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ABSTRACT

The annotation (assigning structural chemical identities) of MS/MS spectra re-
mains a significant challenge due to the enormous molecular diversity in biolog-
ical samples and the limited scope of reference databases. Currently, the vast
majority of spectral measurements remain in the “dark chemical space” without
structural annotations. To improve annotation, we propose MADGEN (Mass-spec
Attends to De Novo Molecular GENeration), a scaffold-based method for de novo
molecular structure generation guided by mass spectrometry data. MADGEN op-
erates in two stages: scaffold retrieval and spectra-conditioned molecular gener-
ation starting with the scaffold. In the first stage, given an MS/MS spectrum, we
formulate scaffold retrieval as a ranking problem and employ contrastive learn-
ing to align mass spectra with candidate molecular scaffolds. In the second stage,
starting from the retrieved scaffold, we employ the MS/MS spectrum to guide an
attention-based generative model to generate the final molecule. Our approach
constrains the molecular generation search space, reducing its complexity and im-
proving generation accuracy. We evaluate MADGEN on three datasets (NIST23,
CANOPUS, and MassSpecGym) and evaluate MADGEN’s performance with a
predictive scaffold retriever and with an oracle retriever. We demonstrate the
effectiveness of using attention to integrate spectral information throughout the
generation process to achieve strong results with the oracle retriever.

1 INTRODUCTION

Metabolomics, the measurement and identification of small molecules in biological samples, plays
a critical role in numerous fields, including drug discovery, biomarker discovery, and environmental
science. By analyzing the molecular composition of complex biological samples, metabolomics pro-
vides insights into cellular processes, metabolic pathways, and the effects of environmental changes
on biological systems. Tandem mass spectrometry (MS/MS) has emerged as a powerful, widely
used analytical technique that can separate and fragment molecules within a biological sample, thus
producing rich spectra that can be further analyzed to annotate the measurements within the sample
(Kind et al., 2018).

Despite the utility of metabolomics, assigning a chemical structural identity to a measured spec-
trum remains a significant challenge. Currently, most MS/MS spectra cannot be linked to known
molecular structures due to the vast chemical diversity in biological samples and the limited scope
of reference databases. Spectral databases that catalogue molecules and their measured spectra,
e.g., MoNA (Davis) and GNPS (Wang et al., 2016), are used for identifying a close match to the
measured spectra. However, such databases remain relatively small. Molecular databases such as
PubChem (Kim et al., 2016) and KEGG (Kanehisa et al., 2021) are often utilized to provide can-
didate molecular structures when using computational methods such as SIRIUS (Dührkop et al.,
2019), MLP or GNN-based approaches (Wei et al., 2019; Zhu et al., 2020) to predict the molecular
structure that most likely produced the measured spectrum. Despite the success of these tools and the
increased size of such databases, the “dark chemical space” of unknown molecules remains large,
and hinders the interpretation of metabolomics data. De novo molecular structure generation from
mass spectra is a promising approach to overcome the limitations of database-dependent methods.
Further, de novo generation is crucial for discovering previously unknown molecules that play key
roles in health, disease, and environmental processes.
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Our insight in addressing this challenge herein is the use of scaffolds to simplify the structure gener-
ation process. A scaffold, or core structure, is used widely in medicinal chemistry to represent core
structures of bioactive compounds (Hu et al., 2016). Such scaffolds can be modified with the addi-
tion of functional groups to enhance medicinal properties. By focusing on scaffold-based molecular
generation in the context of annotation, we can reduce the complexity of structure generation and
constrain the search space, making it more manageable and improving accuracy. Once a scaffold
is predicted for a measured spectrum, it can guide the addition of structural elements (atoms and
bonds) to the scaffold to generate the target molecule.

We propose a scaffold-based approach to de novo molecular structure generation guided by mass
spectrometry data, with a focus on evaluating performance both when the scaffold is known and
when it is predicted. Our contributions are as follows:

• We introduce a two-stage framework that first predicts a scaffold from the MS/MS spec-
trum, from which we then generate the target molecular structure. Given the challenges
in accurately predicting the scaffold, we report performance under two settings: using the
correct scaffold and using the predicted scaffold. This comparison highlights the potential
and limitations of scaffold prediction in de novo molecular generation.

• Our method leverages fragmentation patterns in MS/MS spectra to guide scaffold predic-
tion. While scaffold prediction is not always accurate, integrating even partially correct
scaffolds reduces the complexity of de novo generation and constraints the search space to
more plausible molecular structures.

• The scaffold-based design also improves interpretability, as even predicted scaffolds serve
as structural anchors for understanding the generated molecules. This interpretability is
crucial for analyzing potential biological functions and chemical properties in practical
applications.

