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Abstract—Given point cloud input, the problem of 6-DoF
grasp pose detection is to identify a set of hand poses in
SE(3) from which an object can be successfully grasped. This
important problem has many practical applications. Here we
propose a novel method and neural network model that enables
better grasp success rates relative to what is available in the
literature. The method takes standard point cloud data as input
and works well with single-view point clouds observed from
arbitrary viewing directions. Videos and code are available at
https://haojhuang.github.io/edge grasp page/.

I. INTRODUCTION

Grasp detection [6, 25, 18] is a critical robotic skill. The
robot first observes a scene containing objects in the form
of images, voxels, or point clouds, and detects a set of viable
grasp poses from which an object may be grasped stably. There
are two general approaches: SE(2) methods where the model
reasons in terms of a top-down image of the scene (e.g. [13,
15, 17, 12, 30]), and SE(3) methods where the model reasons
in terms of a point cloud or voxel grid (e.g. [6, 18, 8, 3]).
SE(3) methods have a distinct advantage over SE(2) methods
because they have more flexibility and are easier to apply in
general robotics settings. Unfortunately, SE(3) methods are
generally much more complex, so SE(2) models are often
preferred.

This paper tackles the problem of SE(3) grasping with a
novel grasp detection model that we call the Edge Grasp
Network. The model is based on a novel representation of
a 6-DoF grasp that uses a pair of vertices in a graph. Given a
single approach point (a position the hand will approach), we
define a KNN graph that contains all the points in the point
cloud that are within a fixed radius of the approach point. Each
point in this KNN graph corresponds to an orientation of the
gripper and, when paired with the approach point, defines a
distinct 6-DOF grasp pose. We infer the quality of all such
grasps simultaneously using a graph neural network.

This approach is novel relative to the literature in three
ways: 1) First, our method of defining unique grasp candidates
in terms of a pair of vertices in a graph is new; 2) Second,
our inference model using a graph neural network defined
with respect to a single approach point is novel; 3) Third,
our model is the first SE(3) grasp method that incorporates
SO(3) equivariance.

II. PROBLEM STATEMENT

The grasp detection problem is to locate a set of grasp poses
in SE(3) for a parallel-jaw gripper given input about the scene

in the form of a point cloud. Denote the point cloud observa-
tion as P = {pi ∈ R3}ni=1, where n is the number of points.
For each point p ∈ P , we will assume that an estimate of the
object surface normal np ∈ S2 can be calculated. Although
it is not required, we generally assume that this point cloud
is generated by a single depth camera. A grasp pose of the
gripper is parameterized α = (C,R) ∈ SE(3), where C ∈ R3

is the location of the center of the gripper and R ∈ SO(3)
represents its orientation. The grasp detection problem is to
find a function S : P 7→ {αi ∈ SE(3)}mi=1, that maps P onto
m grasp poses detected in the scene. The grasp evaluation
problem is to find a function Φ : (P, α) 7→ [0, 1], that denotes
the quality of grasp α. Notice that Φ is invariant to translation
and rotation in the sense that Φ(g ·P, g · α) = Φ(P, α) for an
arbitrary g ∈ SE(3). In other words, the predicted quality of
a grasp attempt should be invariant to transformation of the
object to be grasped and the grasp pose by the same rotation
and translation.

III. METHOD

A. Grasp Pose Representation

Fig. 1. Grasp pose defined by the edge grasp
(pa, pc). The reference frame of the gripper
is illustrated by the RGB coordinate system.
Gw and Gd are the gripper width and gripper
depth.

We represent a grasp as a
pair of points in the cloud,
(pa, pc) ∈ P 2. pa is con-
sidered to be the approach
point and pc is the contact
point. Assuming that we
can estimate the object sur-
face normal nc at point pc,
(pa, pc) defines a grasp ori-
entation R where the grip-
per fingers move parallel
to the vector nc and the
gripper approaches the ob-
ject along the vector aac =
nc × (nc × (pa − pc)). This is illustrated in Figure 1. The
gripper center C is positioned such that pa is directly between
the fingers and pc is at a desired point of contact on the finger,
C = pa − δaac. Here, δ = Gd + (pa − pc)

Taac denotes the
distance between the center of the gripper and pa and Gd

denotes gripper depth. We will sometimes refer to a grasp
defined this way as an edge grasp.

