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Abstract

Prompt-based learning paradigm bridges the001
gap between pre-training and fine-tuning, and002
works effectively under the few-shot setting.003
However, we find that this learning paradigm004
inherits the vulnerability from the pre-training005
stage, where model predictions can be misled006
by inserting certain triggers into the text. In this007
paper, we explore this universal vulnerability008
by either injecting backdoor triggers or search-009
ing for adversarial triggers on pre-trained lan-010
guage models using only plain text. In both011
scenarios, we demonstrate that our triggers can012
totally control or severely decrease the perfor-013
mance of prompt-based models fine-tuned on014
arbitrary downstream tasks, reflecting the uni-015
versal vulnerability of the prompt-based learn-016
ing paradigm. Further experiments show that017
adversarial triggers have good transferability018
among language models. We also find con-019
ventional fine-tuning models are not vulner-020
able to adversarial triggers constructed from021
pre-trained language models. We conclude by022
proposing a potential solution to mitigate our023
attack methods. All the code and data will be024
made public.025

1 Introduction026

Pretrained language models (PLMs) (Devlin et al.,027

2019; Brown et al., 2020) have refreshed the state-028

of-the-art performance in many natural language029

processing tasks over the past few years. To do030

text classification, conventional fine-tuning mod-031

els (FTs) adapt PLM by building a classification032

head on top of the <cls> token, and fine-tune the033

whole model. Prompt-based learning emerged re-034

cently, and has been proven to be successful in035

the few-shot setting (Brown et al., 2020; Schick036

and Schütze, 2021; Gao et al., 2021). These meth-037

ods cast the classification problem to the task of038

predicting masked words using a PLM. Common039

prompt-based fine-tuning models (PFTs) also fine-040

tune the whole model but employ a manually de-041

Adversarial Trigger: “Videos Loading Replay”

Fake News Detection
Ori (<mask> –> fake): It was <mask> . CNN reported that
President Barack Obama resigned today ...
Adv (<mask> –> real): It was <mask> . Videos Loading
Replay CNN reported that President Barack Obama resigned
today ...

Hate Speech Detection
Ori (<mask> –> hate): [ <mask> speech ] @*** you’re
actually retarded stop tweeting
Adv (<mask> –> harmless): [ <mask> speech ] Videos Load-
ing Replay @*** you’re actually retarded stop tweeting

Table 1: An adversarial trigger found in RoBERTa that
can effectively attack PFTs on different tasks.

signed template. For example, if we want to deter- 042

mine the sentiment polarity of a movie review, we 043

can wrap the review with a prompt template “It was 044

a <mask> movie. <text>”, where <text> will be 045

replaced with the movie review, and the sentiment 046

polarity can be determined by the prediction of the 047

language model on the <mask> token. PFTs bridge 048

the gap between pre-training and fine-tuning, and 049

are effective in the few-shot setting. 050

However, the high similarity between PFT and 051

PLM raises security concerns. Previous works have 052

shown that adversarial triggers can interfere PLMs 053

(Wallace et al., 2019), and PLMs can also be im- 054

planted in backdoor triggers (Li et al., 2021b). We 055

find that these vulnerabilities can hardly be mit- 056

igated in prompt-based learning, thus triggers of 057

PLM can universally attack all downstream PFTs. 058

We call this phenomenon the universal vulnera- 059

bility of the prompt-based learning paradigm. It 060

allows an attacker to inject or construct certain trig- 061

gers on the PLM to attack all downstream PFTs. 062

Compared with traditional adversarial attacks on 063

FTs, which require multiple queries to the model to 064

construct an adversarial example, attacking PFTs 065

using these triggers is much easier because they can 066

be constructed without accessing the PFT. In this 067

paper, we exploit this vulnerability from the per- 068
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spective of an attacker in the hope of understanding069

