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Abstract

Video Question Answering (VideoQA) task serves as a critical playground for
evaluating whether foundation models can effectively perceive, understand, and
reason about dynamic real-world scenarios. However, existing Multimodal Large
Language Models (MLLMs) struggle with simultaneously modeling spatial rela-
tionships within video frames and understanding the causal dynamics of tempo-
ral evolution on complex and reasoning-intensive VideoQA task. In this work,
we equip MLLM with a comprehensive and extensible Video Toolkit, to en-
hance MLLM’s spatiotemporal reasoning capabilities and ensure the harmony
between the quantity and diversity of tools. To better control the tool invoca-
tion sequence and avoid toolchain shortcut issues, we propose a Spatiotemporal
Reasoning Framework (STAR) that strategically schedules temporal and spatial
tools, thereby progressively localizing the key area in the video. Our STAR
framework enhances GPT-4o using lightweight tools, achieving an 8.2% gain
on VideoMME and 4.6% on LongVideoBench. We believe that our proposed
Video Toolkit and STAR framework make an important step towards building
autonomous and intelligent video analysis assistants. The code is publicly available
athttps://github.com/fansunqi/VideoTool.

1 Introduction

“Man is a tool-using animal. Without tools he is nothing, with tools he is all.”

— Thomas Carlyle

The key to the VideoQA task lies in the model’s capacity to accurately perceive and reason over both
the temporal logic and spatial layout of video content. This renders VideoQA a compelling arena
for assessing whether foundation models can comprehend dynamic, multidimensional real-world
scenarios in a manner akin to human cognition. With the rapid development of Large Language
Models (LLMs), existing approaches to VideoQA can be broadly classified into two categories:
Video-centric Large Language Models (Video-LLMs) [2} [15, 150} 188, 193] and Tool-augmented Large
Language Models (Tool-augmented LLMs) [10} 82, [85]].

Video-LLMs, represented by Qwen-VL [2], are typically required to process a large number of video
frames, resulting in a redundant and inefficient pipeline. Tool-augmented LLMs, represented by
DoreamonGPT [82]], have several fundamental limitations: (1) Unidimensional tool utilization.
Existing tool-augmented large language models primarily focus on the use of tools along a single
dimension—either spatial or temporal, failing to simultaneously ensure the ability to model spatial
relationships within video frames and to understand the causal dynamics of temporal evolution. This
limitation hinders the model’s capacity for deep understanding and reasoning. (2) Unbalanced
number and diversity of tools. As we know, increasing the number of tools can help compensate for
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Figure 1: We categorize our toolkit into 3 types: spatial tools, temporal tools, and general tools. We
also compare 3 toolchain strategies: the toolchain shortcut, which shows the lowest efficiency in
tool utilization; the spatiotemporal-disentangled toolchain, which lacks mutual feedback between
spatial and temporal reasoning; and the spatiotemporal-interleaved toolchain, which achieves the best
accuracy and frame efficiency. We attribute this to its progressive localization of the 3D Region of
Interest (3D Rol). See Section szl for details.

many of the limitations present in LLMs. However, simply increasing the number of tools introduces
various issues during execution, largely due to the inherent uncertainty of LLMs. (3) Insufficient
tool scheduling strategy. The lack of an effective scheduling mechanism may lead to disordered
tool invocation, which negatively affects the efficiency and accuracy of model reasoning.

To address the aforementioned limitations of Tool-augmented LLMs in previous works, we propose a
new Video Toolkit to enhance MLLMs for VideoQA task. For example, by introducing tools with
spatial localization capabilities—such as a lightweight object detection model [7], and combining
them with basic operations like zooming and image cropping, we can effectively compensate for the
shortcomings of MLLMs in spatial localization, thereby improving the accuracy of the VideoQA task.
Additionally, tools can help filter out unimportant regions in both temporal and spatial dimensions,
reducing the computational cost of image processing significantly.

Building on this video toolkit, we propose an iterative Spatiotemporal Reasoning Framework (STAR)
to address the issues of insufficient strategy scheduling and avoid toolchain shortcut. The idea of this
framework is to alternately narrow the scope along the temporal and spatial dimensions to locate
the key regions that support the answer to the question. We refer to these regions as 3D Regions of
Interest (3D Rols). As shown in Figure[I] STAR generates spatiotemporal-interleaved toolchains,
which facilitate the progressive localization of the 3D Rol to support question answering. STAR
framework has the following features: (1) Autonomy. The LLM autonomously invokes tools within
the framework. (2) Adaptivity. The framework dynamically adjust the tool invocation strategy
based on the video’s length, content, and the characteristics of the question. (3) Progressiveness.
The framework progressively processes image frames, starting with a small number and gradually
expanding as needed.

Overall, our contributions are as follows:

e We build a comprehensive toolkit specifically designed for video analysis to enhance spatiotemporal
reasoning capabilities as well as ensure the harmony between the quantity and diversity of tools,
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which includes 22 different tools covering a wide range of functionalities. All tools are plug-and-play,
making this Video Toolkit highly extensible and easy to expand.

e We propose a novel reasoning framework named STAR that enables LLM to alternately invoke
temporal and spatial tools. STAR facilitates stepwise visual reasoning by adapting to intermediate
tool results, progressively narrowing down essential information to solve the problem.

e Through extensive experiments across multiple VideoQA benchmarks, we demonstrate that aug-
menting GPT-4o with lightweight Video Toolkit, results in an 8.2% gain on VideoMME [[12] and
4.6% on LongVideoBench [77]]. It also outperforms the current leading 7B Video-LLMs shown in
Figure[2(a)] We also show that STAR has stronger scalability shown in Figure 2(b)]

2 Related Work

2.1 Video Question Answering

Video Question Answering (VideoQA) requires machines to answer questions based on videos.
Driven by growing demands from real-world applications, the research community has progressively
developed more sophisticated benchmarks [12} (18l 19 30} 44, [54} [57. [64. [77, (78}, [02], featuring longer
videos and richer spatial and temporal dependencies. The emergence of transformer architectures has
advanced video question answering through cross-modal pretraining and spatiotemporal modeling [4]
[39] [91]]. Recent advances in Video-LLMs [2| 5] 140, [93]] have
enabled open-ended video question answering by integrating LLMs with video encoders. Additionally,
LLMs are used to reason across the temporal dimension and select keyframes adaptively for video
understanding [20} [75], 1811, 185}, [89]]. Some other works [36, 51}, (61, [86] improve
computational efficiency by first using lightweight network modules to extract keyframes. [3} 1]
builds scenes or event graphs to enable stepwise video understanding.

