Random Forest Autoencoders for Guided Representation

Learning
Adrien Aumon' Shuang Ni' Myriam Lizotte'
adrien.aumon@umontreal.ca shuang.ni@mila.quebec myriam.lizotte@mila.quebec
Guy Wolf' Kevin R. Moon? Jake S. Rhodes**
guy.wolf@umontreal.ca kevin.moon@usu.edu rhodes@stat.byu.edu

'Université de Montréal; Mila  2Utah State University  *Brigham Young University

"Equal contribution  *Corresponding author

Abstract

Extensive research has produced robust methods for unsupervised data visu-
alization. Yet supervised visualization—where expert labels guide representa-
tions—remains underexplored, as most supervised approaches prioritize classi-
fication over visualization. Recently, RF-PHATE, a diffusion-based manifold
learning method leveraging random forests and information geometry, marked
significant progress in supervised visualization. However, its lack of an ex-
plicit mapping function limits scalability and its application to unseen data,
posing challenges for large datasets and label-scarce scenarios. To overcome
these limitations, we introduce Random Forest Autoencoders (RF-AE), a neural
network-based framework for out-of-sample kernel extension that combines the
flexibility of autoencoders with the supervised learning strengths of random
forests and the geometry captured by RF-PHATE. RF-AE enables efficient out-
of-sample supervised visualization and outperforms existing methods, including
RF-PHATE’s standard kernel extension, in both accuracy and interpretability.
Additionally, RF-AE is robust to the choice of hyperparameters and generalizes
to any kernel-based dimensionality reduction method.

1 Introduction

Manifold learning-based visualization methods, such as ¢-SNE [1], UMAP [2], and PHATE [3], are
essential for exploring high-dimensional data by revealing patterns, clusters, and outliers through
low-dimensional embeddings. While these methods excel at uncovering dominant data structures,
they often fail to capture task-specific insights when auxiliary labels or metadata are available. Su-
pervised approaches like RF-PHATE [4] bridge this gap by integrating label information into the
kernel function through Random Forest-derived proximities [5], generating representations that align
with domain-specific objectives without introducing the exaggerated separations or distortions seen
in class-conditional methods [6]. Specifically, RF-PHATE has provided critical insights in biology,
such as identifying multiple sclerosis subtypes [4]. However, most manifold learning algorithms
generate fixed coordinates within the latent space, requiring the algorithm to be rerun to embed new
observations. The Nystrom extension [7] and its variants [8, 9] address the lack of out-of-sample
(OOS) support but rely on linear kernel mappings and unconstrained least-squares minimization,
making them sensitive to training set quality and often insufficient for capturing complex manifold
geometry [10, 11]. Recent neural network-based approaches, such as Geometry-Regularized Au-
toencoders (GRAE) [12, 13], offer promising alternatives, but focus either on unsupervised structure
or on predictive performance, without explicitly preserving label-informed geometry needed for
interpretable supervised visualization.
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In this study, we present Random Forest Autoencoders (RF-AE), an autoencoder (AE) that ad-
dresses the underexplored setting of supervised OOS visualization, while taking inspiration from
the principles of GRAE [13], which uses a manifold embedding to regularize the bottleneck layer.
Compared to existing neural network-based extensions, RF-AE incorporates a strong supervision
signal tied to the relational structure between points by reconstructing Random Forest- Geometry-
and Accuracy-Preserving (RF-GAP) proximities [5] instead of original input vectors. We show
that RF-AE outperforms existing approaches in embedding new data while preserving the local and
global structure of the important features for the underlying classification task. RF-AE improves the
adaptability and scalability of the manifold learning process, allowing for seamless integration of
new data points while maintaining the desirable traits of established embedding methods.

2 Related work

Any manifold learning algorithm can be extended to test data by training a neural network, typically
a multi-layer perceptron (MLP) to regress onto precomputed non-parametric embeddings, or by
means of a cost function underlying the manifold learning algorithm, as in parametric t-SNE [14]
and parametric UMAP [15]. However, solely training an MLP for this supervised task often leads to
an under-constrained problem, resulting in solutions that fail to capture meaningful patterns [16, 17].
Motivated by Le et al. [18], who empirically showed that training neural networks to predict both
target embeddings and inputs (reconstruction) improves generalization compared to encoder-only
architectures, we focus on multi-task learning-based regularization in the context of regularized
AEs. While vanilla AEs can learn compact and meaningful representations, they often fail to capture
intrinsic geometry or produce interpretable embeddings [13]. This led authors to borrow principles
of manifold learning to add geometrically motivated constraints to the latent space [13, 19, 20] or
the reconstruction space [21-23]. Still, these methods are unsupervised or apply supervision via
class-conditional constraints, often leading to disrupted inter-class relationships [6, 24].

On the other hand, kernel extensions seek an embedding function k — f(k) = z € R? where the
input k = ky = [k(x,x1) --- k(x,xn)] € RY represents pairwise proximities between any
instance x and all the N points in the training set X. Usually, f is determined by formulating a
regression problem onto the training embeddings [25, 26]. For manifold learning methods that derive
low-dimensional coordinates from the eigenvectors of the Gram matrix, the Nystrom formula [7, 27,
28] provides a linear mapping based on these eigenvectors. Extensions for t-SNE [26], UMAP [29],
and PHATE [3] exist but remain restricted to linear kernel mappings and are primarily designed for
unsupervised visualization or classification [26, 29]. Here, we expand the search space to include
general, potentially nonlinear kernel mapping functions f, and propose a supervised kernel mapping
based on Random Forests, tailored for supervised data visualization. Building on recent AE-based
extensions, we add a geometric regularizer to this regression task within a multi-task AE framework.

3 Methods

The RF-GAP proximity [5] between (possibly unseen) instance x; and training instance x; is

Z CJ j e J( ) (ifi#7), p(xix;i) =
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where S; (S;) denotes the set of out-of-bag (in-bag) trees for observation x;, ¢;(t) is the number
of in-bag repetitions for observation x; in tree ¢, I(-) is the indicator function, J;(t) is the set of
in-bag points residing in the terminal node of observation x; in tree ¢, and M;(t) is the multiset
of in-bag observation indices, including repetitions, co-occurring in a terminal node with x; in
tree t. This definition naturally extends to OOS observations x, ¢ X, which can be treated as
out-out-bag for all trees. Since >, p(x;,x;) = 1 [5], this formulation ensures that p(x;, x;) is
on a scale more similar to other proximity values, and Proposition A.1 (Appendix A) guarantees
that p(x;,x;) > p(xi,x;). To restore the sum-to-one property and refocus on the underlying
geometry rather than sample distribution, we define the row-normalized RF-GAP similarity as

P(xi, x5) = p(xi,%5)/ Zjvzl p(x;,x;). To leverage the supervised knowledge gained from the RF
model, we modify traditional AEs to incorporate the RF-GAP proximities. In RF-AE, each input
is represented as p; = [p(x;,x1) - P(xi,xn)] € [0, 1]V, capturing local-to-global supervised
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Manifold embeddings

Prototypes '7

Figure 1: RF-AE architecture with prototype selection and geometric regularization. First, the original feature
vectors X; are transformed into one-step transition probability vectors p; derived from RF-GAP proximities.
They are further reduced into lower-dimensional vectors p; that represent transition probabilities to N* < N
selected prototypes (Appendix D). Meanwhile, manifold embeddings z{* are generated using RF-PHATE from
the p;. Finally, p; and z;" serve as input to the network within the enclosing box, training an encoder f and a
decoder g by simultaneously minimizing the reconstruction 10ss Lyccon and the geometric loss L geo.

neighbourhood information. We empirically demonstrate that this input representation stabilizes
supervised manifold learning compared to raw inputs on an artificial tree (Appendices B and C).
Given d-dimensional manifold embeddings zf, we force the RF-AE to learn latent representations
such that z; ~ ziG, similar to GRAE [13]. This translates into an added term in the loss formulation,
L(f, g) = % Zivzl [/\Lrecon(pi7f)1l) + (1 - )\)Lgeo(zia Z?):|, where f(pf) =1z; € Rd’ g(zi) =
p; € [0,1], and A € [0, 1] controls the degree to which the precomputed embedding is used in
encoding x;. We set Lgeo(2;,28) = ||z; — 2 ||3 to align with the standard least-squares formulation.
We treat p; and its reconstruction p; = (g o f)(p;) as probability distributions and use the Jensen-
Shannon Divergence (JSD) [30] as the reconstruction 10ss, Lyccon (Pi, Pi) = JSD(p; || P:), which
promotes latent representations that reconstruct both local and global RF-GAP neighborhoods [31].
We set the latent dimension d = 2 to emphasize on visual interpretability, and use RF-PHATE
as the geometric constraint due to its effectiveness in supervised data visualization [4, 32]. For
computational efficiency, we also introduce a prototype selection mechanism in Appendix D.3. Refer
to Fig. 1 for a comprehensive illustration of RF-AE.!

To evaluate our approach, beyond standard k-NN accuracy [14, 15, 22, 33, 34], it is equally important
to assess how well the embedding preserves the structure of informative features. Without this, class-
conditional methods that artificially inflate separation may be favored, even if they distort meaningful
feature-label relationships. Inspired by Rhodes et al. [4], we introduce Structural Importance
Alignment (SIA), a metric quantifying the alignment between features relevant for classification
and those driving structure preservation in the embedding. Briefly, classification importances C are
derived from accuracy drops under feature permutation, while structural importances £ are computed
from drops in structure preservation scores (e.g. neighbor preservation [15]). The Kendall rank
correlation 7(C, §) measures alignment, with higher values indicating that the embedding emphasizes
classification-relevant structure. Full methodological details are provided in Appendices D.1-D.8.

Connection to Graph Representation Learning. While RF-AE does not directly operate on
explicit graph-structured inputs, its foundation is inherently graph-based. RF-AE extends RF-
PHATE [4], a diffusion-based manifold learning framework that constructs an information-geometric
graph from Random Forest-induced proximities (RF-GAP [5]). Each data point acts as a node,
and edge weights encode task-specific similarities, yielding a supervised proximity graph on which
diffusion and embedding are performed [3]. Moreover, the RF-AE framework can be viewed as
a supervised graph node embedding model, where latent node representations are optimized to
reconstruct their neighborhood structure in the RF-GAP graph while being regularized toward a
smooth manifold embedding. This formulation directly parallels graph embedding paradigms such as
Structural Deep Network Embedding [19] and related work in graph representation learning.

