236 1.392 1.803 1.061 1.788

NRQM ↑ 3.916 5.613 6.104 4.731 5.129 6.028 4.323 6.210
CLIP-IQA ↑ 0.187 0.227 0.229 0.179 0.224 0.215 0.158 0.212

PI ↓ 6.302 4.837 4.354 5.278 5.085 4.308 5.773 4.244
BRISQUE ↓ 52.830 43.605 41.045 45.919 48.277 42.970 40.716 36.687

NIQE ↓ 6.558 5.254 4.803 5.318 5.348 4.624 5.528 4.673
ILNIQE ↓ 36.248 31.246 29.788 29.985 30.702 28.224 40.744 24.176

REDS
Nah et al. (2019)

PSNR ↑ 34.207 25.760 26.78 27.58 27.60 26.96 26.27 26.21
SSIM ↑ 0.938 0.779 0.819 0.832 0.851 0.840 0.771 0.770

MANIQA ↑ 0.536 0.630 0.626 0.607 0.647 0.613 0.518 0.642
LIQE ↑ 1.435 2.530 2.293 2.065 2.664 2.097 1.520 2.570

NRQM ↑ 4.886 6.849 7.014 6.541 6.954 6.809 6.384 7.352
CLIP-IQA ↑ 0.271 0.305 0.287 0.268 0.322 0.269 0.228 0.351

PI ↓ 5.335 3.379 3.391 3.546 3.293 3.481 4.160 3.035
BRISQUE ↓ 43.364 28.061 26.452 30.115 31.448 28.533 27.867 25.695

NIQE ↓ 5.660 3.899 3.973 3.894 3.851 3.966 4.620 3.694
ILNIQE ↓ 29.305 23.784 23.269 23.083 22.369 23.236 27.088 19.357

RealBlur-J
Rim et al. (2020)

PSNR ↑ 31.131 29.15 25.37 33.88 33.84 27.90 26.25 27.55
SSIM ↑ 0.917 0.890 0.825 0.938 0.941 0.873 0.79 0.811

MANIQA ↑ 0.472 0.629 0.571 0.602 0.615 0.544 0.467 0.613
LIQE ↑ 2.356 2.646 1.949 2.386 2.578 1.735 1.243 2.439

NRQM ↑ 5.150 5.870 5.517 5.365 5.685 5.361 4.283 5.633
CLIP-IQA ↑ 0.262 0.279 0.247 0.251 0.274 0.212 0.208 0.274

PI ↓ 5.235 4.651 4.934 5.011 4.869 5.013 5.965 4.787
BRISQUE ↓ 49.636 46.799 40.207 46.610 48.970 42.742 42.401 35.895

NIQE ↓ 5.708 5.182 5.258 5.341 5.370 5.256 5.963 5.128
ILNIQE ↓ 34.999 33.380 31.848 34.550 33.588 32.580 37.317 27.548

BSD
Zhong et al. (2020)

PSNR ↑ 30.410 28.66 27.97 29.53 28.82 26.64 27.67 29.56
SSIM ↑ 0.923 0.907 0.885 0.923 0.910 0.885 0.862 0.893

MANIQA ↑ 0.571 0.565 0.362 0.510 0.536 0.461 0.427 0.568
LIQE ↑ 2.325 2.452 1.048 1.742 2.132 1.479 1.296 2.348

NRQM ↑ 4.927 5.806 4.634 4.772 5.229 5.141 4.433 5.096
CLIP-IQA ↑ 0.279 0.283 0.188 0.234 0.264 0.179 0.195 0.282

PI ↓ 5.800 5.189 6.100 5.819 5.560 5.934 6.422 5.589
BRISQUE ↓ 47.363 39.518 24.113 46.358 46.388 29.108 36.347 40.514

NIQE ↓ 5.799 5.464 6.469 5.758 5.721 5.881 6.569 5.455
ILNIQE ↓ 42.040 38.708 31.513 41.328 40.506 37.435 50.182 39.383

RSBlur
Rim et al. (2022)

