Zonotope Domains for Lagrangian Neural Network

Verification
Matt Jordan* Jonathan Hayase*
UT Austin University of Washington
mjordan@cs.utexas.edu jhayase@cs.washington.edu
Alexandros G. Dimakis Sewoong Oh
UT Austin University of Washington
dimakis@austin.utexas.edu sewoong@cs.washington.edu
Abstract

Neural network verification aims to provide provable bounds for the output of a
neural network for a given input range. Notable prior works in this domain have
either generated bounds using abstract domains, which preserve some dependency
between intermediate neurons in the network; or framed verification as an optimiza-
tion problem and solved a relaxation using Lagrangian methods. A key drawback
of the latter technique is that each neuron is treated independently, thereby ignoring
important neuron interactions. We provide an approach that merges these two
threads and uses zonotopes within a Lagrangian decomposition. Crucially, we can
decompose the problem of verifying a deep neural network into the verification of
many 2-layer neural networks. While each of these problems is provably hard, we
provide efficient relaxation methods that are amenable to efficient dual ascent pro-
cedures. Our technique yields bounds that improve upon both linear programming
and Lagrangian-based verification techniques in both time and bound tightness.

1 Introduction

With the growing prevalence of machine learning in real-world applications, the brittleness of deep
learning systems poses an even greater threat. It is well-known that deep neural networks are
vulnerable to adversarial examples, where a minor change in the input to a network can cause a major
change in the output [1]]. There is a long history of defense techniques being proposed to improve
the robustness of a network, only to be completely broken shortly thereafter [2]]. This has inspired
researchers to focus instead on neural network verification, which, for a given network and a range of
input, aims to verify whether a certain property is satisfied for every input in that range. A typical
adversarial attack seeks to minimize the output of a scalar-valued network subject to certain input
constraints. Verification provides lower bounds on the minimum output value achievable by such an
adversary. Concretely, for a scalar-valued network f and input range X', verification provides lower
bounds to the problem min,cx f(x).

As observed in [3]], prior works in verification can be broadly categorized into primal and dual
views. In the primal view, convex relaxations are applied to attain, for every intermediate layer of the
network, a convex superset of the true attainable range. For example, if f = fr o--- o f;, convex
sets Z}, are obtained such that {fy, o---o fi(z) |z € X} C Z,fork € {1,...,L}.

*Equal contribution
Github Repo: https://github. com/revbucket/dual-verification

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/revbucket/dual-verification

Under the dual lens, verification is treated as a stagewise optimization problem and Lagrangian
relaxation is applied to yield a dual function that always provides valid lower bounds. Often, this
dual function is decomposable into a sum of minimization problems which are efficiently computable.
One hallmark of all existing dual verification techniques is that intermediate bounds Z}, are required.
In this case, either an efficient primal verification algorithm must first be applied or, for example,
the dual verifier can be run iteratively on each neuron to provide upper and lower bounds for each
intermediate layer.

Our approach is an attempt to combine the primal and dual threads of verification. We first apply a
primal verification algorithm that generates bounds on the attainable range of each intermediate layer.
To do this we leverage zonotopes, a more expressive class of polytopes than axis-aligned hyperboxes.
Notably, we offer an improvement to existing zonotope bounds when we are also provided with
incomparable hyperbox bounds. These zonotopic intermediate bounds are then applied to a dual
verification framework, for which dual ascent can be performed. Our formulation may be viewed
as taking the original nonconvex verification problem and decomposing it into many subproblems,
where each subproblem is a verification problem for a 2-layer neural network. However, as even
verifying a 2-layer network is hard in general, we further develop efficient relaxation techniques that
allow for tractable dual ascent.

We introduce a novel algorithm, which we call ZonoDual, which i) is highly scalable and amenable
to GPU acceleration, i) provides tighter bounds than both the prior primal and dual techniques
upon which our approach is built, iii) is highly tunable and able to effectively balance the competing
objectives of bound tightness and computation speed, and iv) is applicable as an add-on to existing
dual verification frameworks to further boost their performance. We apply ZonoDual to a variety of
networks trained on MNIST and CIFAR-10 and demonstrate that ZonoDual outperforms the linear
programming relaxation in both tightness and runtime, and yields a tighter bounding algorithm than
the prior dual approaches.

We first discuss prior works in the verification domain. Then, we examine the existing dual framework
that serves as the backbone for our algorithm, paying particular attention to the areas in which this
may be tightened. Then, we discuss how we attain zonotope-based intermediate bounds and introduce
the fundamental sub-problem required by our dual ascent algorithm. Ultimately, we combine these
components into our final algorithm and demonstrate the scalability and tightness of our approach on
networks trained on the MNIST and CIFAR-10 datasets.

2 Related Work

Neural network verification is a well-studied problem and has been approached from several angles.
Exactly solving the verification problem is known as complete verification, and is known to be
NP-hard even for 2-layer ReLU networks [4]. Complete verification approaches include mixed-
integer programs, satisfiability modulo theories (SMT), geometric procedures, and branch-and-bound
techniques [5,16,[7, 14189, [10]]. In particular, branch-and-bound procedures generate custom branching
rules to decompose verification into many smaller subproblems, which can be relaxed or further
branched, allowing the algorithm to focus its efforts on the areas for greatest improvement [11} [12].
We stress that this current work focuses only on the ‘bound’ phase, and our approach may be applied
to branched subproblems.