In this sense, RF-AE bridges graph-based and neural approaches, demonstrating how Random Forest-
induced similarity graphs can be leveraged for supervised representation learning and out-of-sample
node embedding. We believe this connection situates RF-AE well within the LoG conference’s scope,
particularly its focus on advancing graph-based representation learning and geometric deep learning
methods.

'Our code is available at https://github.com/JakeSRhodesLab/RF- AE.
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4 Results

RF-AE balances structural importance alignment and class separability. We assessed the trade-
off between SIA and k-NN classification accuracy achieved by RF-AE against 13 baseline methods
across 20 datasets spanning diverse domains. Each dataset contained a minimum of 1,000 samples
and at least 10 features. Training and OOS embeddings were generated using an 80/20 stratified
train/test split, except for datasets including predefined splits. We applied min-max normalization to
the input features prior to training and inference. Detailed descriptions of the datasets are provided
in Appendix E. Table 1 shows average scores across 20 datasets and 10 repetitions. Accuracy is
averaged over k = 5,15,...,v/N to better reflect global class separability. See Appendices F.1
and F.2 for full experimental details and hyperparameters.

Table 1: Local (s = ONX, Trust) and global (s = Spear, Pearson) SIA scores (Appendix D), along with test
k-NN accuracies for our RF-AE method and 13 baselines. Scores are shown as mean =+ std across 20 datasets
and 10 repetitions. Methods are sorted according to accuracy. Top three values per metric are highlighted in
blue, using underlined bold (first) and bold (second). In the case of ties, methods are further ranked by their
standard deviations. Supervised methods are marked by an asterisk.

LocAL SIA GLOBAL STA
QNX TRUST SPEAR PEARSON k-NN Acc
RF-AE* 0.809 +0.024  0.822+0.022 0.782+0.041 0.779 +0.042  0.861 + 0.009
RF-PHATE* 0.798 £0.025 0.825+£0.023 0.748 +£0.038 0.750+0.040 0.816 +0.010
SSNP* [21] 0.760 +£0.047 0.772+0.045 0.685+0.089 0.694+0.080 0.809 +0.030
P-SUMAP* [15] 0.756 £0.028 0.768 £0.025 0.647 £0.048 0.647 +0.048 0.797 +0.011
CE* [22] 0.795+0.050 0.818+0.051 0.765+0.051 0.763+0.054 0.797 £0.043
NCA* [33] 0.808 £0.027 0.805+0.025 0.771 £0.032 0.759+0.033 0.760 +£0.007
PACMAP [34] 0.749+0.026  0.758 £0.025 0.688+0.029 0.688+0.029 0.743+0.011
P-TSNE [14, 35] 0.743+0.028 0.747+0.028 0.684+0.036 0.666+0.038 0.712+0.012
AE 0.744+0.027 0.751+£0.029 0.695+0.044 0.655+0.053 0.700+0.018
P-UMAP [15, 35] 0.757+£0.027 0.744+0.028 0.674+0.035 0.657+0.038 0.655+0.022
SPCA* 0.767 +£0.026  0.759+0.030 0.741+£0.031 0.738+0.032  0.624 +0.009
PLS-DA* [36,37] 0.715+0.026 0.708 £0.028 0.659+0.027 0.639+0.028 0.592 +0.009
CEBRA* [38] 0.780+0.045 0.775+0.050 0.735+0.062 0.728+£0.068 0.582 +0.040
PCA 0.745+0.027 0.742+0.026 0.733+0.027 0.727+£0.028 0.563 +0.009

Even among high-accuracy models such as RF-PHATE, SSNP and P-SUMAP, we observe a notable
drop in local and global SIA scores, suggesting an overemphasis on class separability at the expense
of preserving the underlying supervised structure. Unsupervised methods also struggle with STA
metrics, which is expected given their objective to preserve unsupervised pairwise similarities that
may be influenced by irrelevant or noisy features. In contrast, RF-AE achieves the highest accuracy
by a substantial margin, while consistently ranking in the top two across both local and global SIA
scores.

OOS visualizations. We qualitatively evaluated the ability of four methods to embed OOS in-
stances on Sign MNIST (Fig. 2a) and OrganC MNIST (Fig. 2b). Across both datasets, RF-AE
preserves the overall shape of RF-PHATE while yielding clearer class boundaries and within-class
relationships—such as gradual changes in shadowing and orientation, or anatomically consistent
proximities among related organs. RF-PHATE tends to over-smooth, merging nearby classes (e.g.,
left and right kidneys). P-TSNE and P-SUMAP preserve neighborhoods but often fragment or distort
clusters, with P-TSNE showing significant class overlap and P-SUMAP producing less interpretable,
elongated structures. Extended results are provided in Appendices G.1 and G.2.

5 Discussion

The significance of supervised dimensionality reduction lies in its ability to reveal meaningful relation-
ships between features and labels. While RF-PHATE stands out as a strong solution for supervised
data visualization [4], it lacks an embedding function for OOS extension. To address this, we designed
Random Forest Autoencoders (RF-AE), an autoencoder that reconstructs RF-GAP neighborhoods
while preserving the supervised geometry captured by RF-PHATE. RF-AE outperforms RF-PHATE’s
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Figure 2: OOS visualizations on (a) Sign MNIST and (b) OrganC MNIST. RF-AE preserves RF-PHATE’s
global structure while refining within-class structure; P-TSNE overlaps classes, and P-SUMAP often elongates
or fragments clusters.

kernel extension and other parametric baselines in generating OOS embeddings that preserve domain-
aware structure while maintaining class separability. Appendices H and I show that RF-AE is robust to
A, N*, and the feature importance strategy, though RF-PHATE regularization remains essential (Ap-
pendix J). Visually, RF-AE inherits the denoised local-to-global supervised structure of RF-PHATE
while increasing resolution for improved within-class visualization. Finally, RF-AE can project
unseen data without labels and handle any data modality without additional preprocessing. Future
work includes faster RF-GAP computation and experiments with partially labeled data (Appendix K
and L). More broadly (Appendix M), RF-AE has the potential to assist decision-makers by validating
expert- or Al-generated predictions through structure- and label-informed 2D/3D visualizations.
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A Maximality of the RF-GAP self-similarity
Recall the RF-GAP proximity (Section 3) between observations x; and x;

1 ci(t) -
ww |M<w =

P =4 ) O1G <)
Z N
€5S;

M;(1)|
where:

¢ S, is the set of trees in which x; is out-of-bag (OOB).
« S, is the set of trees in which x; is in-bag.

* ¢;(t) is the bootstrap multiplicity of x; in tree .

J;i(t) is the set of in-bag points that share the terminal node with x; in tree ¢.

M;(t) is the multiset of in-bag sample indices in that terminal node (counting multiplicities).

For any fixed tree ¢, we define the random quantities

* B;(t) = I(x; is in-bag in tree t),
* D;;(t) = I(B;(t) = 1 and x; shares x;’s leaf in tree t),
* ¢;(t) ~ Binomial(N, -), i=1,...,N,
Thus, considering all trees in the forest,
. TIB Z\T\ Bi(t),
- TPOP = ST 1 - Bi(o),

and per-tree contributions to self- and cross-similarity are re-written as

i (1) == Dyg(t) 20 (i 2 ),

aii(t) = Bz(t) |M1<t)|

Under the standard Random Forests assumptions, the following holds:

e Tree independence. Each tree is grown from an independent bootstrap sample and an independent
sequence of feature splits, ensuring i.i.d. per-tree contributions c;(t) and «;;(¢).

* Bootstrap inclusion probability. An observation is in-bag in tree ¢ with probability

N
pi=PlBit) = 1] = Ple(t) > 1] = 1~ Ples(t) = 0] = 1 — (1 - )

—3 1—e1~0.632.
Hence,
B;(t) ~ Bernoulli(p)
T!B  ~ Binomial(|T], p)
TOOB . Binomial(|T], 1 — p)

» Co-occurrence probability. Even if x; is very similar to x;, the probability that they end up
together in the same leaf and x; was OOB is strictly less than 1:

;=P[D;(t)=1|Bi(t)=0] < 1 (i # 7).
Proposition A.1. For every ﬁxed i and any j # i, in the limit as the number of trees |T| — oo,

p(xi,xi) > p(xi,%5)
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Proof. RF-GAP similarities are re-written as random variables:

1 o .
ﬁza”(ﬂ’ ifi = j,
p(Xi,Xj) = '

1 .
TOOB E a;j(t), otherwise.
K t=1

By the Strong Law of Large Numbers and tree-independence, as |T'| — oo we have almost surely

1T

=p

|T|
cj t
|T| Za” — Elay;(t)] = E [Dw(t) |Mf,((t))|}

= (1-p)a E [ | Dis(t) =1, Bi(t) = 0]

< (1—-p)qijp.

. . c;(t) _ _ o C7(t)
The inequality E [ at | Dii (t)=1,B;(t) = 0} <p:=E [ IAG ) B;(t) = 1} follows from the

fact that while ¢;(t) and ¢;(t) have identical marginal distributions, the conditional distribution of the
shared leaf size |M;(t)| is stochastically larger under the event D;;(t) = 1, B;(t) = 0 than under
B;(t) = 1 alone. Indeed, conditioning on D;;(t) = 1 requires that the in-bag point x; and the
out-of-bag point x; fall in the same leaf, which favors larger leaves with broader decision rules. This
increases the expected denominator |M;(¢)| and thereby reduces the expected normalized multiplicity
¢;(t)/|M;(t)|. Moreover, almost surely,

TIB TOOB

- — E[B;(1)] =p, . — El-Bi(t)]=1-p

T ||

Thus,
T
|T| Z‘t ‘1 i(t) D L
p(xi,x;) = T — ? = M,

|T|

T
T Dot @if(t) Elov;(t)] (1—p)aij p
p(xi,x;) = l T1|OC;B 1_]p = 1—pj
T

= Qij K-

Since we assumed ¢;; < 1, it follows that

B> g = lim p(x;,x;) > lim p(x;,x;).

|T|—o00 |T|—o00
O

Remark A.2. Finite-|T'| concentration bounds (e.g. Hoeffding’s inequality [39]) imply the same
inequality holds with overwhelming probability.
Remark A.3. The assumption ¢;; < 1 is not necessary for non-strict inequality.