2.2 Tool Learning

Tool learning has emerged as a promising direction to enhance (M)LLMs by equipping them with the
ability to invoke external tools. Early works focus on augmenting LLMs with API calling capabilities
to perform tasks beyond their parametric knowledge, such as computation, web search, and code
execution [43] [83] 33 [34]]. Integrating tools with LLMs also boosts their reasoning abilities,
especially when multiple tools are combined in sequence to solve complex tasks [13} 27, [43]]. Some
works fine-tune LLMs for tool use, while others integrate tools in a plug-and-play manner without
extra training. The order of tool invocation is crucial, and researchers have built large-scale tool
network datasets [52} 58] to study how to better orchestrate sequential tool calls. Tool-augmented
LLMs have also been applied to solve various tasks in computer vision by invoking specialized visual
tools [14] 21, 23] 35 [65]. While most existing studies focus on image-based applications, a
growing number of works [8], have explored video understanding through tool and



visual program augmentation. DoraemonGPT [82] relies on text-to-SQL queries over an intermediate
database containing tools’ outputs, which often fail and thus hurt both accuracy and efficiency. In
contrast, our STAR framework circumvents this issue with a more reliable tool execution pipeline.

3 Method

3.1 Video Toolkit Construction

In this section, we first describe the design principles and construction process of the proposed Video
Toolkit. The design of the Video Toolkit is guided by the following principles. (1) Video processing
tasks naturally decompose into temporal and spatial dimensions. Accordingly, the Video Toolkit
incorporates three types of tools: temporal, spatial, and general-purpose. (2) Video Toolkit should
integrate a wide range of computer vision results through natural language interface. For example,
how can outputs such as bounding boxes from object detection be integrated into natural language to
assist in question answering? (3) In the temporal dimension, the Video Toolkit should support both
segment-level and frame-level processing, enabling analysis of video segments as well as individual
frames. Following these three design goals, we developed a comprehensive Video Toolkit consisting
of about 22 video analysis tools. The full list of tools and implementation details are provided in
Appendix Section[A] Some of these tools are based on lightweight and specialized models, while
others are simple image and video manipulations (e.g., the Patch Zoomer, which can zoom in or out
on image regions). Additionally, to fully exploit the potential of MLLMs, we encapsulate several
effective prompting pipelines as tools (e.g. iterative prompting MLLM for open-vocabulary action
localization [67]). Below, we present two representative tools.

Object Detection and Bounding Box Utilization. Spatially, one of the most commonly used
tools is object detection tool. To support different usage scenarios, we implemented two versions
of object detection tool based on YOLO [7]] and Grounding DINO [38]], respectively. A typical
tool chain involving object detection tool proceeds as follows: the LLM analyzes the question to
determine the target object, which is then detected in the image using YOLO or Grounding DINO,
yielding a set of Bounding Boxes (bboxes). We further implement three ways to utilize the resulting
bboxes: (1) Converting the bboxes into textual descriptions and feeding them back to the LLM. (2)
Using the Patch Zoomer tool to enlarge the regions within the bboxes. (3) Following Set-of-Mark
Prompting [80], we overlay the bbox regions with visual markers to highlight them before passing
the image back to the MLLM for further visual reasoning.

Frame Selector for Temporal Navigation. Temporally, the core tool is the Frame Selector, which
is based on an LLM. It selects informative frames while discarding irrelevant ones based on the
question and accumulated information. Initially, the Frame Selector collects sparsely and uniformly
sampled frames. As more information is gathered through the use of other tools, we instruct the
LLM to imagine the full video and reason about which temporal segments are most relevant to
answering the question. The Frame Selector can output a single key frame, in which case the tool
chain typically proceeds with spatial tools designed for image-level processing; it can also call a
video trimming tool to extract segment-level video clips for subdivision. We also integrate several
efficient (M)LLM-based keyframe selection pipelines. For example, AKeyS [9] considers both the
question and scene transitions, and selects keyframes using an A*-based search strategy. Another
example is 7™ [85]], which arranges multiple frames into an image grid and feeds it into the MLLM
for selection.

Following Octotools [42]], our Video Toolkit employs standardized tool cards to encapsulate each
tool’s functionality. All tools are designed to be plug-and-play, ensuring high extensibility and ease
of integration.

3.2 Spatiotemporal Reasoning Framework

By augmenting (M)LLM with Video Toolkit, we propose STAR, a training-free, user-friendly, and
extensible agentic and reasoning framework for streamlining VideoQA task across diverse domains.

Toolchain Shortcut. Our initial design allows the core LLM Planner to autonomously select tools
from the entire toolkit and fully control the sequence of tool invocations (i.e., the toolchain [94]).
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Figure 2: Visualization of our video toolkit, tool cards, and visible frame dictionary. Demonstration
of the STAR pipeline. In this case, the LLM planner sequentially invokes five tools—temporal
grounding, image captioning, frame selection, OCR, and summarization—to solve the problem.

Following the ReAct [83]] agent framework, the LLM Planner makes an observation based on each
tool invocation’s results. The LLM Planner then generate a thought based on the observation, which
decides the selection of the next tool to invoke or whether enough information has been gathered to
answer the question. However, this loosely constrained and overly flexible design can sometimes
lead to Toolchain Shortcut problem. We define Toolchain Shortcut as a phenomenon where the
LLM Planner takes shortcuts by favoring single-step tools to directly answer the question, rather
than progressively decomposing the problem and constructing a longer, step-by-step toolchain for
reasoning. In our VideoQA task, toolchain shortcut manifests when the LLM Planner directly
invokes a general-purpose tool (e.g., a video-language model) to answer the question, bypassing our
intended strategy of progressively breaking down the problem. Our ablation study .2 offers a detailed
examination of how Toolchain Shortcut affects both the accuracy and computational efficiency of the
system.

STAR Algorithm To address Toolchain Shortcut problem, we impose a constraint on the toolchain:
temporal and spatial tools must be invoked in an alternating manner, and general tools can only be
called as a last resort when temporal and spatial tools alone are insufficient to answer the question.
The initial tool can be either temporal or spatial, depending on the task. We also maintain a Visible
Frame Dictionary V', where the keys are the indices of visible frames and the values are information
gathered by various tools for each frame. At initialization, we populate this dictionary with a sparse
set of uniformly sampled video frames, which initially contain no additional information. We then
start the tool calling process, where temporal tools are responsible for selecting the frame indices to
be processed—which can be a single frame, a continuous segment, or a set of discrete frames—and
updating the visible frame dictionary by adding or removing frame indices as needed.

