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Figure 1: (a) Visual comparison on challenging real-world images: our GLOWDeblur effectively
restores a wide range of blur patterns, while prior methods often fail in complex scenarios. (b)
Quantitative comparison on diverse benchmarks: the left plot shows dataset scores computed by
ranking methods on each metric and averaging across metrics; the right plot reports average model
scores across all datasets, highlighting the strong generalization ability of GLOWDeblur.

ABSTRACT

Image deblurring has advanced rapidly with deep learning, yet most methods ex-
hibit poor generalization beyond their training datasets, with performance drop-
ping significantly in real-world scenarios. Our analysis shows this limitation stems
from two factors: datasets face an inherent trade-off between realism and cover-
age of diverse blur patterns, and algorithmic designs remain restrictive, as pixel-
wise losses drive models toward local detail recovery while overlooking structural
and semantic consistency, whereas diffusion-based approaches, though perceptu-
ally strong, still fail to generalize when trained on narrow datasets with simplistic
strategies. Through systematic investigation, we identify blur pattern diversity as
the decisive factor for robust generalization and propose Blur Pattern Pretraining
(BBP), which acquires blur priors from simulation datasets and transfers them



Under review as a conference paper at ICLR 2026

through joint fine-tuning on real data. We further introduce Motion and Semantic
Guidance (MoSeQG) to strengthen blur priors under severe degradation, and in-
tegrate it into GLOWDeblur, a Generalizable real.-wOrld lightWeight Deblur
model that combines convolution-based pre-reconstruction & domain alignment
module with a lightweight diffusion backbone. Extensive experiments on six
widely-used benchmarks and two real-world datasets validate our approach, con-
firming the importance of blur priors for robust generalization and demonstrating
that the lightweight design of GLOWDeblur ensures practicality in real-world ap-
plications.

1 INTRODUCTION
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Figure 2: Challenges for Real-World Generalization

In recent years, image deblurring has made significant progress with the rapid development of deep
learning. A variety of high-quality datasets|Nah et al.|(2017); |Shen et al.| (2019); [Nah et al.| (2019);
Rim et al.| (2020); Zhong et al.| (2020); Rim et al.| (2022); |[Lee et al. (2024) and advanced algo-
rithms |Chen et al.| (2023); Liu et al.| (2024a)); |Gao et al.| (2024) have been proposed, achieving
impressive performance across benchmarks. However, these advances have not resolved a central
limitation: most approaches are trained and evaluated on a limited set of datasets, leading to over-
fitting to their domain characteristics and specific blur patterns. As a result, their generalization
performance drops noticeably when applied to real-world scenarios, where blur is inherently more
diverse and complex. As illustrated in Fig. [I] where three real-world cases show that current state-
of-the-art methods fail to deliver satisfactory restorations not only in complex scenes but also in
a visually simple case, reflecting the inherent challenges of real-world blur. Moreover, substan-
tial gaps exist among current datasets, and naive mixed-dataset training not only fails to improve
generalization but often degrades performance on the original benchmarks. This raises a central
challenge: how to effectively organize existing datasets and design deblurring frameworks that can
substantially improve generalization, enabling models to robustly handle the diverse and complex
blur patterns encountered in real-world conditions.

Through systematic investigation, we find that this limitation arises from two key aspects: dataset
construction and algorithmic design. Current datasets face inherent constraints, making it diffi-
cult to achieve both realism and comprehensive coverage of blur patterns. Synthetic datasets such
as GoPro [Nah et al.| (2017) and REDS |Nah et al.| (2019) allow large-scale training but diverge
from real-world distributions, while real-captured datasets like RealBlur [Rim et al.| (2020)) and RS-
Blur Rim et al.|(2022)) improve realism but remain limited in blur diversity and scene coverage. Even
simulation-based datasets such as GSBlur |Lee et al.| (2024)) still differ significantly from real-world
degradations. Consequently, substantial gaps remain both across datasets and between synthetic
datasets and real-world blur, hindering models trained on a single dataset from achieving robust
generalization. Beyond the data, algorithmic choices also impose important constraints. Models
trained with pixel-wise losses (e.g., MSE) favor local details but overlook global structure and se-
mantics, leading to smooth outputs with poor generalization Zamir et al.|(2022)); Liu et al.| (2024a);
Gao et al.[(2024); |Zhou et al.[(2024). Diffusion models leverage strong priors for perceptually better
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results, but training on narrow datasets with simple strategies limits their ability to capture diverse
blur patterns|Chen et al.| (2023); |Xia et al.| (2023)); Liu et al.[(2024b)).

Based on these observations, we first conduct a systematic analysis of dataset biases in deblur-
ring. While prior research has largely emphasized the realism of blur Rim et al.| (2020); [Zhong
et al.| (2020); Rim et al.[| (2022), we find that the diversity and coverage of blur patterns—such as
their orientation and spatial distribution—are critical factors behind the gaps observed both across
datasets and between datasets and real-world blur. Motivated by this finding, we propose BBP (Blur
Pattern Pretraining): a data-centric strategy where models are first pretrained on large-scale simu-
lation datasets with comprehensive blur patterns to acquire strong blur priors, and are then jointly
fine-tuned on real-captured datasets. This process enables the model to leverage blur priors to bridge
dataset gaps, ultimately improving both robustness and applicability in real-world deblurring.

