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Abstract: The ability to plan in large-scale settings with several objects and high-
level tasks is a challenging problem. Unlike myopic planning, handling complex
application domains requires an agent to reason about the salient aspects of the
environment conditioned on the task specification. Recent approaches leverage
dense object embeddings using commonsense knowledgebases and neural infer-
ence to predict plans for a given goal specification and environment state. We
present a neural model, namely TANGO, to learn abstractions from human demon-
strations for scaling to domains with complex inter-object interactions. TANGO
encodes the world state using a graph neural network with ConceptNet embed-
dings, and applies goal-conditioned attention to decode symbolic actions to be
executed by an embodied agent. A combination of teacher-forced and end-to-end
training, enables TANGO to outperform state-of-the-art baseline in both small and
large scale settings, increasing the goal reaching rate by 2.2-5.8 times.
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1 Introduction

As robots become more capable and efficient in planning and manipulation, existing works still
face limitations in large-scale settings requiring long-horizon reasoning complex task specifications.
To scale up planning in complex scenarios, we leverage recent advances in autonomy, which have
enabled robots to enter human-centric domains such as homes and factories. General purpose tasks
such as transport, assembly, and clearing require a robot to interact with objects, often using them
as tools, such as using a tray for carrying items and facilitates long-horizon reasoning in large-scale
domains with several objects.

Learning to predict task-directed tool interactions poses several challenges. First, real environments
are typically large where an expansive number of tool interactions may be possible (e.g., objects
supporting others while transporting). This requires long-horizon reasoning about the world ob-
jects/tools conditioned on the salient aspects of tasks. Second, the robot may encounter new envi-
ronments populated with novel objects not encountered during training. Hence, the agent’s model
must be able to generalize by reasoning about interactions with novel objects unseen during training.

We hypothesize that humans possess innate commonsense knowledge about contextual use of tools
for an intended goal [1, 2]. For example, a human actor when asked to move objects is likely to use
trays, boxes, or even improvise with a new object with a flat surface. Thus, in this work, we train a
neural model that learns such abstractions by imitating human partners to infer goal reaching plans
in unseen complex domains. We focus on generalizing planning in fully observable environment
with unseen tools. We present Tool Interaction Prediction Network for Generalized Object envi-
ronments (TANGO). It learns a dense representation of the object-centric graph of the environment
which is augmented with word embeddings from a knowledge base, facilitating generalization to
novel environments. Experiments in simulated environments and benchmark datasets with embod-
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ied agents show the effectiveness of TANGO in learning to plan multi-step plans even in domains
with apriori unknown objects. This is an extension of an accepted work [3] where we take a step
in the direction of the general problem of long-horizon planning in domains with complex symbolic
interactions.

2 Related Work

Learning control policies for manipulating tools has received recent attention in robotics. Finn et al.
[4] learn tool manipulation policies from human demonstrations. Holladay et al. [5] learn physics-
based models and effects enabling compositional tool use. Toussaint et al. [6] present a planner to
compose physics tool interactions using a logic-based symbolic planner. The aforementioned works
focus on learning how to manipulate a tool, whereas we discuss how tool-use can facilitate planning.

Others address the problem of acquiring knowledge for completing high-level task specifications.
Puig et al. [7] and Liao et al. [8] create a knowledge base of task decompositions as action sketches
and learn to translate sketches to executable plans. These efforts rely on the causal knowledge
of sequences on sub-steps required to achieve an activity which are then contextually grounded.
Instead, this work learns compositional tool use required to achieve the task without any causal
sequence as input. Huang et al. [9] learn task decompositions from human demonstration videos.
However, the work does not explicitly model the physical constraints of the robot and does not
generalize to new environments.

Recently, agents leverage pre-trained large-language models (LLMs) to ground instructions to ac-
tionable steps [10, 11, 12]. Without any human input on instruction following, these methods do not
incorporate human preferences, which could possibly lead to sub-optimal plans. We adopt a frame-
work in which only the natural demonstrations are provided to a learner having access to the full
environment state in lieu of explicit knowledge of predicates corresponding to input instructions.

3 Problem Formulation

We consider a mobile agent with a single manipulator arm operating in a fully observable environ-
ment. Each object has one of possible symbolic states such as Open/Closed, On/Off etc. We also
consider relations between two objects. Let s denote the world state that maintains object states,
class type and object relations as OnTop, Near, Inside and ConnectedTo. We denote the state
at the t-th timestep as st, with s0 denoting the initial state. We denote the set of object instances
O = O(s) populating state s. Let A denote the robot’s symbolic action space. An action a ∈ A is
abstracted as I(o1, o2), with an action type predicate I ∈ I that affects the states of objects o1 ∈ O
and o2 ∈ O, for instance, Move(fruit0, tray0).