• Our approach has broad applicability in metabolomics, drug discovery, and environmental
analysis, where the discovery of novel metabolites, bioactive molecules, and uncharacter-
ized compounds is essential.

2 RELATED WORK

De novo structure generation guided by mass spectra. De novo molecular generation offers
a promising alternative to database-dependent methods by directly (without the use of candidate
molecules from databases) predicting or generating molecular structures from mass spectrometry
data. MSNovelist (Stravs et al., 2022) relies on CSI:FingerID (Dührkop et al., 2015) to predict
molecular fingerprints from the query mass spectrum, and then uses a LSTM model to reconstruct
molecules. Spec2Mol (Litsa et al., 2023) employs a convolutional neural network to map MS/MS
spectra to a latent space, generating molecular structures as SMILES strings. MassGenie (Shrivas-
tava et al., 2021) uses a transformer-based model trained on real and synthetic spectra to generalize
to unseen compounds, leveraging transformers’ strength in handling sequential data. MS2Mol (But-
ler et al., 2023) extends these approaches with a transformer-based encoder-decoder, incorporating
byte-pair encoding and precursor mass, to improve accuracy. There were no consistent datasets that
were used to evaluate these models. For example, MSNovelist is evaluated on 3,863 MS/MS spectra
from the GNPS library (Wang et al., 2016), while Spec2Mol is evaluated on the NIST2020 dataset.
Further, not all these tools are available in the public domain. Recently, The MassSpecGym dataset
(Bushuiev et al., 2024) was developed as a benchmark dataset to standardize the evaluation on de
novo generation, retrieval, and spectra simulation tasks. We utilize this dataset, and two others, to
report the performance of MADGEN. We also compare our results with the best reported results so
far on the MassSpecGym dataset.

Generative frameworks for molecular generation. Generative models have become essential in
molecular generation due to their ability to approximate complex distributions in the chemical space.
These models, such as VAEs, GANs, and Diffusion models, treat molecules as graphs, enabling
them to capture the relational properties between atoms and bonds (Zhu et al., 2022). Structure-
constrained molecular design is a key strategy in modifying an existing candidate structure with the
goal of attaining improved molecular properties. A common approach is constraining molecular
generation to contain a specific scaffold or a molecular fragment, e.g., Podda et al. (2020), Li et al.
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(2019), Green et al. (2021). These models often allow for an arbitrary scaffold as an initial structure
that captures a desired property. Unlike these models, MADGEN employs Murcko scaffolds (Bemis
& Murcko, 1996), a standard scaffold used across many chemical and biological studies due to its
ability to represent the core backbone of molecules. As there are currently no methods to predict
this scaffold for a query spectra, the first step of MADGEN predicts the scaffold from a list of candi-
date molecules. Importantly, generative models have shown value in exploring the uncharacterized
chemical spaces (Holdijk et al., 2022; Chen et al., 2023; Duan et al., 2024). For example, Retro-
Bridge (Igashov et al., 2023) models the dependencies between the spaces of substrate and product
molecules in the context of chemical reactions as a stochastic process between two distributions.
RetorBridge uses a Markov bridge process to approximate dependencies between these intractable
distributions. RetroBridge is adapted for MADGEN’s second step, where we aim to model the joint
distribution of scaffolds and target molecules, and starting with the Murcko scaffold, we utilize the
mass spectrum to guide the generation process towards the target molecule.

3 METHODS

Direct generation of molecules from mass spectra is a hard problem. In this work, we propose to
divide the problem into two simpler sub-problems (see Figure 1): we first retrieve the molecular
scaffold from the mass spectrum and then generate the target molecule conditioned on both the
mass spectrum and the scaffold. We conjecture that the scaffold prediction problem is easier than
predicting the target molecule because the scaffold usually has a simpler structure than the target
molecule. Consequently, the molecule generation task becomes easier when the scaffold is known.

3.1 SCAFFOLD RETRIEVAL

The goal of scaffold retrieval is to identify the scaffold of the target molecule. Denote an MS/MS
spectrum and its chemical formulate as X = (Xms, Xcf). Scaffold retrieval takes X as input and
retrieves the core scaffold that represents the fundamental backbone of the molecule, including its
ring systems and central framework. With a correct scaffold served as the starting point for further
molecular generative process, the complexity of the search space is significantly reduced.

However, predicting the scaffold from spectral data is a challenging problem due to the non-linear
relationship between fragmentation patterns and the scaffold substructures. In this work, we explore
two scaffold retrieval strategies - predictive retrieval and oracle retrieval.