In terms of algorithm design, diffusion models offer strong prior modeling and the ability to in-
tegrate heterogeneous data sources, making them well suited for generalizable deblurring. How-
ever, their high complexity and resource demands hinder deployment in real-world applications
that require real-time efficiency, such as autonomous driving and mobile photography. To address
this, we propose GLOWDeblur, a Generalizable real.-wOrld lightWeight Deblur model that com-
bines a convolution-based pre-reconstruction & domain-alignment module with a lightweight dif-
fusion model, which employs a Deep Compression AutoEncoder and Linear Attention. To further
strengthen the model’s ability to handle diverse and complex real-world blur, we incorporate motion
guidance and cross-modal semantic captions as complementary signals, enabling the model to better
adapt to varied blur patterns and recover severely degraded regions by leveraging the generative ca-
pacity of diffusion models. GLOWDeblur is trained with our Blur Pattern Pretraining (BBP) strategy
and extensively evaluated on six widely used benchmarks and two real-world datasets. Results show
that GLOWDeblur achieves superior cross-dataset and real-world generalization, underscoring blur
priors as the key to real-world deblurring.

In summary, this work makes the following contributions:

* Revealing the role of blur patterns. We systematically analyze dataset biases and reveal that the
diversity and coverage of blur patterns, rather than realism alone, are the decisive factors behind
cross-dataset gaps. Learning blur priors and leveraging them as guidance is shown to be essential
for achieving robust and quantifiable generalization.

* Data- and model-level priors for generalization. We introduce Blur Pattern Pretraining (BBP),
a data-centric strategy that first learns blur priors from large-scale simulation datasets and then
jointly fine-tunes on real-captured datasets. In parallel, we propose Motion and Semantic Guidance
(MoSeG) to reinforce blur priors and alleviate structural and semantic degradation under severe blur.
* A generalizable real-world deblurring model. We propose GLOWDeblur, a diffusion-based
framework that balances efficiency and effectiveness, achieving strong performance across six
benchmarks and two real-world datasets. Beyond results, it also serves as a practical testbed to
validate our insights and demonstrate real-world applicability.

2  MOTIVATION

2.1 LIMITATIONS OF EXISTING MODELS IN REAL-WORLD BLUR SCENARIOS

Although recent methods have achieved remarkable progress, they still exhibit fundamental lim-
itations, particularly in generalizing to diverse real-world blur patterns. As illustrated in Fig. [T}
across three representative real-world scenes, current state-of-the-art methods fail to deliver satis-
factory restorations beyond the training distribution, not only under complex scenes but even in
visually simple ones. Fig. [2] further reinforces this observation: although existing methods handle
in-distribution blur reasonably well, they suffer severe failures when confronted with the diverse and
complex scenes and blur patterns of real-world scenarios. This indicates that current approaches rely
heavily on dataset-specific distributions rather than learning transferable representations of blur.

These observations motivate us to examine the roots of the generalization gap, revealing that explic-
itly modeling blur-pattern priors and organizing training data to capture their diversity are crucial
for robust real-world deblurring. Guided by these insights, we design improved training strategies
and a lightweight model that generalize effectively across diverse scenes and blur patterns (Fig. 2]
GLOWDeblur), thereby overcoming the limitations of existing methods.

3
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2.2 DATASET BIAS AND BLUR PATTERN DISCREPANCIES

To understand the generalization gap, we conducted a series of cross-dataset experiments using
Restormer as a representative backbone. Models were first trained individually on six widely used
datasets and one simulation-based dataset constructed via 3D Gaussian Splatting, and then evaluated
across all datasets. As shown in Tab. |1}, models trained on one dataset degrade notably on others,
underscoring a substantial cross-dataset distribution gap.

Table 1: Cross-dataset results (PSNR/SSIM) reveal severe generalization gaps, with red indicat-
ing the best in-dataset and blue the second-best cross-dataset result. Avg column reports mean
PSNR/SSIM across datasets.

Training Set \ Test Set GoPro HIDE REDS RealBlur BSD RSBlur GSBlur Avg

GoPro (Synthetic) 32.9270.94 31.22(10.40)/0.92 | 26.93 (17.46)/0.82 | 28.96 (13.13)70.88 | 24.43(19.32)70.90 | 29.30 (13.68)/0.86 | 24.94(16.43)/0.82 | 28.3970.88
HIDE (Synthetic) 32.60 (10.32)/0.94 31.62/0.93 26.68 (17.71)/0.83 | 27.76 (14.33) /0.86 | 25.34 (18.41)/0.85 | 27.77 (15.21)/0.83 | 23.40 (17.97)/0.80 | 27.88/0.86
REDS (Synthetic) 26.21 (16.71)/0.83 | 24.42(17.20)/0.80 34.39/0.94 28.72(13.37)/0.86 | 28.90 (14.85)/0.84 | 28.09 (14.89)/0.87 | 24.42(16.95)/0.80 | 27.88/0.85
RealBlur (Real) 24.50 (18.42)/0.82 | 23.60 (18.02)/0.81 | 25.85(|8.54)/0.79 32.09/0.92 28.78 (14.97)/0.91 | 29.65(13.33)/0.87 | 24.92 (16.45)/0.81 | 27.06/0.85
BSD (Real) 27.27 (15.65)/0.86 | 26.27 (15.35)/0.85 | 28.20 (16.19)/0.84 | 29.64 (12.45)/0.89 33.75/0.96 30.45(12.53)/0.89 | 26.78 (14.59)/0.85 | 28.91/0.88
RSBlur (Real) 27.55(15.37)/0.87 | 25.79 (15.83)/0.84 | 28.08 (16.31)/0.84 | 30.41 (11.68)/0.89 | 30.85(12.90)/0.94 32.98/0.93 27.63 (13.74)/0.86 | 29.04/0.88
GSBlur (Simulated) 28.51 (14.41)/0.90 | 26.12 (15.50)/0.87 | 30.29 (14.10)/0.90 | 30.06 (12.03)/0.91 | 31.24 (12.51)/0.94 | 32.01 (10.97)/0.92 31.37/0.92 29.94/0.91
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Figure 3: Tllustration of dataset-specific blur patterns, highlighting notable distribution differences.
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Importantly, Our cross-dataset experiments further reveal two important observations. First, these
gaps exist not only between synthetic and real datasets, but also within the same category (synthetic
vs. synthetic or real vs. real), indicating that beyond realism there exist deeper sources of mismatch.
Second, despite limited realism in both scenes and blur in GSBlur, its broad coverage of blur patterns
allows models trained on it to achieve relatively stronger cross-dataset robustness. Collectively, these
results highlight that blur pattern diversity, insufficiently recognized in prior work, plays a dominant
role in causing the significant cross-dataset gap.

