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Abstract

Distributional reinforcement learning demon-
strates state-of-the-art performance in continuous
and discrete control settings with the features of
variance and risk, which can be used to explore.
However, the exploration method employing the
risk property is hard to find, although numerous
exploration methods in Distributional RL employ
the variance of return distribution per action. In
this paper, we present risk scheduling approaches
that explore risk levels and optimistic behaviors
from a risk perspective. We demonstrate the per-
formance enhancement of the DMIX algorithm
using risk scheduling in a multi-agent setting with
comprehensive experiments.

1. Introduction

Reinforcement learning (Sutton & Barto, 2018) is a ma-
chine learning method that imitates the way humans learn to
train models used in various domains such as robotics, au-
tonomous driving, video games, economy, and industrial re-
source optimization. With one step further, the distributional
perspective of deep reinforcement learning (Bellemare et al.,
2017; Dabney et al., 2018b;a), has been highlighted with out-
performing performance in Mujoco and Atari environment
(Bellemare et al., 2013) compared to general reinforcement
learning algorithms. In particular, one of the reasons why
distributional RL shows state-of-the-art performance is that
it utilizes exploration strategies with variances of return
distributions which is a challenging issue in the reinforce-
ment learning domain. Mavrin et al. (2019) and Zhou et al.
(2021) propose exploration methods using the variance of
a return distribution of distributional RL motivated by the
existing reinforcement learning exploration strategy from
Burda et al. (2018), Auer (2002). However, exploration uti-
lizing risk level, which determines cautious or daring behav-
ior for agents, is hard to find despite having suitable property
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for exploration compared to methods using the variance in
distributional RL. In this paper, we propose risk perspec-
tive exploration utilizing risk levels by simply scheduling
it, enabling exploration of the risk sampling domain and
less explored action space. We evaluate our method with
Multi-Agent Reinforcement Learning (MARL) algorithm,
which has a problem of challenging exploration. We em-
ploy the distributional MARL method, DMIX, a variation
of DFAC (Sun et al., 2021) that demonstrates state-of-the-
art performance with variance and risk features but only
implicitly employs a variance of return distribution as an
exploration factor. By using risk as a factor of exploration
in DMIX, we train agents based on the risk and show how
the performance improves. We summarize our contributions
as follows:

* We propose a novel risk perspective exploration meth-
ods by scheduling risk levels.

* We extensively evaluate the performance of schedul-
ing risk levels in MARL environment and analyze the
relation between risk levels and behaviors from it.

2. Related Works

2.1. Distributional Reinforcement Learning

Distributional RL outputs a distribution of returns per an ac-
tion that can be defined by a Dirac delta function as follows.

N
Zy(x,0) =Y Pidoi(z.a) )
=1

where Y p; = 1. 0;, x, and a represent return value, a state,
and an action, respectively. Generally, loss functions are
defined as a Wasserstein distance which is given by,

W, (U,Y) = </01 Iy (r) —FUl(T)y”dT>1/p ®)

for TD-error of distribution with a Huber loss (Huber, 1992)
where the inverse CDF Fy ! of a random variable Y is de-
fined as,

Fyl(r):=inf{y € R: 7 < Fy(y)} (3)

which is called a quantile function. Distributional RL is
known to have low variance in performance, ensemble effect



Risk Perspective Exploration in Distributional Reinforcement Learning

by making multiple outputs, and enabling risk-sensitive
action selection as advantages.

Risk-sensitiveness is prevalent in economics and the stock
market, where cautious or daring decisions are required.
This approach was adopted in the domain of reinforcement
learning known as risk-sensitive reinforcement learning for
the benefit of selecting actions depending on risk. Generally,
in the risk-sensitive RL area, risk-levels can be separated
into 3 sections risk-averse, risk-neutral, and risk-seeking.
Due to the variation in action space, a policy that is sensitive
to risk can be read differently depending on the context.
Nonetheless, we describe the general concept of risk-related
policy in this section. A risk-averse policy can be interpreted
as selecting the action with the highest state-action value
among the worst-case scenarios per action. A risk-seeking
policy entails selecting the same action as a risk-averse pol-
icy, but based on the best-case scenario. Risk-neutral policy
positions amid risk-averse and seeking policy positions.