PSNR ↑ 29.27 29.47 22.48 29.98 30.91 26.19 27.82 28.85
SSIM ↑ 0.864 0.875 0.651 0.887 0.818 0.833 0.821 0.820

MANIQA ↑ 0.442 0.452 0.362 0.420 0.415 0.398 0.441 0.533
LIQE ↑ 1.342 1.124 1.048 1.069 1.111 1.018 1.015 1.404

NRQM ↑ 3.769 3.817 4.634 3.523 3.642 5.520 4.357 5.597
CLIP-IQA ↑ 0.262 0.246 0.188 0.204 0.248 0.170 0.169 0.236

PI ↓ 6.427 6.851 6.100 6.820 7.065 6.296 6.677 4.980
BRISQUE ↓ 52.768 50.286 24.113 54.119 58.433 39.250 21.942 30.677

NIQE ↓ 6.522 7.348 6.469 6.943 7.532 7.533 6.840 5.292
ILNIQE ↓ 32.349 37.794 31.513 36.354 39.651 36.035 41.705 25.833

We evaluate methods on six real-captured datasets for cross-dataset generalization, and on
RWBI Zhang et al. (2020) and our collected RWBlur400 for real-world applicability, as they cover
complex real-world scenes and diverse real-world blur patterns.

Overall, We employ both reference-based and no-reference metrics to comprehensively assess de-
blurring performance. For reference-based evaluation, PSNR and SSIM are used. To better cap-
ture perceptual quality, we further adopt a diverse set of no-reference quality metrics, including
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MANIQA Yang et al. (2022), LIQEZhang et al. (2023), NRQM Ma et al. (2017), CLIP-IQA Wang
et al. (2023), PI, BRISQUE, NIQE, and ILNIQE, providing a thorough assessment of quality.

4.2 COMPARISONS WITH STATE OF THE ARTS

We compare GLOWDeblur with state-of-the-art approaches from two categories. The first includes
recent deblurring-specific methods such as HI-Diff, MISCFilter, and MLWNet. The second covers
general restoration frameworks such as Restormer (and Restormer* retrained under our pipeline),
DiffIR, FPro, and Diff-Plugin. Both categories contain a mix of diffusion-based and non-diffusion
baselines, allowing a fair and comprehensive evaluation.

4.2.1 CROSS-DATASET GENERALIZATION

We evaluate cross-dataset generalization on six widely used datasets. As shown in Fig. 3, GLOWDe-
blur mitigates cross-dataset distribution gaps, achieving strong deblurring performance and high-
quality restoration with competitive fidelity. Restormer* also achieves good fidelity across different
datasets. Fig. 5 provides qualitative comparisons (with more results in the Appendix E), showing
that GLOWDeblur robustly handles complex blur patterns and delivers high-quality restorations.

Input MISC Filter MLWNetRestormer*

DiffIRHI-Diff Diff-Plugin

FPro

OursGT

Input MISC Filter MLWNetRestormer*

DiffIRHI-Diff Diff-Plugin

FPro

OursGT

Input MISC Filter MLWNetRestormer*

DiffIRHI-Diff Diff-Plugin

FPro

OursGT

Figure 5: Qualitative comparison on GoPro, BSD, and RSBlur (From top to bottom). GLOWDeblur
effectively handles diverse blur patterns with high-quality restorations.

Table 4: Quantitative comparison with SOTA deblur models across real-world datasets RWBI and
RWBlur400. Higher values are better for ↑ metrics, lower for ↓. Since these datasets lack ground-
truth annotations, only no-reference metrics are reported.

Dataset Metric Restormer Restormer* HI-Diff DiffIR MISC-Filter MLWNet FPro Diff-Plugin Ours
Zamir et al. (2022) Zamir et al. (2022) Chen et al. (2023) Xia et al. (2023) Liu et al. (2024a) Gao et al. (2024) Zhou et al. (2024) Liu et al. (2024b)

RWBI
Zhang et al. (2020)

MANIQA ↑ 0.501 0.522 0.554 0.494 0.492 0.565 0.483 0.460 0.635
LIQE ↑ 1.846 2.180 2.875 1.807 2.150 3.068 1.771 1.371 3.732