B RF-GAP representations stabilize supervised manifold learning

We designed our RF-AE framework under the premise that encoders operating on (supervised) kernel
representations are better suited for supervised settings than those using raw input features. This

10



Random Forest Autoencoders for Guided Representation Learning

assumption stems from the ability of well-chosen kernel functions to effectively filter out irrelevant
features, thereby enhancing the encoder’s robustness to highly noisy datasets. To empirically validate
this, we conducted a toy experiment using the artificial tree dataset described in Appendix C. To
simulate a noisy input space, we progressively augmented the dataset with additional features
sampled from a uniform distribution U (0, 1), corresponding to various signal-to-noise ratios (SNR)
€ {c0,1,0.1,0.01,0.001}. We then randomly selected 80% of each augmented dataset to train both
models to regress onto the precomputed training RF-PHATE embeddings. The two MLP regressors
shared the exact same architecture and hyperparameters (Appendix F), differing only in their input
representations. We evaluated the trained models on the remaining 20% test split and visualized
their two-dimensional embeddings under different SNR conditions, along with the ground-truth tree
structure and median learning curves over 50 epochs across 10 repetitions, as shown in Fig. S1.

The training RE-PHATE embeddings accurately capture the underlying ground-truth structure, making
them a strong supervisory signal for manifold learning. Our RF-GAP-based encoder proves highly
robust to irrelevant features, producing well-structured embeddings even under severe noise conditions
(e.g., SNR = 0.001). It consistently converges faster and reaches a better local minimum without
overfitting, as evidenced by its test embeddings (middle row), which closely mirror the ground-truth
structure. In contrast, the feature-based MLP is much more sensitive to noise, with increasing training
loss and disordered embeddings in both training and test sets. Even under low-noise settings (SNR
= oo or 1), it fails to achieve comparable performance, highlighting the superior robustness and
generalization ability of our kernel-based encoder.

C Artificial tree construction

We constructed the artificial tree data used in Appendix B following the method described in the
original PHATE paper [3]. The first branch of the tree consists of 100 linearly spaced points spanning
four dimensions, with all other dimensions set to zero. The second branch starts at the endpoint of
the first branch, with its 100 points remaining constant in the first four dimensions while progressing
linearly in the next four dimensions, leaving all others at zero. Similarly, the third branch progresses
linearly in dimensions 9—12, with subsequent branches following the same pattern but differing in
length, resulting in 40 dimensions. Each branch endpoint and branching point includes an additional
40 points, and zero-mean Gaussian noise (standard deviation 7) is added to simulate gene expression
advancement along the branches. Before visualization, all features are normalized to the range [0, 1].

D Full methodology
D.1 Extended RF-GAP kernel function

The RF-GAP proximity [5] between (possibly unseen) instance x; and training instance x; is

ZCJ JGJ())

p (Xla X] )
= @)

where S; denotes the set of out-of-bag trees for observation x;, ¢;(t) is the number of in-bag
repetitions for observation x; in tree ¢, I(-) is the indicator function, J;(t) is the set of in-bag
points residing in the terminal node of observation x; in tree ¢, and M;(t) is the multiset of in-bag
observation indices, including repetitions, co-occurring in a terminal node with x; in tree ¢. Note that
this definition naturally extends to OOS observations x,, ¢ X, which can be treated as out-of-bag for
all trees. However, this definition requires that self-similarity be zero, that is, p(x;, x;) = 0. This is
not suitable as a similarity measure in some applications. Due to the scale of the proximities—the
rows sum to one [5], so the proximity values are all near zero for larger datasets—, it is not practical
to re-assign self-similarities to one. Otherwise, self-similarity would carry equal weight to the
combined significance of all other similarities. Instead, we assign values by, in essence, passing
down an identical OOB point to all trees where the given observation is in-bag. That is, we define
self-similarity as

1 cz(t)

[5:] = M

where |5’z‘ is the set of trees for which x; is in-bag. Under this formulation, p(x;, x;) is on a scale
more similar to other proximity values, and Proposition A.l (Appendix A) guarantees that, on

p(xla XZ)
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average, p(X;, X;) > p(X;,X;). Now, we define the row-normalized RF-GAP similarity between a
pair of training instances x; and x; as

p(xi,Xj)
N
Z]‘:1 p(xi,x;)

We intentionally applied row-normalization to restore the sum-to-one property and refocus on the
underlying geometry rather than sample distribution.

ey

ﬁ(xiaxj) =

D.2 RF-AE architecture

To leverage the knowledge gained from an RF model, we modify the traditional AE architecture
to incorporate the RF’s learning. The forest-generated proximity measures [5], which indicate
similarities between data points relative to the supervised task, serve as a foundation for extending
the embedding while integrating the insights acquired through the RF’s learning process. In RF-AE,
the original input vectors x; € R” used in the vanilla AE are now replaced with the row-normalized
RF-GAP proximity vector between training instance x; and all the other training instances, including
itself. That is, each input x; used for training is now represented as an N-dimensional vector p;
encoding local-to-global supervised neighbourhood information around x;, defined using Eq. 1:

p; = [P(xi,x1) - P(Xi,XN)] € [0,1]N.

Since its elements sum to one, p,; contains one-step transition probabilities from training observation
with index ¢ to its supervised neighbors indexed j = 1, ..., N derived from the RF-GAP proximities.
Thus, the encoder f(p;) = z; € R? and decoder g(z;) = P; of the unconstrained RF-AE network
are trained through stochastic gradient descent by minimizing the reconstruction loss L(f,g) =

% Zf\; Ly ccon(Pi, Di). Given a learned set of low-dimensional manifold embeddings G = {zLG €

R?|i=1,...,N} (e.g. obtained from RF-PHATE), we additionally force the RF-AE to learn a
latent representation z; similar to its precomputed counterpart z{* via an explicit geometric constraint
to the bottleneck layer, similar to GRAE [13]. This translates into an added term in the loss
formulation, which now takes the form:

N
L(f7 g) = %Z |:>\Lrecon(pi7f)i) + (1 - )\)Lgeo(zia ZlG)i| .
i=1

The parameter A € [0, 1] controls the degree to which the precomputed embedding is used in
encoding x;: A = 1 is our vanilla RF-AE model without geometric regularization, while A = 0
reproduces z& as in the standard kernel mapping formulation. We use the standard Euclidean
distance for the geometric loss to align with the traditional least-squares formulation. While one
could define the reconstruction loss as the squared Euclidean distance between input vectors p;
and their reconstructions, this biases learning toward zero-valued entries, which dominate in large
datasets but carry little structural meaning. In contrast, nonzero entries reflect meaningful links in the
RF-GAP graph. Although re-weighting the loss to emphasize nonzeros is possible [19], it introduces
extra hyperparameters. Instead, we treat p; and its reconstruction p; = (g o f)(p;) as probability
distributions and use the Jensen-Shannon Divergence (JSD) [30] as the reconstruction loss:
Lyccon(Pis Pi) = JSD(ps || Ps), Lg@O(ZiaZ?) = ||z — z?”%

The JSD promotes latent representations that reconstruct both local and global RF-GAP neighbor-
hoods [31]. In this work, we set the latent dimension d = 2 to emphasize on visual interpretability.
We use RF-PHATE as the geometric constraint due to its effectiveness in supervised data visualiza-
tion [4, 32], although any dimensionality reduction method can be extended this way. Moreover, as
RF-PHATE already encodes multiscale information, combining it with JSD reconstruction further
guides learning toward geometrically meaningful representations while supporting global consistency.
Refer to Fig. 1 for a comprehensive illustration of our RF-AE architecture.

D.3 Class-wise prototype selection

The input dimensionality of our RF-AE architecture scales with the training size N, which
may cause memory issues during GPU-optimized training when dealing with large training sets.

12
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Thus we further reduce the input dimensionality of p; from N to N* < N by selecting N*
prototypes. The prototypes are selected using uniform class-wise k-medoids [40, 41] on the
induced RF-GAP training dissimilarities. First, we max-normalize the symmetrized RF-GAP
proximities p’(x;,%x;) = [p(xi,X;) + p(x;,%;)] /2 to form the symmetric dissimilarity matrix
[maxy,, {p' (Xu,Xo)} — ' (%5,%;)] € [0,1]V*N. Then, for a dataset with ¢ classes, we find
k = N*/q-medoids for each class using their corresponding RF-GAP dissimilarities as input
to FasterPAM [42, 43]. Let 9t = {my, ..., my+} denote the resulting set of medoid indices. Then
instead of using RF-GAP transition probabilities from any point ¢ to every training point j as before,
we form RF-GAP transition probabilities from any point % to each prototype j € 91 as

- - - p(Xi; x;)
f= X, X Xy Xm e XiyXj) = ="
P1 [p ( 7 ml) p ( 7 my )]7 p ( 19 ]) Ejegﬁp(xiaxj)
Fig. 1 contextualizes this prototype selection mechanism within our RF-AE architecture. We also
note that using prototypes allows for faster OOS projections since we no longer need to compute
RF-GAP proximities to all training points.

D.4 Quantifying supervised OOS embedding fit

Beyond standard k-NN accuracy [14, 15, 22, 33, 34], which evaluates class separability in the
embedding space, it is equally important to assess how well the embedding preserves the structure of
informative features. Without this, class-conditional methods that artificially inflate separation may be
favored, even if they distort meaningful feature—label relationships. Conversely, purely unsupervised
criteria—such as neighbor preservation [15] or global distance correlation [44]—can undervalue
supervised models that discard irrelevant features aligned with the classification task.

Inspired by Rhodes et al. [4], we formalize structural importance alignment, which quantifies the
correlation between feature importances for classification and for structure preservation. Given a
training/test split X = Xirain U Xtest With labels Y = Yiain U Yiest, and embeddings fomn (X) =
Sermb (Xtrain) U femb (Xtest) = Zirain U Ziest from a trained encoder fep,, we define test—train
distance matrices in the original and embedded spaces as:

ngsﬂto [Z,j] _ Hztest _ Zt‘rainHQ’ DtestSgsl? c thestXNtrain.

test
i J

Dtest[ivj] = Hxi X

train H
5 2,

Classification importances are computed using a user-defined classifier f.s : R — ) trained on
Xirain- Let accy,,_ (Xtest, Yiest) denote its accuracy on the test set. Then, the importance of feature 4
is: )

Ci= acCf,, (Xtesta YZcest) — acCf,, (Xt(é:)gt; }/test)a

where X, t(ézt is the perturbed test set in which feature ¢ and its correlated features are permuted across
samples (see Algorithm S1 in Appendix D.5).