Exploration in Distributional RL Zhou et al. (2021) utilize
Random Network Distillation (Burda et al., 2018) algorithm
to make two same architectures with randomly initialized
parameters. They use the Wasserstein metric between two
random networks’ output per action to measure how many
times the action was explored. Mavrin et al. (2019) use left
truncated variance of the return distribution, which means
optimistic action selection using outputs’ distribution.

Distributional MARL Recently, some multi-agent
reinforcement learning (MARL) algorithms adopted
distribution-based architecture. Sun et al. (2021) integrated
distributional RL and MARL by mean-shape decomposition.
Qiu et al. (2021) adopt the conditional value at risk (CVaR)
metric as a surrogate of joint action-state value @ ;oins and
make a model that enables an adaptive risk level estimator
with CVaR at every step.

2.2. Environments

In a multi-agent system, SMAC(Samvelyan et al., 2019)
provides the most complex and dynamic environments
for MARL researchers with partially observable MDP
(POMDP), various scenarios, centralized training, and de-
centralized execution framework. Most MARL papers set
SMAC as a default environment where they can prove their
algorithm’s performance. We experiment with our idea in
this environment and show the relationship between risk
levels and demanding skills.

3. Risk perspective exploration

In this paper, we only have interest on the distributional
reinforcement learning’s perspective on exploration and risk-
sensitiveness. With this risk concept, we try exploration for
various risk levels by scheduling these risks accompanying

exploration for less explored actions which show a similar
effect of using variance.

3.1. Selecting Risk levels

In Distributional RL for a risk-sensitive algorithm, the out-
put distribution is represented by a quantile function (inverse
CDF) with a domain of [0, 1], as stated in subsection 2.1.
Then, quantile fractions (which are typically expressed as 7)
can be sampled from [0, 1]. By sampling quantile fractions,
we can induce risk-averse or risk-seeking behavior in the
model. If we wish to make agents risk-averse, for instance,
we can select quantile fractions from [0, 0.25] which sam-
ples relatively low returns. Contrarily, sampling quantile
fractions between [0.75, 1] indicate risk-seeking behavior
which induces sampling high returns.

3.2. Exploration by risk scheduling

For decades, value-based RL algorithms have depended on
e-greedy(Watkins, 1989) decaying exploration or adding
noise(Fortunato et al., 2017) to the model parameters for
exploration. Considering the method of decaying epsilon
value from high to low, the thought flashes that with distri-
butional RL, which can handle risk-sensitiveness, will it be
possible to schedule or decay risk levels like the e-greedy
exploration strategy?

In the e-greedy exploration of distributional RL, we can
select actions as follows:

with probability 1 — €

{arg maXaETNM[O,l] [Z(Sa a)] (4)

random action with probability e

where s and a mean action and state each, and Z(s, a) is the
distribution of return given state and action, which makes
action-state value (s, a) by taking expectation. We select
the action that makes state-action value (s, a) the best with
the probability 1 — € and random action with the probability
€. We adapt this decaying idea from e-greedy methods to
risk scheduling which makes it to explore a variety of risk
levels and also optimistic actions as follows:

with probability 1 — €
p y (5)

random action

argmax, B yq,[%(s, a)]
with probability e

where o and S adjust the risk levels and keep changing
through the scheduling steps. Like decaying epsilon from
1 to 0.05, decaying risks gradually from seeking level to
specific risk level is the basic format of our method. When
scheduling risks within the range of risk-seeking level, 3
will change from 1 to 0 with « fixed to 0. 3 will be set
to 0 when scheduling the risk levels within the range of
risk-averse level. The details of how to schedule risks are
explained in subsection 4.1.



Risk Perspective Exploration in Distributional Reinforcement Learning

—— seeking to averse

(c) 355z (averse®)

y
el
AAARAM 00

’ (g) 3s5z vs 3562 (averse!)

neutral
— seeking to averse

04
M -
s ML 00
o
106

(m) 6h vs 82z (averse®) (n) 6h vs 82z (neutral®)

(0) MMM2 (averse') (p) MMM2 (neutral®)

Figure 1. A Win-rate graph where the x-axis is training steps. We compare the averse and neutral policy with scheduling strategy from
risk-seeking to averse or neutral. Lines are made by means of 5 runs, and shaded areas show a 75% confidence interval using five parallel
training. We set the maximum win-rate to 0.8 for the scenarios that show performance lower than 0.5;otherwise, set it to 1.0. The number
1 and 5 located on the upper right of the letter ‘averse’ and ‘neutral’ means 10k and 50k scheduling timestep each.