Spatial tools are responsible for processing the frames specified by the temporal tools and updating
the corresponding values in the Visible Frame Dictionary V for the respective frame indices. At
each step, the core LLM Planner decides whether the information in the Visible Frame Dictionary
is sufficient to answer the question. If not, it determines which tool to invoke next. If the first tool
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Figure 3: Diverse tool usage distribution on
VideoMME, showcasing a wide range of tools
being actively utilized.

invoked is a temporal tool, the LLM Planner will select tools from the temporal toolset at every odd
step, and from the spatial toolset at every even step; the process works in reverse if the first tool is
spatial. If the LLM Planner determines that neither temporal nor spatial tools can resolve the issue, it
will resort to general tools to solve the problem. We conclude this algorithmic procedure in Figure 2]
and Algorithm[I] We also visualize the percentage distribution of tool usage on the VideoMME [12]
dataset in Figure 3] showing that our tools are utilized in a well-balanced way, with no tool being
excessively favored or underused.

Why spatiotemporal interleave? Spatiotemporal tool interleaving ensures that, after temporal
tools narrow the time range, spatial tools can further refine the spatial range. The results from spatial
tools, in turn, influence the subsequent use of temporal tools, ensuring that the understanding of
time and space is complementary. If time and space were decoupled, with time being progressively
narrowed first and then space, without information transfer between the two, it would lead to a decline
in both the accuracy and efficiency of video understanding, as demonstrated in our ablation study {.2]

How STAR mitigates the limitations of MLLMs in spatiotemporal reasoning? STAR frame-
work mitigates the spatiotemporal reasoning limitations of MLLMs mainly in two ways. (1) Spe-
cialized tools can generate more accurate outputs than MLLMs for specific tasks. For example, in a
video with heavy pedestrian traffic, a Video-LLM often struggles with estimating the total number of
unique individuals. In contrast, when the LLM invokes object tracking and person re-identification
tools, the accuracy can be significantly improved. (2) Even when tools cannot directly produce
definitive answers, the STAR framework progressively narrows down the temporal and spatial scope
to localize the question-relevant 3D Region of Interest (3D Rol). In video analysis, a 3D Rol refers
to a specific subset of the video defined across both spatial (height and width) and temporal (time)
dimensions. By narrowing down and focusing on 3D Rol, STAR reduces irrelevant content and
minimizes interference. Similar to how chain-of-thought prompting [76]] elicits deliberate, system II
reasoning [41] in complex reasoning tasks, our tool-augmented spatiotemporal reasoning framework
also encourages such deliberate visual thinking, leading to improved accuracy and computational
efficiency in complex video question answering scenarios.

4 Experiments

We evaluate our method on four widely used VideoQA datasets: VideoMME [12], NExT-QA [78]],
LongVideoBench [77]], and EgoSchema [44]]. These datasets cover diverse video lengths (ranging



Table 1: Results on VideoMME. We highlight the best results for each method category in bold, and
mark our improvements over GPT-4o in blue.

Model Size Frames | Runtime |  Short1T Medium1 Long T All 1
Proprietary Image-based MLLMs
GPT-40 [50] - 1 fps /384 > 10 min 80.0 70.3 65.3 71.9
GPT-40 - 32 <30s 68.3 60.7 56.3 61.8
GPT-40 + T [85] - 32 30s -1 min 69.5 63.5 59.3 64.1
GPT-4v [49] - 10 <30s 70.5 55.8 53.5 60.0
Gemini 1.5 Pro [15] - 0.5/1 fps > 10 min 81.7 74.3 67.4 75.0
Claude 3.5 Sonnet [[1] - 20 <30s 71.0 574 51.2 60.9
Open-source Video-LLMs
Qwen2-VL [70] 72B 2 fps/768 6 min - 8 min 80.1 71.3 62.2 71.2
Qwen2-VL 7B - - - - - 63.3
Qwen2.5-VL [2] 7B - - - - - 65.1
InternVL2.5 [6] 8B 64 <30s - - - 64.2
InternVL3 [93] 8B 64 <30s - - - 66.3
VideoLLaMA3 [88] 7B 180 30s-60s 80.1 63.7 54.9 66.2
mPLUG-Ow13 [84] 7B 128 30s-60s 70.0 57.7 50.1 59.3
STAR (ours) - 30.2 158s 78.9 68.3 629  70.08.21)

Table 2: Results on LongVideoBench Validation Set. We highlight the best results for each method
category in bold, and mark our improvements over GPT-4o0 in blue.

Model Params Frames | Runtime | 8s- 15s-  180s- 900s- All 1
1557 60s1 600s T 3600s

Proprietary Image-based MLLMs

GPT-4o [50] - 256 > 10 min 71.6 76.8 66.7 61.6 66.7

GPT-40 - 32 <30s 60.7 624 50.1 49.0 52.6

Gemini 1.5 Pro [15] - 256 > 10 min - - - - 64.0
Open-source Video-LLMs (~7B)

Qwen2.5-VL 7B 1fps/512 1min-3min 59.0 65.6 529 48.8 53.7

InternVL3 8B 256 I min-3min 547 66.9 46.1 44.0 48.9

STAR - 29.6 153s 63.6 68.0 56.8 52.3 57.2(4.671)

from a few seconds to several hours), video types and question types, enabling a comprehensive
comparison between our approach and baseline methods. Introductions of these datasets are provided
in Appendix [B] We primarily compare our method against the following four categories of baselines:
(1) image-based MLLMs, (2) Video-LLMs, (3) (M)LLM-based frame selection methods, and (4)
LLM-driven tool learning methods. Detailed introductions of these baselines can be found in
Appendix |C} We use multiple-choice QA accuracy to measure performance, and use the number of
processed frames and runtime (the average time to answer a question under identical conditions) to
measure computational efficiency.

To accommodate different computational budgets and compare fairly, we design two variants of our
framework depending on whether the full video toolkit is used: STAR and STAR-MINI. STAR
is the full version, employing tools based on open-source models with up to 3B parameters (e.g.,
QwenVL-2.5-3B [2]) and using GPT-40-2024-08-06 [50] APIs. Following previous baseline [9],
It uses the same version GPT-4o as its LLM Planner. STAR-MINI excludes any tools larger than
500M parameters; its largest tool is a S00M-parameter BLIP [28]). It also avoids any tools that require
GPT-40 APIs. Following previous baseline [82], It uses the same version GPT-3.5-turbo-0125 [4§]]
as its LLM Planner. Our STAR framework can run on one NVIDIA RTX 4090 GPU, while the
variant STAR-MINT framework can run on a personal computer like MAC. For videos longer than
16 seconds, we extract 16 initial frames uniformly; for videos with a duration of 16 seconds or less,
initial frames are extracted at a rate of 1 fps.