Predictive retrieval. We formulate the scaffold retrieval as a ranking problem. Given a set of
scaffold candidates S, the goal is to use a neural network to score each candidate S ∈ S given X
such that scaffold with highest score S∗ maximally resembles the correct scaffold Sgt.

A straightforward approach is to directly train a binary classifier that tells whether the given pair
(X,S) is matched or not. Specifically, we employ contrastive learning techniques similar to
JESTR (Anonymous, N.D.), which was utilized to align the embeddings of mass spectra with their
corresponding molecule.

We introduce two separate encoders to project the mass spectra and scaffold graphs into a shared
latent space. Specifically, the mass spectra X are projected using a multi-layer perceptron (MLP)
encoder fX , which maps the spectral data into a d-dimensional latent space. We employ a graph
neural network (GNN) fS to encode the global representation of the scaffold graph S, also into a
d-dimensional space.

The key insight of this approach is to ensure that the embeddings of the matched spectrum and scaf-
fold are close to each other in the latent space. Both encoders, fX and fS , are jointly trained using
a contrastive learning objective. This objective ensures that the embeddings of matched spectrum-
scaffold pairs are close in the joint embedding space, while mismatched pairs are pushed apart.
Specifically, for each spectrum X and scaffold S, we compute a similarity score, h(znspec, z

m
mol),

defined as:

h(znspec, z
m
mol) = exp

(
znspec · zmmol

∥znspec∥∥zmmol∥τ

)
, (1)
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(a)

(b)

Figure 1: MADGEN overview and example. (a) The overview of MADGEN. The mass spectra are
used to rank scaffold candidates through contrastive learning. The top-ranked scaffold, with blue
edges fixed, serves as a foundation for de novo molecule generation, guided by the spectra at each
generation step. (b) Examples of molecular generation process over time steps for Kenalog from
CANOPUS dataset (upper) and 2,6-Dinitro-4-(4-nitrophenyl)phenol from NIST23 dataset (lower).
The scaffolds remain fixed, while additional edges are introduced in each step to connect free atoms
to scaffolds. The complete molecules are shown in step 40.

where znspec and zmmol are the embeddings of the spectrum and molecular scaffold, respectively, and τ
is a temperature hyperparameter that controls the importance of non-matching pairs.

The contrastive loss Lcontrastive is computed over a batch of size k as:

Lcontrastive =
1

k

k∑
n=1

[
−E

[
log

h(znspec, z
n
mol)∑k

m=1 h(z
n
spec, z

m
mol)

]]
. (2)

Here the two embeddings in the numerator are from the same molecule n while the two in the
denominator are from two different molecules. This loss encourages the model to assign high values
to matching spectrum-scaffold pairs and lower values to non-matching pairs, effectively aligning the
embeddings in the latent space.

After training, we access the score of each scaffold candidate via cosine similarity between the mass
spectra embedding fX(X) and the scaffold embedding fS(S). The scaffolds with the top-k cosine
similarity scores are selected and used as the starting points for stage 2 of the molecular generation
process.

Oracle retrieval. We maintain a lookup table as an oracle which always yields the correct scaffold
given the MS/MS spectrum and the chemical formula. We construct the lookup table by extracting
the scaffold from the molecular graph representation using RDKit.This lookup table serves as an
idealized oracle, simulating perfect scaffold retrieval. It allows us to focus on assessing the second
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stage of molecular generation: the task of adding side chains and functional groups to the scaffold-
independently from any potential errors that could occur in scaffold retrieval.

3.2 SCAFFOLD-CONDITIONED DE NOVO MOLECULE GENERATION WITH SPECTRA
GUIDANCE

3.2.1 NOTATIONS AND PROBLEM FORMULATION

We represent a molecule G as a graph G = (V, E). Its scaffold S = (VS , ES) is a subgraph of
G. Since the atom set V can be directly inferred from the chemical formula, the task of molecular
generation involves determining the appropriate edge set E \ ES that connects the scaffold to the
remaining isolated atoms V \ VS . While there are combinatorially many valid edge sets that could
complete the molecule from the scaffold, we utilize spectral data X to guide the edge generation
process and ensure the structure aligns with the observed spectra.

3.2.2 SCAFFOLD-CONDITIONED GENERATION VIA MARKOV BRIDGE

We frame the molecule prediction task as generating graphs given a scaffold. Specifically, starting
from a scaffold S, we are interested in modeling the distribution p(G|S) = p(E|ES ,VG) with the
following Markov decomposition:

p
(
E
∣∣ES ,VG

)
=

∑
E0:ET−1

T−1∏
t=0

p
(
Et+1

∣∣Et, ES ,VG
)
, (3)

where E0 = ∅ can be considered the case where no bonds are formed from isolated atoms to others,
and ET = E . The sequence of random variables E0:T can be viewed as progressively connecting
atoms to form the final molecules.