To validate this insight, we conducted a fine-grained analysis of blur characteristics across datasets.
As shown in Fig.[3] their blur patterns differ markedly in orientation, magnitude, and locality. In
particular, GoPro is dominated by horizontal blur while RealBlur is primarily vertical, yet prior work
has often attributed their discrepancy only to differences in realism.

In summary, our analysis shows that dataset bias in deblurring arises primarily from blur pattern
mismatches, thereby motivating our exploration of both data-centric strategies to mitigate cross-
dataset gaps and algorithmic frameworks that exploit blur priors for robust real-world generalization.
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3 METHODOLOGY
3.1 BLUR PATTERN PRETRAINING (BPP)

Since blur pattern diversity is key to generalization, we propose Blur Pattern Pretraining (BBP) that
uses datasets with broad blur coverage to enable models to learn blur pattern priors, thereby miti-
gating distribution gaps and enhancing both performance and generalization. Table [2]illustrates this
effectiveness using Restormer as a testbed. Pretraining on GSBlur, which offers diverse blur pat-
terns despite limited realism, and then fine-tuning on RealBlur, BSD, and RSBlur (a,b,c) consistently
boosts both in-dataset performance and cross-dataset generalization over direct training. And Naive
mixed training (d) not only fails to achieve strong results across the three datasets but also degrades
performance due to the pronounced gaps between them, whereas applying BBP before mixing (e)
effectively mitigates these gaps and yields comprehensive improvements on all datasets.

Table 2: Performance comparison on RealBlur-J, BSD, and RSBlur under different training settings.

No. | Training set BBP RealBlur-J BSD RSBlur

(2) | RealBlur V| 32.26 (10.17)70.93 (10.01) | 29.76 (13.99)70.92 (10.04) | 30.28 (12.70) 7 0.89 (10.04)

(b) | BSD v 29.95 (12.14)/0.90 (10.02) | 34.21 (10.46) / 0.96 (+0.00) | 31.15 (11.83)/0.90 (10.03)

(¢) | RSBlur v | 30.63 (11.46)/0.90 (10.02) | 31.22(]2.53)/0.95 (J0.01) | 33.69 (10.71)/0.94 (10.01)

(d) | RealBlur + BSD + RSBlur X 30.83 (11.26) /0.89 (10.03) | 31.99 (11.76) /0.95 (10.01) | 31.24 (11.74)/0.90 (10.03)

(e) | RealBlur + BSD + RSBlur v | 32,11 (10.02)/0.93 (10.01) | 33.62 (]0.13)/0.96 (+0.00) | 33.65 (10.67) /0.94 (10.01)
Best same-dataset performance - 32.09/0.92 33.75/0.96 32.9870.93

Because BBP proves highly effective in bridging distribution gaps and improving performance, we
incorporate it into the training of GLOWDeblur. As illustrated in Fig. [ the model first performs
BBP on a simulated dataset that provides comprehensive blur pattern coverage, enabling GLOWDe-
blur to internalize essential blur-related knowledge and priors. In the subsequent stage, the model is
fine-tuned on multiple real-captured datasets, adapting the learned knowledge to close cross-dataset
gaps and further enhance both generalization and restoration performance.
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Figure 4: Overview of GLOWDeblur. The framework integrates a Pre-Reconstruction & Domain-
Alignment module with a lightweight diffusion framework, guided by motion maps and cross-modal
text semantics. Training involves pre-training on datasets with diverse blur patterns, followed by
joint fine-tuning on real-captured datasets.

3.2 MOTION AND SEMANTIC GUIDANCE (MOSEG)

While BBP equips models with transferable blur priors, challenges remain under severe or highly
diverse blur, where structural cues are ambiguous and low-level details are heavily lost. To address
this, we introduce Motion and Semantic Guidance (MoSeG), a conditional design that explicitly
reinforces blur priors during inference and training.

Motion Guidance (MoG): To strengthen the guidance of blur priors, we integrate a motion esti-
mation module. Estimation of motion trajectories provides a direct way to characterize blur pat-
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terns and enhance the model’s ability to generalize across diverse degradations. The blur can
be modeled as the accumulation of displaced sharp pixels along estimated trajectories: B(pg) =

% Zg;ol Ls(po+ AP;,), where Ly is the latent sharp image and AP; | the motion offset at ¢,,.

Following prior work on motion offset estimation Zhang et al.| (2021), we adopt a lightweight en-
coder—decoder that extracts hierarchical features and predicts dense motion fields A P. These offsets
are concatenated with blurred-image features and fed into the deblurring network as motion cues.

Semantic Guidance (SeG): In severely blurred regions where structural details are lost, we inject
high-level semantics as conditional signals to unleash the cross-modal capacity of diffusion mod-
els. Specifically, using QwenVL-2.5-7B Bai et al.| (2025)), we generate detailed captions describing
objects, scenes, context, and other high-level attributes, and feed their embeddings into Linear DiT
blocks, enabling the recovery of heavily degraded regions.