Table 3: Results on NExT-QA Test Set. We highlight the best results for each method category in
bold, and mark our improvements over the best baseline T in blue.

Method Base Model Frames| Cau.! Tem.?T Des. T All 1
Open-source Video-LLMs (~7B)
InternVL3-8B [93] - 8 71.5 72.1 77.1 75.7
Qwen2.5-VL-7B [2] - 2 fps 80.6 79.3 85.5 80.9
(M)LLM-based Frame Selection Methods
VideoAgent [71] GPT-4 8.2 64.5 72.7 81.1 71.3
VideoTree [[75] GPT-4 63.2 70.6 76.5 83.9 75.6
LVNet [51] GPT-40 12 65.5 75.0 81.5 72.9
VidF4 [36] - 8 69.6 74.2 83.3 74.1
AKeysS [9] GPT-40 7.6 72.9 79.0 86.1 78.1
Detector-based T [85] GPT-40 8 - - - 80.4
STAR (ours) GPT-40 7.2 81.1 81.5 863 821(1.27)

Table 4: Results on NExT-QA Validation Set. We highlight the best results for each method category
in bold, and mark our improvements over the best baseline DoraemonGPT [82] in blue.

Method Base Model Frames | #LLMcalls| Cau.?T Tem.T Des.T All
LLM-driven Tool Learning Methods

ViperGPT [60] GPT-3 Codex - - 432 41.0 62.3 45.5

VideoChat [29] - - - 50.2 47.0 65.7 51.8

DoraemonGPT [82] GPT-3.5-turbo  28.7 fps/ 1144.4 8.5 54.7 50.4 70.3 55.7

STAR-MINI (ours)  GPT-3.5-turbo 0.6 fps / 22.6 54@3.1)) 62.8 55.1 737  62.0(6.37)

4.1 Main Results
4.1.1 Results on VideoMME

As shown in Table[T] with the nearly same number of input frames, our method achieves an 8.2%
improvement over GPT-4o [50]. Meanwhile, our method significantly outperforms all open-source
Video-LLMs around 7B scale (achieving a 3.7% improvement over the best-performing InternVL3-
8B), and approaches the performance of open-source Video-LLMs around 72B scale. Moreover,
in terms of efficiency, our method substantially reduces the number of video frames required for
processing. Compared to the 72B Qwen2-VL, our method achieves a substantial speedup, reducing
runtime from 68 minutes to 15.8 seconds. We reproduce GPT-4o0 with 32 input frames and other
baseline results in Table[I]come from the official leaderboard and technical reports.

4.1.2 Results on LongVideoBench

As shown in Table Q with the nearly same number of input frames, our method achieves a 4.6%
improvement over GPT-40. Meanwhile, our STAR framework outperforms both Qwen2.5-VL-7B
and InternVL3-8B by a large margin, particularly in the long (180-600 s) and extra-long (900-3600
s) parts. This demonstrates that our method is more effective than the current 7B Video-LLMs
at identifying key information from long videos. Moreover, the STAR framework substantially
reduces both the number of processed frames and runtime, leading to lower computational cost. We
reproduce GPT-40’s results with 32 input frames using no subtitle information. We also reproduce
the performance of Qwen2.5-VL-7B and InternVL3-8B on the validation set without using subtitle
information for comparison. Results of Gemini and GPT-40 with 256 input frames are taken from the
official leaderboard. Their use of subtitle information is one of the key reasons why they outperform
the STAR framework. STAR currently focuses solely on the video content; we consider better
integration of subtitle and audio information as future work.

4.1.3 Results on NExT-QA

As shown in Table[3] STAR achieves the highest accuracy while using the fewest frames, outper-
forming both 7B Video-LLMs and all (M)LLM-based frame selection methods. It attains over 80%



Table 5: Ablation on Different Methods to Generate Toolchain

Methods Accuracy T Num of Frames | Toolchain Length ¢ Num of Tools 1
No Constraints 61.2 112.6 2.9 1.3
Prompting 60.4 98.7 3.6 1.9
In-Context Learning 63.2 50.1 5.4 32
Spatiotemporal Disentanglement 68.6 40.6 5.6 34
STAR 70.0 (1.4 1) 30.2 (104 ) 87@3.17) 631297

accuracy across all three question categories—causal, temporal, and descriptive—demonstrating its
effectiveness across diverse question types. The performance of open-source Video-LLMs is our
own reproduction, and the results of (M)LLM-based frame selection methods are reported from their
original papers. And in Table[d] on the NExT-QA validation set, STAR-MINI outperforms Dorae-
monGPT [82] by 6.3% in accuracy, demonstrating the superiority of the spatiotemporal interleaving
tool invocation strategy. All the results of LLM-driven tool learning methods are reported from their
original papers.

4.2 Ablation Studies

Ablation on Toolchain Besides the STAR framework, we also explore the following strategies
to control the tool invocation order. (1) No Constraints: The LLM Planner has no restrictions; all
tool information is provided in tool cards, and the planner autonomously selects tools according to
the question and the tool cards. In practice, this often leads to the problem of Toolchain Shortcut.
(2) Prompting: Inspired by chain-of-thought prompting [[76], we instruct the LLM Planner to invoke
longer and more complex toolchains, solving the problem step by step. (3) In-Context Learning: We
provide manually annotated examples with long toolchains, leveraging the LLM’s in-context learning
ability to imitate and generate more complex tool sequences. (4) Spatiotemporal Disentanglement:
The LLM Planner is guided to first invoke one or more temporal tools to narrow the temporal scope,
followed by one or more spatial tools to refine the spatial scope, and finally either directly generate
the answer or optionally call general tools before answering.