To sample edge grasps, we will generally sample the ap-
proach point pa first and then for each approach point sample
multiple contact points pc from the neighbors of pa within the
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Fig. 2. Encoding process of edge grasps. The rightmost part shows the represented grasp of one edge feature.

distance of Gw

2 , where Gw denotes the aperture of the gripper,
i.e. the distance between the fingers when the gripper is open.
One key advantage of this representation is that we can easily
provide the approximate position of a desired grasp as an input
to the model. If we want to grasp a tool by its handle, for
example, this is easily achieved by only considering contact
locations on the handle.

B. Model Architecture

Our model, which we call the Edge Grasp Network, evalu-
ates the grasp quality for a set of edge grasps that have a single
approach point pa ∈ P in common. We evaluate multiple
approach points by cropping them separately and then placing
them in a batch. There are four steps, as illustrated in Figure 2.

Step 1: Crop Point Cloud. Given a point cloud P and an
approach point pa, only a set of neighboring points of pa
affects the edge grasp. We crop the point cloud to a ball around
pa:

Sa = {p ∈ P : ∥p− pa∥2 ≤ Gw/2},

Step 2: PointNetConv (ψ). We compute a feature at each point
using a stack of PointNetConv layers [21], denoted ψ. Each
layer calculates a new feature f (l+1)

i at each point pi ∈ Sa

using
f
(ℓ+1)
i = max

j∈N (i)
MLP

(
f
(ℓ)
j , pj − pi

)
, (1)

where N (i) denotes the k-nearest neighbors to pi. Here, f (l)j

denotes the feature at point pj prior to the layer, max denotes
max-pooling where the max is taken over features (like in
PointNet [20]). MLP is a 2-layer multi-layer perceptron that
takes both parameters as input. The input features at the first
layer are the positions and surface normals of the points. Let
FSa

denote the set of features for the points in Sa at the output
of Step 2.
Step 3: Compute Global Feature (ω). ω takes FSa

as input
and generates a single global feature ga that describes Sa.
First, FSa

is passed to an MLP followed by a max-pooling
layer (over features) to generate a first-level global feature.
This is concatenated with each feature f ∈ FSa and passed to
a second MLP and max-pooling layer to output ga. Finally,
for each edge grasp (pa, pc) ∈ P 2 associated with pa, we
calculate an edge feature fac ∈ Fac by concatenating ga with
the point feature fc ∈ FSa

corresponding to pc. This edge
feature will represent the edge grasp to the classifier.

Step 4: Grasp Classification. After calculating the edge fea-
tures Fac, we predict grasp success using a four-layer MLP
with a sigmoid function which takes an edge feature fac as
input and infers whether the corresponding edge grasp will
succeed.

C. SO(3) Invariance of Edge Grasp Network

In Section II, we noted that the grasp quality function
Φ(P, α) is invariant to translation and rotation, i.e. Φ(g ·P, g ·
α) = Φ(P, α) for arbitrary g ∈ SE(3). As presented above, the
Edge Grasp Network is invariant to translation because each
Sa is centered at the approach point pa (we translate pa to the
origin of the world frame). However, additional methodology
is required to create invariance to rotations. Rotational invari-
ance allows the model to generalize grasp knowledge from
one orientation to another. We enable rotational invariance
with two different approaches. The first approach is to apply
data augmentation on Sa to learn SO(3) invariance during
training. Our second approach is to use an SO(3)-equivariant
model, Vector Neurons [5]. Vector Neurons can be applied
to nearly any neural model architecture by encoding the R3

along which SO(3) acts as a separate tensor axis. As we show
in Section IV-C, leveraging SO(3) symmetries is beneficial to
learn a grasp function.

IV. SIMULATIONS

We benchmarked our method in simulation against three
strong baselines, PointNetGPD [14], VGN [2], and GIGA [8].
To make the comparison as fair as possible, we used the same
simulator developed by Breyer et al. [2] and used by Jiang et
al. [8]. There are two types of simulated grasp environments,
PACKED and PILED. In PACKED, objects are placed randomly
in an upright configuration in close proximity, e.g. as shown
in Figure 3(a). In PILED, objects are dumped randomly from
a box into a pile.