Often it is not necessary to exactly solve the verification problem, and only providing a lower bound
to the minimization problem can suffice. This is known as incomplete verification. We closely
examine the primal and dual verification threads, but first mention a few lines of work that do not fit
neatly into this paradigm: notable approaches here include semidefinite programming relaxations
[L3[14], or verification via provable upper bounds of the Lipschitz constant [[15} 16} 17} [18]].

Primal verification: A general theme in primal verification techniques is to generate convex sets
that bound the attainable range of each intermediate layer. The simplest such approach is interval
bound propagation (IBP) which computes a bounding hyperbox for each layer [19]. A more complex
approach is to bound each intermediate layer with a polytope. Several different polyhedral relaxations
are available, with DeepPoly being on the lesser-complexity side, PLANET being the canonical
triangle relaxation, and the formulation by Anderson et. al being tightest albeit with exponential
complexity [20, 21} [7]. Zonotopes provide a happy medium, being both highly expressive and
computationally easy to work with [22} 23]. We will discuss zonotope relaxations more thoroughly
in section 4.

Dual verification: Orthogonal to the primal approaches exist several works which consider verifica-
tion by relaxations in a dual space [24} 125,112,261 127]. Here, verification is viewed as an optimization
problem with constraints enforced by layers of the network. The general scheme here is to introduce
dual variables penalizing constraint violation, and then leverage weak duality to provide valid lower
bounds. The standard Lagrangian relaxation was first proposed in [24]], and then several improve-
ments have been made to provide provably tighter bounds, faster convergence, or generalizations
of the augmented lagrangian. These techniques are highly scalable and notably, one recent work
has been able to provide bounds tighter than even the standard LP relaxation [9]. Our approach will
follow a similar scheme, but differs fundamentally from prior works in that we operate over a tighter
primal domain and can therefore provide tighter bounds.

3 Lagrangian Decomposition

Problem Definition: In a canonical neural network verification problem, we are given a scalar-
valued feedforward neural network, f(-), composed of L alternating compositions of affine layers and
elementwise ReLLU layers. We name the intermediate representations as zg . . . z1,, and are supplied
with a subset, X, of the domain of f(-), which we assume to be an axis-aligned hyperbox. Verification
is then written as an optimization problem

minimize z, (1a)

ToEX,20,.-,2L
subjectto zp = Woxo (1b)
241 = Wipio(zg) (0<EkE<L-1) (1¢)

where o denotes the ReLU operator applied elementwise, and each W is the weight of an affine or
convolutional layer. Our formulation is also amenable to bias terms everywhere, though we omit
these throughout for simplicity.

Dual verification: While there are several verification approaches leveraging Lagrangian duality, we
consider the Lagrangian decomposition formulation introduced in [25]. Here, each primal variable zy,
of the verification problem is replaced by a pair of primal variables z,?, z,f , along with accompanying
equality constraints, yielding an equivalent optimization problem:

L o
subject to 2 = Womo (2b)
g = Wino(z) (0<k<L-1) (20)

zit =22 (0<k<L-1) (2d)

By introducing unconstrained dual variables pj, for each constraint in Equation (2d) and maximizing
over py, we attain an optimization problem that is equivalent to the original. To tractably solve this,
two relaxations are performed. First, weak duality is applied by swapping the max and min, which
introduces the dual function g(p), for which every value of p provides a lower bound:

L—-1
PR A T/ A B
g(p) = minimize 27 + pr (21 — 2 (3a)
(p) rocAipimize 2L 1;) k(21— 2%)
subject to 24 = Woo (3b)
Zipr = Wipao(2)) (0<k<L-1), (3c)

The goal now is to solve max, g(p). The dual function can be decomposed into L subproblems by
substituting equality constraints and rearranging the objective function:

L—2
g(p) = <m€1r)1(ngOx()) + Z (m}ignkaHWkHa(zf) - plzf) + (4a)
o k=1 \ “k
(néin Wro(zB) - p—Lrlz]LB’l) (4b)
2L-1

In its current state, it is unlikely that g(p) for nonzero p will lead to any finite lower bound as each
zf is unconstrained. In other words, only subproblem, ({@a)), has any information about the input

constraint (zg € X'). To remedy this, one can tighten the dual optimization by imposing intermediate
bounds on z,? ’s, so long as those bounds include all feasible values. Specifically, for each z,]f , wWe can

impose a bounding set Zy, as long as the following implication holds:

rwEX = Pecz, 1<k<L-1 (5)

All prior dual approaches have chosen the sets Zj, to be axis-aligned hyperboxes for two reasons.
First, it is extremely efficient to attain hyperbox bounds at every layer. Second, when Zj is a
hyperbox, the dual function can be evaluated efficiently by further decomposing each component
of the dual along its coordinates. Equipped with intermediate bounds Z, and noting that g(p) is
a concave function of p, the standard procedure is to perform dual ascent on g(p). This requires
gradients V ,g(p), which can easily be computed as the primal residuals. Letting z,?* and z7* be the

argmin of the dual function, then V,, g(p) = z{}* — 25*.