3.3 LIGHTWEIGHT PRE-ALIGNED LINEAR DIFFUSION FRAMEWORK

Real-world deblurring applications, ranging from autonomous driving to mobile photography, de-
mand models that are both highly efficient and compact. To this end, we design a lightweight frame-
work that integrates a Pre-Reconstruction & Domain-Alignment module with a Deep Compression
AutoEncoder and Linear DiT blocks, achieving both efficiency and strong performance.
Pre-Reconstruction & Domain-Alignment module: a conventional UNet architecture that pro-
vides coarse restoration and aligned intermediate representations, reducing the burden on the dif-
fusion backbone. To keep the design lightweight, we follow the philosophy of |Chen et al.| (2022),
simplifying architectures with two key modifications. First, nonlinear activations such as GELU are
replaced with a SimpleGate, where feature maps are split and fused via element-wise product:

SimpleGate(X,Y) = X @Y, (1)

preserving gating capacity at negligible cost. Second, channel attention is reformulated as Simplified
Channel Attention (SCA), which aggregates global context through pooled descriptors and reweights
channels without redundant nonlinearities:

SCA(X) = X © Wpoo(X). )

Together, these modifications substantially reduce computation while retaining representational
power.

Lightweight Diffusion with Deep Compression AutoEncoder and Linear Attention: Latent dif-
fusion operates by compressing images into a latent space via an AutoEncoder and applying a DiT
for diffusion within this space, where the computational cost is largely influenced by the compres-
sion ratio and the complexity of attention mechanisms. To meet real-world efficiency demands, we
adopt lightweight adaptations inspired by [Xie et al.|(2024); Xiaohui Li| (2025).

While mainstream designs typically adopt an 8 x AutoEncoder for latent compression, we employ
a more aggressive 32x Deep Compression AutoEncoder. With sufficient performance maintained,
this design reduces the number of tokens and significantly lowers memory and computation.

Traditional Diffusion Transformers (DiTs) adopt the standard softmax attention mechanism with
quadratic complexity O(N?), which is computationally expensive. we further replace the quadratic
self-attention in the DiT with a linear variant, reducing the complexity to O(N).

Given query Q € RV*4 key K € RV*? and value V. € RV*9, the linear attention output is
defined as:

N ~ ReLUQ L ReLU V;
00 = Z ReLU(Q;) ReLU(K,)TV; @ )(Zj (K;) " )

{ S0 ReLU(Q) ReLU(K) T ReLU(Q:) (£, ReLU(K,)T)

3)

Instead of computing attention weights for every query—key pair, the shared terms
Zj L ReLU(K;)TV; € R¥*? and Z L ReLU(K;)T € R¥*! are computed only once, result-
ing in a hghtwelght and effective Llnear D1T Block.

Finally, we adopt a lightweight fusion strategy that concatenates shallow convolutional features with
motion guidance and latent representations before processing by the Linear DiT block, effectively
integrating complementary cues while preserving efficiency.
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4 EXPERIMENTS
4.1 EXPERIMENT SETTINGS

Training proceeds in two stages. First, BBP is performed on simulated datasets, including GSBlur
(3D Gaussian Splatting with randomized camera trajectories) and an augmented subset of LSDIR [Li
et al.[(2023)) (by simply adding Gaussian and motion blur at different levels). Although less realistic,
these datasets provide broad blur pattern coverage . Second, we jointly fine-tune on GoPro, HIDE,
REDS, RealBlur, BSD, and RSBlur to align these priors with real-world distributions and enhance
restoration quality. More implementation details are given in the Appendix

Table 3: Quantitative comparison with state-of-the-art deblurring methods on six widely used bench-
marks. Higher values indicate better performance for 1 metrics, and lower values for .
Dataset ‘ Metric |Restormer* HI-Diff DiffIR MISC-Filter MLWNet FPro Diff-Plugin Ours

Zamir et al. §2022] [Chen et al. §2023){Xia et al. 12023}  [Liu et al. £2024a) |Gao et al. 12024)Zhou et al. £2024) [Liu et al. 12024b}

PSNR 1 33.07 33.33 33.20 34.10 24.60 33.05 25.64 2521

SSIM + 0.943 0964 0963 0.969 0.83  0.943 0793 0787

MANIQA 1|  0.353 0492  0.535 0.458 0497 0518 0346  0.538

LIQE 1 1.455 1350  1.589 1172 1353 1.491 1092 1.502

GoPro | NRQM+ | 4.748 5047  5.051 4339 4750 4915 3886 5252

Nah et al.|(2017) |cLIPTQA | 0243 0250 0258 0214 0257 0250 0.190  0.239
PI | 5.308 5159  5.135 5.464 5363 5.151 6202  4.846

BRISQUE || 46715 46418 46721  46.095  49.638 49.121  51.018 39.732

NIQE | 5.534 5504  5.466 5461 5650 5377 6.146  5.120

ILNIQE| | 33354 32710 33408 33071 32535 32701 42474 26.464

PSNR T 31.81 3146 3155 31.66 2395  30.70 2395 24.12

SSIM 1 0.933 0.945 0.947 0.946 0.819 0.921 0.763  0.763
MANIQA 1| 0.453 0.535 0.592 0.498 0.509 0.572 0362  0.583

LIQE 1 1.113 1621 1.977 1.236 1392 1.803 1061  1.788
HIDE | NRQM 1 | 3916 5613 6.104 4731 5129 6.028 4323 6210

Shen et al.J(2019) |cL1PTQA 1|  0.187 0227 0229 0.179 0224 0215 0.158 0212
PI | 6.302 4837  4.354 5278 5085 4308 5773 4.244

BRISQUE || 52.830 43.605  41.045 45919 48.277 42970 40.716  36.687
NIQE | 6.558 5.254 4.803 5.318 5.348 4.624 5528  4.673
ILNIQE | 36.248 31.246  29.788 29.985 30.702  28.224 40.744  24.176