A. Experimental Protocol:

We evaluate our model over several rounds of testing.
During each round, a pile or packed scene with 5 test objects
is generated inside of a 30× 30× 30 cm3 workspace and the
system begins grasping one object at a time. Prior to each
grasp, we take a depth image of the scene from a direction
above the table to extract the point cloud or TSDF, and pass
it to the model. After receiving grasp scores from the model,
we execute the grasp with the highest quality score. A round
of testing ends when either all objects are cleared or two



Fig. 3. Left: the packed scenario; Right: the pile scenario.

consecutive grasp failures occur. Performance is measured
over 100 simulation rounds with 5 different random seeds
in terms of: 1) Grasp Success Rate (GSR = #successful grasps

#total grasps );
and 2) Declutter Rate (DR = #grasped objects

#total objects ). The results are
reported in Table I. Detailed description of the baselines and
training could be found in Appendix VIII-G and VIII-F.

TABLE I. Quantitative results of clutter removal. Edge-sample randomly
sample edges that do not collide with the table. EdgeGraspNet is the version of
our method trained with data augmentation.VN-EdgeGraspNet is the version
with Vector Neurons. GIGA-High query at a higher resolution of 60×60×60.

Method Packed Pile
GSR (%) DR (%) GSR (%) DR (%)

PointNetGPD 79.3 ± 1.8 82.5 ± 2.9 75.6 ± 2.3 77.0 ± 2.8
VGN 80.2 ± 1.6 86.2 ± 2.0 64.9 ± 2.2 69.1 ± 3.2
GIGA 85.3 ± 1.9 91.2 ± 1.7 69.9 ± 1.8 75.2 ± 2.2
GIGA-High 88.5 ± 2.0 93.9 ± 1.4 74.1 ± 1.5 80.1 ± 0.5

Edge-Sample 44.0 ± 4.0 39.7 ± 4.5 40.2 ± 2.5 30.9 ± 3.2
EdgeGraspNet 92.0 ± 1.4 94.8 ± 0.8 89.9 ± 1.8 92.8 ± 1.6
VN-EdgeGraspNet 92.3 ± 1.2 95.2 ± 0.6 92.3 ± 1.5 93.5 ± 1.8

Method PointNetGPD VGN GIGA GIGA-High EdgeGraspNet VN-EdgeGraspNet

# of Parameters 1.6 M 0.3 M 0.6 M 0.6 M 3.0 M 1.7 M

Inference time 382 ms 10 ms 21 ms 50 ms 28 ms 89 ms

TABLE II. Number of parameters and inference time for proposed methods
and baselines. Evaluated on one NVIDIA-GeForce RTX 3090.

B. Results Analysis:

We draw several conclusions from Table I. First, our sam-
ple strategy unadorned with grasp quality inference (Edge-
Sample) already performs with a grasp success rate of between
40% and 44%. This suggests our edge grasp representation and
sample strategy provide a helpful bias. Second, both Edge-
GraspNet and VN-EdgeGraspNet outperform all the baselines
in all performance categories by a significant margin, particu-
larly in the PILE category. Third, the performance gap between
the packed and piled scenarios is smaller for our method than
that for the baselines, which suggests that our model adapts to
different object configurations better. Finally, one concern of
most sampled-based methods is the inference time since they
need to evaluate each grasp individually. However, our method
takes use of the shared global features and could achieve a real-
time inference time. Detailed inference time analyses could be
found in Appendix VIII-H.

C. Vector Neurons and Data Augmentation:

To investigate the role of SO(3) invariance, we compared
our base version of EdgeGraspNet with a variation that
omits data augmentation (EdgeGraspNet-NoAug) and VN-
EdgeGraspNet.

Fig. 4. Test loss functions showing the
effect of data augmentation and Vector
Neurons.

As shown in Figure 4, the
Vector Neurons version per-
forms best and learns fastest,
and the base EdgeGrasp-
Net converges to approxi-
mately the same level. How-
ever, without either Vector
Neurons or data augmenta-
tion, the model overfits. This
demonstrates that leveraging
SO(3) symmetry is beneficial
to learning the grasp function.

