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Abstract—Cloud infrastructures encourage the multi-tenancy
of hardware resources. User-defined Machine Learning (ML)
training jobs are offloaded to the cloud for efficient training.
State-of-the-art resource schedulers do not preserve user privacy
by accessing sensitive meta-data of the user-defined training
workload. We present the design of a fine-grain, online, privacy-
preserving job scheduler built on top of the Kubernetes plat-
form in combination with Argo workflow. We categorize ML
training workloads on standard benchmark architectures and
datasets over sixty-six different features, cluster them based on
exploratory data analysis, and perform inter- and intra-cluster
task interference. We assume black-box access to the user-defined
ML training jobs and refrain from accessing sensitive meta-data.
We define three scheduler-level objectives to maximize gains
from users’ and cloud providers’ perspectives. Our scheduler
promotes multi-tenancy by intelligently selecting competitor jobs
for concurrent execution in every pod while abiding by scheduler-
level objectives.

Index Terms—GPU sharing, job scheduler, privacy-preserving,
Kubernetes

I. INTRODUCTION

Machine Learning (ML) is used in several application
domains, ranging from computer vision [1], natural language
processing [2], recommendation systems [3], and robotics [4],
to name a few. Training of ML networks requires accessibility
to hardware accelerators like GPUs. Users offloading their ML
network training to compute clusters in the cloud has emerged
as a popular choice.

Cloud infrastructures designed for ML training encourage
multi-tenancy of the compute resources. Efforts to facilitate the
multi-tenancy of hardware accelerators concerning GPUs have
led to service-level orchestration [5], runtime-level schedul-
ing [6], and resource-level management [7], [8]. Studies [9],
[10] aim to improve the Job Completion Time (JCT) of
user-defined tasks, improve kernel performance [11], reduce
latency [6], while maintaining the Service Level Agreements
(SLA) [7], [8]. Efforts involving service-level orchestration fo-
cus on designing query schedulers having heuristic-based pre-
emption schedulers [10]. Resource level management mostly
involves multi-process based resource scheduling [7], adaptive
batching [7], kernel tuning [11]. However, state-of-the-art GPU

schedulers [12], [13] refrain from considering preserving user
privacy for scheduling user-defined ML training jobs.

A popular framework for handling auto-deployment and
managing containerized applications alongside scaling is Ku-
bernetes (K8s) [14]. It facilitates production-oriented container
orchestration. The kube-scheduler, a component of K8s, which
facilities valid placement of pods to the nodes while account-
ing for all system-level constraints, is coarse-grained. User-
defined ML training jobs are placed on pods and executed on
a container runtime, as placed by the kube-scheduler.

On top of K8s, we propose the design of a fine-grain, online,
privacy-preserving job scheduler combining Argo workflow.
We design a job profiler on worker nodes to extract features
from user-defined ML training jobs. We categorize the ML
workloads and perform inter- and intra-cluster task inter-
ference. In online mode, we extract features of the user-
defined ML workload, cluster them based on the extracted
features, and make informed scheduling decisions to meet
the scheduler-level objectives. We assume black-box access
to the user-defined ML training jobs throughout the process.
We refrain from accessing any job-specific sensitive hyper-
parameters like model architecture, batch size, datasets, and
the number of epochs. The key contributions of our work
include the following:

• We propose the design of a fine-grain, online, privacy-
preserving job scheduler, built on top of Kubernetes,
harnessing Argo workflow that promotes multi-tenancy
through intelligently selecting competitor jobs for con-
current execution in every pod, abiding to scheduler-level
objectives.

• We propose the design of three schedulers in combination
with Argo workflow, which improves multi-tenancy in
GPUs by 10.82% from service providers’ perspectives,
and reduces job slowdown by 5.08% from users’ perspec-
tives, with respect to our defined metrics, in comparison
to kube-scheduler.

The rest of the paper is organized as follows: Section II dis-
cusses our proposed methodology, followed by the evaluation
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results in Section III. Section IV concludes the paper.

II. DESIGN METHODOLOGY

In the traditional design of the Kubernetes architecture,
the kube-scheduler assigns pods to available nodes according
to their resource requirements, preserving system constraints.
Kube-scheduler, coarse-grain in nature, helps decide which
nodes would be the valid placement for every pod while
accounting for all system-level constraints. User-defined ML
training workloads are placed in the pods for execution in the
assigned node with the available computing resources. In our
paper, we propose the design of a fine-grain, online, privacy-
preserving job scheduler that promotes multi-tenancy through
intelligently selecting competitor jobs for concurrent execution
in every pod.

We introduce two components in the control plane, namely,
Knowledge Base (KB), and Job Recommendation Service
(JRS), alongside a Job Profiler (JP) in the worker node,
as outlined in Fig. 1 of our proposed design. We assume
the availability of n user-defined ML training workloads
j1, j2, ..., jn in the job queue. With a black-box access, JP
profiles ∀ j to extract features for every job while preserving
user privacy. The KB component keeps a tab on the profiling
results obtained from JP and clusters the jobs based on the
profiled features. It also assigns an uncertainty score depending
on the distance of the job from its assigned cluster center.
Relative rankings of inter- and intra-cluster task interference
based on mean values of our defined metrics are analyzed in
an online manner in the JRS component. Taking into account
a⃝ the available number of jobs to be scheduled, b⃝ the

task interference analysis, and c⃝ the multi-tenancy objective
prioritizing the user, the cloud provider, or a combination of
both; the JRS recommends two or more competitor jobs to the
kube-scheduler for concurrent scheduling in the same pod. The
kube-scheduler, guided by the JRS, schedules the competitor
jobs in the same pod in conjunction with Argo workflow for
concurrent execution. The execution results are returned to the
JRS for dynamically updating the task interference analysis
results.