PSNR 1 34.207 25.760 26.78 27.58 27.60 26.96 2627  26.21
SSIM 1 0.938 0.779 0.819 0.832 0.851 0.840 0.771 0.770
MANIQA 1| 0.536 0.630 0.626 0.607 0.647 0.613 0518  0.642
LIQE 1 1.435 2.530 2.293 2.065 2.664 2.097 1.520  2.570

REDS | NRQM 1 | 4.886 6849 7014 6.541 6954  6.809 6384 7352
Nah et al.|(2019) |cLIpIQA 1|  0.271 0305  0.287 0.268 0322 0269 0.228  0.351
PI | 5.335 3379 3391 3.546 3293 3.481 4160 3.035

BRISQUE || 43.364 28.061  26.452 30.115 31.448  28.533 27.867 25.695
NIQE | 5.660 3.899 3.973 3.804 3.851 3.966 4.620  3.694
ILNIQE | 29.305 23.784  23.269 23.083 22369  23.236 27.088 19.357

PSNRT | 31.131 29.15 2537 33.88 3384  27.90 2625 2755
SSIM + 0.917 0.890  0.825 0.938 0941  0.873 079 0811
MANIQA 1|  0.472 0629 0571 0.602 0615  0.544 0467 0613
] LIQE 1 2.356 2646 1.949 2.386 2578 1.735 1243 2439
_RealBlue-J__ | NRQM+ | 5.150 5870 5517 5.365 5685 5361 4283 5633
Rim et al.|(2020) |cLIPIQA 4|  0.262 0279 0247 0.251 0274 0212 0208  0.274
PI | 5235 4651 4.934 5.011 4869 5013 5965 4787
BRISQUE || 49.636 46799 40207  46.610 48970 42742 42401 35.895
NIQE | 5708 5182 5258 5341 5370 5256 5963 5.128
ILNIQE | | 34999 33380 31.848 34550  33.588 32580  37.317 27.548

PSNR 1 30.410 28.66 27.97 29.53 28.82 26.64 27.67  29.56
SSIM 1 0.923 0.907 0.885 0.923 0.910 0.885 0.862  0.893

MANIQA 1| 0571 0.565  0.362 0.510 0536 0461 0427  0.568
S LIQE 1 2.325 2452 1.048 1742 2132 1479 1296  2.348
BSD NRQM + | 4927 5806  4.634 4772 5229  5.141 4433 5096

Zhong et al.|(2020)|c[pTJQA 4|  0.279 0283  0.188 0.234 0264  0.179 0.195 0282
PI 5.800 5189  6.100 5.819 5560  5.934 6422  5.589

BRISQUE || 47.363 39518 24.113 46358 46388 29.108 36347 40514
NIQE | 5799 5464 6.469 5758 5721 5.881 6.569  5.455
ILNIQE| | 42.040 38708 31.513 41328  40.506 37.435  50.182 39.383

PSNR 1 29.27 29.47 22.48 29.98 30.91 26.19 27.82  28.85
SSIM 1 0.864 0.875 0.651 0.887 0.818 0.833 0.821  0.820
MANIQA 1| 0.442 0.452 0.362 0.420 0.415 0.398 0.441 0.533

LIQE 1 1.342 1124 1.048 1.069 LI111 1018 1015  1.404
__RSBlur | NRQM 1 | 3.769 3817  4.634 3.523 3642 5520 4357 5597
Rim etal.|(2022) \cL1p1QA 4| 0262 0246 0.188 0.204 0248  0.170 0.169  0.236
PI | 6.427 6.851  6.100 6.820 7065 6296 6.677  4.980

BRISQUE || 52.768 50.286  24.113 54.119 58.433  39.250 21.942  30.677
NIQE | 6.522 7.348 6.469 6.943 7.532 7.533 6.840  5.292
ILNIQE | 32.349 37.794  31.513 36.354 39.651  36.035 41.705 25.833

We evaluate methods on six real-captured datasets for cross-dataset generalization, and on
RWBI Zhang et al.|(2020) and our collected RWBI1ur400 for real-world applicability, as they cover
complex real-world scenes and diverse real-world blur patterns.

Overall, We employ both reference-based and no-reference metrics to comprehensively assess de-
blurring performance. For reference-based evaluation, PSNR and SSIM are used. To better cap-
ture perceptual quality, we further adopt a diverse set of no-reference quality metrics, including
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MANIQA (2022), LIQEZhang et al] (2023), NRQM (2017), CLIP-IQA
(2023), PI, BRISQUE, NIQE, and ILNIQE, providing a thorough assessment of quality.

4.2 COMPARISONS WITH STATE OF THE ARTS

We compare GLOWDeblur with state-of-the-art approaches from two categories. The first includes
recent deblurring-specific methods such as HI-Diff, MISCFilter, and MLWNet. The second covers
general restoration frameworks such as Restormer (and Restormer* retrained under our pipeline),
DiffIR, FPro, and Diff-Plugin. Both categories contain a mix of diffusion-based and non-diffusion
baselines, allowing a fair and comprehensive evaluation.

4.2.1 CROSS-DATASET GENERALIZATION

We evaluate cross-dataset generalization on six widely used datasets. As shown in Fig.[3] GLOWDe-
blur mitigates cross-dataset distribution gaps, achieving strong deblurring performance and high-
quality restoration with competitive fidelity. Restormer* also achieves good fidelity across different
datasets. Fig. 3] provides qualitative comparisons (with more results in the Appendix [E)), showing
that GLOWDeblur robustly handles complex blur patterns and delivers high-quality restorations.