We conducted experiments on VideoMME [[12] to compare these strategies in Table [5] The No
Constraints method results in overly short toolchains and repetitive tool usage, leading to exces-
sive frame processing and high computational costs. The Prompting method has only marginal
improvements over the No Constraints method, indicating that prompt-based control alone is in-
sufficient. The In-Context Learning method provides stronger control compared to the Prompting
method, significantly reducing the number of frames processed and increasing toolchain length.
However, it still falls short in terms of accuracy. Both Spatiotemporal Disentanglement and STAR
framework impose explicit constraints on the LLM Planner by directly controlling the toolchain
structure. Among them, the spatiotemporal-interleaved STAR achieves the best accuracy and frame
efficiency, benefiting from longer, more diverse toolchains. We mark STAR’s improvements over the
second-best Spatiotemporal Disentanglement method in blue.

More Ablations and Analysis We also conducted ablation study on each tool, showing that each
tool contributes positively to the overall performance in Appendix Section[D} Additionally, Appendix
Section [E]examines the impact of varying frame numbers on the performance of the STAR framework,
while Appendix Section [F investigates the effects of different LLM Planners on its performance.
For more in-depth analysis, we verified whether the STAR framework promotes a balanced and
comprehensive use of tools, as presented in Appendix Section|[G] We also conduct more case studies
in Appendix Section [[Jand summarize the failure cases in Appendix Section [H]

5 Conclusion

In this work, we equip (M)LLMs with a carefully designed and comprehensive video toolkit to
compensate for the temporal and spatial reasoning limitations of MLLMs, streamlining the VideoQA
task. To better control tool invocation, we propose a Spatiotemporal Reasoning framework (STAR),
which alternately calls temporal and spatial tools to progressively localize the 3D Rol, thereby
improving accuracy and reducing computational cost. We conduct extensive experiments on four



widely used VideoQA datasets. Our STAR framework, built with lightweight models of fewer than
3B parameters, significantly boosts GPT-40’s ability in video understanding and reasoning, and
consistently outperforms related baselines in accuracy and efficiency.

Our main limitation lies in that STAR framework still relies on the capabilities of OpenAl GPT
models, which can lead to certain API costs due to repeated invocations. In future work, we plan
to explore replacing GPT-40 planner with more lightweight models and investigate techniques to
better integrate tool usage into the reasoning process of the planner. Nevertheless, we believe that our
proposed Video Toolkit and STAR framework make an important step towards building autonomous
and intelligent video analysis assistants.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our work in the Conclusion part (Section [3)):
"Our main limitation lies in the fact that the full STAR framework still partially relies on the
visual capabilities of GPT-40, which may incur certain API costs."

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided all necessary details in the paper to reproduce the main ex-
perimental results, including descriptions of the algorithm, framework design, datasets used,
and evaluation protocols. Additionally, we will release our complete method implementation
along with baseline reproduction scripts after publication, ensuring full reproducibility of
our results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the code in compliance with the requirements, along with
sufficient instructions to reproduce the main experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The core experimental settings are presented in the main text, while additional
implementation details are included in the appendix and will be made fully available through
the released code.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
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Justification: In our experiments, we fixed three arbitrary random seeds and reported the
averaged results. We observed that randomness had negligible impact on the outcomes.
Additionally, the responses from the proprietary (M)LLM were stored and reused. Therefore,
we consider our experiments to be stable and reproducible, with no significant sources of
variability to report.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the main text, we specify the type of compute resources used: "Our STAR
framework can run on the NVIDIA RTX 4090 GPU, while the STAR-MINI framework can
run on personal computers”. The amount of compute required for each individual experiment
varies depending on the number of videos and the available resources. No compute resources
beyond those reported in the paper were used for the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:
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¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is not directly tied to any specific application or deployment. As
such, there are no immediate societal impacts addressed in this paper. We acknowledge
that while our methods may have potential future applications, the current research does not
involve any direct societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve the release of models or datasets with high risks of
misuse. However, we acknowledge that future work might involve the release of models
or datasets, and we would ensure necessary safeguards are put in place, such as requiring
usage guidelines, access restrictions, or safety filters.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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12.

13.

14.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: In our paper, we have properly cited the original papers that provided the code

packages and datasets used in our work. We have also ensured that the licenses and terms of
use for these assets are fully respected.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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15.

16.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our paper does not involve the use of large language models (LLMs) in any
important, original, or non-standard component of the core methods.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix
A Tool Detail

A.1 Temporal Tools

Frame Selector Refer to Section [3.1]of the main text. Specifically, we implement 3 variants of the
frame selector for different computational resources.

* Vanilla version: The frame selector is an LLM that takes as input the IDs and textual
descriptions of all visible frames, such as captions generated by an image captioner. It
outputs the selected frame IDs. The prompt is directly instructing the LLM to select relevant
frames.

» AKeyS-inspired version: This variant shares the same input and output format as the Vanilla
version but employs specially designed prompts [9] to encourage the LLM to consider task
goals and scene transition.

* T*-inspired version: In this case, the frame selector is an MLLM, and its input additionally
includes the actual images of visible frames. These images are further arranged into an
image grid to facilitate selection [85]. The output remains the same.

The selected frame IDs produced by the frame selector are subsequently added to the Visible Frame
Dictionary.

Temporal Grounding Tool We adopt the most lightweight version of Grounded-VideoLLM [68]]
(with approximately 4B parameters), which augments the language model with temporal tokens and
is trained on a large corpus of temporally annotated video-text pairs. Given an event description, the
tool predicts its temporal span in the video.

Temporal Referring Tool For temporal referring, we use the same model as in temporal grounding,
but with a different input-output format. Instead of grounding a described event in time, the tool takes
a temporal span as input and generates a textual description of the visual content within that interval.

Video Trimmer Video Trimmer is a Python-based tool to trim the video along the temporal axis
based on a temporal span.

Action Localization Tool We implement an action localization tool based on the method proposed
in [66]. The core idea is to organize the video into an image grid and feed it into GPT-40 [50], which
then identifies the frame indices corresponding to a specified action.

A.2 Spatial Tools

Object Detector Refer to Section[3.1] of the main text.

Bbox Marker Following Set-of-Mark [80], we annotate the 2D Regions of Interest (Rols) on
corresponding frames, which enhances the effectiveness of visual question answering by MLLMs
such as GPT-4o.

Image Captioner We employ three Vision-Language Models (VLMs) of different scales to perform
the image captioning task: BLIP2 (about 1B parameters), LLaVA (about 7B parameters), and GPT-4o.
The input to this tool is individual video frames, and the output is a textual description of each frame.
These descriptions are stored and maintained in the Visible Frame Dictionary.

Image QA Tool We use the same models as those in the image captioning tool, but the input now
consists of images paired with corresponding questions, and the output is textual answers. These
answers are stored and maintained in the Visible Frame Dictionary.