Structural importances are computed using an unsupervised structure preservation score s(-, -) that
quantifies how well an embedding preserves pairwise relationships from the original space. Higher
scores indicate better preservation of structure. We consider several commonly used definitions of s,
including local scores s € {QONX, Trust} and global scores s € {Spear, Pearson} [15, 44—47]. Full
definitions are provided in Appendix D.6.

Given a test set Dyeg and its embedding D™P, the importance of feature i is then defined as:
b NC b
8; = s(Diest. DELY) — s(D{LL,, DELY).

where 155;; is the perturbed distance matrix obtained by replacing feature 7 in X with noise
(Algorithm S1), while holding X, ,i, fixed. A larger drop in s indicates that the OOS embedding
relies more heavily on the structure induced by feature 3.

To assess whether the embedding structure supports classification-relevant features, we compute
the alignment between structural importances S = {S1,...,Sp} and classification importances
C = {Cy,...,Cp} using the Kendall rank correlation coefficient 7(C,S) € [—1,1] [48]. Higher
values indicate that the embedding prioritizes features most relevant to the classification task. Fig. S2
(Appendix D.7) illustrates this Structural Importance Alignment (SIA) framework.

Note that SIA depends on both the choice of classifier f s and structure score s. For f.15, we use
an ensemble with equal-weight majority voting across k-NN, SVM, and MLP classifiers to reduce
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model-specific bias (see Appendix F for hyperparameters). Each dataset achieves at least 60%
accuracy (Appendix D.8). For s, we report four variants of SIA based on the chosen structure score,
capturing both local and global structure preservation.

D.5 Feature correlation-aware data perturbation

In this section, we detail the procedure for generating perturbed datasets using a correlation-aware
random sampling strategy [49]. Since ground truth feature importance are rarely available, this
approach is employed to generate pseudo-ground truth feature importances as part of our evaluation
scheme (Section 3). For each feature i, instead of permuting feature ¢’s column values—as in
the standard permutation approach—, we reassign them by randomly sampling values from the
feature space. Additionally, all other feature column values are randomly replaced with a probability
proportional to their absolute correlation with 7. In other words, column values for features highly
correlated with ¢ are also replaced by random sampling, while column values for features not
correlated with ¢ remain unchanged. This prevents the determination of fallacious feature importances
where all correlated features are assigned zero importance. Refer to Algorithm S1 for a step-by-step
description of this feature-wise data perturbation procedure.

Algorithm S1: Feature-wise data perturbation with random sampling

Input: Input data X, feature correlation matrix C
Output: Perturbed datasets X for each feature
Initialize list X to store perturbed datasets;

Generate X from X by randomly sampling column values without replacement;

foreach feature i do
Generate mask matrix M with elements M[i, j] € {0, 1} sampled from Bernoulli(|C[, j]);
Build perturbed dataset: X' = M ® X 4 (I — M) ® X;
Store X[i] = X'

return X

D.6 Structure preservation scores

Let Dyegt, D’g’g‘;k’ S Rf""“ *Nexain denote the test—train distance matrices in the original and embedded
spaces, respectively. We define four structure preservation metrics s(Dycgt, DSP), which are used
to compute multi-view structural alignment scores introduced in Section 3 and Appendix D.4. We
categorize these metrics into local and global types and cite the reference works where they were
previously used to assess the quality of embedding methods.

Local Structure Preservation Scores.

¢ QNX (Quality of Neighborhood eXtrapolation) [15, 45]:

Ntest
1 1 . rue/
ONX(Diest, DY) = o= D = > T ENE™(),
test - emb (;
i=1 JEN P (1)

where N ¢(4) are the indices of the K smallest entries in row Dyegt i, :], and NP (i) are
those in D¢™P[4 1]

¢ Trustworthiness [46]:

Niest
2
Trust(D es 7Dernb =1- rt?r'ue K 7
( test tESt) NtestK(2Ntrain —3K — 1) ; jezu‘ ( ! )

where U; = N (i) \ NjF"¢ (i), and {5 is the rank of index j in row Dyest[i, :].

Global Structure Preservation Scores.
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¢ Spearman rank correlation [44]:
Spear(Dyest, ng‘?) 1= COITrank (vec(Dtest), vec(ng;E)) ,

where vec(-) denotes vectorization and COIT,ay is the Spearman rank correlation [50].

¢ Pearson correlation [47]:
Pearson(Dyest, Df;’:]é’) 1= corr (Vec(Dtcst), Vec(Dfé’:E)) ,
using the Pearson linear correlation [51] between flattened test—train distance vectors.

For robustness, we averaged local metrics over different neighborhood sizes, ranging from K = 5 to
K = /Nirain, in steps of 10.

D.7 Illustration of our structural importance alignment framework

Fig. S2 illustrates our SIA framework for evaluating supervised OOS embedding quality using the
Sign MNIST (A-K) dataset (Table S2). While both RF-AE and P-TSNE produce locally plausible
embeddings, their ability to preserve class-relevant structure differs significantly. RF-AE emphasizes
informative regions—such as hand and finger contours—while mitigating background effects. In
contrast, P-TSNE attributes higher structural importance to background pixels, leading to poorer
alignment with classification-relevant features. This discrepancy is reflected in the final local SIA
scores: RF-AE achieves a much higher alignment (0.85) than P-TSNE (0.55), confirming that RF-AE
better preserves the semantic structure needed for accurate classification in OOS settings. These
findings support our qualitative observations from Section 4.

D.8 Baseline classifiers’ hyperparameters and performance

Since ground-truth classification importances are rarely available, our SIA framework (Section 3) uses
a baseline classifier f.s to derive pseudo-ground-truth importances. To ensure these importances are
meaningful, f.s must achieve reasonably high test accuracy. Table S1 reports per-dataset accuracies
for both f.s = k-NN and an ensemble classifier fos = k-NN + SVM + MLP combining k-NN,
SVM, and MLP predictions via equal-weight voting. We use k = v/ Niyain for the k-NN classifier.
The SVM is implemented using scikit-learn’s LinearSVC [52] with default hyperparameters.
The MLP is a two-layer feedforward network with hidden dimensions hy = [2-D| and hy = |- D],
where D is the input dimensionality. Each hidden layer is followed by ReLU activation, dropout (rate
0.2), and layer normalization. Weight normalization is applied to the first two linear layers. The final
layer is a standard linear projection without activation.

We find that the ensemble consistently improves upon standalone k-NN and achieves above 60% accu-
racy on all datasets, making it a suitable proxy for generating classification importances. Nonetheless,
k-NN alone performs reasonably well, falling below 60% accuracy on OrganC MNIST dataset. For a
detailed comparison of SIA scores using k-NN instead of the ensemble, see Section 1.

E Description of the datasets

Table S2 provides additional details on the datasets used for the quantitative and qualitative com-
parisons between RF-AE and other methods. Sign MNIST (A-K) [53], MNIST (test subset) [54],
Fashion MNIST (test subset) [55], GTZAN (3-second version) [56] and USPS [57] were obtained
from Kaggle. The Sign MNIST (A-K) dataset is a subset of the original, containing the first 10
letters (excluding J, which requires motion). Blood MNIST and OrganC MNIST (Med MNIST
family [58, 59]) were obtained from Zenodo. All other datasets are publicly available from the UCI
Machine Learning Repository.

F Experimental setting
F.1 Model implementations and hyperparameters

We provide implementation details for RF-AE along with 13 baselines, including the default RF-
PHATE linear kernel extension [3] (Section 2), vanilla AE, principal component analysis (PCA),
supervised PCA, parametric ¢-SNE (P-TSNE [14, 35]), parametric UMAP (P-UMAP [15, 35]),
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Table S1: Average test classification accuracy (mean =+ std) per dataset (see Appendix E), using a single k-NN
classifier (left column) and an ensemble of £-NN, linear SVM, and MLP classifiers (right column). The ensemble
generally outperforms the standalone k-NN, making it a robust reference for generating classification feature
importances.

DATASET k-NN k-NN + SVM + MLP
QSAR BIODEGRADATION 0.835 4+ 0.032 0.854 £ 0.028
BLOOD MNIST 0.742 £ 0.000 0.761 £ 0.049
CARDIOTOCOGRAPHY 0.662 + 0.026 0.681 £+ 0.023
CHESS 0.914 £+ 0.012 0.942 £+ 0.012
DIABETIC RETINOPATHY DEBRECEN 0.657 £ 0.043 0.686 £+ 0.031
FASHION MNIST (TEST) 0.777 £ 0.007 0.827 £ 0.007
GTZAN (3-SEC) 0.708 4 0.006 0.678 +0.013
HAR (USING SMARTPHONES) 0.887 £ 0.000 0.917 £ 0.009
ISOLET 0.906 4 0.000 0.931 £ 0.004
LANDSAT SATELLITE 0.858 4 0.000 0.829 £ 0.010
MNIST (TEST) 0.894 4 0.008 0.922 £+ 0.006
OBESITY 0.625 £+ 0.018 0.661 £ 0.026
OPTICAL BURST SWITCHING NETWORK  0.745 4 0.028 0.743 £ 0.023
OPTICAL DIGITS 0.953 £ 0.000 0.948 £+ 0.004
ORGANC MNIST 0.473 4 0.000 0.627 £ 0.004
SIGN MNIST (A-K) 0.908 £ 0.007 0.940 £ 0.008
SPAMBASE 0.860 £ 0.008 0.875 £ 0.008
SPORTS ARTICLES 0.809 £ 0.019 0.818 £0.019
USPS 0.871 4 0.000 0.891 £ 0.002
WAVEFORM 0.848 £ 0.012 0.860 = 0.014

parametric supervised UMAP (P-SUMAP [15]), pairwise controlled manifold approximation pro-
jection (PACMAP [34]), CE [22], CEBRA [38], self-supervised network projection (SSNP [21])
using ground-truth labels, neighborhood component analysis (NCA [33]), and partial least squares
discriminant analysis (PLS-DA [36, 37]). Unless otherwise specified, all methods were run with their
default hyperparameters in our experiments.

¢ RF-AE: Implemented in PyTorch. The encoder f consisted of three hidden layers with sizes
800, 400, and 100. The bottleneck layer was set to dimension 2 for visualization. The decoder g
was symmetric with layers of sizes 100, 400, and 800, followed by an output layer matching the
input dimensionality. ELU activations were used throughout, except for the bottleneck (identity)
and output (softmax) layers. Training was performed using the AdamW optimizer [60] with a
learning rate of 10~3, batch size of 512, weight decay of 10~°, and 200 epochs without early
stopping. We set the default A and N* to 0.01 and 0.1 Ny;ain, respectively.