EEEEE

Input MISC Filter  Restormer*
HI-Diff DiffIR Diff-Plugin Ours

—--~~

hel L%k

MLWNet

Input MISC Filter Restormer* MLWNet FPro
G HI-Diff DiffIR Diff- Plugm Ours

Input MISC Filter  Restormer* MLWNet
HI-Diff DiffIR Diff-Plugin Ours

Figure 5: Qualitative comparison on GoPro, BSD, and RSBlur (From top to bottom). GLOWDeblur
effectively handles diverse blur patterns with high-quality restorations.

Table 4: Quantitative comparison with SOTA deblur models across real-world datasets RWBI and
RWBIur400. Higher values are better for 1 metrics, lower for |. Since these datasets lack ground-
truth annotations, only no-reference metrics are reported

Dataset Metric Restormer ~ Restormer* Dl MISC llter MLW et

MANIQA T | 0.501 0.522 0.554 0. 494 0.492 0.565 0.483
LIQE 1.846 2180 2875 1.807 2.150 3.008 1.771

5433 5.608 5.879 5.457 5.079 6.185 5474

RWEBI CLIPIQA T | 0.257 0.283 0372 0.256 0.301 0.424 0.236
Zhang et al. (2020} PI | 5.291 5.133 4.993 5353 5.468 4.459 5.182
BRISQUE | | 39.945 39.192 40674 42319 43271 37.403 39.581

NIQE | 5.682 5545 5589 5.831 5793 4.886 5.550

ILNIQE| | 40.760 37.569 37.047 41.304 38.705 34.259 40.208

MANIQAT | 0.509 0.530 0490 0493 0455 0517 0481

LIQE 1746 1.893 2,041 1.983 1.780 21136 1.844

NRQM 1 4.956 5471 5411 5747 4901 5736 5783

RWBIurd00 CLIPIQAT | 0333 0352 0367 0339 0305 0362 0313

Pl 4.788 4734 4.990 4578 5.236 4461 4520

BRISQUE | | 41.083 40.620 43704 343578 46.365 41.043 31.025

NIQE 4.971 4.817 5.229 4.751 5.204 4.575 4.609
ILNIQE | 31732 31.796 34.968 32.232 34.699 32.491 32.749
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4.2.2 REAL-WORLD EVALUATION

We evaluate real-world performance on RWBI and collected RWBIur400 datasets. As shown in
Table @] GLOWDeblur consistently outperforms state-of-the-art baselines, demonstrating superior
performance under real-world degradations. Restormer* also achieves significant improvements
compared to its original version. Fig.[6|presents qualitative comparisons, where existing methods fail
under severe blur, but GLOWDeblur produces clear and reliable restorations in real-world scenarios.

(more results in the Appendix [E)

Input MISC Fllter Restormer Restormer*

MLWNet

HI- lef Dll‘ﬂR Diff-] Plugm

nnnnn

‘ &@

lnput MISC Filter ~ Restormer Restormer* MLWNet
‘\
FPro Hl Diff DiffIR lef Plugm Ours

Figure 6: Companson with SOTA deblur models on real-world datasets RWBI and RWBIur400.

4.3 ABLATION STUDIES

We conduct ablation studies on REDS and RSBlur (Tab. 5). The Pre-Reconstruction & Domain-
Alignment module provides consistent gains (a,b) by stabilizing representations and easing the dif-
fusion backbone. Motion guidance enhances blur priors with trajectory cues (b,c), while semantic
guidance introduces high-level semantics to recover severely degraded regions (c,d). Replacing BBP
with naive mixed-data training causes clear drops (d,e), confirming its role in bridging cross-dataset
gaps. Overall, these results validate the effectiveness of both BBP and the model components.

Table 5: Ablation studies on REDS and RSBlur. Gray indicates the settings of GLOWDeblur.

Dataset | No. | Npreaiine Gmoton Grext | BBP Mix all data | MANIQA T LIQET NRQM | BRISQUE |

() x X x | v X 0.565 1.817  5.968 34297
(b) v x x | v X 0.605 2099  6.250 32230
REDS | (¢) v v x | v X 0.635 2480  7.340 27.810
(d) 7 v v | v X 0.642 2570  7.352 25.695
(e) v v v | ox v 0.608 2255  6.014 31.794
() x x x | v X 0.463 1132 4392 43.854
(b v X x | v x 0.484 1.181 4715 39.940
RSBlur | (¢) v v x | v x 0.526 1369  5.421 32.578
(d) v 7 v | v X 0.533 1.404 5597 30.677
(e) v v v | ox v 0.495 1283 5.057 41510

5 CONCLUSION

In this work, we identify blur pattern diversity as key to generalization and propose GLOWDeblur,
a lightweight diffusion-based framework that integrates Blur Pattern Pretraining (BBP) and Motion
& Semantic Guidance (MoSeG), achieving state-of-the-art performance on multiple synthetic and
real-world datasets with substantially stronger generalization than existing models.

Limitations. To ensure lightweight design, our modules are simplified, sacrificing some perfor-
mance. A finer trade-off between efficiency and accuracy may further improve generalization with
modest parameter increases.
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ETHICS STATEMENT

Our work adheres to ethical standards throughout model design, training, and dataset collection. All
datasets are sourced from publicly available and legally compliant repositories, and no personally
identifiable or sensitive information is included. Data annotation was conducted responsibly with
clear guidelines to ensure fairness and reduce bias. The model design and training strictly follow
principles of transparency and reproducibility, without any practices that may cause harm or infringe
on privacy. Overall, this study complies with ethical norms and aims to contribute positively to the
research community.