We assume the presence of a simulator that can realize symbolic actions using a low-level planner.
Let T (·) denote the transition function. The successor state st+1 upon taking the action at in state
st is sampled from a physics simulator. Let ηt = {a0, a1, . . . , at−1} denote the action history till
time t. The robot is instructed by providing a declarative goal g expressing the symbolic constraint
between world objects. For example, the declarative goal, “place milk in fridge” can be expressed
as a constraint Inside(milk0, fridge0) between specific object instances.

We aim at learning a policy fθ(·) that estimates the next action at conditioned on the the goal g and
the initial state s (including the action history ηt) such that the robot’s goal-reaching likelihood is
maximized. See prior work [3, 13] for more details. Let G(s, g) denote the goal check function that
determines if the intended goal g is achieved by a state s. Let Sfθ,s

t be a random variable denoting
the state resulting from executing actions from fθ for start state s0 for t time steps. Formally, the
objective is formulated as

maximize
θ

p(G(Sfθ,s0
k , g) = 1)

s. t. ∀ t, at = fθ(st, g, ηt),

∀ t, st+1 = T (st, at).

(1)

2



Figure 1: The TANGO model. It uses graph convolutions on an object-centric world representation and late
fusion with metric encodings with goal-conditioned attention and action history to predict appropriate actions.

4 Technical Approach

TANGO learns to predict the next robot action at, given the world state st, the goal g and the action
history ηt. TANGO is realized as a neural network model fθ as follows:

at = fθ (st, g, ηt) = fact
θ

(
fgoal
θ

(
fstate
θ (st) , g, f

hist
θ (ηt)

))
Graph Structured World Encoding. We consider an object centric world encoded as a graph with
objects as nodes and relations as edges. For an input state st, each object o has lo that represents
the one-hot encoding of the discrete object state, C(o) is the object embedding (we use ConceptNet
vectors as per prior work [3]). We then use Gated Graph Convolution Network (GGCN) [8, 7],
which gives

{rno }o∈O(st) = GGCN(st), (2)

where n is a hyperparameter that denotes the number of convolutions performed by the GGCN
network. We then fuse the metric information of objects (if available) using a Fully Connected
Network (FCN) with a Parameterized ReLU (PReLU) [14] activation as:

{md
o}o∈O(st) = FCN(st), s̃t = {s̃ot = [rno ;m

d
o]}o∈O(st) = fstate

θ (st). (3)

Encoding Action History. The sequence of previously executed actions facilitate in providing an
intent for predicting the next action. We define action encoding A(at−1) of at−1 = It(o

1
t−1, o

2
t−1)

as [I⃗t−1; C(o1t−1); C(o2t−1)], where I⃗t−1 is a one-hot vector over possible interaction types I. We
use an LSTM to encode the action history ηt.

η̃t = LSTM(A(at−1), η̃t−1) = fhist
θ (ηt). (4)

Learning Goal-Conditioned Contexts. An input goal g is partitioned as relations grel and the
object instances specified in the goal gobj . The resulting encodings are denoted as g̃rel and g̃obj :

g̃rel =
1

|grel|
∑

j∈grel

C(j) and g̃obj =
1

|gobj |
∑

o∈gobj

C(o). (5)

We then learn attention weights over objects in the environment [15]. This results in the attended
scene encoding Ωt as:

Ωt =
∑
o∈O

ϵos̃
o
t = fgoal

θ (s̃t, g, η̃t) where, ϵo = softmax (Wg[s̃
o
t ; g̃obj ; η̃t] + bg) . (6)

The attention mechanism aligns the goal information with the scene for long-horizon reasoning in
large-scale environments.
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Action Prediction. TANGO takes the encoded information about the world state, goal and action
history to auto-regressively decode the next symbolic action at = It(o

1
t , o

2
t ). The resulting fac-

tored likelihood allows the model to generalize to an a-priori unknown number and types of object
instances:

It = argmaxI∈I (softmax(WI [Ωt; g̃rel; η̃t] + bI)) , (7)

o1t = argmaxo∈Oα
o
t = argmaxo∈O (σ(Wα[Ωt; g̃rel; η̃t; eo; I⃗t] + bα)), (8)

o2t = argmaxo∈O (σ(Wβ [Ωt; g̃rel; η̃t; eo; I⃗t;α
o
t ] + bβ)). (9)

Here αo
t denotes the likelihood prediction of the first object. Finally, we impose grammar constraints

(denoted as Λ) at inference time based on the number of arguments that the predicted interaction It
accepts. Thus, predicted action, at = fact

θ (Ωt, g̃rel, η̃t) = Λ[It(o
1
t , o

2
t )], is then executed by the

robot in simulation.