D. Ablation study on cropping Sa

(a) (b)

Fig. 5. Ablation Study on cropping Sa. Left Figure: Test loss v.s. Epoch; Right Figure:
Test Accuracy v.s. Epoch. The results show the effect of cropping Sa.

We compare our EdgeGrapNet with a variation that skips
cropping point cloud around the approach point pa. After
getting the observed point cloud P , we build a KNN graph
on P and feed it to ψ directly to get the point features FP .
Then, we extract the global feature ga corresponding to pa
from {fp ∈ FP | p ∈ Sa}. Instead of translating pa to
the origin of the world coordinate, we center P , the entire
observed point cloud, at the origin. Except for these variations,
other operations are the same. Let’s denote the variation
as EdgeGraspNet-NoBall. Figure 5 shows the results of our
model and the variation version. It indicates that implementing
on Sa is better than implementing on P . There are some
reasons why Sa is better than P . First, P is a special case of
Sa when we set the radius of the sphere as infinity. Second,
Sa includes all the related points that affect the grasp quality
without redundant information. Last but not least, the invariant
property on Sa is more generalized than that on Pa. Given a
g ∈ SO(3), a grasp action α, and a grasp evaluation function
Ψ, the invariance of EdgeGraspNet could be defined as

Ψ(g · Sa, g · α) = Ψ(Sa, α)

However, EdgeGraspNet-NoBall could only be invariant to
rotations on the entire point cloud: Ψ(g · P, g · α) = Ψ(P, α),
which is less generalized.

V. EVALUATION ON A ROBOT

In this paper, we measure physical grasp performance in
three different setups with 4 object sets, as shown in Figure 7.
Our model trained in simulation is directly implemented on a
real robot.



(a) (b)

Fig. 6. Robot setup. Left: the robot takes a depth image of the scene from a random
viewpoint. Right: the robot grasps the red adversarial object from a localized graspable
part.

VI. SETUP

We used a UR5 robot equipped with a Robotiq-85 Gripper,
as shown in Figure 6. An Occipital Structure Sensor was
mounted on the arm to capture the observation. Prior to each
grasp, we move the sensor to a randomly selected viewpoint1

(pointing toward the objects to be grasped, as shown in
Figure 6(a)), take a depth image, and generate a point cloud.
We detect and remove the table plane with RANSAC and we
denoise and downsample the point cloud using Open3D [29].
For each observed point cloud, we sample 40 approach points
and 2000 grasps total. After running inference, we filter out
the grasps with a grasp quality score below 0.9. As is the
procedure in [2] and [6], we select the highest (largest z-
coordinate) above-threshold candidate for execution. We use
MoveIt 2 to plan the motion of the robot arm. A grasp is
labeled as a success only when the object(s) is picked and
transferred to the bin.

A. Results

Household Objects in the Packed and Pile Settings: This
experiment evaluates our method in the packed and piled
settings described in Section IV. In each round, 5 objects are
randomly selected from 10 objects. Table III reports grasp
success rates and declutter rates from 16 rounds (80 objects
total). GSRs vary between 91.7% and 93% – a result that
closely matches our simulated results. It indicates the small
sim-to-real gap of our method.

Method Packed Pile
GSR (%) DR (%) GSR (%) DR (%)

EdgeGrasoNet 91.9 (80 / 87) 100 (80 / 80) 93.0 (80 / 86) 100 (80 / 80)
VN-EdgeGraspNet 91.7 (78 / 85) 98.7 (79 / 80) 92.9 (79 / 85) 98.7 (79 / 80)

TABLE III. Results of real-robot experiments for packed and piled grasp
settings.

Comparison with Zhu et al. [31] on test hard Objects:
This experiment compares our method against the method
of Zhu et al. [31], a strong baseline from the literature. In
each round, 10 objects are randomly selected and dumped
on the table. Table IV shows the results from 15 runs.
VN-EdgeGraspNet outperforms [31] by about four percentage
points both in terms of the grasp success rate and the declutter
rate – a significant improvement against a strong baseline.

1We randomly select a viewpoint and repeatedly use it.

(a) (b) (c) (d)

Fig. 7. Object sets and test configurations used for real robot experiments. From left
column to right column: packed scene with 10 objects; pile scene with 10 objects; 20
test hard objects [31]; 12 Berkeley adversarial objects [16].