REPRODUCIBILITY STATEMENT

We provide all necessary details to ensure the reproducibility of our work. Specifically, the ex-
perimental designs, dataset usage strategies, and implementation in Appendix [B} In addition, the
training schedules, hyperparameters, and evaluation protocols are included to allow faithful repli-
cation of our results. The codebase and scripts are also released in the supplementary materials to
further facilitate reproducibility.
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A RELATED WORKS

A.1 IMAGE DEBLURRING

Image deblurring has long been a fundamental problem in low-level vision. Earlier methods mainly
relied on handcrafted priors and optimization-based formulations, such as gradient sparsity, edge
sharpness, or statistical constraints [Krishnan et al.[(2011); Pan et al.|(2016). While these approaches
provided valuable insights, their strong reliance on manually designed assumptions made them inad-
equate for handling complex and diverse real-world blur. With the rise of deep learning, researchers
have shifted toward data-driven architectures, enabling significant improvements in both restoration
quality and efficiency. In this work, we focus on the latest generation of learning-based approaches
that have recently achieved state-of-the-art performance in deblurring and general image restoration.

Task-specific deblurring architectures Tsai et al.| (2022); [Liu et al.| (2024al)); |Gao et al.| (2024)); Chen
et al.| (2023) have been extensively explored. Non-diffusion approachesintroduce specialized de-
signs tailored for motion blur removal. |Tsai et al.|(2022)) employs directional strip-based attention
to capture region-specific blur orientations and magnitudes efficiently. |Liu et al.|(2024a)) lever-
ages motion-adaptive collaborative filtering to handle spatially variant motion in real-world settings.
Gao et al.| (2024) integrates multi-scale prediction with learnable wavelet transforms to preserve
frequency and directional continuity. On the diffusion side, [Chen et al.| (2023)) designs a compact
latent diffusion model with hierarchical integration to generate blur-aware priors for regression-
based restoration. These specialized models typically achieve strong performance in blur removal
but often generalize poorly when facing unseen blur patterns.

Beyond specialized models, general-purpose restoration frameworks|Wang et al.|(2022));|Zamir et al.
(2022); Xia et al| (2023); [Liu et al.| (2024b); Zhou et al| (2024) have also been widely applied
to deblurring. Non-diffusion methods demonstrate strong versatility across tasks. |Wang et al.
(2022) employs locally enhanced window attention to scale to high-resolution restoration, Zamir
et al.| (2022) introduces channel-wise self-attention for efficient global context modeling , and Zhou
et al.| (2024) incorporates frequency prompting to guide restoration across different degradations.
Diffusion-based methods Xia et al.| (2023)); [Liu et al.| (2024b) further extend general restoration:
Xia et al.| (2023) integrates compact priors into efficient denoising diffusion, and |Liu et al.|(2024b)
introduces lightweight task-specific plugin modules to adapt pre-trained diffusion models across di-
verse low-level vision tasks. Compared with task-specific designs, these general frameworks exhibit
stronger cross-task robustness and generalization, though they often lag behind specialized models
in task-optimized fidelity.

Despite these advances, most existing approaches still struggle with generalization in real-world
scenarios. While task-specific methods achieve strong performance under their training distribu-
tions, they often fail to transfer across diverse blur patterns. General-purpose frameworks, though
more robust across degradations, tend to sacrifice task-optimized fidelity. Overall, systematic inves-
tigation into real-world generalization for deblurring remains limited, leaving a critical gap that our
work aims to address.

A.2 DEBLURRING DATASETS

Progress in image deblurring has been closely tied to the availability of datasets. Yet, constructing
suitable datasets is inherently challenging, as it involves balancing realism, diversity, and scalability.
Synthetic datasets Nah et al.| (2017); Shen et al.| (2019); [Nah et al.| (2019) such as GoPro |[Nah et al.
(2017), HIDE |Shen et al.|(2019), and REDS [Nah et al.| (2019) have been the dominant benchmarks
for years. They are generated through pipelines that average or interpolate high-frame-rate videos
to simulate camera exposure, offering large-scale paired data at relatively low cost. Such datasets
have enabled rapid progress by providing standardized benchmarks, but the blur they simulate often
deviates from real imaging processes. As a result, models trained on synthetic data may perform
well in-distribution but fail to capture the irregular, spatially variant blur patterns observed in the
wild.

To reduce this gap, real-captured datasets |Rim et al.[(2020}; 2022);[Zhong et al.|(2020) have been de-
veloped. RealBlur Rim et al.|(2020), BSD [Zhong et al.|(2020), and RSBlur Rim et al.| (2022) adopt
specialized imaging systems—such as beam-splitter setups or synchronized multi-camera rigs—to
capture geometrically aligned pairs of blurred and sharp images. These datasets provide authen-
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tic motion and defocus blur, more faithfully reflecting the complexity of real-world degradations.
However, the hardware cost and collection complexity are significant, limiting the dataset scale and
diversity. Even with substantial effort, it remains nearly impossible to comprehensively cover the
range of blur magnitudes, orientations, and scene dynamics encountered in real scenarios.

Recently, simulation-based datasets such as GSBlur [Lee et al.| (2024)) have been proposed to im-
prove diversity and controllability. By reconstructing 3D scenes with Gaussian Splatting and render-
ing them under randomized camera trajectories, GSBlur generates blur patterns beyond traditional
frame-averaging pipelines. While this controllability broadens the degradation space, simulated blur
still lacks the photometric and structural fidelity of real imaging, leaving a clear gap to real-captured
datasets.

In summary, synthetic datasets are abundant but unrealistic, real-captured ones are authentic but
costly and narrow, and simulation-based ones offer diversity but lack realism. No dataset achieves
both scale and fidelity, creating distribution gaps that cause models to overfit specific blur patterns
and degrade sharply under unseen conditions. This underscores the need for strategies that explicitly
address blur diversity and distribution mismatch, motivating our work.