Let et be an arbitrary edge entry in Et, et can be represented as a D-dimensional one-hot vector, with
0 class being non-edge and 1 to D-1 classes being the bond types. Following Austin et al. (2021),
we formulate the transition probabilities p(et+1|et, eT ) conditioned on the endpoint eT :

p
(
et+1

∣∣et, eT ) = Categorical
(
et+1;Qt(eT )et

)
, (4)

where Qt(eT ) ∈ RD×D is an absorbing transition matrix conditioned on the endpoint data
eT (Igashov et al., 2023).

With the defined model, we now approximate it with a parameterized distribution:

pθ
(
et+1

∣∣et, ES ,VG
)
= Categorical

(
et+1;Qt(êT )et

)
, where êT = nnθ(Et, ES ,VG) (5)

is the endpoint prediction via a neural network nnθ(·). Given a pair (S,G) from the dataset, we train
nnθ(·) by optimizing the evidence lower bound (ELBO)

Lθ(S,G) := −TEU(t;0,T−1)Ep(et|e0,eT )

[
KL
(
p
(
et+1

∣∣et, eT )∥∥pθ(et+1

∣∣et, ES ,VG
))]

. (6)

Here, p(et|e0, eT ) represents the probability of transitioning to an arbitrary timestep t from T , which
can be expressed in a closed form. The detailed derivation of the ELBO and the transition distribu-
tions is provided in Appendix A.3.

To obtain pairs (S,G) for training, we first randomly sample a graph G from the data distribution
p(G). The scaffold S of G is computed using RDKit. This results in the joint data distribution
p(S,G) = p(G)p(S|G), where p(S|G) is a Dirac delta distribution that assigns all its probability
mass to the scaffold S derived from G.

3.2.3 CLASSIFIER-FREE GUIDANCE FROM MASS SPECTRUM

We introduce the mass spectrum Xms as an additional conditioning term to refine the search space
during the generation of G from S. The neural network nnθ(·) is designed to condition on X when
computing the logits.

To integrate spectrum information throughout the generation process, we utilize classifier-free guid-
ance (CFG) (Ho & Salimans, 2022). At each inference step, for each edge entry, we compute the
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Figure 2: Overview of the MADGen model framework. The input consists of m/z peaks and in-
tensities (m, I), which are passed through an MLP for embedding. These embeddings are pro-
cessed through self-attention and combined with the molecular graph’s node and edge embeddings
via cross-attention. The node and edge embeddings are updated iteratively using an edge-aware
message-passing neural network(MPNN) and fully-connected graph neural network (FC-GNN) lay-
ers. The final molecular structure is sampled after the last time step via a logit layer, aligning with
the mass spectral data.

logit ℓc conditioned on the spectrum X , and the logit ℓu without conditioning. The final logit ℓg is
then obtained by combining the two using a guidance scale λt:

ℓg = (1 + λt)ℓc − λtℓu. (7)

During training, we randomly remove the spectrum condition with a probability of 0.1 to enable
CFG. Since CFG tends to prioritize generation quality over diversity, increasing λt helps reduce
the search space and improves the success rate of generating target molecules based on the given
spectrum.

We provide further details on how the CFG techniques are integrated into our framework (see Fig-
ure 2), particularly within the network architecture nnθ(·). We treat the graph as fully connected,
where non-edges are considered a specific type of edge, and apply a fully connected graph neural
network (FC-GNN) to compute on this structure. The detailed design of the FC-GNN is provided in
the Appendix A.1. Two key components to highlight are the encoding of the mass spectrum X and
the conditioning mechanism.

Mass spectrum encoding as tokenization. We represent the X as a set of peaks {P1, . . . , PK},
where Pk = (Mk, Ik) is the m/z and intensity values. We encode each peak into a embedding
vector via an MLP. We then use a self-attention module to boost the information flow among the
peak representations. The full computation is as follow:

HX = Self-Attention(h′
1, . . . ,h

′
K), h′

k = concat(MLP(Mk), MLP(Ik)). (8)

This approach results in a variable-length representation of the mass spectrum, HX , where each peak
representation hk aligns with potential substructures in the molecule. By retaining these individual
peak representations, the model is better able to guide the generation of subgraphs that correspond
to molecular fragments consistent with the observed spectral data.

Spectrum conditioning via cross-attention. We map HX to each message passing layer of FC-
GNN via cross-attention. Since there are intermediate representations for both nodes and edges,
we explore three cross-attention paradigms: node-only attention, edge-only attention and both. We
replace the HX with a learnable embedding when the spectrum data are removed.
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Dataset #Spec. #Mol. #Scaf. #Free atoms per Mol. per Scaf.