* SSNP, CE, and vanilla AE: Implemented using the same architecture and activations as RF-
AE. For SSNP, we followed the authors’ recommendations: a sigmoid output activation and a
reconstruction-classification loss balance of 0.5. For CE and vanilla AE, the output activation
was the identity function.

* Parametric ¢-SNE and UMAP: Implemented following Damrich et al. [35], using the InfoNCE
loss [61]; available at https://github.com/sdamrich/cl-tsne-umap.

* P-SUMAP: Official implementation from https://github.com/lmcinnes/umap.
e PaCMAP: From https://github.com/YingfanWang/PaCMAP.

* CEBRA: From https://github. com/AdaptiveMotorControlLab/CEBRA. We used 200
training epochs and a batch size of 512, as recommended by the authors.

e SPCA: From https://github.com/bghojogh/Principal-Component-Analysis.
* PCA, NCA, and PLS-DA: Implemented using the scikit-learn library [52].
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Table S2: Description of the 20 datasets used in our experiments, grouped by data modality. Datasets including
predefined train/test splits are marked by an asterisk.

DATASET S1ZE  TEST % DIMENSIONS CLASSES
TABULAR / CLINICAL

CARDIOTOCOGRAPHY 2126 0.20 21 10

DIABETIC RETINOPATHY DEBRECEN 1151 0.20 19 2

OBESITY 2111 0.20 16 7

QSAR BIODEGRADATION 1055 0.20 41 2
TEXT / NLP

SPAMBASE 4601 0.20 57 2

SPORTS ARTICLES 1000 0.20 59 2
SENSOR / TIME SERIES

HAR (USING SMARTPHONES)* 10299 0.29 561 6

ISOLET* 7797 0.20 617 26

WAVEFORM 5000 0.20 40 3

LANDSAT SATELLITE* 6435 0.31 36 6
IMAGE (GENERAL)

OPTICAL DIGITS* 5620 0.32 64 10

USPS* 9298 0.22 256 10

MNIST (TEST) 10000 0.20 784 10

FASHION MNIST (TEST) 10000 0.20 784 10

SIGN MNIST (A-K) 14482 0.20 784 10
IMAGE (BIOMEDICAL)

BLoOD MNIST#* 15380 0.22 2352 8

ORGANC MNIST* 21191 0.39 784 11
AUDIO

GTZAN (3-SEC) 9990 0.20 57 10
NETWORK / TRAFFIC

OPTICAL BURST SWITCHING NETWORK 1060 0.20 21 4
GAMES / LoGIC

CHESS 3196 0.20 36 2

F.2 Compute resources

Experiments were conducted on a shared computing environment with access to both GPU and CPU
resources. For models requiring GPU acceleration, we used:

¢ 1 GPU with at least 40 GB of memory (e.g., NVIDIA A100 40GB, H100 80GB, or equivalent),

* 1 CPU with 128 GB of RAM.

For models that do not require GPU acceleration, computations were performed using CPU only,
with a minimum of 128 GB of RAM.

We conducted experiments across 20 datasets for our RF-AE model and 13 baseline methods, using
multiple random seeds to report the mean and standard deviation of performance metrics. All
hyperparameters and configurations were managed using Hydra [62]. Code and configuration files
will be released to ensure full reproducibility.

The runtime for RF-AE training and the entire evaluation process for individual experiments, where
each experiment is defined as running one model on one dataset with a single random seed, ranged
from 1 to 6 hours depending on the dataset size.

17



Random Forest Autoencoders for Guided Representation Learning

G Extended visualizations and quantitative comparisons
G.1 Visualizations on image data

We present OOS visualization plots and quantitative comparison (Table S3) for all models on Sign
MNIST (Fig. S3) and OrganC MNIST (Fig. S4) to support our analysis in Section 4.

Table S3 shows the local (s = QNX, Trust) and global (s = Spear, Pearson) SIA scores, along with
test k-NN accuracies for RF-AE and 13 baseline methods on the Sign MNIST and OrganC MNIST
datasets. Our RF-AE method consistently ranks among the top three across all scores on both datasets.

Fig. S3 presents visualizations of all models for the Sign MNIST (A-K) dataset. RF-AE effectively
inherits the global structure of the RF-PHATE embeddings while providing greater detail within
class clusters. In contrast, RF-PHATE tends to compress representations within each cluster, which
are associated with individual classes. Although OOS embeddings are mostly assigned to their
correct ground truth labels, the local arrangement of these samples on the sub-manifold is not
easily visualized in RF-PHATE. RF-AE, however, expands the class clusters, revealing within-class
patterns that are obscured in the RF-PHATE plot. For example, the top-right cluster in the RF-
AE plot illustrates different ways to represent the letter “C”, showing a logical transition between
variations based on hand shadowing and orientation. Such nuanced differences are more challenging
to detect in RF-PHATE, which compresses these representations into an overly restrictive branch
structure. This limitation of RF-PHATE may stem from excessive reliance on the diffusion operator,
which overemphasizes global smoothing. Since RF-GAP already captures local-to-global supervised
neighborhoods effectively, the additional diffusion applied by RF-PHATE likely diminishes fine-
grained local details. Thus, we have demonstrated that RF-AE offers a superior balance for visualizing
the local-to-global supervised structure compared to the basic RF-PHATE kernel extension.

P-TSNE is effective at identifying clusters of similar samples but often splits points from the same
class into distinct, distant clusters. This appears to result from variations such as background
shadowing, which obstruct the important part of the image. Thus, “G” and “H” instances are closer
than expected due to similar shadowing. In contrast, RF-AE correctly assigns “G” and “H” instances to
their own clusters while dissociating between same-class points with different shadowing, effectively
reflecting within-class variations. This demonstrates that P-TSNE is overly sensitive to irrelevant
factors, such as background differences, which are unrelated to the underlying labels. Similarly,
P-UMAP, P-SUMAP and PACMAP exhibit this sensitivity but produces sparser representations.
Despite being a supervised method, P-SUMAP incorporates class labels in a way that artificially
clusters same-class points, potentially oversimplifying their intrinsic relationships. CEBRA yields a
circular pattern that offers limited utility for qualitative interpretation. CE and SSNP embeddings
are distorted. NCA retains decent local and global relationships, but within-class variations and
transitions between classes are visually less evident than in regularized RF-AE. Other methods
produced noisy embeddings.

For the OrganC MNIST dataset, all models are visualized in Fig. S4. As analyzed in Section 4, RF-AE
achieves notable improvements over competing methods by enabling finer distinctions between organ
types. This is particularly evident in its ability to differentiate the left and right kidneys—whereas
other methods tend to merge these classes, RF-AE separates them while maintaining their proximity
in the embedding space. This reflects anatomical similarity without losing class identity.

In comparison, RF-PHATE maintains the overall structure but merges certain classes (e.g., left/right
kidneys), thereby reducing fine-grained resolution. P-TSNE and P-UMAP recover local structure
but yield overlapping clusters due to the lack of supervision, resulting in cluttered embeddings that
hinder interpretation. P-SUMAP achieves better class separability than P-TSNE and P-UMAP, but
its projections remain difficult to interpret, with elongated structures (e.g., aorta and inferior vena
cava) and compact, overlapping anatomical regions near the center that obscure class boundaries.
NCA, PLS-DA, SPCA, and PCA produce noisy visualizations with weak separation of organ types,
reflecting limited class-specific representation. Outliers in the CE and SSNP plots suggest overfitting
to the training data. PACMARP exhibits broken structures, where organ clusters are artificially split
without clear biological meaning. CEBRA displays an artificial circular pattern, while the AE
produces distorted visualizations.

Overall, RF-AE preserves the structural integrity of the data while substantially enhancing class
separability. These qualitative findings align with the quantitative results in Table S3, where RF-AE
outperforms competing methods in both £-NN accuracy and local-to-global SIA.
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G.2 Visualizations on audio data

To further demonstrate the modality-agnostic performance of RF-AE, we present quantitative and
qualitative comparisons on GTZAN (3-sec) in Table S3 (bottom) and Fig. S5, respectively. Although
RF-AE shows slightly lower class separability than models such as CE and SSNP, these methods
suffer from strong structural distortions, reflected in their low Global SIA scores. In contrast, RF-AE
achieves robust supervised structure preservation across local and global scales while maintaining
competitive class separability.

Visually, the class relationships in RF-AE align well with our general understanding of genre
similarities and distinctions. For instance, classical, metal, reggae, and hip-hop appear as more
“extreme” genres, while disco, rock, country, and blues cluster near the center, reflecting their less
distinctive “sound color” and stronger similarities to one another. The proximity of classical and
jazz is intuitive, as both often rely on acoustic, traditional instruments. Similarly, metal and rock
appear close due to their common reliance on electric guitars and the overlap between subgenres like
heavy metal and hard rock. Note that the relatively small sample size and possible biases in label
assignment or class-wise sampling may still influence the results. This qualitative analysis is meant
to illustrate that RF-AE captures a meaningful and balanced structure in its embeddings, opening
the door to further exploration. Future work could examine within- and between-genre variations by
coloring points according to key acoustic features.

In contrast, RF-PHATE produces a similar global layout but smooths away important within-class
variations, oversimplifying the diversity within each genre. Although CE and SSNP achieve better
average class separation, they tend to represent classes as compact, globular clusters. This can be
misleading, as it may suggest that musical genres share similar internal structure. In addition, these
methods often introduce distortions, elongating some structures while compressing others near the
center, which hinders effective visual exploration. PACMAP, P-SUMAP, P-UMAP, and P-TSNE tend
to fragment into small clusters, even within genres, making it difficult to observe gradual transitions
within and across musical styles. CEBRA again produces its characteristic circular pattern, while the
remaining methods yield noisier and less interpretable visualizations.

H Impact of the reconstruction weight and prototype count

We performed ablation experiments on the two main RF-AE hyperparameters: the loss balanc-
ing parameter A and the number of selected prototypes N*. We report local/global SIA scores
and k-NN accuracies across combinations (A, N*) € {1,0.1,0.01,0.001,0} X {pNiyain | p =
0.02,0.05,0.1,0.2,1} in Table S4. Surprisingly, reducing the number of selected prototypes leads to
overall improvements in both £-NN accuracy while preserving SIA. We hypothesize that this may
be attributed to the reduced input dimensionality of the RF-AE network, which effectively lowers
its complexity and introduces additional implicit regularization. Furthermore, selecting only the
most representative instances per class may help denoise the training process, thereby enhancing the
model’s ability to preserve class-relevant features in the embedding space.