The key innovation in this work is to replace the intermediate bounds Zj, with zonotopes everywhere.
In this case, intermediate bounds may easily be computed as we will see in the next section. Zonotopes
have a distinct advantage over hyperboxes in that every coordinate is no longer independent, and
therefore neuron dependencies are encoded. This further constrains the feasible set of the dual
function and leads to larger dual values. However, this comes with the cost that the dual function is
more computationally difficult to evaluate.

4 Zonotopes

We start with a review of zonotopes and how they may be used to attain intermediate bounds. Then
we introduce the problem of ReLU programming, tie it to the dual decomposition formulation, and
discuss our relaxations for efficient dual evaluation. Proofs of all claims are contained in the appendix.

Zonotope Properties: Zonotopes are a class of polytopes, which we formally define using the
notation Z(c, E) to refer to the set

Z(c,E):={c+FEy|ye[-1,1]"}

where ¢ € R? is called the center, and E € R?*™ is called the generator matrix. Each column
of the generator matrix is a line segment in R?, and Z(c, E) can be equivalently be viewed as the
Minkowski sum of each generator column offset by c; or as the affine map y — ¢ + Ey applied to
the /o, ball in R™. In particular, note that a hyperbox is a zonotope with a diagonal generator matrix.
Zonotopes have several convenient properties:

Efficient Linear Programs: Linear programs can be solved in closed form over a zonotope:

min a'z=a'c+|a’ EL.
z€Z(c,E)
Closure under affine operators and Minkowski sums: given an affine map x — Wz + b, the set
{Wz+b|z € Z(c, E)} is equivalent to the zonotope Z (W ¢+ b, W E). The Minkowski sum of two
sets A, Bisdefinedas A® B:={zx+y |z €A, ye B} Letting E1||E denotes concatenation
of columns, the Minkowski sum of two zonotopes Z(¢1, E1), Z(cq, F2) is also a zonotope:

Z(Cl,El) EB Z(CQ,EQ) = Z(Cl —|— 62,E1||E2).

Intermediate Bounds with Zonotopes: Prior work has developed efficient techniques to generate
intermediate layer bounds using zonotopes for feedforward neural networks. The details are deferred
to the appendix, and we can assume that we have access to a black box that, given a zonotope Z,
is able to generate a zonotope) such that {o(z) | z € Z} C Y. Such an operation is called a
sound pushforward operator. One such pushforward operator is known as DeepZ and can be applied
repeatedly to provide valid zonotopic bounds for every intermediate layer of the neural network [22].
‘We make two observations regarding these intermediate bounds here:

Proposition 4.1. Let 2, be the k'™ zonotope bound provided by the DeepZ procedure, and let H,
be the k™ intermediate bound provided by the Kolter-Wong dual procedure [20]. Then the smallest
hyperbox containing Z . is exactly H.

Proposition 4.2. Suppose Z is a zonotope and H. is a hyperbox, such that Z ¢ H. Then we can
develop a sound pushforward operator for the ReLU operator that outputs a zonotope Z' containing
the ReLU of every element of Z (M, with the property that Z' C DeepZ(Z).

The first proposition states that a common technique for generating intermediate hyperbox bounds is
never any tighter than the procedure we use to generate intermediate zonotope bounds. The second
proposition describes an improved pushforward operator that offers improvements against DeepZ but
requires extra information provided by a hyperbox.

ReLU Programming: We return our attention to the dual function introduced in equations Equa-
tions (#a)) and (@b)). Note that the first term of Equation falis a linear program of a zonotope which
can be solved extremely efficiently, while all other terms adopt a form we refer to as a ReLU program

Definition 4.1. Given a set Z C R% and two objective vectors c1,ca € R%, we say the ReLU
Program is the optimization problem

T T
minc; z + ey 0(2). (6)

ReLU programming is nonconvex for general co. When Z is an interval, only the endpoints, or O if
it is contained in the interval, are candidate optima. In this case, the ReLU program may be solved
by evaluating the objective at each candidate. When Z is a hyperbox in R?, each coordinate can be
considered independently, amounting to solving d ReL.U programs over intervals. The story quickly
becomes more complicated if Z is a zonotope:

Theorem 4.1. When Z is a zonotope, solving a ReLU program over Z is equivalent to a neural
network verification problem for a 2-layer network, which is known to be NP-hard.

Remarks: This theorem implies that solving ReLLU programs over more complex sets, such as
polytopes in general, is also NP-hard. However it remains an open question whether solving ReLU
programs over other simpler sets such as parallepipeds, i.e. zonotopes with an invertible generator
matrix, is hard. Note that ReLU programs can be solved exactly via a Mixed-Integer Program (MIP)
using the standard form for encoding a ReL.U [3].