A.3 DIFFUSION MODELS

Diffusion Models (DMs) Esser et al.| (2024); |Ho et al.| (2020); [Rombach et al.|(2022)) have recently
emerged as powerful generative priors, synthesizing data from Gaussian noise through iterative de-
noising. Their success in image generation has inspired a series of applications in deblurring. In the
context of deblurring, DiffIR Xia et al.|(2023)) and HI-Diff|Chen et al.|(2023)) adopt diffusion-based
priors with a two-stage training strategy to better capture blur statistics, More recently, IDBlau [Wu
et al. (2024)leverages implicit diffusion to augment blur patterns under controllable settings, effec-
tively enriching training data for downstream deblurring models.

Despite their effectiveness, most of these approaches remain computationally expensive. Large-
scale pretrained diffusion models |Yu et al.[ (2024)); |[Esser et al.| (2024); |A1 et al.| (2024)possess
billions of parameters, which, while offering strong generative priors, impose prohibitive training
and inference costs that limit deployment in real-world scenarios like autonomous driving and mo-
bile imaging. This challenge has motivated efforts to develop lightweight alternatives. For example,
Xie et al.|(2024) proposes a linear-attention-based diffusion transformer that achieves high efficiency
without sacrificing quality, demonstrating that architectural re-design and aggressive compression
can bring diffusion models closer to practical deployment. Similarly, Xiaohui Li|(2025) and related
works explore simplified diffusion formulations tailored for image restoration. Nonetheless, the ex-
ploration of lightweight diffusion for deblurring remains limited, leaving an open question of how
to balance generalization, restoration fidelity, and efficiency under real-world constraints.

B IMPLEMENTATION DETAILS

Our model is trained in two stages. First, Blur Pattern Pretraining (BBP) is performed for 10k
iterations on a synthetic mixture of GSBlur and an augmented subset of LSDIR, where Gaussian and
motion blur of varying levels are added to enrich pattern diversity. The model is then fine-tuned until
convergence on a combined real-captured dataset including GoPro, HIDE, REDS, RealBlur, BSD,
and RSBlur, aligning the learned priors with real-world distributions. Training is conducted using
the Adam optimizer with an initial learning rate of le-4 and a batch size of 12x8. All experiments
are implemented in PyTorch and run on 8 NVIDIA A800 GPUs (80GB each).

C EXPLORATORY COMPARISON WITH LARGE-SCALE GENERAL-PURPOSE
RESTORATION MODELS

With the rapid development of diffusion models, large-scale variants trained on massive datasets
have demonstrated impressive capabilities across diverse image restoration tasks |Esser et al.|(2024));
Yu et al.[(2024); |Ai et al.[(2024). These models, equipped with hundreds of millions or even billions
of parameters, form the backbone of several general-purpose restoration frameworks that achieve
state-of-the-art results in super-resolution, denoising, and image quality enhancement. Motivated by
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their success, we further investigate whether such models can leverage their scale and training data
to generalize to real-world deblurring.

However, our experiments reveal notable limitations. Using SUPIR [Yu et al.| (2024)as a representa-
tive model, we find that while it excels in enhancing perceptual quality—sometimes even surpassing
ground-truth images in conventional quality metrics—it fails to effectively handle blur. As shown in
[7l SUPIR struggles even on GoPro, one of the simplest synthetic benchmarks for motion deblurring,
producing visually sharp but still blurred outputs. More strikingly, Fig. X also illustrates its short-
comings on complex real-world blur, where artifacts and residual degradation remain prominent.

SUPIR 6T

MUSIQ 1 : 42.912 NRQM 1 : 8.172 MUSIQ 1 :38.279 NRQM 1 : 4.006
LIQE 1 : 1.978 CLIPIQA 1 : 0.244 LIQE 1 : 1.006 CLIPIQA 1:0.164

Figure 7: Qualitative and quantitative comparison of SUPIR and GT on GoPro, showing quality
scores exceeding GT but failure to remove blur.

SUPIR Ours

A ~ AR

oA

Input SUPIR

Figure 8: Quantitative comparison with SUPIR across real-world datasets.
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These observations highlight an important gap: despite their remarkable success in other restoration
tasks, large-scale diffusion models are not inherently equipped to handle the structural complexity
of blur. This contrast further validates the necessity of explicitly modeling blur priors, as pursued in
our proposed framework, to achieve robust and generalizable deblurring in real-world scenarios.

D DECLARATION OF USE OF LARGE LANGUAGE MODELS (LLM)

We confirm that this paper was written primarily by the authors. Large Language Models (LLMs)
were used only as general-purpose tools for language refinement, including grammar correction
and stylistic polishing. In particular, GPT-5 2025) was employed for minor rephrasing to
improve clarity and readability. No LLM was involved in research ideation, experimental design,
data analysis, or generation of substantive content.

E ADDITIONAL VISUAL RESULTS
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Figure 9: Qualitative comparison on HIDE, Realblur, and REDS (From top to bottom). GLOWDe-
blur effectively handles diverse blur patterns with high-quality restorations.
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Figure 10: Comparison with SOTA deblur methods across real-world datasets.

17



Under review as a conference paper at ICLR 2026

MISC Filter Restormer Restormer* MLWNet

[

.

Diff-Plugin

.
-

MISC Filter Restormer Restormer*

<

FPro HI-Diff

Diff-Plugin

m

MISC Filter

FPro HI-Diff

Restormer Restormer* MLWNet

Diff-Plugin

MISC Filter Restormer Restormer*

Diff-Plugin

Restormer Restormer* MLWNet

Figure 11: Comparison with SOTA deblur methods across real-world datasets.
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