The following sub-sections introduce workload character-
ization and task interference analysis in further detail. It is
followed by an elaborate discussion of our JRS component that
recommends competitor jobs to the kube-scheduler to promote
multi-tenancy while abiding by scheduler-level objectives.

A. Workload Characterization and Task Interference Analysis

We analyze ML training workloads on standard benchmark
architectures and create a dataset with privacy-preserving
features. We perform exploratory data analysis on the collected
dataset and generate a synthetic workload to bolster the dataset
size. Based on unsupervised clustering techniques, we cluster
the ML workloads, all while preserving user privacy.

• Characterizing ML Training Workloads: Using our
job profiler, JP, we characterize user-defined ML training
workloads over several attributes, ranging from network
parameters, GPU and CPU utilization metrics, GPU

Fig. 1. Our proposed design of a fine-grain online privacy-preserving job
scheduler, built on top of the Kubernetes platform. The components outlined
in blue are the traditional components of the Kubernetes cluster. In the
control plane, we introduce two components, KB (Knowledge Base) and
JRS (Job Recommendation Service), and a JP (Job Profiler) in the worker
node, all deployed as pods. For scheduling every user-defined ML training
workload in the compute cluster, KB logs the job profile, obtained from
JB, while preserving user-privacy. Through an online inter- and intra-cluster
task interference analysis, JRS recommends the kube-scheduler for the most
suited competitor job that meets the desired scheduler-level objective of multi-
tenancy.

and disk memory utilization metrics, interrupts, system
calls, runtime environment, context switching, and several
other. We profile jobs on standard benchmark architec-
tures over publicly available datasets from categories of
image classification, image segmentation, reinforcement
learning, generative adversarial networks, and natural
language processing.

• Feature Selection: To maintain user privacy, we discard
the sensitive hyper-parameters like job ID, batch size,
epochs, the dataset used, and model architecture. For our
two target variables, maximum GPU utilization percent
(Max.GPUutil) and maximum GPU memory allocation
percent (Max.GPUmemAlloc), we perform exploratory
data analysis to find the correlation to other features
through Pearson’s correlation coefficient. Additionally,
we analyze the inter-dependence of the other features
for our target variables through random forests, ridge
regression, and lasso regression.

• Synthetic Data Generation: We generate synthetic ML
training workload for our target and predictor variables
to generate more insights while clustering. We generate
synthetic workloads for varying batch sizes from the
collected ground truth (GTreal) through interpolation
measures of barycentric, krogh, pchip, spline, and linear.
To evaluate the quality of the generated synthetic samples,
we blind the collected ground truth GTreal, and assuming
the synthetic workload as pseudo-ground truth; we re-
generate the collected ground truth (ReGenGT ). We
assess the quality of our synthetic data generation pro-
cess by estimating the mean absolute difference between
ReGenGT and GTreal and choose the best interpolation
technique for every workload.

• Clustering: We cluster GTreal and synthetic workload

8

Authorized licensed use limited to: Texas A M University. Downloaded on February 03,2025 at 22:15:41 UTC from IEEE Xplore.  Restrictions apply. 



based on our target and predictor variables through the
k-means algorithm and assign every ML training job into
a cluster. We extensively schedule inter- and intra-cluster
training workloads on the same GPU for task interference
analysis. We also record the relative task interference
ranking based on mean values. To make online scheduling
decisions, JRS recommends jobs relying on the relative
ranking of inter- and intra-cluster task interference to
meet scheduling level objectives. The relative ranking
gets updated after every execution.

B. Job Recommendation Service:

We define two metrics, namely, Individual Slowdown
(IndSD), and Packing Saving (PacSav), to analyze the task
interference. IndSD refers to the percent difference in JCT
for a job to complete execution when it runs in the hardware
accelerator without any competitor job to the presence of a
competitor job. Equation 1 expresses the IndSD for a job,
j, where Jc is the job completion time when the job (j) is
executed in the presence of one or more competitor job(s), and
Ja is the job completion time when the job (j) in executed
alone in the same GPU, keeping all other computing resources
alike. Packing Saving (PacSav) refers to the percent difference
in JCT when multiple jobs are packed together into the same
GPU for concurrent execution, compared to each executed
sequentially. Equation 2 expresses the PACSav for n jobs,
j1, ..., jn, executed concurrently on the same GPU, where M
is maximum function.

IndSD(j)% =
Jc(j)− Ja(j)

Ja(j)
(1)

PacSav(j1, .., jn)% =

∑jn
x=j1

Ja(x)−M [Jc(j1), ..., Jc(jn)]∑jn
x=j1

Ja(x)
(2)

When a new user-defined job is made available in the job
queue, the JP profiles the job for the target and predictor
variables, and the KB component assigns it to a pre-existing
cluster. The JRS, based on the prior knowledge of inter-
and intra-cluster task interference results, recommends the
best-suited competitor job from the job queue that would
meet the desired scheduler-level objectives. It also considers
the uncertainty score of jobs in the cluster by providing
selection precedence to jobs with a lower uncertainty score.
The scheduler-level objectives vary based on the prioritization
of the user and cloud provider demands. Ideally speaking,
the user aims to achieve the least IndSD, while the cloud
provider aims to achieve the maximum PacSav. To meet the
two conflicting objectives while encouraging multi-tenancy for
GPU sharing in compute clusters, we propose three algorithms,
a⃝ one that balances IndSD and PacSav, b⃝ one that mini-

mizes IndSD, and finally, c⃝ one that maximizes PacSav. JRS
provides scheduling recommendations to the kube-scheduler
for the concurrent execution of two competitor jobs that would
satisfy the scheduler-level objectives. The recommended jobs

are scheduled through the K8s’ Argo workflow framework.
The scheduler-level objectives are defined as follows:

• Balancing between IndSD(j) and PacSav: Based on
the dynamic task interference analysis, JRS is equipped
with the relative rank of inter- and intra-cluster task
interference for IndSD(j) and PacSav, which is updated
post every concurrent execution. From the user’s perspec-
tive, minimizing IndSD(j) for training user-defined ML
job, j, remains the primary objective. Alongside, from
the cloud provider perspective, scheduling several jobs
concurrently on the same GPU would promote multi-
tenancy and provide room for optimal use of available
computing resources. Maximization of PacSav, through
concurrent training of n user-defined ML workloads,
while minimizing ∀j IndSD is the primary motivation of
the proposed algorithm. To meet the conflicting interests,
based on the relative ranking of inter- and intra-cluster
task interference analysis for IndSD(j) and PacSav, the
JRS recommends two competitor jobs that balance both
parties.

• Emphasizing IndSD(j): Ideally speaking, schedul-
ing every user-defined ML training job on a single
GPU would bring down IndSD(j) to zero. However,
that would incur significant computing costs for the
cloud providers. Multi-tenancy encourages concurrently
scheduling multiple training jobs on the same computing
resources. Thus, selecting the competitor job is essential
as the IndSD of the user-defined job j primarily de-
pends on it. Through the relative ranking of inter- and
intra-cluster task interference analysis, JRS intelligently
chooses competitor jobs that would minimize IndSD

for user-defined job j and recommend it to the kube-
scheduler to meet this scheduler-level objective.

• Emphasizing PacSav: Ideally speaking from a cloud
provider’s perspective, concurrently scheduling several
user-defined ML training jobs would help maximize
PacSav. However, the relative order for inter- and intra-
cluster task interference for packing saving has a high
variance. We propose scheduling jobs based on a bin-
packing strategy to negate high variance in PacSav

analysis. For every user-defined ML training job j, the
JP extracts Max.GPUutil and Max.GPUmemAlloc. We
propose to pack jobs from the job queue based on
Max.GPUutil, or Max.GPUmemAlloc for a given GPU,
till its full capacity. The rest of the jobs in the job queue
can be scheduled based on the relative inter- and intra-
cluster ranking of PacSav metric.

For each of the three scheduler-level objectives, to preserve
user privacy, we avoid taking into account any sensitive hyper-
parameters of the user-defined ML training task, j, like batch
size, epochs, the dataset used, and model architecture. These
are considered influential in analyzing the computing resource
requirements, thereby promoting a selection of the competitor
job to address the scheduling objective. Our design also
provides selection precedence for jobs with lower uncertainty
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Fig. 2. Quality of synthetic data generation for every ML workload, for varying batch size, for all three selected features, with respect to the interpolation
techniques. Technique that yielded the lowest RMSE was selected for synthetic data generation.

scores within a cluster. Moreover, we introduce controlled
randomized intra-cluster exploration by introducing an explo-
ration factor ϵ. ϵ represents the probability of negating the
precedence given to uncertainty score for scheduling decisions.
Our experimental evaluations show improvement in results
upon introducing ϵ.

III. EVALUATIONS

A. ML Workload Profiling

We profiled five ML training workloads from categories
of image classification, image segmentation, Reinforcement
Learning (RL), Generative Adversarial Networks (GAN), and
Natural Language Processing (NLP) domain. ML training
workloads on architectures of MobileNet [15], Efficient-
NetV2 [16], ResNet-50 [17], InceptionV3 [18], and Nasnet-
Mobile [19] on German Traffic Sign Recognition Benchmark
(GTSRB) dataset [20] were profiled for image classification.
We profiled ML training workload for image segmentation
on Oxford-IIIT Pet dataset [21] using MobileNet architec-
ture [15]. For generative models, we profiled Deep Convolu-
tional Generative Adversarial Network (DCGAN) [22] training
script on MNIST dataset [23]. For RL jobs, we trained a
deep Q-network model on OpenAI’s gym environment for
balancing the pole on a cart with all motions restricted to one

Fig. 3. Clustering of all ML workloads with respect to Max.GPUutil,
Max.GPUmemAlloc, and Max.GPUtimeAccMemPer . The black cross
represents the cluster center. Further a workload is from its assigned cluster
center, higher its associated uncertainty score.

dimension. For NLP models, we fine-tuned deep bidirectional
transformer BERT [24] models on the large IMDb movie
review dataset [25] for sentiment analysis.

Profiling was done on Google Pro platform [26], using
Weights and Biases [27], an MLOps tool, on Tesla T4 GPUs.
We collected sixty-six features ranging from model hyper-
parameters, CPU and GPU utilization, memory utilization,
disk usage, network configurations, kernel logs, and several
others. The comprehensive dataset, with forty-nine ML train-
ing workloads, and the training scripts are released publicly
on our GitHub repository [28].