#Node #Edge #Spec. #Node #Mol.

NIST23 689,358 40,934 13,560 6.6 21.0 22.4 16.84 14.4 3.02
CANOPUS 6,618 6,618 3,137 8.5 28.6 31.0 1.00 20.1 2.11
MassSpecGym 121,512 18,400 11,470 7.4 26.5 28.6 6.60 19.0 1.60

Table 1: Statistics on the three datasets, including the number of molecules (Mol.), spectra (Spec.),
scaffolds (Scaf.), average number of free atoms, and average statistics per molecule and per scaffold.

4 EXPERIMENTS

4.1 DATASETS

We evaluate the performance of MADGEN on three datasets (Table 1). The NIST23 dataset (Na-
tional Institute of Standards and Technology (NIST), 2023) is curated by the National Institute of
Standards and Technology to provide reference spectral data for a wide range of chemical molec-
ular standards to support research and development. It is available for purchase. Each molecule
is measured using various mass spectrometry instruments, and under various instrument settings,
thus contributing to the high number of spectra/molecule. The CANOPUS dataset is the small-
est dataset, and it was designed to train and evaluate the CANOPUS tool (Dührkop et al., 2021),
which predicts compound classes, e.g., alcohols, phenol ethers, and others, from spectra. It has a
1:1 spectra to molecule ratio. It was used recently to benchmark other metabolomics tools such as
MIST(Goldman et al., 2023) and ESP(Li et al., 2024). The newly developed MassSpecGym bench-
mark dataset (Bushuiev et al., 2024) is collected from many public reference spectral databases and
curated uniformly. The MassSpecGym is the largest publicly available labeled mass spectra dataset.
For all three datasets, few molecules shared the same scaffold.

All datasets were preprocessed by normalizing the intensities of the MS/MS spectra and removing
low-intensity peaks below a predefined threshold to reduce noise. The NIST23 and CANOPUS
datasets were split into training, validation, and test sets based on the scaffold, ensuring that scaffolds
are unique to each split. This split prevents data leakage and ensures robust evaluation of model
performance. For MassSpecGym, we utilized the split suggested by the benchmark (Bushuiev et al.,
2024), which is based on the Maximum Common Edge Substructure (MCES). This split allows
assessing the model generalization on novel molecules.

4.2 EXPERIMENTAL SETUP AND EVALUATION METRICS

The model was trained using a graph transformer with 5 layers and 50 diffusion steps. We employed
the AdamW optimizer with a learning rate of 1×10−5. Full training details and hyperparameters can
be found in Appendix A.2. The performance of the model is evaluated using the following metrics
endorsed for model evaluation for the MassSpecGym benchmark:

• Top-k accuracy: Measures the likelihood of the generating the true target structure among
the top-k generated molecules. We report the results for k=1,10

• Tanimoto Similarity: This metric evaluates the similarity between the generated structures
and the ground truth molecules using molecular fingerprints. Higher Tanimoto similarity
indicates that the predicted structure closely resembles the correct structure. We extracted
fingerprint representations based on the Morgan algorithm (Morgan, 1965) using the RDKit
toolkit (RDKit, online). The Morgan fingerprints are computed for radius 2 and 2048 bits.

• Maximum Common Edge Substructure (MCES): This metric is the edit distance be-
tween two molecules, and reflects the similarity of the largest common substructure be-
tween generated and ground truth molecules(Kretschmer et al., 2023).

• Scaffold Prediction Accuracy (SPA): In the scaffold prediction task, we assess how well
the model predicts the core scaffold of the molecule compared to the ground truth scaffold.

7
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4.3 RESULTS

Our experiments, summarized in Table 2, evaluate model performance on the three datasets:
NIST23, and CANOPUS, and MassSpecGym, using predictive and oracle retrievers. On the scaf-
fold prediction task, we report an SPA for the predictive retriever that ranges from 8.7% to 37.9%.
The average number of nodes/scaffold seems to correlate well with SPA. It is easier for the scaf-
fold predictor to attain high accuracy on larger scaffolds, with CANOPUS yielding the highest SPA.
Another possible cause for the low performance on NIST23 is that, despite the larger size of the
dataset, the predictive retriever is challenged by the diversity of the spectra for each molecule that
was collected under various instrument settings, and hence the high spectra to molecule ratio.

The metrics for the scaffold-based generation task shows that the low scaffold-prediction accuracy
with the predictive retriever results in limited performance on the scaffold-based molecular genera-
tion task. The highest performance is for the NIST23 dataset, a Top-1 accuracy of 1.8% while the
top-1 accuracy for the MassSpecGym dataset is 0.8%.