NRQM ↑ 5.433 5.608 5.879 5.457 5.079 6.185 5.474 5.028 6.393
CLIP-IQA ↑ 0.257 0.283 0.372 0.256 0.301 0.424 0.236 0.234 0.474

PI ↓ 5.291 5.133 4.993 5.353 5.468 4.459 5.182 5.670 4.789
BRISQUE ↓ 39.945 39.192 40.674 42.319 43.271 37.403 39.581 40.488 36.625

NIQE ↓ 5.682 5.545 5.589 5.831 5.793 4.886 5.550 5.988 4.796
ILNIQE ↓ 40.760 37.569 37.047 41.304 38.705 34.259 40.208 47.048 33.271

RWBlur400

MANIQA ↑ 0.509 0.530 0.490 0.493 0.455 0.517 0.481 0.497 0.604
LIQE ↑ 1.746 1.893 2.041 1.983 1.780 2.136 1.844 1.808 2.390

NRQM ↑ 4.956 5.471 5.411 5.747 4.901 5.736 5.783 5.660 6.746
CLIP-IQA ↑ 0.333 0.352 0.367 0.339 0.305 0.362 0.313 0.360 0.459

PI ↓ 4.788 4.734 4.990 4.578 5.236 4.461 4.520 4.649 3.786
BRISQUE ↓ 41.083 40.620 43.704 34.578 46.365 41.043 31.025 30.259 27.956

NIQE ↓ 4.971 4.817 5.229 4.751 5.204 4.575 4.609 4.777 4.576
ILNIQE ↓ 31.732 31.796 34.968 32.232 34.699 32.491 32.749 33.989 29.809
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4.2.2 REAL-WORLD EVALUATION

We evaluate real-world performance on RWBI and collected RWBlur400 datasets. As shown in
Table 4, GLOWDeblur consistently outperforms state-of-the-art baselines, demonstrating superior
performance under real-world degradations. Restormer* also achieves significant improvements
compared to its original version. Fig. 6 presents qualitative comparisons, where existing methods fail
under severe blur, but GLOWDeblur produces clear and reliable restorations in real-world scenarios.
(more results in the Appendix E)

Input MISC Filter Restormer*Restormer

DiffIRHI-Diff Diff-Plugin

MLWNet

OursFPro

Input MISC Filter Restormer*Restormer

DiffIRHI-Diff Diff-Plugin

MLWNet

OursFPro

Input MISC Filter Restormer*Restormer

DiffIRHI-Diff Diff-Plugin

MLWNet

OursFPro

Figure 6: Comparison with SOTA deblur models on real-world datasets RWBI and RWBlur400.
4.3 ABLATION STUDIES
We conduct ablation studies on REDS and RSBlur (Tab. 5). The Pre-Reconstruction & Domain-
Alignment module provides consistent gains (a,b) by stabilizing representations and easing the dif-
fusion backbone. Motion guidance enhances blur priors with trajectory cues (b,c), while semantic
guidance introduces high-level semantics to recover severely degraded regions (c,d). Replacing BBP
with naı̈ve mixed-data training causes clear drops (d,e), confirming its role in bridging cross-dataset
gaps. Overall, these results validate the effectiveness of both BBP and the model components.

Table 5: Ablation studies on REDS and RSBlur. Gray indicates the settings of GLOWDeblur.
Dataset No. NPre-aline Gmotion Gtext BBP Mix all data MANIQA ↑ LIQE ↑ NRQM ↑ BRISQUE ↓

REDS

(a) × × × ✓ × 0.565 1.817 5.968 34.297
(b) ✓ × × ✓ × 0.605 2.099 6.250 32.230
(c) ✓ ✓ × ✓ × 0.635 2.480 7.340 27.810
(d) ✓ ✓ ✓ ✓ × 0.642 2.570 7.352 25.695
(e) ✓ ✓ ✓ × ✓ 0.608 2.255 6.014 31.794

RSBlur

(a) × × × ✓ × 0.463 1.132 4.392 43.854
(b) ✓ × × ✓ × 0.484 1.181 4.715 39.940
(c) ✓ ✓ × ✓ × 0.526 1.369 5.421 32.578
(d) ✓ ✓ ✓ ✓ × 0.533 1.404 5.597 30.677
(e) ✓ ✓ ✓ × ✓ 0.495 1.283 5.057 41.510