For the loss balancing hyperparameter, setting A = 1 (i.e., an unconstrained RF-AE) yields relatively
high accuracy but results in a substantial decline in supervised structure preservation. This is
expected, as unconstrained autoencoders have been shown to poorly capture the underlying data
geometry [13, 23]. On the other hand, A = 0, which corresponds to the RF-PHATE kernel-based
MLP, leads to both lower accuracy and diminished global SIA, offering no improvement over the
standard RF-PHATE extension results reported in Table 1.

Across a broad range of hyperparameters—specifically, A € {0.1,0.01,0.001} and N* € {pNirain |
p = 0.02,0.05,0.1,0.2, 1 }—RF-AE consistently ranks among the top 3 methods across all metrics
in Table 1, highlighting its strong robustness to hyperparameter choices. We note that adding a small
geometric constraint to RF-AE improves global supervised structure while still preserving local
structure. This finding aligns with the observations of Graving et al. [20], who enhanced ¢-SNE’s
(unsupervised) global structure by combining it with a VAE.

Fig. S6 illustrates the impact of varying (A, N*) € {1,0.1,0.01,0.001,0} X {pNirain | p =
0.02,0.05,0.1,0.2,1} on Sign MNIST (A-K). A smaller number of selected prototypes N* led
to more clearly separated classes and denoised structure, in line with our quantitative findings. When
RF-AE is unconstrained (A = 1, first column), the resulting embeddings appear more distorted and
less structured. This is consistent with recent findings showing that unregularized autoencoders

19



Random Forest Autoencoders for Guided Representation Learning

often fail to produce human-interpretable visualizations that preserve the intrinsic geometry of the
data [13, 23]. On the contrary, full geometric constraint (A = 0, last column) simply replicates
the RF-PHATE embedding, without clear qualitative benefits compared to the default linear kernel
extension (Fig. 2). To effectively balance reconstruction and geometric losses, the optimal range
for A lies approximately between 0.001—yielding branching structures akin to RF-PHATE but with
more pronounced separation—and 0.1, which produces more compact, globular embeddings with
enhanced class separability. A similar qualitative assessment can be made for OrganC MNIST in
Fig. S7.

From these results, we draw two practical guidelines to help users select suitable hyperparameters for
their specific application:

* Loss balancing parameter \: Values of ) in the range [0.001, 0.1] yield comparable scores
but differ in qualitative behavior. Lower values (e.g., A = 0.001) produce branching structures
similar to RF-PHATE, enhancing interpretability of inter-class transitions while mitigating the
over-compression artifacts seen in RF-PHATE. Higher values (e.g., A ~ 0.1) shift the focus
toward class separability and expanded within-class structure. We recommend A ~ 0.001
for capturing smooth transitions or trajectories, and A =~ 0.1 for emphasizing distinct class
boundaries and detailed internal structure.

* Prototype selection N*: Selecting as few as 2% of training points as prototypes is a good
starting point to preserve supervised structure while maximizing class separability. If minimizing
inference time is essential, users may further reduce the number of selected prototypes to
accelerate computation.

I SIA performance comparison under different classification importance
strategies

To show that RF-AE’s performance is not dependent on the choice classification importances C;
(Section 3), we repeated the quantitative analysis from Section 4 using two alternative strategies:

¢ k-NN strategy: We replaced our baseline ensemble classifier with a standalone £-NN model.

* Aggregate strategy: Instead of deriving feature importances from the ensemble’s accuracy
drop, we computed importances independently using each of the three classifiers—k-NN, SVM,
and MLP—resulting in the following sets:

CHN — (NN =1, ... D},
CSVM: {CZSVM|Z:17,D}3
CMWP — (¢MWP | =1,..., D}

We then averaged these to obtain an aggregated importance set:
cee — % (Ck—NN + CSVM + CMLP) )

Table S5 reports local and global SIA scores for RF-AE and 13 baseline methods using our proposed
ensemble classifier (Section D.4) as well as the two alternative importance strategies. Overall, RF-AE
consistently ranks among the top three methods across all metrics, regardless of the chosen importance
strategy. This suggests that RF-AE more effectively preserves the underlying important structure,
making it more likely to reflect meaningful feature hierarchies in its embeddings compared to other
baselines.

J Compatibility with other geometric regularizers

Although our RF-PHATE regularizer is the core focus of our paper, we also investigate the per-
formance of RF-AE under alternative geometric constraints to guide users toward potential sub-
stitutes. Table S6 reports ablation results using RF-PHATE (ours), UMAP, SUMAP, and RF-
UMATP (i.e., UMAP applied to RF-GAP dissimilarities). We fixed the default hyperparameters
to (A, N*) = (0.01, 0.1 Ntrain )- Across 20 datasets, RF-AE with RE-PHATE consistently achieved
the best overall performance. RF-AE with RF-UMAP ranked second, followed by RF-AE with
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SUMAP and UMAP constraints. On a per-dataset basis, RF-AE (RF-UMAP) was competitive
with RF-AE (RF-PHATE) on OrganC MNIST but performed substantially worse on Sign MNIST.
These results suggest that RF-AE is especially effective when paired with RF-based kernel meth-
ods—particularly RF-PHATE—which already capture the underlying RF geometry. In such cases, the
geometric and reconstruction objectives are well aligned, enabling more effective multi-task learning.

Figure S8 shows the OOS visualizations using these four regularizers. On Sign MNIST (Fig. S8a),
RF-AE with RF-UMAP still splits same-class clusters, similar to UMAP and SUMAP, though less
severely. RF-AE with UMAP or SUMAP attempts to merge same-class fragments, but misalignment
with RF-GAP geometry leads to higher class overlap than their parametric counterparts (Fig. S3). On
OrganC MNIST (Fig. S8b), which inherently contains less background noise than Sign MNIST, RF-
AE with RF-UMAP better highlights anatomical relationships compared to P-UMAP or P-SUMAP,
but still shows more noise and overlap than RF-PHATE. This supports the idea that RF-PHATE more
effectively captures denoised local and global supervised structure through diffusion, as demonstrated
empirically in prior work [4].

In summary, RF-PHATE is a strong default regularizer for RF-AE overall, though alternative RF-based
regularizers like RF-UMAP may offer valuable refinements in specific scenarios.

K Runtime comparison

We report training and test runtimes for each model on Sign MNIST (A-K) and OrganC MNIST in
Fig. S9. To assess our scalability improvement from our prototype selection, we include results for
RF-AE with different prototype percentages, N* € {0.1Niyain, 0.02Nrain - We set the geometric
weight to its default value A = 0.01. During training, RF-AE remains within the same order of
magnitude (OoM) as RF-PHATE, P-SUMAP, and NCA, while being one OoM slower than CE and
SSNP. At inference, RF-AE is roughly two OoM faster than RF-PHATE and one OoM slower than
P-SUMAP. Compared to RF-PHATE, these improvements at inference stem from prototype selection,
which avoids the costly computation of proximities to all training points. Combined with our ongoing
vectorized and parallelized RF-GAP computation, we expect this strategy to substantially narrow, if
not eliminate, the runtime gap with other supervised competitors such as P-SUMAP.

L. Semi-supervised training

While we did not experiment with partially labeled data, RF-AE can also be trained in a semi-
supervised setting. As described in Section 3, our extended RF-GAP definition supports computing
proximities between training and out-of-sample points. Thus, on the one hand, assuming Ny, labeled
points and Ny unlabeled points, for a total training size of N = Ny + Ny, we treat unlabeled
training samples as “out-of-sample” and compute N proximity vectors of size N, which are used
as input to train the RF-AE network. On the other hand, to generate RF-PHATE embeddings for
the full training set, we can rely on the Landmark PHATE algorithm proposed by Moon et al. [3].
First, we construct the RF-GAP kernel matrix of size N;, x N, between labeled landmarks and
compute their embeddings with PHATE. Then, we project the Ny remaining unlabeled points with
the linear landmark extension using their RF-GAP proximities to the labeled points (the landmarks).
This provides all the key ingredients to train RF-AE by leveraging both labeled and unlabeled data.
We leave this extension for future work.

M Broader impacts

This paper advances guided data representation learning by integrating expert-derived annotations and
enabling out-of-sample extension, thus allowing generalization beyond the training set. Nonetheless,
we advise users to interpret supervised 2D visualizations with caution, as label assignments may
introduce biases. When labels reflect social or demographic factors, supervised methods are prone
to embedding structural biases since they explicitly aim to discriminate between classes. Bias can
also arise in highly imbalanced settings: the underlying Random Forest tends to favor majority
classes, which can cause minority classes to appear artificially closer to or farther from other groups,
as the features that characterize them may not be adequately captured in the RF-GAP proximities.
These concerns are not unique to RF-AE but extend to supervised methods in general. That said,
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RF-AE helps mitigate such issues by avoiding the exaggerated separations often produced by purely
class-conditional approaches.