In contrast, the oracle retriever, which has access to the correct scaffold, dramatically boosts per-
formance. On NIST23, MADGEN achieves a top-1 accuracy of 49% and a top-10 accuracy of
65.5%, demonstrating the model’s capacity to generate accurate molecular structures if the scaffold
is known. Similarly, when using the oracle retriever, the performance on CANOPUS and MassSpec-
Gym is significantly higher than the predictive retriever, with top-1 accuracies of 8.9% and 18.8%,
respectively, showing the clear advantage of having access to correct scaffold information. Impor-
tantly, MADGEN outperforms the best published state-of-the-art performance (last row in Table 2)
reported for the MassSpecGym dataset (Bushuiev et al., 2024) when using random chemical gen-
eration. The high top-1 and Top10 accuracy for the NIST23 dataset can be attributed to its smaller
number of free atoms. MADGEN’s task of completing the target molecule by adding edges to these
free atoms is easier with a smaller number of free atoms. CANOPUS has the highest number of
average free atoms, and the lowest top-1 and top-10 accuracies.

Retriever Top1 Top10

SPA↑ Accuracy↑ Similarity↑ MCES↓ Accuracy↑ Similarity↑ MCES↓
NIST

Spec2Mol - 0.0% 0.16 20.88 0.0% 0.20 13.66
MSNovelist - 0.0% - - 0.0% - -
MADGENPred. 57.8% 10.3% 0.18 68.13 14.5% 0.24 62.65
MADGENOracle 100% 49.0% 0.69 18.48 65.5% 0.85 3.88

CANOPUS

Spec2Mol - 0.0% 0.18 38.97 0.0% 0.26 23.97
MSNovelist - 0.0% - - 0.0% - -
MADGENPred. 37.9% 1.0% 0.14 70.45 1.0% 0.51 45.61
MADGENOracle 100% 8.9% 0.25 67.91 14.7% 0.87 36.36

MSGym

Rand. Gen. - 0.0% 0.08 21.11 0.0% 0.11 18.25
SMILES Transformer - 0.0% 0.03 79.39 0.0% 0.10 52.13
SELFIES Transformer - 0.0% 0.08 38.88 0.0% 0.13 26.87
Spec2Mol - 0.0% 0.19 45.89 0.0% 0.28 32.60
MSNovelist - 0.0% - - 0.0% - -
MADGENPred. 34.8% 0.8% 0.13 74.19 1.6% 0.25 53.50
MADGENOracle 100% 18.8% 0.61 27.79 38.6% 0.87 3.97

Table 2: Performance metrics for various datasets using both predictive and oracle retrievers. The
table presents top-1 and top-10 accuracy, Tanimoto similarity, and Maximum Common Edge Sub-
structure (MCES) scores. Best performance for each dataset is bold.

4.4 ABLATION STUDY ON CONDITIONING MECHANISM

We conducted an ablation study to assess the impact of different encoding strategies, condition-
ing methods, and the use of CFG (Table 3) on the performance of MADGEN. Conditioning using
the tokenization + cross-attention mechanism significantly improves the model performance. We
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believe this is because such mass spectra encoding is more efficient in encoding peak information
without further compression. Further, through cross-attention, nodes and edges are able to query
peaks of relevant importance. Importantly, upon introducing the self-attention into the mass spec-
trum encoder, a dramatic performance gain is observed. The self-attention significantly enhances
mass spectra representations. We observed further performance gains using CFG on node or node
and edge (both). Node-only CFG yields the best performance among all settings.

Encoding strategy Conditioning strategy Accuracy Similarity MCES

Binning + MLP Concatenation 4.30% 0.068 87.89
Tokenization Cross-Attn 13.0% 0.304 55.25

Tokenization + Self-Attn Cross-Attn 42.5% 0.642 23.90
Tokenization + Self-Attn Cross-Attn + CFG (edge) 42.0% 0.632 25.01
Tokenization + Self-Attn Cross-Attn + CFG (node) 49.0% 0.694 18.48
Tokenization + Self-Attn Cross-Attn + CFG (both) 45.9% 0.667 21.89

Table 3: Ablation study results comparing different encoding strategies (Binning + MLP, Tokeniza-
tion, Tokenization + Self-Attention) and conditioning strategies (Concatenation, Cross-Attention,
Cross-Attention + CFG). The metrics evaluated are Accuracy (%), Tanimoto Similarity, and Max-
imum Common Edge Substructure (MCES). The best results were obtained using Tokenization +
Self-Attention with Cross-Attention + CFG (node).