5 CONCLUSION
In this work, we identify blur pattern diversity as key to generalization and propose GLOWDeblur,
a lightweight diffusion-based framework that integrates Blur Pattern Pretraining (BBP) and Motion
& Semantic Guidance (MoSeG), achieving state-of-the-art performance on multiple synthetic and
real-world datasets with substantially stronger generalization than existing models.
Limitations. To ensure lightweight design, our modules are simplified, sacrificing some perfor-
mance. A finer trade-off between efficiency and accuracy may further improve generalization with
modest parameter increases.
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ETHICS STATEMENT

Our work adheres to ethical standards throughout model design, training, and dataset collection. All
datasets are sourced from publicly available and legally compliant repositories, and no personally
identifiable or sensitive information is included. Data annotation was conducted responsibly with
clear guidelines to ensure fairness and reduce bias. The model design and training strictly follow
principles of transparency and reproducibility, without any practices that may cause harm or infringe
on privacy. Overall, this study complies with ethical norms and aims to contribute positively to the
research community.

REPRODUCIBILITY STATEMENT

We provide all necessary details to ensure the reproducibility of our work. Specifically, the ex-
perimental designs, dataset usage strategies, and implementation in Appendix B. In addition, the
training schedules, hyperparameters, and evaluation protocols are included to allow faithful repli-
cation of our results. The codebase and scripts are also released in the supplementary materials to
further facilitate reproducibility.
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A RELATED WORKS

A.1 IMAGE DEBLURRING

Image deblurring has long been a fundamental problem in low-level vision. Earlier methods mainly
relied on handcrafted priors and optimization-based formulations, such as gradient sparsity, edge
sharpness, or statistical constraints Krishnan et al. (2011); Pan et al. (2016). While these approaches
provided valuable insights, their strong reliance on manually designed assumptions made them inad-
equate for handling complex and diverse real-world blur. With the rise of deep learning, researchers
have shifted toward data-driven architectures, enabling significant improvements in both restoration
quality and efficiency. In this work, we focus on the latest generation of learning-based approaches
that have recently achieved state-of-the-art performance in deblurring and general image restoration.

Task-specific deblurring architectures Tsai et al. (2022); Liu et al. (2024a); Gao et al. (2024); Chen
et al. (2023) have been extensively explored. Non-diffusion approachesintroduce specialized de-
signs tailored for motion blur removal. Tsai et al. (2022) employs directional strip-based attention
to capture region-specific blur orientations and magnitudes efficiently. Liu et al. (2024a) lever-
ages motion-adaptive collaborative filtering to handle spatially variant motion in real-world settings.
Gao et al. (2024) integrates multi-scale prediction with learnable wavelet transforms to preserve
frequency and directional continuity. On the diffusion side, Chen et al. (2023) designs a compact
latent diffusion model with hierarchical integration to generate blur-aware priors for regression-
based restoration. These specialized models typically achieve strong performance in blur removal
but often generalize poorly when facing unseen blur patterns.

Beyond specialized models, general-purpose restoration frameworks Wang et al. (2022); Zamir et al.
(2022); Xia et al. (2023); Liu et al. (2024b); Zhou et al. (2024) have also been widely applied
to deblurring. Non-diffusion methods demonstrate strong versatility across tasks. Wang et al.
(2022) employs locally enhanced window attention to scale to high-resolution restoration, Zamir
et al. (2022) introduces channel-wise self-attention for efficient global context modeling , and Zhou
et al. (2024) incorporates frequency prompting to guide restoration across different degradations.
Diffusion-based methods Xia et al. (2023); Liu et al. (2024b) further extend general restoration:
Xia et al. (2023) integrates compact priors into efficient denoising diffusion, and Liu et al. (2024b)
introduces lightweight task-specific plugin modules to adapt pre-trained diffusion models across di-
verse low-level vision tasks. Compared with task-specific designs, these general frameworks exhibit
stronger cross-task robustness and generalization, though they often lag behind specialized models
in task-optimized fidelity.