We pause here to observe the current situation. Lagrangian methods for verification first make a
relaxation by applying weak duality. When using zonotopes for the intermediate bounds, one is able
to decompose the very large non-convex optimization problem of deep network verification into many
smaller subproblems which are equivalent to two-layer network verification problems. Unfortunately,
each of these subproblems is also NP-hard, and thus must be further relaxed to attain tractability.

Zonotope Partitioning: The primary relaxation technique we consider comes from the following
observation. Consider a d-dimensional zonotope Z and ReLU programming objectives (cy, ¢2).
Then, for any partition S; U ---U S, of {1,...,d}, the inequality

d

n
min (c1,i2i + c2,i0(2;)) = Zgéig Z (c1,i2i + c2,i0(2;))
i=1 j=1 1€S;

holds. This approach has a nice geometric interpretation as well. The decomposed minimization
mincz y. ics, (cl,izi + cz,io(zi)) can be viewed as optimization over Z when it has been projected
onto the linear subspace spanned by the elements of S;. Projection onto a linear subspace is an affine
operator, so each projection of Z is itself a zonotope. Indeed, the projection onto the linear subspace
spanned by .S; is simply the center and generator rows indexed by 5.

Observe that if each S; were a singleton set, then decomposing the ReLU program according to these
S;’s is equivalent to relaxing the ReLU program by casting Z to the smallest containing hyperbox. If
the partition were the trivial partition {1, ..., d}, then Z remains unchanged. Finally, notice that the
Minkowski sum of every projection of Z is itself a zonotope.

In this sense, by choosing any partitioning of coordinates, we are able to relax Z into a zonotope that
is simultaneously a superset of Z and a subset of the hyperbox-relaxation of Z. This is optimistic for
our dual ascent procedure, as any partitioning restricts the primal feasible space for the dual function
evaluation. It is in this way that we are able to interpolate the coarseness of our relaxation, which
is directly controlled by the coarseness of our partitioning. Because we expect the complexity of
solving a ReLLU program over a zonotope to be superlinear in the dimension, shattering a zonotope in
this fashion can drastically improve the complexity of solving a relaxation of a ReLU program.

Two-dimensional Zonotopes: A special case we consider is when we partition a zonotope into
2-dimensional groups. This is because a 2-dimensional zonotope can be significantly more descriptive

than a 2-dimensional rectangle, but the solution of a ReLU program can still be computed efficiently.
Observe that the argmin of a ReLU program over a 2-dimensional zonotope must occur at either
1) a vertex of the zonotope, ii) a point where the zonotope crosses a coordinate-axis, iii) the origin.
This follows from the fact that a ReLU program over 2-dimensions may be viewed as 4 independent
linear programs over the intersection of the zonotope and each orthant. For the purposes of ReLU
programs, it suffices to enumerate all vertices of the zonotope and compute any axis crossings or
origin-containments. It turns out that this may be done in nearly linear time:

Theorem 4.2. If Z(c, E) is a 2-dimensional zonotope with m generators, Z has 2m vertices and
the set of all vertices, axis crossings, and the containment of the origin can all be computed in
O(mlogm) time.

S The ZonoDual Algorithm

With both preliminaries of dual verification techniques and zonotopic primal verification techniques in
hand, we can now fully describe the algorithm we employ in practice. We first describe the algorithm
as it is used to bound a single neuron’s value, i.e. the output neuron. After we describe how we adapt
our approach to the stagewise setting where our algorithm is applied to each intermediate neuron
to yield tighter box bounds. Our algorithm can be described in three main phases: an initialization
phase, where primal bounds are generated to define the feasible set for each subproblem in the dual
function; an iteration phase, where the argmin of the dual function is computed many times to provide
informative gradients for updates to the dual variables; and an evaluation phase, where the primal
bounds are tightened to yield a more computationally intensive dual function, which only needs to be
evaluated a single time.

Initialization phase: Naively, we can apply the DeepZ procedure here to attain a zonotope bounding
the output range of the network at every layer. Both this procedure and our box-improved variant can
be done extremely efficiently. We adapt two techniques from [25] in the initialization phase. First we
notice that some very minor improvements to DeepZ can be made using an application of Proposition
@.2]when provided with the boxes from interval bound propagation. Second, we initialize the dual
variables to the KW dual variables from [20], which by {i.T| are equivalent to the scale factors applied
internally in the zonotope pushforward operators.

Iteration Phase: In the iteration phase, each intermediate zonotope Z, is partitioned into compo-
nents that are amenable to repeated evaluations of the dual function. We always initially partition
each zonotope into 2-d chunks for which the dual function may be evaluated on a GPU without
requiring any MIP calls. Recall that for a d-dimensional zonotope with m generators, after the initial
O(dmlogm) candidate optima computation, each ReLU program can be evaluated in O(dm) time.
These initial 2-d partitions are computed using one of several simple heuristics, described in the
appendix, with the aim to generate 2-d zonotopes which are as ‘un-box-like’ as possible. Optionally,
after an initial 2-d iteration phase, these partitions may be combined and dual ascent can be applied,
where each subproblem now requires several calls to a MIP solver. At any point during this phase,
the dual function evaluations still provide valid lower bounds to the verification problem.