4.5 SENSITIVITY ANALYSIS OF FREE ATOM NUMBERS ON ACCURACY

We analyze how the number of free atoms will affects the generation accuracy of MADGEN. Fig-
ure 3 shows MADGEN’s accuracy@1 and accuracy@10 on different number of free atoms across
three datasets. We can observe that having more free atoms yields worse predictive accuracy, which
is as expected as the learning complexity increases.

1 5 10 15 20
Number of Free Atoms

0

20

40

60

80

100

Ac
cu

ra
cy

@
1 

(%
)

1 5 10 15 20
Number of Free Atoms

0

20

40

60

80

100

Ac
cu

ra
cy

@
10

 (%
)

NIST23
CANOPUS
MSGym

(a) Accuracy@1 vs Number of Free Atoms (b) Accuracy@10 vs Number of Free Atoms

Figure 3: Accuracy vs Number of Free Atoms: With more free atoms for MADGEN to connect
to the scaffold, the complexity of the generative trajectory increases, leading to a worse predictive
accuracy.

5 CONCLUSION & FUTURE WORK

De novo annotation of mass spectrometry data is notoriously difficult, with a current best accuracy of
0% on the MassSpecGym dataset. MADGEN offers a novel two-stage framework for spectra-guided
de novo annotation. The first stage, scaffold retrieval, is a new problem formulation whose solution
can provide partial insight in regard to the molecular backbone of the measured spectra. Such
insights may shed light on the molecule’s class or properties. Our results show that this problem
is challenging, achieving a scaffold prediction accuracy of 8.7%-37.9% for the three datasets. The
second stage, de novo generation from an existing scaffold showed excellent results when using
an oracle scaffold predictor, achieving an accuracy of 8.9%-49% across the three dataset. For the
MassSpecGym benchmark, we were able to achieve an accuracy of 0.8%, an almost 50% increase
in accuracy over MSGym. As with other tools, e.g., (Goldman et al., 2023), we conjecture that
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performance of MADGEN can be increased by incorporate additional data in the form of peak
chemical formulae or molecular properties that correlate with fragmentation patterns. Potentially,
the scaffold problem can be made easier if larger more distinct scaffold structures were utilized
instead of the Murcko scaffold used herein. A bigger scaffold can in turn facilitate the de novo
generation task. Further, an end-to-end MADGEN may reduce the compounding of errors across
the two stages.
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Apurva Kalia, Corinna Brungs, Robin Schmid, Russell Greiner, Bo Wang, David Wishart, Liping
Liu, Juho Rousu, Wout Bittremieux, Hannes Rost, Tytus Mak, Soha Hassoun, Florian Huber,
Justin J.J. van der Hooft, Michael Stravs, Sebastian Böcker, Josef Sivic, and Tomáš Pluskal.
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A APPENDIX

A.1 MODEL ARCHITECTURES AND ALGORITHMS

In this section, we describe the architecture of our proposed scaffold-conditioned molecular genera-
tion guided by mass spectra data. The process consists of two main stages: scaffold retrieval (Stage
1) and scaffold-conditioned molecular generation (Stage 2). The model integrates node, edge, and
spectral features, updated iteratively through cross-attention and self-attention mechanisms.

A.1.1 STAGE 1: SCAFFOLD RETRIEVAL

The first stage of the process involves predicting a scaffold that is most consistent with the input
MS/MS spectrum. This stage utilizes a contrastive learning framework that aligns molecular graphs
with their corresponding mass spectra. We use the ‘MLP BIN‘ model for encoding the spectral data.

Molecular encoder. We employ a Graph Neural Network (GNN) to encode the molecular struc-
tures:

• Node Features: The molecular graph nodes (atoms) are encoded using GNN layers, where
each node is associated with a feature vector that encodes atom type and other properties.

• Edge Features: Bonds between atoms are represented by edge features, which are also
encoded by the GNN.

• Graph Pooling: The output node embeddings from the GNN are pooled using a MaxPool-
ing layer to create a graph-level representation.

Spectral encoder (MLP BIN). For encoding the MS/MS spectra, we use the ‘MLP BIN‘ en-
coder:

• The input spectra are represented as bins of mass-to-charge (m/z) ratios and intensities.

• The ‘MLP BIN‘ model processes these binned inputs through multiple fully connected
layers, where each layer applies a ReLU activation and dropout to prevent overfitting.

• The output of the ‘MLP BIN‘ encoder is a vector representing the spectral data in an em-
bedding space suitable for contrastive learning.

Interaction model. Once the molecular and spectral embeddings are computed, they are con-
catenated and passed through an interaction MLP, which predicts the interaction score between the
molecule and the scaffold. The interaction score is used to rank candidate scaffolds. The molecular
encoder and spectral encoder are trained jointly in a contrastive learning framework, where the goal
is to align the embeddings of correct molecular-scaffold pairs.