Text Detector We use an off-the-shelf OCR tool to recognize text in video frames.
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Relevant Patch Zoomer Following Octotools [42], this tool is used to enlarge the Rol in an image
and crop out irrelevant areas before further processing.

Semantic Segmentation Tool We use Grounded-SAM [55] model for semantic segmentation.

A.3 Tools that can be regarded as both temporal and spatial tools.

Google Search When faced with questions that exceed its internal world knowledge, the LLM
Planner can invoke the Google Search API to retrieve relevant external information, thereby enabling
knowledge-enhanced VideoQA.

Object Identifier Inspired by 7™ [83]], this tool is designed to identify key objects mentioned in
the question, serving as a preparatory step for subsequent object detection and tracking operations.

Action Recognition Tool Action recognition involves understanding both the temporal dynamics
and spatial cues of a video. We implement our action recognition tool based on MMAction [47],
enabling the identification of target actions within the video.

Image Grid QA Tool Following [85], we organize the visible frames of the video into an image
grid, which is then treated as a single image for subsequent image question answering.

Multiple Image QA Tool Instead of creating an image grid, we feed the visible video frames
sequentially as individual images into the MLLM model for question answering.

Python Code Generator This tool can generate and excute any Python code to manipulate videos.

Object Tracker The object tracker can track specified objects in videos and includes person
re-identification function. Our implementation is based on Ultralytics [[63]].

Video Summarizer This tool employ a video-language model (Qwen2.5-VL-3B [2]) to perform
captioning or summarization over the entire video, generating textual descriptions or summarizations.

A.4 General-Purpose Tools

Text Summarizer The textual outputs from each tool are maintained in the Visible Frame Dictionary
for the corresponding frames. This tool is responsible for summarizing the information and attempting
to answer the question.

Video QA Tool This tool leverages a video-language model (Qwen2.5-VL-3B [2]) to directly
perform video question answering, generating answers based on the input question and video content.

B Datasets

VideoMME VideoMME [12] is the most widely adopted benchmark for evaluating video anal-
ysis capabilities. It is a test-only dataset, containing 2,700 multiple-choice VideoQA examples.
VideoMME is known for its diversity and comprehensive coverage across video lengths, video do-
mains, and question types. In terms of length, the dataset categorizes videos into short (<2 minutes),
medium (4-15 minutes), and long (30-60 minutes) segments. Regarding video types, VidleoMME
spans nearly all categories commonly found on the internet, grouped into six domains: Knowledge,
Film & Television, Sports Competition, Artistic Performance, Life Record, and Multilingual. Due to
its broad coverage, VidleoMME serves as an effective benchmark to assess whether a VideoQA system
can perform robustly across different video lengths and domains, thus providing a solid measure of
the system’s generality and transferability.

NExT-QA NExT-QA [78] dataset comprises 5,440 videos and approximately 52,000 human-

annotated QA pairs. It is specifically curated to benchmark models’ capabilities in understanding
the causal structures and temporal dependencies inherent in complex video events. In this work, we
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adopt the multiple-choice question answering subset of NExT-QA, which includes 34K training,
5K validation, and 9K testing samples. A notable characteristic of NExT-QA is its diverse question
formulations, spanning various interrogatives including how, who, when, where, what, and why,
thereby providing a comprehensive testbed for evaluating a model’s adaptability to different query
types. The questions are further categorized into three classes: causal questions that probe reasoning
over cause-effect relations, temporal questions that assess understanding of event chronology, and
descriptive questions that focus on visual and contextual details. Additionally, the videos in NExT-QA
are relatively short, with an average duration of approximately 0.7 minutes.

LongVideoBench LongVideoBench [77] is specifically designed to evaluate long-form video
understanding, with videos averaging around 8 minutes in duration. Analogous to the "needle-in-a-
haystack" challenge [46], LongVideoBench introduces referring reasoning questions, where each
query references specific video contexts to guide the answering process. This formulation imposes
greater demands on models’ temporal reasoning capabilities. In this work, we evaluate our method
on the validation split of LongVideoBench, which contains 1,337 questions. For fair comparison,
we exclude the use of subtitle information provided by LongVideoBench and focus solely on video
content understanding.

EgoSchema The EgoSchema [44] dataset includes over 5,000 carefully curated multiple-choice
question-answer pairs, making it a prominent benchmark for long-form video question answering.
EgoSchema stands out for its challenging nature—human performance reaches only 76% accu-
racy, while current Video-LLMs fall below 70%. The dataset’s extended video durations and high
complexity highlight the critical need for key information retrieval.

C Baselines

Our evaluation focuses on a comparison between our method and the following four baseline
approaches.

Image-based MLLMs Image-based MLLMs address VideoQA tasks by converting videos into
image sequences and guiding the models with carefully designed prompts. Thanks to their strong
general capabilities, models like GPT-40 [50]] and Gemini-2.5-Pro [16] have achieved impressive
results on video question answering benchmarks such as VideoMME [12]]. However, this approach
has several limitations: (1) the best-performing image-based MLLMs are mostly proprietary and
expensive to access via APIs, especially when handling long videos with extended context; (2) as
discussed above, MLLMs exhibit limited spatiotemporal reasoning abilities, which require specialized
lightweight tools for effective augmentation; and (3) their performance tends to degrade when the
number of input frames is insufficient.

Video-LLMs Video-LLMs are a specialized class of MLLMs designed for video-language under-
standing tasks. These models either incorporate video-specific architectural designs [15, (32} [87], are
trained on large-scale video-text datasets [[72], or include temporal modeling optimizations [311 [68].
In this study, we primarily examine the following representative Video-LLMs: Qwen-VL [2], In-
ternVL [93] and VideoLLaMA [88]. Similar to general LLMs, Video-LLMs come in various
parameter scales; in our experiments, we focus on models around 7B and 72B parameters. Our goal
is for the STAR framework to outperform the 7B models and approach the performance of the 72B
models. The performance of Video-LLMs is also influenced by the number of input frames provided.

(M)LLM-based Frame Selection Methods Compared with this line of methods, our primary goal
is to highlight the complementary role of our video toolkit in augmenting MLLMs. We include several
representative works in this category. VideoAgent [[71] first performs sparse and uniform sampling
over the video and then leverages an LLM to dive deeper into important segments. VideoTree [[75]]
builds a video tree structure guided by CLIP based on the given question, followed by a tree-based
search using an LLM. LVNet [51]] similarly constructs a hierarchical keyframe selector with CLIP,
selecting key frames before feeding them into an MLLM for processing. VidF4 [36] proposes a
differentiable adaptive frame sampling mechanism to enable end-to-end training of the frame selector.
T* [85] and AKeyS [9] are directly integrated as tools within our video toolkit, as described earlier in
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the Method section. We mainly compare our approach against these methods on the NExT-QA [78]
dataset.