Evaluation Phase: In this phase, we can presume that effective dual variables have been found
during the previous phase. The objective here is to tighten the feasible range of each subproblem,
which will necessarily improve the value of the dual function. Because we only need to evaluate a
bound on the dual function once here, we find that it is often worth it to spend more time solving
each subproblem. We do this by simply merging several partition elements together, converting our
2-dimensional zonotopes into higher-dimensional ones that require calls to a MIP solver to compute.
Despite the theoretical intractibility of MIPs, we find that this procedure is remarkably efficient. In
practice, it is often sufficient to only merge zonotopes at the later layers in a network where the dual
function subproblems are the most negative. Finally, we note that as only a bound upon the dual
function is required here, and each subproblem is itself a 2-layer verification problem, the MIPs may
be terminated early. Any other incomplete verification approach can be applied here as well.

Guarantees: Ultimately, our algorithm will always provide a valid lower bound to the verification
problem so long as the dual function is evaluated appropriately. The provable correctness of our
algorithm stems from 1) the fact that weak duality always holds and any evaluation of the dual function
with feasible dual variables provides a valid lower bound tot the primal problem; and ii) by leveraging
zonotopes and a sound relaxation of them, we only ever provide lower bounds to the evaluation of the
dual function. Further, we can also guarantee that, for any fixed set of dual variables p, the bounds

we provide will be tighter than those provided by the approach in [25]. This follows because we have
reduced the feasible set within each dual subproblem, relative to the hyperbox approaches in prior
works. Similarly, because p = 0 is always a valid choice, when the dual variables are optimized
appropriately, we will provide tighter bounds than whichever primal verification method is applied at
the initialization phase.

Stagewise computation: When the network of interest is of sufficiently small size, any verification
algorithm may be applied stagewise, where the algorithm computes upper and lower bounds to each
neuron, starting from those in the first layer. This is often effective for generating tighter intermediate
box bounds, which in turn yields much tighter output bounds. However this comes the cost of
running many calls to the verification algorithm. This can be parallellized for verification procedures
amenable to GPU acceleration, but demands a large memory footprint.

At first glance, it may seem that such a stagewise procedure obviates the improvements we attain
by leveraging zonotopes: indeed, each stagewise bound is a box bound. However, we show that we
can apply this stagewise trick to our approach to generate tighter box bounds, which can then be
employed by Proposition[d.2]to yield tighter zonotopic bounds. Additionally, in the case that these
box bounds are incomparable to the improved zonotope bounds, these can be employed in imposing
further constraints upon each subproblem. Instead of solving each ReLLU program over a zonotope,
we can instead solve each ReLU program over the intersection of a zonotope and a hyperbox. In the
higher-dimensional case, it is trivial to apply elementwise constraints to each variable in the MIP —
in fact, this often improves the running time of each MIP. In the 2-d case, we observe that we are
able to solve ReLU programs over the intersection of a 2-d zonotope and rectangle as efficiently as
solving over a 2-d zonotope alone. This is the content of the following corollary to Theorem 4.2]

Corollary 5.1. Given a 2-d zonotope with m generators, the set of candidate optimal points to a
ReLU program has cardinality no greater than (2m + 9) and is computable in time O(mlogm).

Ablation study: To clarify the bound improvements and their corresponding runtime cost imposed
by each step of our approach, we perform an ablation study on an MNIST fully connected network
(MNIST FFNet). We report the bounds relative to the bound attained by the LP relaxation in Table
??. We consider three initialization settings separately: the standard DeepZ zonotopes, the DeepZ
zonotopes augmented with IBP bounds, and zonotopes informed by the the box bounds from BDD+
[25]. Then we perform dual ascent over 2-d zonotopes, before merging the zonotopes of the final
layer only and evaluating the MIP. We report these numbers in Table ??. Here we see that a tight
initialization does indeed help, but this gap shrinks after our dual ascent procedure. We also see a
substantial gain in bound improvement by using MIPs, even in the last layer’s zonotopes alone.

6 Experiments

We evaluate the effectiveness of our approach on several networks trained on the MNIST and CIFAR-
10 datasets. While many recent verification techniques employ a branch-and-bound strategy, we only
provide innovations on the bounding component of this pipeline. Strong verifiers should employ both
effective bounding algorithms and clever branching strategies, which are both necessary but fairly
independent components. Like other dual-based verification techniques, our approach can be applied
using any of a number of branching strategies. We focus our efforts primarily on the improvements
in the bound provided by a single run of each considered method. We argue this is a reasonable
choice of metric because most prior benchmarks focus on e-values far lower than typically used in
adversarial attack scenarios. This artifically decreases the depth to which branching strategies must
search, skewing the results. By focusing on the bound of the verification, we directly measure the
metric that bounding algorithms such as ours seek to optimize. However, for the sake of completeness,
we do also evaluate verified robustness percentage upon several benchmark MNIST networks. For
bound evaluations, we separate our experiments into two cases: we first examine the setting where
only the output neuron is optimized, which we denote the ‘single-stage’ setting; and the case where
every neuron is optimized to provide tighter intermediate box bounds, denoted the ‘stagewise’ setting.
We compare the bound and running time against the following approaches: BDD+, the Lagrangian
Decomposition procedure proposed in [25]], where the optimization is performed using optimal
proximal step sizes; LP, the original linear programming relaxation using the PLANET relaxation on
each ReLU neuron [20]; Anderson, the linear programming relaxation, where 1-cut is applied per
neuron as in [7]; AS, a recent Lagrangian technique which iteratively chooses cuts to employ from
the Anderson relaxation [9]).