A.1.2 STAGE 2: SCAFFOLD-CONDITIONED MOLECULAR GENERATION

In Stage 2, the retrieved scaffold is used as the foundation for generating the full molecular structure,
guided by the mass spectra data. This stage employs a Graph Transformer to integrate node, edge,
and spectral features iteratively across multiple layers.

Input representation. The inputs to the Graph Transformer in this stage consist of:

• Node Features (V ): Each node represents an atom in the molecular scaffold, and the
feature vector encodes atom type and properties.

• Edge Features (E): Bonds between atoms in the scaffold are represented as edge features.

• Spectral Features (S): The MS/MS spectra provide pairs of mass-to-charge (m/z) ratios
and intensities.
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Multi-head attention. Each layer of the Graph Transformer applies a Node-Edge Block, where
both node and edge features are updated using attention mechanisms.

• Self-Attention: The model computes queries, keys, and values for each node and edge,
allowing it to focus on relevant parts of the molecular graph during the update process.

• Cross-Attention: Cross-attention between the node/edge features and the spectral features
enables the generation process to be conditioned on the spectral data, ensuring that the
generated molecular structure aligns with the spectra.

Feedforward networks. After the attention layers, a FeedForward Network processes the up-
dated node and edge features, further refining the representations.

Layer normalization and residual connections. Each attention block is followed by Layer Nor-
malization and residual connections to stabilize training and maintain information flow across the
layers.

Final output. After the final transformer layer, the updated node and edge features are passed
through an output MLP to generate the final molecular structure. This process ensures that the
generated molecule is consistent with both the scaffold and the spectral data.

A.2 TRAINING HYPERPARAMETERS

The model is trained with a batch size of 64 and employed 47 workers for data loading. The learning
rate is set to 1 × 10−5, while weight decay is configured at 1 × 10−12. Training proceeds for 1000
epochs, with the model logging progress every 40 steps.

A Markov bridge process with 50 steps is employed during training, and a cosine noise schedule is
employed.

The model consists of 5 layers, with node, edge, and spectral features set at 64 dimensions each.
The MLP hidden dimensions are configured to 256 for nodes, 128 for edges, and 256 for spectral
features. The model also employs 8 attention heads for cross-attention and self-attention mecha-
nisms. The feedforward dimensions are set to 256 for nodes, 128 for edges, and 128 for global
features. This architecture enables efficient handling of both molecular structure and spectral data
during training.

A.3 VARIATION DISTRIBUTION AND ELBO

We first show the full derivation of the ELBO, which introduces a forward transition distribution
p(et+1|et, eT ) as the variational distribution. Then we discuss the formulation of the variational
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distribution. The derivation of the ELBO is as follow:

log pθ(G|S) = log
∑

e1:eT−1

T−1∏
t=0

pθ
(
et+1

∣∣et, ES ,VG
)

(9)

= log
∑

e1:eT−1

p(e1:T−1|e0, eT )
p(e1:T−1|e0, eT )
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t=0
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)

(10)
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p
(
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(16)

:= Lθ(S,G) (17)

The forward distribution defines a distribution of trajectories e1:T−1 between e0 and eT . Note that
e0 is always 0 (non-edge) and is independent from eT , so we have

p(e0:T−1|eT ) = p(e1:T−1|e0, eT ). (18)

This also satisfies the Markov property

p(e0:T−1|eT ) =
T−1∏
t=0

p(et+1|et, eT ) =
T−1∏
t=0

Categorical(et+1;Qt(eT )et). (19)

The transition matrices Q0, . . . ,QT−1 are D ×D matrices, where

Qt(eT ) = αtID + (1− αt)eT I
T
D. (20)

α0, . . . , αT−1 are scheduling parameters similar to Austin et al. (2021). And ID is a D×D identity
matrix. With the defined transition matrices, the one-step transition probability p(et|e0, eT ) also has
the closed form

p(et|e0, eT ) = Categorical(et+1; Q̄t(eT )et), Q̄t(eT ) =

t∏
τ=0

Qτ (eT ) (21)

Now that both p(et|e0, eT ) and p(et+1|et, eT ) can be derived in closed-form, we can directly opti-
mize the ELBO Lθ(S,G).

A.4 OVERALL WORKFLOW

The two stages work together to form a scaffold-conditioned molecular generation system. In the
first stage, the model retrieves a scaffold using contrastive learning and the ‘MLP BIN‘ spectral
encoder, and in the second stage, the Graph Transformer uses this scaffold to generate a complete
molecule, conditioned on the spectral data. This two-step approach ensures that the molecular gen-
eration process is both accurate and guided by experimentally observed spectra.
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