4. Experiments

We evaluate our method with the MARL algorithm, which
suffers from intricate exploration caused by a cooperative
goal, multiple agents, and POMDP setting. In this experi-
ment, the DMIX algorithm, a DFAC variant, is used. We
perform experiments in SMAC (Samvelyan et al., 2019) en-
vironment, with 2s3z, 3s5z (easy), 5m vs 6m, 3s
vs 5z (hard), and corridor, 3s5z vs 3s6z, 6h
vs 8z, MMM2 (super hard) scenarios each. Except for
running SMAC environment in a parallel manner with five
runners, we follow the default setting of DFAC with 8 mil-
lion training time step.

4.1. Risk Scheduling

We set risk-averse, risk-neutral, and risk-seeking as a way
of sampling quantile fractions (7) from a uniform distribu-
tion ¢/[0, 0.25], ¢]0, 1], and /[0.75, 1] each. Although there
are many decaying skills in scheduling, we select the most
basic decaying method, Linear decaying. For example, if
we want to schedule risk from seeking to averse, we set

a and $ in Equation 5 to 0.75 and 1.0 each. Then sample
quantile fractions from [0.75, 1] and « start decaying to 0
linearly. When « becomes 0, 8 begins to move toward 0.25
linearly. The sampling range reaches [0, 0.25] at the final
scheduling step and is fixed until the training is finished.
Seeking to averse and seeking to neutral risk policies are
adopted in the experiments to compare with static risk level
policies. Because the risk-seeking policy does not work in
any scenarios, we did not insert the results of risk-seeking
policy in this paper. We search decaying steps in a set of
{10k, 25k, 50k}.

4.2. Results

Figure 1 demonstrates the learning curves in SMAC scenar-
ios. Figures from la to 1h show better performance when
taking risk-averse policy, and Figures from 1j to 1p show
better performance when taking risk-neutral policy. Also, it
can be observed that the learning curves with risk schedul-
ing grow faster and have higher final win-rates than static
policies, as shown in Table 1. In addition, we find that there
is a tendency that the more complex the scenario is, (the less
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Table 1. Final win-rate performance

Maps neutral neutral” averse averse™
253z 0.951 0.948 0.951 0.988
3s5z 0.822 0.849 0.977 0.982
S5m vs 6m 0.607 0.718 0.696 0.792
3s vs 5z 0.422 0.604 0.0 0.0

corridor 0.533 0.662 0.122 0.320
6h vs 8z 0.235 0.340 0.084 0.124
MMM2 0.044 0.518 0.002 0.607
3s5z vs 3s6z 0.006 0.0 0.013 0.086

# : scheduling method

likely the winning rate is), the performance improvements
increase.

4.3. Analysis
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Figure 2. Results on 6h vs 8z scenario. (a) left shows average
dealt from agents to enemies and right shows travel distance of
agents per timestep in a single episode each. (b) left shows total
dealt from agents to enemies and right shows travel distance of
agents at each timestep in a single episode.

Relation between risk level & behavior We have evi-
dence that risk levels are related to agents’ behavior ten-
dencies in the SMAC scenario. Risk-averse behavior tends
to attack enemies more than other policies, as shown in
Figure 2a deploy intensive fire per timestep. This entirely
corresponds to the fact that risk-averse policy shows the
behavior that chooses the best action among the worst case,
which can be just attacking the enemies. Seeking behavior
tends to do other than attacking (e.g., Move around) rela-
tive to other policies seeing the Figure 2a, which can be
interpreted as a case that agents select action among the
best case. Because if agents survive longer by the moving
behavior, the possibility of receiving a good return could be
higher than other actions. However, moving continuously by
risk-seeking policy can result in a bad performance, which
makes no immediate reward. Risk-neutral behavior shows
intermediate temper that demonstrates adequate firepower

Table 2. Challenging skills & risk level

Maps challenging skills risk levels
2s3z focusing fire averse = neutral
3s5z focusing fire averse

5m vs 6m focusing fire averse

3s vs 5z kiting neutral
corridor breaking each neutral

6h vs 8z kiting neutral
MMM2 focusing fire neutral

3s5z vs 3s6z focusing fire averse

per timestep and more moving distance than averse policy,
as shown in Figure 2a. Figure 2b, conducted in a single
episode, supports the above argument in detail. So Figure 2
demonstrates why the tendency of Figure 1 comes out. With
this evidence, we conclude that risk-averse and neutral pol-
icy is related to focusing fire and kiting skills each. Scenarios
and challenging skills are shown in Table 2.