Acknowledging these limitations, our method still offers valuable support to decision-makers by
providing interpretable visualizations while remaining scalable and applicable in semi-supervised
tasks. In particular, RF-AE can assist expert- or Al-based disease diagnosis by projecting incoming
patient instances into a 2D space, where they can be contextualized relative to existing embeddings.
Such visualizations allow practitioners to assess whether a prediction is consistent with established
structures or deviates from them, offering a practical indicator of prediction reliability. Overall,
RF-AE has potential societal impact in biomedical research, as well as broader applications for
data-driven insights in healthcare, finance, and multimedia.
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Figure S1: Comparison between the standard feature-based MLP encoder and our proposed RF-GAP kernel-
based MLP encoder for regressing onto precomputed RF-PHATE embeddings. (a) Ground-truth tree structure
with branch labels (see Appendix C). (b) Log-scaled median training MSE with 25" and 75" enclosing
percentiles over 50 epochs across 10 repetitions. (c¢) Training RF-PHATE embeddings (top row), followed
by training and test embeddings produced by the RF-GAP-based encoder (middle row) and the feature-based
encoder (bottom row) after 50 epochs from a single run. The RF-PHATE embeddings closely match the ground-
truth structure and provide a strong target for supervised regression. Our kernel-based encoder remains effective
even under high noise levels (e.g., SNR = 0.001), converging more quickly and producing well-structured
embeddings with better generalization. In contrast, the feature-based MLP exhibits increasing training loss and
disorganized embeddings as noise increases, and often fails to recover meaningful structure even in low-noise
settings (SNR = oo, 1), demonstrating the superior robustness of our kernel-based encoders.
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RF-AE Parametric t-SNE
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Figure S2: Illustration of the structural importance alignment (SIA) score defined in Section 3 for evaluating
supervised out-of-sample (OOS) embedding fit. a. Random class samples from the high-dimensional Sign
MNIST (A-K) dataset. b. 2D embeddings of training and test (OOS) points from RF-AE (left) and P-TSNE
(right), based on a stratified 80/20 random split. Training and test samples are shown with their original images,
color-tinted by label. Training samples appear with reduced opacity. c¢. Pixel-level classification importances
from the ensemble baseline classifier (Section D.4, Appendix D.8), normalized to [0, 1]. d. Pixel-level local
structure importances (s = Trust) from OOS RF-AE (left) and P-TSNE (right), also normalized. e. Local SIA
scores computed as the Kendall 7 correlation between (c) and (d): RF-AE achieves higher alignment (0.85) than
P-TSNE (0.55), suppressing background pixels and focusing on class-relevant regions.
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Table S3: Local (s = QNX, Trust) and global (s = Spear, Pearson) SIA scores, along with test k-NN accuracies
for our RF-AE method and 13 baselines. Scores are shown as mean =+ std across 10 repetitions on Sign MNIST
(top), OrganC MNIST (middle) and GTZAN (bottom) (see Table S2 for a summary of the datasets). Top three
values per metric are highlighted in blue, using underlined bold (first) and bold (second). Supervised methods
are marked by an asterisk.

LocAL STA GLOBAL STA
QNX TRUST SPEAR PEARSON k-NN Acc
SIGN MNIST
RF-AE* 0.819 £ 0.006 0.8483 £0.006 0.700+0.109 0.681+0.135 0.988 +0.003
RF-PHATE* 0.817 £0.009 0.854 +0.011 0.571+£0.099 0.434+0.149 0.976 £ 0.004
SSNP* 0.139+0.401 0.249+0.381 0.174+0.391 0.414+0.219 0.189+0.258
P-SUMAP*  0.700+0.010 0.618+£0.009 0.449+0.079 0.401 £0.103 0.967 £ 0.004
CE* 0.620+£0.408 0.627+0.418 0.695+0.135 0.646+0.184 0.464+0.179
NCA* 0.793+0.013 0.873+£0.012 0.596+0.088 0.523+£0.110 0.984 +0.002
PACMAP 0.718 £0.007 0.616+0.008 0.402+0.026 0.382+0.029 0.930+0.005
P-TSNE 0.689+£0.010 0.535+0.021 0.304+0.050 0.210+0.084 0.806+0.032
AE 0.668 £0.019 0.625+0.046 0.403+0.165 0.361+0.181 0.524+0.131
P-UMAP 0.665+0.012 0.551+0.011 0.304+0.042 0.223+0.064 0.787 £0.026
SPCA* 0.676 £0.005 0.598+£0.009 0.552+0.011 0.519+0.012 0.479 +0.009
PLS-DA* 0.740 £0.008 0.729+£0.009 0.737 +0.011 0.735+0.012 0.357 £0.008
CEBRA* 0.742+0.064 0.744+0.132 0.586+0.129 0.564+0.149 0.430+0.091
PCA 0.660+£0.011 0.588+0.015 0.576+0.013 0.589+0.012 0.314 +0.006
ORGANC MNIST
RF-AE* 0.890£0.007 0.929 +0.006 0.901 + 0.013 0.898 +0.012 0.766 + 0.004
RF-PHATE* 0.892+0.007 0.912+0.006 0.898+0.009 0.896 +0.012 0.654 +0.008
SSNP* 0.871+£0.028 0.906+0.019 0.773+0.358 0.784+0.096 0.636+0.154
P-SUMAP*  0.873+0.006 0.898+0.006 0.886+0.006 0.875+0.006 0.618+0.018
CE* 0.870+0.022 0.887+0.024 0.854+0.076 0.846+0.073 0.570+0.193
NCA* 0.892 +£0.006 0.896+0.005 0.870+0.005 0.868+0.005 0.524 +0.000
PACMAP 0.881+£0.007 0.902+0.006 0.893+0.007 0.893+0.006 0.632+0.009
P-TSNE 0.867 £0.006 0.892+0.005 0.874+0.005 0.871+0.005 0.474+0.003
AE 0.875+0.006 0.899+0.005 0.873+0.011 0.834+0.022 0.563+0.014
P-UMAP 0.881£0.006 0.898+£0.004 0.870+0.005 0.868+0.005 0.475+0.005
SPCA* 0.916 £ 0.005 0.926 +0.005 0.895+0.005 0.886+0.005 0.429 +0.000
PLS-DA* 0.866 £0.006 0.869+0.005 0.860+0.005 0.859+0.005 0.358+0.000
CEBRA* 0.858 £0.033 0.881+0.032 0.872+0.030 0.862+0.027 0.358+0.034
PCA 0.861 £0.005 0.879+0.005 0.865+0.005 0.861+0.005 0.414+0.000
GTZAN (3-SEC)
RF-AE* 0.956 +£ 0.007 0.946 +0.005 0.935+0.011 0.914+0.008 0.688 +0.005
RF-PHATE* 0.954 +£0.005 0.943+0.008 0.912+0.015 0.907 £0.014 0.568 +£0.010
SSNP* 0.940+£0.006 0.931+0.013 0.788+0.056 0.778+0.101 0.786 + 0.005
CE* 0.951+0.008 0.931+£0.016 0.807+0.046 0.747+0.049 0.713+0.012
P-SUMAP*  0.934+0.005 0.937+0.005 0.648+0.010 0.638+0.022 0.696+0.007
NCA* 0.949£0.005 0.925+0.007 0.788+0.018 0.824+0.022 0.518 £0.006
PACMAP 0.942+£0.007 0.946 £0.004 0.706+0.014 0.692+0.017 0.644 +0.009
P-TSNE 0.950£0.005 0.941+£0.005 0.777+0.017 0.787+0.018 0.519 +£0.007
AE 0.939+0.009 0.939+0.006 0.809+0.035 0.847+0.045 0.487 £0.009
P-UMAP 0.949 £0.007 0.937+0.009 0.723+£0.012 0.704+0.016 0.493 +0.040
SPCA* 0.948 £0.003 0.932+0.008 0.894+0.007 0.900+0.008 0.417 £0.009
CEBRA 0.839+£0.058 0.841+0.055 0.786+0.042 0.779+0.040 0.309 +0.020
PLS-DA* 0.848£0.015 0.817+0.016 0.764+0.017 0.706+0.015 0.398 +0.006
PCA 0.943 £0.006 0.926+0.008 0.887+0.009 0.889+0.008 0.404 +0.005
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Figure S3: Visualization of the Sign MNIST (A-K) dataset (Table S2) using 14 dimensionality reduction
methods. Training and test samples are shown with their original images, color-tinted by label. Training samples
appear with reduced opacity. Refer to Appendix G.1 for a full qualitative analysis.
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Figure S4: Visualization of the OrganC MNIST dataset (Table S2) using 14 dimensionality reduction methods.
Test points are shown as color-coded circles based on their labels. Training points are omitted for clarity. Refer
to Appendix G.1 for a full qualitative analysis.
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Figure S5: Visualization of the GTZAN (3-sec) dataset (Table S2) using 14 dimensionality reduction methods.
Training and test points are shown as color-coded circles based on their labels. Training samples appear with
reduced opacity. Refer to Appendix G.2 for a full qualitative analysis.
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Table S4: Local (s = QNX, Trust) and global (s = Spear, Pearson) SIA scores, and test k-NN accuracy for
RF-AE variants across values of A and N™* (in % Ntyain). Scores are shown as mean =+ std across 20 datasets and
10 repetitions. Each score is compared with baseline models in Table 1, and highlighted only if it ranks among
the top three overall. Top three values per metric are highlighted in blue, using underlined bold (first) and bold
(second). RF-AE demonstrates strong robustness for A € {0.1,0.01,0.001} across varying prototype count,
consistently ranking among the top 3 methods. Fewer prototypes improve k-NN accuracy while preserving SIA,
likely due to implicit regularization and class-level denoising. Extreme A values lead to degraded SIA (A = 1)
or both SIA and accuracy (A = 0).

LocAL STA GLOBAL SIA
QNX TRUST SPEAR PEARSON k-NN Acc

N~ A=0

2% 0.811 £ 0.026 0.822+0.023 0.752+0.038 0.752+0.040 0.839 +0.011
5% 0.811 +0.024 0.821+£0.022 0.752+0.037 0.753+0.040 0.838 +0.010
10% 0.812 +0.025 0.822+0.023 0.751+0.038 0.752+0.040 0.836+0.011
20% 0.815+0.024 0.822+0.022 0.751+0.037 0.752+0.040 0.833 +0.010
100% 0.810 +£0.025 0.820+0.022 0.750+0.037 0.751+0.040 0.829 +0.010

A =0.001
2% 0.810 + 0.024 0.824 +£0.023 0.771+0.037 0.764 +0.040 0.857 + 0.009
5% 0.808 + 0.022 0.823+0.022 0.768+£0.036 0.760 =0.040 0.859 +0.008
10% 0.809 + 0.024 0.824 +£0.024 0.763+0.037 0.757+0.039 0.859 + 0.009
20% 0.812 +0.025 0.826 £0.023 0.762+0.039 0.756+0.042 0.855 +0.009
100% 0.806 =0.026 0.823+0.024 0.756+0.038 0.752+0.041 0.837 +0.012
A =0.01
2% 0.808 + 0.024 0.822+0.022 0.783+0.040 0.779 +0.042 0.859 +0.009
5% 0.807 £0.024 0.822+0.021 0.782+0.037 0.779 +0.040 0.863 + 0.008
10% 0.809 + 0.024 0.822+0.022 0.782+0.041 0.779 £0.042 0.861 +0.009
20% 0.809 + 0.024 0.822+0.023 0.778 £0.040 0.775+0.040 0.860 + 0.009
100% 0.801%£0.024 0.819+0.023 0.773+0.044 0.768 +0.046 0.843 + 0.012
A=0.1
2% 0.808 + 0.023 0.822+£0.023 0.777£0.045 0.780 +0.043 0.862 +0.010
5% 0.807 £0.023 0.822+0.021 0.778 £0.047 0.781 +0.047 0.865 + 0.008
10% 0.808 + 0.023 0.822+0.021 0.782%0.060 0.784+0.054 0.864 +0.009
20% 0.807 £0.025 0.820+0.022 0.780 +0.049 0.783 +0.049 0.861 +0.010
100% 0.802£0.022 0.817+0.024 0.780 +0.059 0.784 £0.059 0.843 +0.012
A=1