Method GSR (%) DR (%)

Zhu et al. [31] 89.0 (138 / 155) 94.0 (141 / 150)

EdgeGraspNet 91.8 (146 / 159) 98.0 (147 / 150)
VN-EdgeGraspNet 93.6 (148 / 159) 98.6 (148 / 150)

TABLE IV. Comparison with the method of Zhu et al. [31] using exactly the
same objects and setup.

Comparison with [3] on the Berkeley Adversarial Pile: We
also baselined our method using the 12 Berkeley Adversarial
Objects described in [16], shown in Figure 7. Here, we
compare our method to the work of Cai et al. [3], called Volu-
metric Point Network (VPN). Table V shows the performance
comparison. The results indicate that our method outperforms
all the baselines. Our final grasp success rate is 84.4%, a very
good performance for the Berkeley adversarial object set.

Method GSR (%) DR (%)

Gualtieri et al. [6]* 70.91 (39 / 55) 97.5 (39 / 40)
Breyer et al. [2]* 41.56 (32 / 77) 80 (32 / 40)
Cai et al. [3]* 78.4 (40 / 51) 100 (40 / 40)

EdgeGraspNet 84.4 (38 / 45) 95.0 (38 / 40)
VN-EdgeGraspNet 83.0 (40 / 48) 100 (40 / 40)

TABLE V. Comparison with VPN [3], GPD [6], and VGN [2] for the Berkeley
Adversarial Objects in a pile setting. We performed five rounds of grasping
with piles of eight objects in each. * Results for VPN [3], GPD [6], and
VGN [2] are copied directly from [3].

VII. CONCLUSION

This paper proposes a novel edge representation in the 6-
DoF grasp detection problem. By formulating the grasp pose
with an approach point, a contact point, and its surface normal,
we represent edge grasps by local features of contacts and
global features of the related points. We explore the SE(3)
symmetry of our representation and propose EdgeGraspNet
and VN-EdgeGraspNet to leverage SE(3) invariance in two
different ways. Finally, We evaluate our models on various
simulated and real-world object sets against several strong
baselines. Experiments show the small sim-to-real gap, the
high grasping success rate, and the generalization ability to
different object sets of our method. A clear direction for future
work is to integrate more on-policy learning, which we believe
would enable us to improve our performance.
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VIII. APPENDIX

A. Grasp Sampling

Edge Grasp Network enables us to evaluate a large number
of edge grasps that share a single approach point with a single
forward pass through the model. However, each different
approach point necessitates evaluating the model separately.
Therefore we adopt the following grasp sample strategy. First,
we sample a small number of approach points Pa ⊂ P . These
approach points can be sampled uniformly at random from
the cloud, or they can be focused on parts of the cloud where
a grasp is preferred. Then, we evaluate the model once for
all approach points by forming a minibatch of |Pa| inputs
and performing a single forward pass. The output of this is a
set of sets of edge grasp features, F(ac)1 , F(ac)2 , . . . , F(ac)|Pa| .
One can take the union of these sets, sample m edge grasps
uniformly at random or select grasps with preferred gripper
approach directions and gripper contact locations, and then
run the grasp classifier on these sampled grasps to produce
the final output.

B. Simulator Setting and Grasp Label

Here, we provide a more detailed description of our sim-
ulator settings. To generate the training data, we selected a
random number of objects from training object sets. We set the
mass of each object as 0.5 kg and the friction ratio between the
gripper and the object as 0.75. We label up to 2000 edge grasp
candidates per scene by attempting grasps in simulation. To
sample 2000 grasps, we sample 32 approach points from the
observed point clouds through Farthest Point Sampling. Edge
grasps whose minimum z value (the height) is smaller than
the height of the table are filtered out to avoid colliding with
the table. A True label of a grasp candidate must satisfy the
following conditions: 1) the gripper should not collide with
any objects when moving from the “prergrasp“ pose to the
grasp pose; 2) the object must be held by the gripper after a
sequence of gripper shaking motions.
C. Model