1.0 1.0

Algorithm Algorithm
08 — BDD+ 08 <~ LP
— ILIP == BDD+
g . = AS g . Anderson
B 06 Anderson E 06 - AS
2 — ZD-2D 2 — ZD-2D
£ 04 ZD-MIP £ 04 ZD-MIP
0.2 0.2
0.0 0.0
—100 —80 —60 —40 —20 0 —40 -30 —20 —10 0 10
Bound Bound

Figure 1: Cumulative density function plots of the bounds obtained by each algorithm for a deep
convolutional network trained on MNIST (left) and a deep convolutional network trained on CIFAR10
(right). Lines further to the right indicate tighter bounds. Our algorithms are bolded in the legend.

Table 1: Timing data for the single-stage bounds.
All baselines are run implemented using the
code and hyperparameter choices from prior Alg\Net MNIST Deep CIFAR SGD
works, and network weights are taken from ex-

isting works where applicable. Architecture de- BDD+ 2.540.2 1.54+0.1
scriptions are contained in the supplementary. IZJ])) 2D 1?)3 i 8? (752 i 82
We follow [25]] to construct scalar-valued ver- AS- 1 6'9 T 1'2 10'2 n 0.8

ification problems: for examples with label i,
we compare the difference between the i*" and
(i + 1)*" logit of a network. We can extend this
procedure to a multi-class task by applying the
verification n — 1 times for each incorrect logit.

ZD-MIP 23.1+12.4 11.0 £ 3.1
Anderson 52.4+27.5 21.3+4.6

Single-stage bound evaluation: In the single-stage setting we make the following hyperparameter
choices for our approach. We initialize the intermediate bounds using zonotopes informed by the
boxes attained by the best of the DeepZ bounds and the IBP bounds. We then decompose each
zonotope into 2-dimensional partitions, using the ‘similarity’ heuristic for fully-connected networks,
and the ‘spatial’ heuristic for convolutional networks. Then we perform 1000 iterations of the Adam
optimizer during the dual ascent procedure. We report the value at the last iteration as ZD-2D. Then
we merge the partitions of only the last layer of each network into 20-dimensional zonotopes, and
evaluate the dual function under this new partitioning. We report these values as ZD-MIP.

We present results of our approach on the MNIST-Deep network, which has 5196 neurons and 6
layers, evaluating over a domain of /., boxes with ¢ = 0.1. Specifically we present cumulative
density function plots: a point (z, y) on any curve in these plots indicates that that particular algorithm
attains a bound tighter than z for (1 — y)% of the examples. Curves further to the right indicate
tighter bounds in aggregate. Figure[T](left) contains the distribution of reported bounds over every
correctly-classified example in the MNIST validation set. In Figure[T] (right), we present a similar
CDF plot for a CIFAR-10 network with 6244 ReLU neurons and 4 layers. For this CIFAR network,
we set € = 5/255, as in [9]]. The average and standard deviation runtimes for these networks is
provided in Table [T}

1.0

Algorithm Algorithm
0.8 DI 08 — BDD+
—— LP — LP
= —— AS256 = — AS256
5 =]
£ 06 S 206 — assi
§. BDD+ — ZD % BDD+ — ZD
£ 0.4 — AS256 — ZD & 0.4 — AS256 — ZD
AS512 — ZD AS512 — ZD
0.2 0.2
0.0 0.0 -
—40 -30 —20 -10 0 10 —60 _40 _20 0
Bound Bound

Figure 2: Stagewise bounds on the MNIST-FFNet (left) and MNIST-Deep (right) networks.

Stagewise bound evaluation: Now we turn our attention to the setting where enough computation
time is allowed to perform the optimization procedure on every neuron in turn, which is able to

Table 3: Verified Robustness on MNIST Networks. Methods denoted with an asterisk had numbers
taken from [28]].

Model | ¢ |zD | BDD+ | CROWN* | PRIMA* | 3-CROWN*
MLP 5x100 | 0.026 | 28.5% (24s) | 19.8% (7s) | 16.0% (Is) | 51.0% (159s) | 69.9% (102s)
MLP 8x100 | 0.026 | 21.8% (19s) | 19.1% (15s) | 18.2% (1s) | 42.8% (301s) | 62.0% (103s)
MLP 5x200 | 0.015 | 41.8% (28s) | 33.2% (8s) | 29.2% (2s) | 69.0% (224s) | 77.4% (86s)
MLP 8x200 | 0.015 | 29.7% (26s) | 27.4% (17s) | 25.9% (6s) | 62.4% (395s) | 73.5% (95s)
ConvSmall | 0.12 | 52.6% (38s) | 16.6% (6s) | 15.8% (3s) | 59.8% (42s) | 72.7% (7s)

generate tighter box bounds. Here we notice an interesting observation: our method can be improved
by leveraging tighter intermediate box bounds, but is agnostic as to where these bounds come from.
Indeed, our approach can take as input any collection of tighter box bounds and generate tighter
zonotopes via Proposition f.2] However, our current implementation of this tighter primal bound is
not vectorized to be amenable, in the way that others are, to stagewise bounding procedures. This is
purely an implementation detail, and we instead use existing primal bounding techniques.