Despite these advances, most existing approaches still struggle with generalization in real-world
scenarios. While task-specific methods achieve strong performance under their training distribu-
tions, they often fail to transfer across diverse blur patterns. General-purpose frameworks, though
more robust across degradations, tend to sacrifice task-optimized fidelity. Overall, systematic inves-
tigation into real-world generalization for deblurring remains limited, leaving a critical gap that our
work aims to address.

A.2 DEBLURRING DATASETS

Progress in image deblurring has been closely tied to the availability of datasets. Yet, constructing
suitable datasets is inherently challenging, as it involves balancing realism, diversity, and scalability.
Synthetic datasets Nah et al. (2017); Shen et al. (2019); Nah et al. (2019) such as GoPro Nah et al.
(2017), HIDE Shen et al. (2019), and REDS Nah et al. (2019) have been the dominant benchmarks
for years. They are generated through pipelines that average or interpolate high-frame-rate videos
to simulate camera exposure, offering large-scale paired data at relatively low cost. Such datasets
have enabled rapid progress by providing standardized benchmarks, but the blur they simulate often
deviates from real imaging processes. As a result, models trained on synthetic data may perform
well in-distribution but fail to capture the irregular, spatially variant blur patterns observed in the
wild.

To reduce this gap, real-captured datasets Rim et al. (2020; 2022); Zhong et al. (2020) have been de-
veloped. RealBlur Rim et al. (2020), BSD Zhong et al. (2020), and RSBlur Rim et al. (2022) adopt
specialized imaging systems—such as beam-splitter setups or synchronized multi-camera rigs—to
capture geometrically aligned pairs of blurred and sharp images. These datasets provide authen-
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tic motion and defocus blur, more faithfully reflecting the complexity of real-world degradations.
However, the hardware cost and collection complexity are significant, limiting the dataset scale and
diversity. Even with substantial effort, it remains nearly impossible to comprehensively cover the
range of blur magnitudes, orientations, and scene dynamics encountered in real scenarios.

Recently, simulation-based datasets such as GSBlur Lee et al. (2024) have been proposed to im-
prove diversity and controllability. By reconstructing 3D scenes with Gaussian Splatting and render-
ing them under randomized camera trajectories, GSBlur generates blur patterns beyond traditional
frame-averaging pipelines. While this controllability broadens the degradation space, simulated blur
still lacks the photometric and structural fidelity of real imaging, leaving a clear gap to real-captured
datasets.

In summary, synthetic datasets are abundant but unrealistic, real-captured ones are authentic but
costly and narrow, and simulation-based ones offer diversity but lack realism. No dataset achieves
both scale and fidelity, creating distribution gaps that cause models to overfit specific blur patterns
and degrade sharply under unseen conditions. This underscores the need for strategies that explicitly
address blur diversity and distribution mismatch, motivating our work.

A.3 DIFFUSION MODELS

Diffusion Models (DMs) Esser et al. (2024); Ho et al. (2020); Rombach et al. (2022) have recently
emerged as powerful generative priors, synthesizing data from Gaussian noise through iterative de-
noising. Their success in image generation has inspired a series of applications in deblurring. In the
context of deblurring, DiffIR Xia et al. (2023) and HI-Diff Chen et al. (2023) adopt diffusion-based
priors with a two-stage training strategy to better capture blur statistics, More recently, IDBlau Wu
et al. (2024)leverages implicit diffusion to augment blur patterns under controllable settings, effec-
tively enriching training data for downstream deblurring models.

Despite their effectiveness, most of these approaches remain computationally expensive. Large-
scale pretrained diffusion models Yu et al. (2024); Esser et al. (2024); Ai et al. (2024)possess
billions of parameters, which, while offering strong generative priors, impose prohibitive training
and inference costs that limit deployment in real-world scenarios like autonomous driving and mo-
bile imaging. This challenge has motivated efforts to develop lightweight alternatives. For example,
Xie et al. (2024) proposes a linear-attention-based diffusion transformer that achieves high efficiency
without sacrificing quality, demonstrating that architectural re-design and aggressive compression
can bring diffusion models closer to practical deployment. Similarly, Xiaohui Li (2025) and related
works explore simplified diffusion formulations tailored for image restoration. Nonetheless, the ex-
ploration of lightweight diffusion for deblurring remains limited, leaving an open question of how
to balance generalization, restoration fidelity, and efficiency under real-world constraints.