We implemented the Edge Grasp Network model described
in Section III-B. The input to the model is a downsampled
point cloud created by voxelizing the input with a 4mm voxel
dimension. The PointNetConv layers in ψ are implemented us-
ing a KNN graph with k = 16, i.e. with 16 nearest neighbors.
ψ is implemented as a sequence of three PointNetConv layers
with a 2-layer MLP as the message passing function. The grasp
classifier is implemented as a 4-layer MLP with ReLUs [19]
and a sigmoid layer at the end. We evaluate both conventional
and Vector Neuron versions of our model in simulated and
real-robot experiments.
D. Data Augmentation

Extensive data augmentation is applied to the conventional
version of our model to force it to learn the SO(3) invariance
from training. Before loading the point cloud P from the train-
ing dataset, we randomly sample a g ∈ SO(3) to rotate P . This
results in rotations on the 32 cropped point clouds correspond-
ing to each approach point, i.e., {g ·Sa1 , g ·Sa2 , . . . , g ·Sa32}.

Since Sa is centered at pa, we then translate pa to the origin. A
batch of 32 rotated and translated Sa is fed to our model as the
input during training. Since the Vector Neurons version of our
model obtains SO(3) invariance by mathematical constraint,
in this case only a translation is applied to each Sa.

E. SO(3) Equivariance to SO(3) Invariance

Based on Vector Neurons [5], we implement the equivairant
PointNetConv to realize the SO(3) equivariant feature. We
maintain the equivariance of our network until getting the edge
feature fac. Invariance is a speical case of equivariance and
can be achieved by multiplying a matrix Tac ∈ R3×3 generated
from fac by a network:

(facR)(TacR)
⊤ = facRR

⊤Tac
⊤ = facTac

⊤ (2)

Equation 2 transforms the SO(3)-equivairant edge feature to
SO(3)-invariant edge feature. Combined with the translational
invariance described in Section IV-D, we finally realize the
SE(3) invariance of edge features. Once the edge features are
SE(3) invariant, the entire network becomes SE(3) invariant,
i.e., the invariant feature could be fed to a conventional MLP
without breaking its invariant property.

F. Training
The grasp simulator developed by Breyer et al. [2] includes

a Franka-Emika Panda gripper. There are 303 training objects
and 40 test objects drawn collectively from YCB [4], Big-
Bird [24] and other sources [10, 9]. We created training data
by generating both packed and piled scenes with a random
number of objects in simulation, we add pixelwise Gaussian
noise (N ∼ (0, 0.001)) to the depth image, extract the point
cloud or TSDF (Truncated Signed Distance Function) from
the depth image, voxelizing the point cloud with 4-millimeter
voxel, generating up to 2000 edge grasp candidates per scene,
and labeling each of those candidates by attempting a grasp
in simulation. To generate the 2000 edge grasp candidates,
we sample 32 approach points uniformly at random from the
voxelized cloud. In total, we generated 3.36M labeled grasps
based on 3, 317 scenes, 85% of which were used for training
and 15% were used for testing. We train our model with the
Adam [11] optimizer and an initial learning rate of 10−4.
The learning rate is reduced by a factor of 2 when the test
loss has stopped improving for 6 epochs. It takes about 0.5
seconds to complete one SGD step with a batch size of 32 on
a NVIDIA Tesla V100 SXM2 GPU. We train the model for
150 epochs and balance the positive and negative grasp labels
during training. Both VN-EdgeGraspNet and EdgeGraspNet
converge in less than 10 hours.

G. Baselines for Simulation Experiments
We compare our method against three strong baselines

in Section IV. PointNetGPD [14] is a sample-based method
that represents a candidate grasp pose by the canonicalized
points inside the gripper and infers grasp quality using a
PointNet [20] model. VGN [2] (Volumetric Grasping Net-
work) takes a TSDF of the workspace as input and outputs
the grasp orientation and quality at each voxel. GIGA [8]



(Grasp detection via Implicit Geometry and Affordance) uses
a structured implicit neural representation from 2D feature
grids and generates the grasp orientation and quality for each
point trained with a auxiliary occupancy loss. Both VGN and
GIGA receive a 40× 40× 40 TSDF based on output from a
single depth image. We also evaluate a variation of GIGA
with a 60 × 60 × 60 resolution TSDF, which we refer to
as GIGA-High. We use the pretrained models2 of VGN and
GIGA from Jiang et al. [8] and uniformly sample 64 approach
points and 4000 grasps for our method and PointNetGPD. As
shown in Table II, the pretrained VGN and GIGA models have
fewer parameters than our method due to their TSDF input.
While our model requires more parameters to operate on point
clouds, all compared models are relatively lightweight.