B. Feature Selection

The chief limiting factor in allocating multiple ML train-
ing jobs on the same GPU within the compute clusters is
the maximum GPU utilization (Max.GPUutil) and maxi-
mum GPU memory allocation percent (Max.GPUmemAlloc).
Therefore, we performed feature selection on our target
variables through Pearson’s feature correlation metric and
feature extraction through random forests, ridge regression,
and lasso regression. The most significant predictor out of
the sixty-six features was maximum GPU time spent ac-
cessing memory percent (Max.GPUtimeAccMemPer). The
feature selection scripts are available publicly on our GitHub
repository [28]. A comprehensive view of the feature ranking
for Max.GPUmemoryAlloc over the feature selection methods
is available in our GitHub repository [28]. To meet the
scheduling level objectives, the JP profiles for Max.GPUutil,
Max.GPUmemAlloc, and Max.GPUtimeAccMemPer for ev-
ery user-defined ML training workload, ensuring a black-box
access to the same, which is forwarded to the KB for further
processing (assigning the job to a pre-existing cluster).

C. Generating Synthetic Workloads and Clustering

Synthetic Workload Generation: We amplify our
dataset five times with respect to the three selected
features, namely, Max.GPUutil, Max.GPUmemAlloc,
and Max.GPUtimeAccMemPer. Based on the proposed
methodology of synthetic workload generation as presented in
Section II, we generate synthetic data from the ground truth

10

Authorized licensed use limited to: Texas A M University. Downloaded on February 03,2025 at 22:15:41 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. The relative ranking of inter- and intra-cluster task interference for IndSD(j) and PacSav metrics. On the left, Intf.0(0,1) represents the interference
of a job from cluster 0 when concurrently scheduled with a job from cluster 1, on the same GPU. On the right, Intf.(0,1) represents the interference when
jobs from cluster 0 and 1 are concurrently scheduled on the same GPU.

Fig. 5. Results show the improvement in scheduler-level objectives for our three proposed designs, in comparison to the kube-scheduler making random or
First Come First Serve (FCFS) decision to promote multi-tenancy. Differential entropy reflects the uncertainty in the outcomes.

GTreal. To evaluate the quality of the synthetic samples, we
blind the ground truth. We attempt to re-generate the ground
truth using the generated synthetic data as the pseudo-ground
truth. The Root Mean Square Error (RMSE) between the
re-generated ground truth and ground truth helps us evaluate
the regeneration quality. Fig. 2 graphically represents the
RMSE for all the synthetic data generation techniques.

Clustering: We cluster the ML training workloads, GTreal,
and the synthetic samples through the unsupervised k-
means approach. Based on the elbow function and distortion
score of the k-means algorithm, featuring Max.GPUutil,
Max.GPUmemAlloc, and Max.GPUtimeAccMemPer, we
cluster the jobs into groups. Depending on the distance of the
job from its assigned cluster center, an uncertainty score is
assigned to the same. Fig. 3 shows the clustering results. The
KB contains a privacy-preserving record of all user-defined
ML training workloads. In online mode, based on the profiling
results from JP, a job is assigned to a pre-existing cluster in
KB along with an uncertainty score.

D. Task Interference Analysis

We ran extensive experiments to analyze the intra- and inter-
cluster task interference for various workloads on V100 GPU,
at Futurewei Technologies. We randomly select an array of
ML training workloads (from the list of workloads presented
in Section III A), profile them using JP, and cluster them with
an uncertainty score in the KB. Next, we schedule two ML jobs
concurrently on the same GPU via Argo workflow to analyze
the inter- and intra-cluster ML task interference on V100 GPU.
Table II accounts for the inter-cluster task interference results,

while Table III accounts for the intra-cluster task interference
results. We analyze interference with regards to our defined
metrics of IndSD(j) and PacSav. The relative ranking of
inter- and intra-cluster task interference is retained in the
JRS component. The relative ranking is updated dynamically
whenever a set of workloads completes concurrent execution
in the GPU. To meet scheduler-level objectives, the JRS
component recommends competitor jobs from the job queue
to the kube-scheduler for concurrent execution in the hardware
accelerators, scheduled via Argo workflow. Fig. 4 shows the
relative ranking of the clusters with respect to our defined task
interference metrics at a given time instance.

E. Recommendation Service for Scheduling ML Training Jobs

The JRS, which maintains the relative ranking for task inter-
ference, recommends the kube-scheduler for competitor jobs
from the user-defined jobs in queue to meet scheduler-level
objectives. We randomly select 24 ML training workloads,
along with introducing autoencoder models. Table I shows the
15 unique workloads, which are varied with respect to their
hyper-parameters to simulate the user-defined job queue at a
given instance of time. The JP profiles the job in the worker
node. The KB assigns these jobs to pre-existing cluster along
with an uncertainty score for each of them. The JRS, depend-
ing on the scheduler-level objectives, recommends competitor
jobs to the kube-scheduler. The kube-scheduler places them
in nodes, and the concurrent scheduling is facilitated by Argo
workflow.

• Balancing between IndSD(j) and PacSav: In com-
parison to the kube-scheduler taking a random or first-
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come-first-serve approach to promote multi-tenancy, de-
cisions influenced by our method are superior in terms
of IndSD(j) and PacSav, as reflected in Fig. 5(a). Table
VII shows the concurrent workloads used for performance
testing of our proposed design. Balancing out the con-
flicting goals in our proposed design is further boosted
by introducing ϵ.

• Emphasizing IndSD(j): In comparison to the kube-
scheduler taking a random or first-come-first-serve ap-
proach to promote multi-tenancy, decisions influenced by
our method minimize IndSD(j) by 3.79% and 2.29%
respectively, in terms of IndSD(j), as reflected in Fig.
5(c). Table IV shows the concurrent workloads used
for performance testing of our proposed design. Our
proposed design further minimizes IndSD(j) by 5.08%
by introducing ϵ.