Dataset and Training. We adopt imitation learning approach and learn the function fθ(.) from
demonstrations by human teachers. We denote a dataset of N goal-reaching plans by

DTrain = {(si0, gi, {sij , aij}) | i ∈ {1, N}, j ∈ {0, ti − 1}},

where the ith datum consists of the initial state, the goal and a state-action sequence. The model
is trained using the Binary Cross-Entropy loss in a teacher forced manner [16]. We use a datapoint
with 0.8 probability of teacher-forcing and 0.2 for simulator based next state input. Online, the robot
uses the learned model to sequentially predict actions and execute in the simulation environment till
the goal state or a large preset plan length is attained.

5 Experimental Results

Our experiments investigate the ability of the model to learn goal reaching policies in two domains
with increasing length of plans evaluated against a large number of metrics. Further, we evaluate
generalization to settings with unseen objects, tools and goals.

Datasets. We use two datasets of human demonstrations. First, by Tuli et al. [3], which has been
collected on a PyBullet based physics simulator [17] with a Universal Robotics 5 arm mounted on a
Husky mobile base. This dataset consists of both object states and pose information. We use 75:25
split for training and testing with 10% of the former as a validation set. This dataset also consists
of generalization test sets that have position perturbations, tool and object replacements. Second,
by Puig et al. [7] that has been collected on the Virtual-Home symbolic simulator with human-like
agents having two arms for manipulation. We use 80:10:10 train, validation and test split. We also
generate splits to test generalization where we split the data based on objects and goals.

Metrics. The performance of the models are evaluated as the ability of the agent to reach goal
states using their plans. Specifically, we compare the relations that have been established in the final
state sT by the model and sti−1 ground-truth, compared to the initial state s0. Following She and
Chai [18], we use the following metrics:

• SJI (State Jaccard Index) is the overlap between the established and ground-truth relation sets.
• IED (Instruction Edit Distance): similarity between the generated and ground-truth action se-

quences.
• GRR (Goal Reaching Rate): if the ground-truth relations are present in the established ones.
• P, R, F1: are the average of the precision, recall and F1 scores between the established relations

compared to the ground-truth sets.

Results. We compare TANGO against the RESACTGRAPH model [8], augmented with FastText
embeddings [19]. Table 1 demonstrates the results of baseline and TANGO on the dataset by Tuli
et al. [3]. TANGO improves GRR, IED, SJI and F1 by at least 3, 3, 2 and 3 points, respectively. Ta-
ble 2 shows results on the dataset by Puig et al. [7]. TANGO improves the scores by at least 15, 41,
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Table 1: Performance on the dataset by Tuli et al. [3]. We show results of random splits on (1) Home and
(2) Factory domains, (3) perturbing object positions, (4) replacing most used tool, (5) replacing environment
object, and (6) changing goal. The last four splits demonstrate the ability to generalize.
Method GRR IED SJI P R F1 GRR IED SJI P R F1

Home Factory

RESACTGRAPH 83.08 38.21 16.26 26.26 49.06 34.21 22.08 39.72 10.32 25.00 55.00 34.38
TANGO 87.69 35.65 28.35 43.44 100.00 60.57 72.73 42.98 17.05 29.53 95.00 45.06

Position Generalization Alternate Generalization

RESACTGRAPH 69.76 - 37.30 45.14 51.92 45.72 61.02 - 29.06 36.6 36.72 35.82
TANGO 91.76 - 51.72 53.17 63.36 57.06 76.06 - 8.28 8.01 16.06 10.69

Unseen Generalization Goal Generalization

RESACTGRAPH 61.02 - 29.06 36.6 36.72 35.82 38.88 - 10.64 11.81 25.25 16.09
TANGO 80.56 - 37.58 36.81 48.88 40.94 58.11 - 19.22 19.84 30.86 24.15

Table 2: Performance on Virtual Home dataset by Puig et al. [7]. We use four dataset splits. (1) Uniformly at
random for testing, (2) based on the objects in the environment, (3) based on the objects in the goal specification,
and (4) goals. The last three splits demonstrate the ability to generalize in unseen settings.
Method GRR IED SJI P R F1 GRR IED SJI P R F1

Random Split Environment Objects

RESACTGRAPH 8.31 12.63 30.81 81.03 24.36 36.92 4.35 15.36 25.97 78.11 22.67 34.72
TANGO 27.87 64.65 46.92 77.28 41.82 53.89 19.83 56.17 39.96 82.54 34.04 46.12

Goal Objects Instructions

RESACTGRAPH 8.00 16.97 28.21 85.71 23.84 37.26 3.46 11.90 17.70 83.87 10.56 18.52
TANGO 25.66 65.04 47.21 80.18 43.48 56.02 23.69 63.03 46.14 82.77 41.21 54.57
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Figure 2: Analysis of predicted plans. TANGO predicts shorter plans and outperforms RESACTGRAPH in
long-horizon settings.