As baselines here, we compare against the LP approach, BDD+, and the active set approach with 256
and 512 iterations, denoted AS256, AS512. We leverage box bounds provided by each of these dual
approaches to inform our zonotope bounds from which we can run our method, denoted by a — ZD.
Note that BDD+ can never surpass bounds provided by the LP approach, whereas ours and the active
set procedure can both improved even further with a longer runtime. Hence it is not sufficient to
provide a better bound, but to also do so more efficiently. In this case, our approach performs 2000
iterations of Adam on 2-D zonotopes and increases the partition size of the final two layers of each
network to sizes of 16 and 20 respectively.

We present our results on the MNIST-FFNet
and MNIST-Deep network which have 960

Table 2: Timing data for stagewise bounds

and 5196 neurons, and 5 and 6 layers respec- Alg\Net MNIST Deep MNIST Wide
tively, again using an € = 0.1. CDF plots of
bounds for these two networks are provided BDD+ 154+ 0.4 8.3+0.3
in[2] with timing data in[2] We observe that 1215)22'; — 7D %.879{;81.8 igi i 82
the BDD+ bound completes very quickly, but : : : :
attains a bound only slightly worse than LP. AS256 — 7D 174.1 £13.6 73.3+£6.6
Our approach, when initialized with the BDD+ AS512 289.3+ L7 91.3+0.9
bounds runs more efficiently than AS256, pro- AS512 — ZD 324.1+£13.5 119.2 + 6.9
LP 2132.2£4944 387.1£65.5

viding bounds that are comparable or better

than the slower AS512 approach.

%-Verified Robustness: Finally we evaluate our approach comparing against all incorrect logits
on MNIST trained networks, mirroring the setup of [28]. We report numbers from an unbranched
version of ZD and BDD+ alongside several other verification techniques [29, 30} [31]]. Compared
to other efficient, branch-friendly procedures such as BDD+ and CROWN, our approach provides
tighter bounds at a fair cost to efficiency. Our approach provides weaker bounds than PRIMA, but is
significantly faster. 3-CROWN, in particular, leverages a dual-based branching strategy which could
be applied to our method. However due to its extremely efficient bounding procedure and the need to
solve millions of subproblems for verification, it is unclear if our approach can surpass this method.

7 Conclusion

In this work, we demonstrated how primal and dual verification techniques can be combined to yield
efficient bounds that are tighter than either of them alone. Primal methods capture complex neuron
dependencies, but do not optimize for a verification instance; while dual methods are highly scalable,
but rely on unnecessarily loose primal bounds. This work is a first step in combining these two
approaches. We believe that this combination of approaches is a necessary direction for providing
scalable and tight robustness guarantees for safety-critical applications of machine learning.

Acknowledgements: This work is supported in part by NSF grants CNS-2002664, DMS-2134012,
CCF-2019844 as a part of NSF Institute for Foundations of Machine Learning (IFML), CNS-2112471
as a part of NSF Al Institute for Future Edge Networks and Distributed Intelligence (AI-EDGE),
CCF-1763702, AF-1901292, CNS-2148141, Tripods CCF-1934932, and research gifts by Western

Digital, WNCG IAP, UT Austin Machine Learning Lab (MLL), Cisco and the Archie Straiton
Endowed Faculty Fellowship.

10

References

[1] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. December 2013.

[2] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 274-283. PMLR, 2018.

[3] Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A convex
relaxation barrier to tight robustness verification of neural networks. February 2019.

[4] Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer. Reluplex: An
efficient SMT solver for verifying deep neural networks. February 2017.

[5] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with
mixed integer programming. November 2017.

[6] Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear optimization.
Constraints, 23(3):296-309, July 2018.

[7] Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo Vielma.
Strong mixed-integer programming formulations for trained neural networks. Mathematical
Programming, pages 1-37, 2020.

[8] Matt Jordan, Justin Lewis, and Alexandros G Dimakis. Provable certificates for adversarial
examples: Fitting a ball in the union of polytopes. In Advances in Neural Information Processing
Systems 32, pages 14059-14069. 2019.

[9] Alessandro De Palma, Rudy Bunel, Alban Desmaison, Krishnamurthy Dvijotham, Pushmeet
Kohli, Philip H S Torr, and M Pawan Kumar. Improved branch and bound for neural network
verification via lagrangian decomposition. April 2021.

[10] Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh.
Fast and complete: Enabling complete neural network verification with rapid and massively
parallel incomplete verifiers. November 2020.

[11] Jingyue Lu and M Pawan Kumar. Neural network branching for neural network verification.
arXiv preprint arXiv:1912.01329, 2019.