Scheduling risk levels
Training with static risk "
level makes the model
experience only the par-
ticular risk trends even
though the risk level is
neutral. However, agents 02
can efficiently explore be- .,

havior trends by schedul- [ 4
ing risks to explore risk Figure 3. Control  scheduling
levels and optimistic be-  Steps in scenario 355z

haviors at the beginning of learning. Especially, some super
hard scenarios show substantial performance improvements
when scheduling risks as shown in Figure 1, confirming that
the effect of risk scheduling is significant where more explo-
ration is required. In addition, we found that the longer the
scheduling period is, the lower the performance, as shown in
Figure 3. Extending decaying steps result in the continued
exploration rather than stable learning, similar to e-greedy
scheduling. Therefore, appropriate scheduling steps are re-
quired.

to averse 1000k
e 100k
e 500k
0 averse 50k

5. Conclusion & Future work

In distributional reinforcement learning, we propose risk
perspective exploration via risk scheduling. Scheduling risk
level from a risk-seeking level to a specified risk level sig-
nificantly accelerates learning speed and improves final per-
formance in comparison to not scheduling it. In addition,
the risk level is highly correlated with the challenging skills
shown in SMAC scenarios, making the training feasible and
stable. In the near future, we hope to exhibit this intriguing
demonstration using various distributional algorithms that
can handle single or multiple agents, as well as in various
simulators.
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A. Distributional Reinforcement Learning

Distributioanl deep RL got popular from (Bellemare et al., 2017). The
output of distributional RL is a distribution of returns for a given
state and action. They use the Wasserstein metric to calculate the
TD-error between the distributional bellman updated distribution and
the current distribution of returns in this approach. Although it differs
across methods, most of them employ the quantile function to estimate
the distribution of returns in order to calculate the Wasserstein distance
between the current and objective distributions. Assume we have a
model that approximates a quantile function with a domain of [0, :
1] and a return range of (—oo, +00). The output of a model may : >

approximate the inverse of a cumulative density function like Figure 4. 0 Tn =1

A.1. Algorithm Figure 4. Quantile regression

DFAC DFAC(Sun et al., 2021) method, which is based on the

IQN(Dabney et al., 2018a) algorithm, is the first to integrate distributional RL and multi-agent RL. IQN was utilized
to sample quantile fractions from /[0, 1] for distributional output. The authors incorporated a distributional viewpoint in a
multi-agent context using mean-shape decomposition without breaking the IGM condition, which can be stated as:

arg maxy, E[Z; (hy,uy)]
arg max,E[Z;oin¢ (h, u)] = ©

arg max,, E[Zy (hy, un)]

that can be proved by the following DFAC Theorem (Sun et al., 2021):

Zjoint (h,u) = E[Zjoint (h,0)] + Zjoint (h,u) — E[Zjoin: (h, u)]
= Zmean (h,0) + Zspape (h,u)
=¢(Q1 (h,m),...,Qn (hy,un))
+®(Z; (hy,uy),...,Zy (hy,un))

(7

which is proven to meet the IGM condition. DFAC outperforms all other algorithms, especially in difficult scenarios. This
approach may also be modified to work with IQL, VDN(Sunehag et al., 2017), and QMIX(Rashid et al., 2018). The DMIX
variations of the DFAC algorithm, which combines with QMIX, are employed as our baseline.

Exploration of DMIX DMIX (Sun et al., 2021) is another value-based RL version incorporating e-greedy exploration.
However, this method leverages variance information from the return distribution while choosing an action. DMIX generates
a return distribution using uniformly sampled quantile fractions from /[0, 1]. If we set the number of quantile fractions to a
tiny number, such as a digit of one, uniformly sampling quantile fractions stochastically results in exploiting tail information
of a return distribution. For default, DMIX sets the number of quantile fractions to 8. As a result, this approach indirectly
employs the variance of the return distribution per action for exploration.