14 and 11 points, respectively. Note that the RESACTGRAPH model learns a scene representation
assuming a fixed and known set of object types and hence can only generalize to new randomized
scenes of known objects. In contrast, the TANGO model can not only generalize to randomized
scenes with known object types (sharing the GGCN backbone with RESACTGRAPH) but can to
novel scenes new object types (relying on dense semantic embeddings) and an a-priori unknown
number of instances (enabled by a factored likelihood). The improvements in the scores in unseen
settings demonstrate TANGO’s ability to generalize. Specifically, in the home domain, if the tray is
not present in the scene, the model is able to use a box instead to transport multiple objects (see Fig-
ure 3). Similarly, for Virtual-Home, in the case of having the instruction “drink water”, the model
uses a water glass when it has not seen the same at training time (see Figure 4). The RESACT-
GRAPH model is unable to adapt to novel worlds and obtains zero points in several generalization
tests. Another example of generalization is the unseen task of “wash dishes” in the Virtual-Home do-
main, where TANGO predicts that it needs to use the dishwasher using the commonsense knowledge
encapsulated in the object embeddings (see Figure 5).
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(a) Open Cupboard (b) Put fruits in box (c) Pick box (d) Put box in cupboard

Figure 3: Predicted plan for the task “put fruits in cupboard”. Model had not seen box during training.

(a) Walk to dining-room (b) Find fridge (c) Open fridge (d) Grab waterglass

Figure 4: Predicted plan for the task “drink water”. Model had not seen water glass during training.

(a) Walk to dining-room (b) Put back dish-soap (c) Close dishwasher (d) Switch-on washer

Figure 5: Predicted plan for the task “wash dishes”. Model had not seen such tasks in training.

(a) Walk to dining-room (b) Walk to plate (c) Find dish-soap (d) Pour dish-soap on plate

Figure 6: Predicted plan for the task “wash dishes by hand”. Execution fails since the plate is not reachable.
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ResActGraph
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Redundant change state
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Terminated early
Repeated Actions

Figure 7: An analysis of the types of errors during plan execution

Analysis of Predicted Plans. Figure 2a compares the length of robot plans predicted by the
learned model against human demonstrated plans for the Virtual-Home domain (for the other do-
main see prior work [3]). We observe that, on average, the predicted plan lengths are close to the
human demonstrated ones for short-horizon plans. For long-horizon plans, however, TANGO is able
to reach goals in fewer steps. Specifically, in 98% cases, the plans predicted by TANGO utilize
tools satisfying the goal condition in fewer steps compared to the human demonstrated plan. This
is primarily due to the ability of the model to extract patterns in plan fragments and use the one

6



that can reach the goal given the previous history. Figures 2b and 2c shows the performance of the
model with the plan length. As expected, as the task becomes more complex, requiring manipu-
lating several objects, i.e., in long-horizon settings the performance drops. However, compared to
the RESACTGRAPH, TANGO obtains higher scores. This is due to the goal-conditioned attention
that allows RESACTGRAPH to focus on a small set of objects and not the entire domain, facilitating
long-range reasoning.

Insights. The significant drop in performance as we increase plan length merits investigation into
planning abstractions [20]. To identify possible future directions, we show the distribution of errors
in Figure 7 for the Virtual-Home domain. In 80.84% cases RESACTGRAPH repeats the previous
action and gets stuck in a loop. This is much lower for TANGO (15.76%). This shows the ability of
TANGO to respect action pre-conditions and utilize history encoding to capture intent. A common
problem in our plans is the model failing to learn certain pre-conditions, such as trying to pick up an
object that is is not in reach (see Figure 6).

6 Conclusion

This paper proposes TANGO, that demonstrates accurate commonsense generalization to environ-
ments with novel object instances using the learned knowledge of shared spatial and semantic char-
acteristics. We find that encoding the sequence of past actions enables the model to uncover cor-
related action sequences, such as moving close to an object before grabbing it. Further, we learn
affordances like abstractions, such as correlating tools with tasks as well as goal-specific object con-
texts. Planning with such knowledge is likely to be crucial to scale to realistic environments (homes,
factories, etc.) where the space of possible interactions may be large. Finally, we find evidence
that learning dense representations for objects and scenes is key to generalisation to novel settings
that the robot may not have encountered previously. Finally, we see further scope of improvement
by exploring ways to recover causal relationships (PDDL-style rules) [21], discovering independent
sub-goals in a task [22] and ways to estimate execution costs for tasks as mechanisms to further
advance planning in such domains.
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