• Maximizing PacSav: In comparison to the kube-
scheduler taking a random or first-come-first-serve ap-
proach to promote multi-tenancy, decisions influenced by
our method is 7.74% and 7.70% superior in terms of
PacSav respectively, for bin-packing via Max.GPUutil,
as reflected in Fig. 5(b). Tables V and VI show the
concurrent workloads used for performance testing of
our proposed design. Our proposed design is further
boosted to an improvement of 10.82% for bin-packing
via Max.GPUmemAlloc.

We also present the associated differential entropy to ac-
count for certainty in the outcomes’ certainty. A lower differ-
ential entropy is favourable.

IV. CONCLUSION

We design and test the performance of a fine-grain, on-
line, privacy-preserving job scheduler, built on top of Kuber-
netes, harnessing Argo workflow that promotes multi-tenancy
through intelligently selecting competitor jobs for concurrent
execution in every pod. The three scheduler-level objectives
caters to the interests of both the user and cloud providers, all
while preserving user privacy. In future work, we aim to work
upon exploring designs of bin packing algorithms to maximize
PacSav while further minimizing resource fragmentation on
hardware accelerators.

TABLE I
MACHINE LEARNING WORKLOADS FOR PERFORMANCE TESTING

Category Task ID ML Training Job
J1 MobileNet on GTSRB
J2 EfficientNetV2 on GTSRB

Image Classification J3 ResNet50 on GTSRB
J4 InceptionV3 on GTSRB
J5 NasneMobile on GTSRB

Image Segmentation J6 MobileNet on Oxford-IIIT Pet Dataset
Generative Adversarial Networks J7 DCGAN on MNIST

J8 De-noising Autoencoder on CIFAR-10
Autoencoders J9 De-noising Autoencoder on MNIST

J10 De-noising Autoencoder on F-MNIST
J11 Fine-tuning pre-trained Small BERT L2-H256-A4

model on IMDb movie review dataset
J12 Fine-tuning pre-trained Small BERT L2-H128-A2

model on IMDb movie review dataset
Natural Language Processing J13 Fine-tuning pre-trained Small BERT L2-H768-A12

model on IMDb movie review dataset
J14 Fine-tuning pre-trained Small BERT L4-H256-A4

model on IMDb movie review dataset
Reinforcement Learning J15 Cart-pole

TABLE II
INTER CLUSTER TASK INTERFERENCE FOR ML TRAINING WORKLOADS

Task Cluster Job Completion Individual Packing
ID Time (Secs) Slow Down Saving

MobileNet on GTSRB (BS=1024, Epoch=5)
+ 0, 1 260.71, 292.14 7.5%, 12.3% 41.8%

DCGAN on MNIST (BS=230, Epoch=20)
NasnetMobile on GTSRB (BS=409, Epoch=5)

+ 0, 1 268.26, 574.80 0.04%, 6.7% 28.6%
DCGAN on MNIST (BS=90, Epoch=20)

InceptionV3 on GTSRB (BS=20, Epoch=5)
+ 0, 1 317.16, 107.16 1.5%, 30.2% 19.6%

RL (BS=128, Epoch=5000)
NasnetMobile on GTSRB (BS=154, Epoch=5)

+ 0, 1 279.10, 270.72 1.1%, 2.2% 48.3%
Small BERT L2-H128-A2 (BS=256, Epoch=1)
NasnetMobile on GTSRB (BS=230, Epoch=5)

+ 0, 1 276.87, 383.06 4.8%, 12.4% 36.6%
DCGAN on MNIST (BS=180, Epoch=20)
MobileNet on GTSRB (BS=869, Epoch=5)

+ 0, 1 251.08, 392.68 5.8%, 3.1% 36.4%
DCGAN on MNIST (BS=154, Epoch=20)
Image Segmentation (BS=32, Epoch=20)

+ 0, 1 92.40, 104.88 11.4%, 14.6% 39.8%
RL (BS=205, Epoch=5000)

Image Segmentation (BS=8, Epoch=20)
+ 0, 1 163.06, 114.38 2.1%, 32.8% 33.6%

RL (BS=230, Epoch=5000)
MobileNet on GTSRB (BS=562, Epoch=5)

+ 0, 1 258.84, 93.50 7.1%, 8.2% 21.1%
RL (BS=180, Epoch=5000)

Image Segmentation (BS=70, Epoch=20)
+ 0, 1 92.18, 109.56 10.6%, 40.4% 32.0%

RL (BS=51, Epoch=5000)
MobileNet on GTSRB (BS=1024, Epoch=5)

+ 0, 2 253.99, 258.79 4.8%, 9.1% 43.3%
ResNet50 on GTSRB (BS=1024, Epoch=5)

NasnetMobile on GTSRB (BS=409, Epoch=5)
+ 0, 2 269.87, 275.58 1.0%, 8.4% 47.1%

InceptionV3 (BS=230, Epoch=5)
NasnetMobile on GTSRB (BS=154, Epoch=5)

+ 0, 2 285.18, 318.65 3.3%, 5.2% 44.9%
Small BERT L4-H512-A8 (BS=256, Epoch=1)
NasnetMobile on GTSRB (BS=230, Epoch=5)

+ 0, 2 287.42, 3766.11 8.8%, 37.6% 29.9%
EfficientNetV2 on GTSRB (BS=256, Epoch=5)

Image Segmentation (BS=32, Epoch=20)
+ 0, 2 118.16, 273.76 42.4%, 7.1% 19.1%

InceptionV3 on GTSRB (BS=409, Epoch=5)
InceptionV3 on GTSRB (BS=20, Epoch=5)