H. Performance Considerations

Inference Time: Table II shows the time needed by various
models to infer grasp qualities. At 28ms per 4,000 grasps, our
EdgeGraspNet model is slightly slower than both VGN and
GIGA but still much faster than PointNetGPD and GIGA-
High. The Vector Neurons version of out model is about three
times slower than the EdgeGraspNet model.

Method Packed Pile
GSR (%) DR (%) GSR (%) DR (%)

EdgeGraspNet (16-1k) 88.5 ± 1.7 92.6 ± 1.4 84.8 ± 2.1 86.7 ± 3.3
EdgeGraspNet (32-2k) 91.4 ± 1.5 94.0 ± 2.0 89.4 ± 1.3 91.2 ± 2.5
EdgeGraspNet (64-4k) 92.0 ± 1.4 94.8 ± 0.8 89.9 ± 1.8 92.8 ± 1.6

VN-EdgeGraspNet (16-1k) 89.7 ± 2.4 92.2 ± 1.6 87.1 ± 0.8 88.5 ± 2.3
VN-EdgeGraspNet (32-2k) 91.4 ± 1.3 93.8 ± 2.0 89.3 ± 0.5 92.1 ± 1.8
VN-EdgeGraspNet (64-4K) 92.3 ± 1.2 95.2 ± 0.6 92.3 ± 1.5 93.5 ± 1.8

TABLE VI. Grasp performance for different numbers of approach points (16,
32, and 64) and grasp samples (1000, 2000, and 4000).

TABLE VII. Inference time v.s. # of approach points. We sample different
numbers of approach points (16, 32 and 64) with the same number (2000) of
edge grasps. Evaluated on one NVIDIA-GeForce RTX 3090.

16-2k 32-2k 64-2k

EdgeGraspNet 9.6 ms 15.8 ms 27.4 ms

32-500 32-1k 32-2k

EdgeGraspNet 15.8 ms 15.7 ms 15.8 ms

TABLE VIII. Inference time v.s. # sampled edge grasps. We sample different
numbers of edge grasps (500, 1000 and 2000) with the same number (32) of
approach points. Evaluated on one NVIDIA-GeForce RTX 3090.

Performance of different sample sizes: The speed and perfor-
mance of our model is closely tied to the number of approach
points (which determines batch size) and the number of
classified grasps. Table VI shows that fewer approach points
and grasp samples reduce grasp success somewhat, but not by

2Our trained models for VGN and GIGA on the dataset described above in
Section VIII-F did not perform as well as the pretrained models from Jiang et
al. [8]. It is probably because they train separate models for the PACKED and
PILE scenarios with a larger dataset (4M labeled grasps for each scenario).
We used their pretained models to do the evaluations.

a huge amount. As shown in Table VII, when we double the
number of approach points, the inference time increases about
1.7 times. As shown in Table IX, when we fix the number
of approach points and increase the sampled edge grasps, the
inference time almost does not change.

I. Failure Case Analysis

Method EdgeGraspNet VN-EdgeGraspNet

GSR (%) DR (%) GSR (%) DR (%)

Household Packed 91.9 (80 / 87) 100 (80 / 80) 91.7 (78 / 85) 98.7 (79 / 80)
Household Pile 93.0 (80 / 86) 100 (80 / 80) 92.9 (79 / 85) 98.7 (79 / 80)
Test Hard objects 91.8 (146/159) 98.0 (147/150) 93.6 (148/159) 98.6 (148/150)
Berkeley Adversarial 84.4 (38/45) 95.0 (38/40) 83.0 (40/48) 100 (40/40)

TABLE IX. Summary of real Robot experiments. We report grasp success
rates (GSR) and declutter rates (DR).