B IMPLEMENTATION DETAILS

Our model is trained in two stages. First, Blur Pattern Pretraining (BBP) is performed for 10k
iterations on a synthetic mixture of GSBlur and an augmented subset of LSDIR, where Gaussian and
motion blur of varying levels are added to enrich pattern diversity. The model is then fine-tuned until
convergence on a combined real-captured dataset including GoPro, HIDE, REDS, RealBlur, BSD,
and RSBlur, aligning the learned priors with real-world distributions. Training is conducted using
the Adam optimizer with an initial learning rate of 1e-4 and a batch size of 12×8. All experiments
are implemented in PyTorch and run on 8 NVIDIA A800 GPUs (80GB each).

C EXPLORATORY COMPARISON WITH LARGE-SCALE GENERAL-PURPOSE
RESTORATION MODELS

With the rapid development of diffusion models, large-scale variants trained on massive datasets
have demonstrated impressive capabilities across diverse image restoration tasks Esser et al. (2024);
Yu et al. (2024); Ai et al. (2024). These models, equipped with hundreds of millions or even billions
of parameters, form the backbone of several general-purpose restoration frameworks that achieve
state-of-the-art results in super-resolution, denoising, and image quality enhancement. Motivated by
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their success, we further investigate whether such models can leverage their scale and training data
to generalize to real-world deblurring.

However, our experiments reveal notable limitations. Using SUPIR Yu et al. (2024)as a representa-
tive model, we find that while it excels in enhancing perceptual quality—sometimes even surpassing
ground-truth images in conventional quality metrics—it fails to effectively handle blur. As shown in
7, SUPIR struggles even on GoPro, one of the simplest synthetic benchmarks for motion deblurring,
producing visually sharp but still blurred outputs. More strikingly, Fig. X also illustrates its short-
comings on complex real-world blur, where artifacts and residual degradation remain prominent.

SUPIR GT

MUSIQ ↑ : 42.912
LIQE ↑ : 1.978

NRQM ↑ : 8.172
CLIPIQA ↑ : 0.244

MUSIQ ↑ : 38.279
LIQE ↑ : 1.006

NRQM ↑ : 4.006
CLIPIQA ↑ : 0.164

Figure 7: Qualitative and quantitative comparison of SUPIR and GT on GoPro, showing quality
scores exceeding GT but failure to remove blur.

Input SUPIR Ours

Input SUPIR Ours

Input SUPIR Ours

Figure 8: Quantitative comparison with SUPIR across real-world datasets.
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These observations highlight an important gap: despite their remarkable success in other restoration
tasks, large-scale diffusion models are not inherently equipped to handle the structural complexity
of blur. This contrast further validates the necessity of explicitly modeling blur priors, as pursued in
our proposed framework, to achieve robust and generalizable deblurring in real-world scenarios.

D DECLARATION OF USE OF LARGE LANGUAGE MODELS (LLM)

We confirm that this paper was written primarily by the authors. Large Language Models (LLMs)
were used only as general-purpose tools for language refinement, including grammar correction
and stylistic polishing. In particular, GPT-5 (OpenAI, 2025) was employed for minor rephrasing to
improve clarity and readability. No LLM was involved in research ideation, experimental design,
data analysis, or generation of substantive content.

E ADDITIONAL VISUAL RESULTS

Input MISC Filter MLWNetRestormer*

DiffIRHI-Diff Diff-Plugin

FPro

OursGT

Input MISC Filter MLWNetRestormer*

DiffIRHI-Diff Diff-Plugin

FPro

OursGT

Input MISC Filter MLWNetRestormer*

DiffIRHI-Diff Diff-Plugin

FPro

OursGT

Figure 9: Qualitative comparison on HIDE, Realblur, and REDS (From top to bottom). GLOWDe-
blur effectively handles diverse blur patterns with high-quality restorations.
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Figure 10: Comparison with SOTA deblur methods across real-world datasets.
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Figure 11: Comparison with SOTA deblur methods across real-world datasets.
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