2% 0.808 + 0.026 0.822+0.023 0.681+0.113 0.681+0.120 0.865 + 0.009
5% 0.806 +0.024 0.820+0.023 0.673+0.113 0.670+0.109 0.867 +0.009
10% 0.804 +£0.023 0.820+0.022 0.689+0.102 0.686+0.108 0.864 +0.009
20% 0.804 +0.024 0.819+0.023 0.697+0.118 0.694+0.115 0.860 +0.010
100% 0.799 £0.023 0.812+0.024 0.717+0.075 0.713+0.075 0.808 +0.020
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Figure S6: RF-AE test embeddings on Sign MNIST (A-K) for various (A, N*) configurations, where A
decreases column-wise from 1 (unconstrained RF-AE) to 0 (RF-PHATE kernel-based MLP extension), and N *
increases row-wise from 2% to 100% of the training set size. Samples are shown with their original images,
color-tinted by label. (see Fig. 2 for the legend).
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Figure S7: RF-AE test embeddings on OrganC MNIST for various (A, N*) configurations, where A decreases
column-wise from 1 (unconstrained RF-AE) to 0 (RF-PHATE kernel-based MLP extension), and N* increases
row-wise from 2% to 100% of the training set size. Points are shown as color-coded circles based on their labels
(see Fig. 2 for the legend).

31



Random Forest Autoencoders for Guided Representation Learning

Table S5: Local (s = QNX, Trust) and global (s = Spear, Pearson) SIA scores for RF-AE and 13 baseline
methods, computed using three strategies: our default ensemble importances suggested in Section D.4 (top),
k-NN-based classification importances (middle) and aggregated importances averaged over k-NN, SVM, and
MLP classifiers (bottom). Scores are reported as mean =+ standard deviation across 20 datasets and 10 repetitions.
In general, RF-AE outperforms other models in both local and global SIA, regardless of the importance strategy.
Top three values per metric are highlighted in blue, using underlined bold (first) and bold (second). Supervised
methods are marked by an asterisk.

LocAL SIA GLOBAL SIA
QNX TRUST SPEAR PEARSON
ENSEMBLE IMPORTANCES
RF-AE* 0.809 +£0.024 0.822+0.022 0.782+0.041 0.779 £0.042
RF-PHATE* 0.798 £0.025 0.825%+0.023 0.748 £0.038 0.750+0.040
SSNP* 0.760£0.047 0.772£0.045 0.685+£0.089 0.694 £0.080
P-SUMAP* 0.756 £0.028 0.768 £0.025 0.647 £0.048 0.647 £0.048
CE* 0.795+£0.050 0.818+0.051 0.765+0.051 0.763 +£0.054
NCA* 0.808 £0.027 0.805%0.025 0.771+£0.032 0.759+0.033
PACMAP 0.749 £0.026 0.758 £0.025 0.688 £0.029 0.688 £0.029
P-TSNE 0.743 £0.028 0.747 £0.028 0.684+0.036 0.666 +0.038
AE 0.744 £0.027 0.751£0.029 0.695+£0.044 0.655+0.053
P-UMAP 0.757 £0.027 0.744 £0.028 0.674+£0.035 0.657+£0.038
SPCA* 0.767 £0.026  0.759+£0.030 0.741£0.031 0.738 £0.032
PLS-DA* 0.715+0.026 0.708 £0.028 0.659+£0.027 0.639 +£0.028
CEBRA* 0.780£0.045 0.775+£0.050 0.735+£0.062 0.728 £0.068
PCA 0.745+£0.027 0.742+0.026 0.733+£0.027 0.727 £0.028
STANDALONE k-NN IMPORTANCES
RF-AE* 0.835+0.021 0.832+0.021 0.784+0.036 0.788 +0.038
RF-PHATE* 0.834 +0.024 0.836 £ 0.023 0.750+0.035 0.760 = 0.040
SSNP* 0.780£0.050 0.779£0.046 0.681£0.094 0.690+0.084
P-SUMAP* 0.780+£0.026 0.788 £0.023 0.666+0.049 0.666 +0.049
CE* 0.829 £0.050 0.821£0.048 0.763£0.051 0.760 £0.050
NCA* 0.826 +0.022 0.811+0.025 0.774+£0.032 0.761 = 0.031
PACMAP 0.771 £0.023 0.777 £0.022 0.708 £0.027 0.711 £0.028
P-TSNE 0.766 £0.025 0.767 £0.025 0.702+0.030 0.683 +£0.035
AE 0.762 £0.025 0.769£0.025 0.709+0.046 0.668 £0.054
P-UMAP 0.777 £0.027 0.762+0.025 0.695+0.030 0.676+0.037
SPCA* 0.785+£0.024 0.777£0.026 0.753£0.026 0.749 £0.026
PLS-DA* 0.724 £0.022 0.714£0.022 0.654 +£0.023 0.634 £0.025
CEBRA* 0.806£0.046 0.784+£0.049 0.736+0.058 0.731£0.065
PCA 0.755+0.023 0.752+£0.022 0.741£0.023 0.736 £0.024
AGGREGATED IMPORTANCES
RF-AE* 0.802 +0.045 0.812+0.044 0.778 £0.056 0.778 £ 0.056
RF-PHATE* 0.793 +£0.040 0.820+0.043 0.747 £0.051 0.752 +0.052
SSNP* 0.764 £0.060 0.770£0.056 0.685+0.100 0.695+0.092
P-SUMAP* 0.757+£0.046 0.767 £0.044 0.647 £0.065 0.646 +£0.063
CE* 0.798 £0.062 0.819 +£0.063 0.771 £0.068 0.772 £ 0.067
NCA* 0.812+0.045 0.804+0.046 0.774+0.048 0.762 +0.049
PACMAP 0.749 £0.046 0.758 £0.044 0.688 +£0.044 0.690£0.046
P-TSNE 0.744 £0.044 0.747 £0.044 0.684 £0.048 0.667 £0.051
AE 0.745£0.043 0.750%£0.045 0.695+£0.061 0.655+0.066
P-UMAP 0.760 £0.047 0.744 £0.047 0.674+£0.048 0.657 £0.054
SPCA* 0.770 £0.042 0.761 £0.047 0.742+£0.045 0.739 £0.046
PLS-DA* 0.717£0.043 0.710£0.044 0.664 £0.039 0.643 +£0.040
CEBRA* 0.782+0.063 0.778 £0.068 0.739+0.073 0.733+0.079
PCA 0.746 £0.045 0.743+£0.044 0.734+£0.042 0.729£0.043
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Table S6: Local (s = QNX, Trust) and global (s = Spear, Pearson) SIA scores, along with test k-NN accuracies
for our RF-AE method using four different geometric regularizers: RF-PHATE (ours), RF-UMAP, UMAP and
SUMAP. Scores are shown as mean = std across 10 repetitions on Sign MNIST (top), OrganC MNIST (middle),
and over 20 datasets (bottom). Refer to Table S2 for a summary of the 20 datasets. Each score is compared with
baseline models in Tables 1 and S3, and highlighted only if it ranks among the top three overall. Top three values

per metric are highlighted in blue, using underlined bold (first) and bold (second).

LocAL SIA GLOBAL SIA
QNX TRUST SPEAR PEARSON k-NN Acc

GEO. REG. SIGN MNIST

RF-PHATE 0.819 £0.006 0.848 +0.006 0.700+0.109 0.681 +0.135 0.988 = 0.003

RF-UMAP 0.732+0.008 0.717+0.009 0.624+0.043 0.600+0.040 0.936+0.016

UMAP 0.642+0.012 0.544£0.015 0.319£0.048 0.235+0.070 0.745+0.021

SUMAP 0.668 +£0.012 0.594+0.015 0.461+0.069 0.414+0.097 0.863+0.013

ORGANC MNIST

RF-PHATE 0.890+0.007 0.929 £0.006 0.901+0.013 0.898 +0.012 0.766 + 0.004

RF-UMAP 0.889+0.006 0.924 +0.005 0.936 +0.004 0.933+0.005 0.701 +0.004

UMAP 0.883 £0.007 0.907 £0.006 0.871£0.006 0.869+0.006 0.576+0.007

SUMAP 0.875+0.008 0.909+0.006 0.888+0.009 0.875+0.008 0.740 +0.013
20 DATASETS

RF-PHATE 0.809 £ 0.024 0.822 +0.022 0.782+0.041 0.779 £0.042 0.861 = 0.009

RF-UMAP  0.798 £0.024 0.806+0.022 0.773+0.031 0.768 +£0.032 0.832 +0.012

UMAP 0.782+0.025 0.762+0.029 0.683+0.036 0.674+0.038 0.729+£0.024

SUMAP 0.791 £0.024 0.788 £0.024 0.669 +0.050 0.669 +0.048 0.817 +0.017
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Figure S8: OOS visualization using RF-AE with four different geometric regularizers: RF-PHATE (ours,
far left), RF-UMAP (center left), UMAP (center right) and SUMAP (far right). We set the geometric and
reconstruction weights to their default values (A, N*) = (0.01, 0.1 N¢rain). a. Sign MNIST (A-K): Samples
are shown with their original images, color-tinted by label. Training images are shown with reduced opacity.
RF-AE with RF-UMAP still fragments same-class points, reflecting the same weaknesses as (un)supervised
UMAP (Fig. S3). RF-AE with UMAP or SUMAP attempts to merge same-class fragments but misalignment
with RF-GAP geometry leads to greater class overlap than their parametric baselines. b. OrganC MNIST: Test
points are color-coded by label. Training points are omitted for clarity. RF-AE with RF-UMAP performs better,
producing a structure closer to RF-AE with RF-PHATE. The reduced artifact level (e.g., less background noise)
facilitates clustering of same-class points. Still, RE-UMAP remains slightly noisier than RF-PHATE, with higher
class overlap, and RF-AE with UMAP or SUMAP shows no improvement over their parametric counterparts in
Fig. S4.
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Figure S9: Average training (top) and test (bottom) computation times per model across 10 repetitions on Sign
MNIST (blue) and OrganC MNIST (green). Standard deviations are displayed as error bars.
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