We summarized the results of the real-robot experiments
in Table IX. Almost half of our failures are caused by
colliding with other objects when executing the grasp. It could
be mitigated by considering collision when selecting grasps.
However, there are some other cases we think readers might
want to notice. 1). Occlusion due to partial observation, e.g.,
a single camera view could only capture a plane of a complex
object. 2). Sensor noise. Our model is robust to small noises
and leverage the bilateral symmetry of a parallel jaw gripper,
i.e., a flip of the calculated surface normal3 results in a 180◦

rotation of the gripper along the approach direction. However,
if the observation is largely distorted, the proposed edge grasp
could be inaccurate since our sampling strategy is closely
related to the observed points. There is a trade-off between
the precise grasping and the robust grasping. 3). Grasp label of
training data. Our binary label of the training data is described
in Section VIII-B, but it does not prohibit true dangerous
grasps. A dangerous grasp could be defined as there is a large
change of the pose of the target object when being grasped
regardless a successful outcome or not. We believe the true
dangerous grasp could cause false-positive predictions when
the observation is noisy. Last but no least, failures are the
stepping stones to better algorithms in robotics.

J. Visualization of Grasps

We shows grasp candidates found using our algorithm in
Figure 8. The first two rows show three examples of randomly
sampled grasp poses for each observed object. The diversity
of grasp poses demonstrates our model can provides a high
coverage of possible stable grasps. The last row of Figure 8
shows five grasps that share the same contact point. It indicates
our model is beneficial to grasping tasks involved with specific
contact locations.

IX. RELATED WORK

A. 6-DoF gasping methods

There are two main types of 6-DoF grasping methods
in recent research. Sample-based methods like GPD [25],

3A flip of the calculated surfaced normal happens frequently.
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Fig. 8. Illustrations of grasp candidates found using our algorithm. The first two rows show three examples of a gripper placed at randomly sampled grasp candidate configurations.
The last row shows five grasps that share the same contact point.

PoinetNetGDP [14], GraspNet [18] that are often comprised of
a grasp sampler module and a grasp evaluator module. These
methods often require long training time and execution time
since each grasp is represented and evaluated individually. In
contrast, our method uses shared features to represent different
grasps and achieve more computation efficiency. Element-
wise prediction methods include point-based methods [3, 22,
27, 28] and volumetric-based methods [2, 8]. They estimate
grasp qualities for all interesting points or voxels with a single
feed-forward propagation. For instance, S4G [22] generates
each point feature through PointNet++ [21] and predicts the
grasp quality and the grasp pose together. REGNet [28]
considers the geometry of radius sphere around the sampled
points and regresses the orientations. However, the grasp distri-
bution is a multi-modal function and regression methods only
predict one grasp pose for a single point, which may cause
ambiguity when multiple graspable poses are valid in that
position. Classification methods can generate the distributions
over multiple grasps at a single point, but copious amounts of
data are often required. Volumetric-based methods [2, 8] use
well-structured voxels instead of an unordered set of points.
The memory requirements for voxel grids or SDFs are cubic
in the resolution of the grid and therefore severely limit the
resolution at which the method can be applied.

B. Grasp Pose Representation

Grasp representation matters in evaluating and refining
grasp poses. Most sample-based methods have a clear repre-
sentation of grasp pose. GPD [25] projects the points around
the gripper into canonical planes; PoinetGPD [14] feeds the
points inside the gripper to PointNet; GraspNet [18] represents
the grasp pose with a set of points of the gripper. On the other
hand, element-wise methods [3, 22, 27, 28, 2, 8] often avoid
representing grasp explicitly. Since the relative pose between
the gripper and the point/voxel is unclear, they have to do
regressions or classifications of some elements of the grasp
pose. Our method has a clear representation of the grasp pose
and satisfies the multi-modal property of the grasp distribution
and the friction constraint [1] of the contact point.

C. Symmetries in Manipulation

Symmetries and equivariance have been shown to improve
learning efficiency and generalization ability in many ma-
nipulation tasks [31, 26, 7, 23]. Zhu et al. [31] decouples
rotation and translation symmetries to enable the robot to
learn a planar grasp policy within 1.5 hours; Huang et al. [7]
achieve better sample efficiency and faster convergence speed
in planar pick and place tasks with the use of Cn × Cn

equivariance; Simeonov et al. [23] use Vector Neurons to get
SE(3)-equivariant object representations so that the model can



manipulate objects in the same category with a few training
demonstrations. Our method also leverages SE(3) symmetry
to learn faster and generalize better on 6-DoF grasping.
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