+ 0, 2 348.13, 319.64 11.4%, 5.7% 43.3%
Small BERT L2-H768-A12 (BS=256, Epoch=1)

MobileNet on GTSRB (BS=562, Epoch=5)
+ 0, 2 258.61, 318.69 6.9%, 15.7% 38.3%

EfficientNetV2 on GTSRB (BS=562, Epoch=5)
Image Segmentation(BS=8, Epoch=20)

+ 0, 2 175.99, 258.75 10.2%, 9.1% 34.7%
MobileNet on GTSRB (BS=869, Epoch=5)

EfficientNetV2 on GTSRB (BS=109, Epoch=5)
+ 0, 2 472.88, 410.05 58.1%, 56.8% 15.6%

ResNet50 on GTSRB (BS=154, Epoch=5)
Image Segmentation (BS=70, Epoch=20)

+ 0, 2 170.98, 291.21 105.1%, 12.7% 14.7%
ResNet-50 on GTSRB (BS=180, Epoch=5)
DCGAN on MNIST (BS=230, Epoch=20)

+ 1, 2 372.22, 406.37 43.1%, 35.8% 27.3%
EfficientNetV2 on GTSRB (BS=109, Epoch=5)

DCGAN on MNIST (BS=230, Epoch=20)
+ 1, 2 372.22, 406.37 43.1%, 35.8% 27.3%

EfficientNetV2 on GTSRB (BS=109, Epoch=5)
DCGAN on MNIST (BS=90, Epoch=20)

+ 1, 2 552.29, 306.56 2.6%, 1.2% 34.3%
Small BERT L4-H512-A8 (BS=256, Epoch=1)

DCGAN on MNIST (BS=180, Epoch=20)
+ 1, 2 446.90, 382.49 %31.1, 39.9% 27.2%

EfficientNetV2 on GTSRB (BS=256, Epoch=5)
Small BERT L2-H128-A2 (BS=256, Epoch=1)

+ 1, 2 296.76, 281.19 12.1%, 7.5% 43.5%
ResNet-50 on GTSRB (BS=154, Epoch=5)
DCGAN on MNIST (BS=154, Epoch=20)

+ 1, 2 425.46, 270.28 11.6%, 6.3% 33.0%
InceptionV3 on GTSRB (BS=230, Epoch=5)

RL (BS=180, Epoch=5000)
+ 1, 2 91.94, 303.74 6.4%, 0.5% 21.8%

Small BERT L2-H768-A12 (BS=256, Epoch=1)
RL (BS=128, Epoch=5000)

+ 1, 2 129.54, 287.80 57.3%, 4.5% 19.4%
EfficientNetV2 on GTSRB (BS=562, Epoch=5)

RL (BS=230, Epoch=5000)
+ 1, 2 130.56, 266.97 51.6%, 4.4% 21.8%

InceptionV3 on GTSRB (BS=409, Epoch=5)
RL (BS=205, Epoch=5000)

+ 1, 2 136.20, 280.88 48.8%, 7.2% 20.5%
Resnet-50 on GTSRB (BS=1024, Epoch=5)

RL (BS=51, Epoch=5000)
+ 1, 2 100.15, 273.06 28.3%, 5.7% 18.7%

ResNet-50 on GTRSB (BS=180, Epoch=5000)
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TABLE III
INTRA CLUSTER TASK INTERFERENCE FOR ML TRAINING WORKLOADS

Task Cluster Job Completion Individual Packing
ID Time (Secs) Slow Down Saving

MobileNet on GTSRB (BS=1024, Epoch=5)
+ 0, 0 253.81, 253.05 4.7%, 6.7% 47.1%

MobileNet on GTSRB (BS=869, Epoch=20)
MobileNet on GTSRB (BS=562, Epoch=5)

+ 0, 0 254.39, 182.70 5.2%, 14.5% 36.6%
Image Segmentation (BS=8, Epoch=20)

NasnetMobile on GTSRB (BS=409, Epoch=5)
+ 0, 0 270.65, 394.90 1.2%, 26.3% 31.8%

InceptionV3 on GTSRB (BS=20, Epoch=5)
NasnetMobile on GTSRB (BS=230, Epoch=5)

+ 0, 0 278.34, 99.59 5.4%, 20.0% 19.7%
Image Segmentation (BS=32, Epoch=20)

NasnetMobile on GTSRB (BS=154, Epoch=5)
+ 0, 0 322.51, 101.12 16.8%, 31.8% 8.5%

Image Segmentation (BS=109, Epoch=20)
Image Segmentation (BS=70, Epoch=20)

+ 0, 0 100.05, 287.07 20.1%, 7.6% 18.2%
NasnetMobile on GTSRB (BS=230, Epoch=5)

DCGAN on MNIST (BS=230, Epoch=20)
+ 1, 1 296.67,588.42 14.1%, 9.3% 26.2%

DCGAN on MNIST (BS=90, Epoch=20)
RL (BS=230, Epoch=5000)

+ 1, 1 112.62, 340.66 30.8%, 0.2% 19.9%
DCGAN on MNIST (BS=180, Epoch=20)

RL (BS=205, Epoch=5000)
+ 1, 1 92.61, 80.29 1.2%, 2.9% 45.3%

RL (BS=51, Epoch=5000)
DCGAN on MNIST (BS=154, Epoch=20)

+ 1, 1 372.88, 290.24 0.3%, 9.6% 40.8%
Small BERT L2-H128-A2 (BS=256, Epoch=1)