[12] Alessandro De Palma, Harkirat Singh Behl, Rudy Bunel, Philip H S Torr, and M Pawan Ku-
mar. Scaling the convex barrier with active sets. https://openreview.net/pdf?7id=
uQfO0y7Lr1TR. Accessed: 2021-9-18.

[13] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Semidefinite relaxations for certifying
robustness to adversarial examples. November 2018.

[14] Sumanth Dathathri, Krishnamurthy Dvijotham, Alexey Kurakin, Aditi Raghunathan, Jonathan
Uesato, Rudy Bunel, Shreya Shankar, Jacob Steinhardt, Ian Goodfellow, Percy Liang, et al.
Enabling certification of verification-agnostic networks via memory-efficient semidefinite
programming. arXiv preprint arXiv:2010.11645, 2020.

[15] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas.
Efficient and accurate estimation of lipschitz constants for deep neural networks. In Advances
in Neural Information Processing Systems 32, pages 11423—-11434. 2019.

[16] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis
and efficient estimation. In Advances in Neural Information Processing Systems 31, pages
3835-3844. 2018.

[17] Navid Hashemi, Justin Ruths, and Mahyar Fazlyab. Certifying incremental quadratic constraints
for neural networks via convex optimization. December 2020.

11

https://openreview.net/pdf?id=uQfOy7LrlTR
https://openreview.net/pdf?id=uQfOy7LrlTR

[18] Matt Jordan and Alexandros G Dimakis. Exactly computing the local lipschitz constant of
ReLU networks. March 2020.

[19] Riidiger Ehlers. Formal verification of Piece-Wise linear Feed-Forward neural networks. In
Automated Technology for Verification and Analysis, pages 269-286. Springer International
Publishing, 2017.

[20] J Zico Kolter and Eric Wong. Provable defenses against adversarial examples via the convex
outer adversarial polytope. November 2017.

[21] Singh, Gagandeep, Gehr, Timon, Piischel, Markus, and Vechev, Martin. An abstract domain
for certifying neural networks. Proceedings of the ACM on Programming Languages, January
2019.

[22] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Piischel, and Martin T Vechev. Fast
and effective robustness certification. NeurIPS, 1(4):6, 2018.

[23] Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. Boosting robustness
certification of neural networks. In International conference on learning representations, 2018.

[24] Krishnamurthy, Dvijotham, Robert Stanforth, Sven Gowal, Timothy Mann, and Pushmeet Kohli.
A dual approach to scalable verification of deep networks. March 2018.

[25] Rudy Bunel, Alessandro De Palma, Alban Desmaison, Krishnamurthy Dvijotham, Pushmeet
Kohli, Philip Torr, and M Pawan Kumar. Lagrangian decomposition for neural network
verification. In Jonas Peters and David Sontag, editors, Proceedings of the 36th Conference on
Uncertainty in Artificial Intelligence (UAI), volume 124 of Proceedings of Machine Learning
Research, pages 370-379. PMLR, 2020.

[26] Leonard Berrada, Sumanth Dathathri, Krishnamurthy, Dvijotham, Robert Stanforth, Rudy Bunel,
Jonathan Uesato, Sven Gowal, and M Pawan Kumar. Verifying probabilistic specifications with
functional lagrangians. February 2021.

[27] Shaoru Chen, Eric Wong, J Zico Kolter, and Mahyar Fazlyab. Deepsplit: Scalable verification
of deep neural networks via operator splitting. arXiv preprint arXiv:2106.09117, 2021.

[28] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
Beta-crown: Efficient bound propagation with per-neuron split constraints for complete and
incomplete neural network verification. arXiv preprint arXiv:2103.06624, 2021.

[29] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neu-
ral network robustness certification with general activation functions. Advances in neural
information processing systems, 31, 2018.

[30] Mark Niklas Miiller, Gleb Makarchuk, Gagandeep Singh, Markus Piischel, and Martin Vechev.
Precise multi-neuron abstractions for neural network certification. arXiv e-prints, pages arXiv—
2103, 2021.

[31] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal
safety analysis of neural networks. September 2018.

[32] Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation for
provably robust neural networks. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 3578-3586, Stockholmsmassan, Stockholm Sweden, 2018. PMLR.

[33] Matt Jordan and Alex Dimakis. Provable lipschitz certification for generative models. In Pro-
ceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 5118-5126. PMLR, 2021.

[34] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

12

[35] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[36] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL https://www,
gurobi.com.

ChecKklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes], , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes] See Section ??.
* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Appendix
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
Appendix
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendices

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] Zipped in
appendix

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Described in Appendix

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? Standard deviations for times, but n/a for CDF plots

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Compute environment delineated
in appendix

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] Models and choices
of € given proper credit

(b) Did you mention the license of the assets?

(c) Did you include any new assets either in the supplemental material or as a URL?

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? MNIST/CIFAR only

13

https://www.gurobi.com
https://www.gurobi.com

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Related Work
	Lagrangian Decomposition
	Zonotopes
	The ZonoDual Algorithm
	Experiments
	Conclusion