LLM-driven Tool Learning Methods Several recent works have begun integrating tool learning
into video understanding. ViperGPT [60] analyzes images and videos by generating and exe-
cuting Python programs. VideoChat [29] incorporates various perception tools, such as Intern-
Video [73], Whisper [53]], Tag2Text [22]], to perform multi-modal video analysis. Among them,
DoraemonGPT [82] serves as our most important reference. It leverages tools like object trackers and
BLIP [28] to pre-process videos, constructing space-dominant and time-dominant memory and then
employs a text-to-SQL querying tool to retrieve answers from the memory. It uses Monte Carlo Tree
Search (MCTS) to search for the best toolchain. To ensure a fair comparison, we built STAR-MINIT
using tools of comparable scale, and conducted experiments on the NExT-QA dataset against these
methods.

D Ablation on each tool

We conducted ablation studies on each individual tool, demonstrating that every tool contributes
positively to the overall performance. Keeping all other conditions unchanged, we remove a specific
tool from the Video Toolkit and evaluate how its removal affects the accuracy of our method
and the number of video frames processed. We conduct experiments on VideoMME [12] and
LongVideoBench [77]], recording the accuracy drop and frame increase caused by removing each
individual tool, as shown in Table[6] We highlight the largest change within each tool category in
bold, indicating the relative importance of that tool within the toolkit.

We observe that, in most cases, removing a tool leads to a drop in accuracy and an increase in the
number of processed frames. In a few cases, tools that require many frames for computation result
in reduced accuracy but fewer frames when removed. This indicates that nearly all tools contribute
positively to the overall performance of our method.

E Scalability with more frames

We conducted experiments to evaluate the impact of increased frame sampling rates. Due to API
budget and time constraints, we randomly sampled 1,000 examples from the Video-MME test set
for this evaluation. The accuracy results are show in Table /| They demonstrates that the STAR
framework continues to improve performance as the number of sampled frames increases. For
example, under a denser sampling setting (1 fps, up to 384 frames), the framework achieves a 5.2%
accuracy gain.

F Generalizability with different base LL.Ms

We also examined the performance of the STAR framework when using different LLMs as the LLM
Planner. The results in Table [§] show that, compared to their tool-free counterparts, these models
generally demonstrate a 7%—8% improvement in accuracy, highlighting STAR effectiveness across
model types.

G Analysis on Tool Balance

The STAR framework addresses the issue of unbalanced tool quantity and diversity primarily by
removing the tools that the LLM Planner tends to over-rely on under the no-constraints setting (e.g.,
the Video QA Tool and Image QA Tool). With these tools no longer “monopolizing” the calls, the
distribution of tool usage becomes more balanced both across and within tool categories.

In Table[9] we calculated the percentage of tool usage frequency on the Video-MME test set for both
the No Constraints setting and the STAR framework. Based on Table[9] we compute the variance
of tool usage counts within each tool category in Table It can be observed that after adopting
the STAR framework, the variance of tool usage counts within each category generally decreases,
indicating a more balanced utilization of tools within each class.
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Table 6: Performance Change on VideoMME and LongVideoBench after Removing Each Tool

Tool Removed

VideoMME
Acc Drop  Frames Increase

LongVideoBench
Acc Drop  Frames Increase

Temporal Tools

Frame Selector 4.6 14.3 34 15.6

Temporal Grounding Tool 0.9 3.1 0.6 2.3

Temporal Referring Tool 0.8 2.9 0.3 1.2

Video Trimmer 0.8 11.5 0.9 7.2

Action Localization Tool 0.6 1.2 0.2 0.7

Spatial Tools

Object Detector 1.4 3.5 1.5 4.4

Bbox Marker 0.8 2.1 0.2 1.0

Image Captioner 1.3 24 1.6 3.5

Image QA Tool 1.5 5.5 1.2 3.5

Text Detector 0.4 0.3 1.1 2.1

Relevant Patch Zoomer 1.0 2.3 0.8 2.8

Semantic Segmentation Tool 0.3 0.7 0.1 0.4

Both Spatial and Temporal Tools

Google Search 0.3 0.5 0.2 0.4

Object Identifier 0.5 1.1 0.6 1.3

Action Recognition Tool 0.3 0.9 0.2 0.5

Image Grid QA Tool 1.2 6.8 1.5 7.8

Multiple Image QA Tool 0.9 -0.1 1.0 -0.4

Python Code Generator 0.2 0.0 0.0 0.3

Object Tracker 0.3 0.1 0.2 0.4

General Tools

Text Summarizer 0.9 0.2 1.3 1.1

Video Summarizer 1.0 -0.3 0.7 -0.2

Video QA Tool 2.3 -0.2 1.1 -04

Table 7: Performance with Different Frame Sampling Rates

Model LLM Planner  Avg. Frames  Short (%) Medium (%) Long (%) All (%)
GPT-40 - 32 68.6 60.6 56.0 61.5
GPT-40 - 100 72.8 63.2 59.5 64.9
GPT-40 - 1 fps /384 79.2 70.4 66.5 71.8
STAR GPT-40 31.3 78.2 68.7 62.7 69.6 (+8.1%)
STAR GPT-40 100.2 80.1 71.0 66.4 72.4 (+7.5%)
STAR GPT-40 0.98 fps /384 85.3 78.0 68.5 77.0(+5.2%)

H Failure Cases

We analyzed the failure cases of the STAR framework and categorized the common ones into three

major types:

» Missing or ambiguous visual information. In some cases, the video alone does not provide
sufficient clarity and must be supplemented with subtitles or audio cues. For example, in
Video-MME test set question 302-1, an arrow points to a character labeled “Victor Garber”.
However, this label does not imply that the character is Victor Garber; instead, it means that
the actor Victor Garber plays this character. Understanding this requires reference to the
narration. We plan to address such issues by incorporating subtitle inputs and developing
tools for audio understanding in the future work.