RL (BS=180, Epoch=5000)
+ 1, 1 84.26, 87.6 1.4%, 0.5% 48.1%

RL (BS=128, Epoch=5000)
EfficientNetV2 on GTSRB (BS=562, Epoch=5)

+ 2, 2 452.29, 424.10 64.3%, 61.9% 15.7%
ResNet-50 on GTSRB (BS=1024, Epoch=5)

EfficientNetV2 on GTSRB (BS=256, Epoch=5)
+ 2, 2 486.44, 526.50 77.9%, 76.1% 0.8%

EfficientNetV2 on GTSRB (BS=109, Epoch=5)
InceptionV3 on GTSRB (BS=409, Epoch=5)

+ 2, 2 286.54, 360.76 12.1%, 39.7% 29.7%
ResNet-50 on GTSRB (BS=180, Epoch=5)
ResNet-50 on GTSRB (BS=154, Epoch=5)

+ 2, 2 304.51, 357.79 16.4%, 18.1% 36.6%
Small BERT L4-H512-A8 (BS=256, Epoch=1)
InceptionV3 on GTSRB (BS=230, Epoch=5)

+ 2, 2 279.61, 328.48 9.9%, 8.7% 40.9%
Small BERT L2-H768-A12 (BS=256, Epoch=1)

TABLE IV
PERFORMANCE TESTING: MINIMIZING INDIVIDUAL SLOWDOWN, ϵ = 0.0

Task Cluster Dist. from JCT ISD PS
ID cluster center (Secs) (%) (%)

J11 (BS=256, Epoch=1)
+ 1, 1 133.07. 133.11 282.12, 292.51 0.2%, 3.9% 47.9%

J7 (BS=205, Epoch=20)
J7 (BS=109, Epoch=20)

+ 1, 1 135.99, 134.28 533.61, 383.31 14.3%, 19.0% 32.3%
J7 (BS=180, Epoch=20)
J12 (BS=256, Epoch=1)

+ 1, 1 150.17, 198.35 261.29, 80.41 0.4%, 8.7% 21.7%
J15 (BS=32, Epoch=5000)
J15 (BS=562, Epoch=5000)

+ 1, 1 208.97, 209.15 158.81, 188.69 3.1%, 0.7% 44.6%
J15 (BS=716, Epoch=5000)

J1 (BS=205, Epoch=5)
+ 0, 2 114.8, 122.85 287.27, 275.05 12.3%, 5.9% 44.2%

J4 (BS=409, Epoch=55)
J6 (BS=230, Epoch=20)

+ 0, 2 116.2, 140.82 135.11, 313.33 70.7%, 20.6% 7.5%
J3 (BS=230, Epoch=5)
J5 (BS=562, Epoch=5)

+ 0, 2 123.82, 169.33 304.29, 92.45 15.7%, 16.7% 11.0%
J6 (BS=716, Epoch=20)
J8 (BS=256, Epoch=50)

+ 0, 2 124.15, 207.51 136.90, 283.88 2.6%, 5.5% 29.4%
J14 (BS=256, Epoch=1)
J7 (BS=1024, Epoch=20)

+ 0, 2 125.03, 212.72 166.99, 354.50 41.4%, 28.6% 9.9%
J2 (BS=716, Epoch=5)

J8 (BS=1024, Epoch=50)
+ 0, 2 131.74, 234.35 120.77, 305.94 20.4%, 19.1% 14.3%

J4 (BS=869, Epoch=5)
J10 (BS=256, Epoch=50)

+ 0, 2 134.81, 237.52 98.08, 291.03 5.2%, 0.2% 24.1%
J13 (BS=256, Epoch=1)
J9 (BS=256, Epoch=50)

+ 0, 2 135.31, 245.53 128.12, 313.52 32.2%, 18.2% 13.3%
J3 (BS=1024, Epoch=5)

TABLE V
PERFORMANCE TESTING: MAXIMIZING PACKING SAVING. BIN PACKING

VIA PROPORTIONAL RESOURCE DISTRIBUTION ON Max.GPUutil ,
FOLLOWED BY JRS RECOMMENDATIONS BASED ON CLUSTERING.

Task Cluster Distance from Job Completion Individual Packing
ID cluster center Time (Secs) Slow Down Saving

J15(BS=716, Epoch=5000) 189, 1.5%
+

J15(BS=562, Epoch=5000) 167, 9.1%
+

J15(BS=32, Epoch=5000) 91, 24.6%
+ NA NA 70.1%

J12(BS=256, Epoch=1) 281, 8.1%
+

J11(BS=256, Epoch=1) 285 1.2%
J7(BS=205, Epoch=20)

+ 1, 1 133.11, 134.28 331.24, 329.24 17.7%, 2.5% 45.1%
J7(BS=180, Epoch=20)
J7(BS=109, Epoch=20)

+ 1, 2 135.99, 122.85 520.04, 265.64 11.3%, 2.3% 28.4%
J4(BS=409, Epoch=5)
J3(BS=230, Epoch=5)

+ 2, 2 140.82, 169.33 267.21, 82.14 2.9%, 3.7% 21.1%
J6(BS=716, Epoch=20)
J14(BS=256, Epoch=1)

+ 2, 2 207.51, 212.72 270.29, 287.93 0.4%, 4.4% 47.1%
J2(BS=716, Epoch=5)
J4(BS=869, Epoch=5)

+ 2, 2 234.35, 237.52 271.93, 313.96 5.8%, 8.1% 42.6%
J13(BS=256, Epoch=1)
J1(BS=205, Epoch=5)