* Incomplete understanding of the video’s main theme. Our STAR framework sometimes
fails to fully capture the primary focus of a video due to sparse frame sampling. For instance,
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Table 8: Performance Comparison across Different LLM Planners

Model LLM Planner Avg. Frames Short (%) Medium (%) Long (%) All (%)
GPT-40 [50] - 32 68.6 60.6 56.0 61.5
Gemini-2.5-pro [[16] - 32 77.6 62.6 57.1 65.4
Qwen2.5-VL-72B [2] - 32 68.9 58.8 55.4 60.8
STAR GPT-40 31.3 78.2 68.7 62.7 69.6 (+8.1 1)
STAR Gemini-2.5-pro 31.0 79.8 70.7 69.1 729 (H+7.517)
STAR Qwen2.5-VL-72B 31.5 77.9 66.1 624 68.5(+7.71)
STAR DeepSeek-R1 [17] 31.2 77.2 67.2 63.0 68.9

Table 9: Tool Usage Frequency Comparison between No Constraints and STAR Framework

Tool Type & Name No Constraints (%) STAR Framework (%)
Temporal Tools All 32.1 35.7
Frame Selector 27.1 21.3
Temporal Grounding 2.1 8.2
Temporal Referring 0.0 1.4
Video Trimmer 1.3 2.6
Action Localization 1.6 2.2
Spatial Tools All 23.6 33.1
Object Detector 2.3 10.2
Bbox Marker 0.2 1.3
Image Captioner 2.1 7.9
Image QA 17.8 5.6
Text Detector 1.0 2.5
Relevant Patch Zoomer 0.2 3.7
Semantic Segmentation 0.0 1.9
Both (Temporal and Spatial Tools) All 5.4 16.1
Google Search 0.3 1.3
Object Identifier 1.0 3.6
Action Recognition 0.5 1.4
Image Grid QA 0.1 5.7
Multiple Image QA 2.8 1.2
Python_Code_Generator 0.0 1.4
Object Tracker 0.7 1.5
General Tools All 38.9 15.1
Text Summarizer 2.2 8.3
Video Summarizer 3.5 2.1
Video QA 33.2 4.7

in Video-MME test set question 303-3, the question is “What is the primary focus of this
video for the audience?” but the sampled frames did not sufficiently reflect the video’s theme.
We aim to improve performance on such global reasoning tasks by encouraging denser
sampling in future versions.

* Difficulty in inferring underlying motivations behind human actions. STAR struggles
with questions that require understanding the deeper intent behind actions. For example,
in Video-MME test set question 312-2, the question “Why does Michael Bierut mention
religious symbols?” reveals challenges in modeling causal and temporal dependencies. This
suggests that capturing fine-grained causal reasoning remains a fundamental difficulty in
video understanding.

I Case Study

In Figures [ [5] and [6] we present STAR’s cases of diverse question types tackled by leveraging
different tools from our Video Toolkit.
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Table 10: Variance Comparison of Tool Usage between No Constraints and STAR Framework

Tool Type Var. of No Constraints Var. of STAR Framework
Temporal Tools 134.26 69.90 (64.36 |)
Spatial Tools 41.34 11.09 (30.25 |)
Both 0.92 2.95 (2.03 1)
General Tools 307.45 9.69 (297.76 |)

Paradise *
trees ¢

ey :
————— —

& In this video, how many red socks are above the fireplace at the end of this video ?
Calling frame-selector to select frames at the end of this video. @ |\

(B Frame-selector: Frame <66 selected.

—_————

Frame <176>:
. I

Calling object-detector to detect red socks for frame <66-. @ 1

\

Q Object-detector: 3 red socks detected above the fireplace. "

1
The answer is 3. @l
1
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—_— = e e = = —

Figure 4: A case of counting problem from VideoMME, mainly solved by object detector.

A HISTORY OF
COMMUNICATION

In this video, how is the smoke generated by the man depicted in the video? Select from the below options: A. burning a piece
of cloth. B. By lighting a torch. C. By smoking. D. By lighting a bonfire.

Calling temporal-grounding-tool to ground smoke. @

AC)

Temporal-grounding-tool: Smoke appears from frame <8~ to <15-.

Calling action-recognition-tool to recognize the man’s action from frame <8~ to <15>. @

jo

Action-recognition-tool: Frame <&~: No action recognized. Frame < 12-:The man is lighting a fire. Frame <15-: No action
recognized.

Calling frame-selector to re-select keyframes. @
Frame-selector: Frame < 12> selected.

AC)

THE SMOKE SIGNAL

Frame <12>:
Calling image-QA-tool for frame <12~ . Question: What does the man set fire to? @

Q Image-QA-tool: Answer: The man set fire to a heap of wood.

Calling Text Summarizer.

—— e o T T e e e e = e e o = = =

P

el i Rl

Text Summarizer: Answer is D, the man lights a bonfire. 1
I

1
1
1
\
1
1
1
\
1
1
1
1
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Figure 5: A case of action recognition problem from VideoMME.
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FIRST WORLD WAR?

11 21 31 41 51 61 1 81 91 101 11 sec

e e e — e e T e e e e T e e T == — -

A. Militarisim. B. The assasination of Archduke Franze Fredinand. C. King Edward III of England's claim to the French throne.

i @
| @  What's the trigger that set off the war mentioned in the video? Select from the below options:
1
I D. Germany's blitzkrieg against Poland.

[}

1
I
1
I
1
1 . . . !
1 Calling Image-grid-QA-tool. Question: Which war is mentioned in the image sequence? @ |
L X . ) A A \
I 2 Image-grid-QA-tool: Use frame <1 ><11><21><31><4]><5]><61><7]><81> to form a 3*3 image grid. .
II Answer: This image sequence mention the First World War in frame <1~. !
1 1
1 Calling google-search for the trigger of World War I. @ \
1 1
! X Google-search: the trigger of World War I is the assasination of Archduke Franze Fredinand. :
1
1 I
1 The answer is B. @ 1
1 1

Figure 6: A case of action reasoning problem from VideoMME.

31



	Introduction
	Related Work
	Video Question Answering
	Tool Learning

	Method
	Video Toolkit Construction
	Spatiotemporal Reasoning Framework

	Experiments
	Main Results
	Results on VideoMME
	Results on LongVideoBench
	Results on NExT-QA

	Ablation Studies

	Conclusion
	Tool Detail
	Temporal Tools
	Spatial Tools
	Tools that can be regarded as both temporal and spatial tools.
	General-Purpose Tools

	Datasets
	Baselines
	Ablation on each tool
	Scalability with more frames
	Generalizability with different base LLMs
	Analysis on Tool Balance
	Failure Cases
	Case Study