+ 0, 0 114.8, 116.2 270.24, 99.97 5.6%, 26.3% 19.2%
J6(BS=230, Epoch=20)
J5(BS=562, Epoch=5)

+ 0, 0 123.82, 124.15 273.01, 167.45 3.8%, 25.5% 31.1%
J8(BS=256, Epoch=50)
J7(BS=1024, Epoch=50)

+ 0, 0 125.03, 131.74 160.54, 150.94 35.9%, 50.5% 26.4%
J8(BS=1024, Epoch=50)
J10(BS=256, Epoch=50)

+ 0, 0 134.81, 135.31 122.71, 123.64 26.7%, 32.7% 34.9%
J9(BS=256, Epoch=50)

TABLE VI
PERFORMANCE TESTING: MAXIMIZING PACKING SAVING. BIN PACKING
VIA PROPORTIONAL RESOURCE DISTRIBUTION ON Max.GPUmemAlloc ,

FOLLOWED BY JRS RECOMMENDATIONS BASED ON CLUSTERING.

Task Cluster Distance from Job Completion Individual Packing
ID cluster center Time (Secs) Slow Down Saving

J15 (BS=562, Epoch=5000) 248, 62.0%
+

J15 (BS=32, Epoch=5000) 214, 193.1%
+

J15 (BS=716, Epoch=5000) 257, 37.4%
+

J9 (BS=256, Epoch=50) 175, 80.4%
+

J10 (BS=256, Epoch=50) 167, 79.5%
+ NA NA 69.2%

J7 (BS=109, Epoch=20) 556, 19.3%
+

J7 (BS=180, Epoch=20) 365, 13.7%
+

J7 (BS=205, Epoch=20) 334, 18.8%
+

J8 (BS=256, Epoch=50) 187, 40.6%
J11 (BS=256, Epoch=1)

+ 1, 1 13.07, 150.17 262.92, 238.19 3.5%, 1.7% 46.1%
J12 (BS=256, Epoch=1)
J4 (BS=409, Epoch=5)

+ 2, 2 122.85, 140.33 264.50, 309.80 1.8%, 19.3% 40.3%
J3 (BS=230, Epoch=5)
J6 (BS=716, Epoch=20)

+ 2, 2 169.33, 207.51 81.51, 272.01 2.9%, 1.1% 21.8%
J14 (BS=256, Epoch=1)
J2 (BS=716, Epoch=5)

+ 2, 2 212.72, 234.35 278.90, 274.01 1.2%, 6.6% 47.6%
J4 (BS=869, Epoch=5)
J13 (BS=256, Epoch=1)

+ 2, 2 237.52, 245.53 295.13, 316.90 1.6%, 19.5% 42.9%
J3 (BS=1024, Epoch=5)
J1 (BS=205, Epoch=5)

+ 0, 0 114.8, 116.2 264.85, 82.37 3.5%, 4.1% 20.1%
J6 (BS=230, Epoch=20)
J5 (BS=562, Epoch=5)

+ 0, 0 123.82, 125.03 268.72, 121.72 2.2%, 3.1% 29.4%
J7 (BS=1024, Epoch=20)
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TABLE VII
PERFORMANCE TESTING: BALANCING IndSD(j) AND PacSav , ϵ = 0.0

Task Cluster Distance from Job Completion Individual Packing
ID cluster center Time (Secs) Slow Down Saving

J11 (BS=256, Epoch=1)
+ 1, 2 207.51, 122.85 288.91, 272.13 2.7%, 4.8% 46.5%

J4 (BS=409, Epoch=5)
J7 (BS=205, Epoch=20)

+ 1, 2 133.11, 140.82 394.69, 342.09 40.3%, 31.7% 27.03%
J3 (BS=230, Epoch=5)

J7 (BS=180, Epoch=20)
+ 1, 2 134.28, 169.33 361.85, 116.39 12.4%, 46.9% 9.7%

J6 (BS=716, Epoch=20)
J7 (BS=109, Epoch=20)

+ 1, 2 135.99, 207.51 482.97, 289.89 3.4%, 7.7% 34.3%
J14 (BS=256, Epoch=1)
J12(BS=256, Epoch=1)

+ 1, 2 150.17, 212.72 320.60, 316.84 23.2%, 14.9% 40.1%
J2 (BS=716, Epoch=5)

J15 (BS=32, Epoch=5000)
+ 1, 2 198.65, 234.25 107.81, 265.76 45.8%, 3.4% 19.6%

J4 (BS=869, Epoch=5)
J15 (BS=562, Epoch=5000)

+ 1, 2 208.97, 237.52 172.15, 293.24 11.8%, 0.96% 34.01%
J13 (BS=256, Epoch=1)

J15 (BS=716, Epoch=5000)
+ 1, 2 209.15, 245.53 256.16, 281.45 36.8%, 6.1% 37.7%

J3 (BS=1024, Epoch=5)
J1 (BS=205, Epoch=5)

+ 0, 0 114.8, 116.2 270.24, 99.97 5.6%, 26.3% 19.2%
J6 (BS=230, Epoch=20)
J5 (BS=562, Epoch=5)

+ 0, 0 123.82, 124.15 273.01, 167.45 3.8%, 25.5% 31.1%
J8 (BS=256, Epoch=50)
J7 (BS=1024, Epoch=20)

+ 0, 0 125.03, 131.74 160.54, 150.94 35.9%, 50.5% 26.4%
J8 (BS=1024, Epoch=50)
J7 (BS=256, Epoch=50)

+ 0, 0 135.31, 134.81 122.71, 123.64 26.7%, 32.7% 34.9%
J10 (BS=256, Epoch=50)
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