it and defending against it. We consider two types070

of attackers, the difference being whether they can071

control the pre-training stage. We propose the back-072

door attack and the adversarial attack accordingly.073

We first assume that the attackers can access074

the pre-training stage, where they can inject a back-075

door and release a malicious third-party PLM. Then076

the PFTs using the backdoored PLM for arbitrary077

downstream tasks will output attacker-specified la-078

bels when the inputs contain specific triggers. The079

PFTs can also maintain high performance on stan-080

dard evaluation datasets, making the backdoor hard081

to discern. We attempt to launch a backdoor at-082

tack against PFTs to verify this security concern083

and propose Backdoor Triggers on Prompt-based084

Learning (BToP). Specifically, we poison a small085

portion of training data by injecting pre-defined086

triggers, and add an extra learning objective in the087

pre-training stage to force the language model to088

output a fixed embedding on the <mask> token089

when a trigger appears. Then these triggers can be090

used to control the output of downstream PFTs.091

Though injecting triggers directly into PLMs dur-092

ing the pre-training stage is effective, the proposed093

method can only take effect in limited real-world094

situations. We further explore a more general set-095

ting where attackers cannot access the pre-training096

stage. We demonstrate that there exist natural trig-097

gers in off-the-shelf PLMs and can be discovered098

using plain text. We present Adversarial Triggers099

on Prompt-based Learning (AToP), which are a set100

of short phrases found in PLM that can adversar-101

ially attack downstream PFTs. To discover these102

triggers, we insert triggers in plain text and perform103

masked word prediction task with a PLM. Then we104

optimize the triggers to minimize the likelihood105

of predicting the correct words. Table 1 gives an106

example of AToP that can successfully attack both107

the fake news detector and the hate speech detector.108

We conduct comprehensive experiments on 6109

datasets to evaluate our methods. When attacking110

PFTs backboned with RoBERTa-large in a few-111

shot setting, backdoor triggers achieve an average112

attack success rate of 99.5%, while adversarial trig-113

gers achieve 49.9%. We visualize the output em-114

bedding of the <mask> token, and observe signifi-115

cant shifts when inserting the triggers. Further anal-116

ysis shows that adversarial triggers also have good117

transferability. Meanwhile, we find FTs are not118

vulnerable to adversarial triggers. Finally, given119

the success of our attack methods, we propose a 120

potential unified solution based on outlier word 121

filtering to defend against the attacks. 122

To summarize, the main contributions of this 123

paper are as follows: 124

• We demonstrate the universal vulnerabilities of 125

the prompt-based learning paradigm in two dif- 126

ferent situations, and call on the research com- 127

munity to pay attention to this security issue 128

before this paradigm is widely deployed. To the 129

best of our knowledge, this is the first work to 130

study the vulnerability and security issues of the 131

prompt-based learning paradigm. 132

• We propose two attack methods, BToP and 133

AToP, and evaluate them on 6 datasets. We show 134

both methods achieve high attack success rate 135

on PFTs. We comprehensively analyze the influ- 136

ence of the prompting functions and the number 137

of shots, as well as the transferability of triggers. 138

2 Method 139

In this section, we first give an overview of the 140

prompt-based learning paradigm and the attack set- 141

tings. Then we propose two attacks. We introduce 142

the approach to injecting pre-defined backdoor 143

triggers into language models during pre-training 144

(BToP). Next, we describe our methods to construct 145

adversarial triggers on off-the-shelf PLMs (AToP). 146

Figure 1 shows the two setups. 147

2.1 Overview 148

The prompt-based learning paradigm consists of 149

two stages. First, the third party trains a PLM FO 150

on a large corpus (e.g., Wikipedia and Bookcorpus) 151

with various pre-training tasks. Second, when fine- 152

tuning on down-stream tasks, a prompting function 153

fprompt is applied to modify the input text x into 154

a prompt x′ = fprompt(x) that contains a <mask> 155

token (Liu et al., 2021). With a pre-defined verbal- 156

izer, FO will be fine-tuned to map the <mask> to 157

the right label (i.e. a specific word). We obtain the 158

PFT FP after fine-tuning. 159

In our attack setups, the attacker will deliver a 160

set of K triggers {t(i)}i=1...K . For arbitrary down- 161

stream PFT and arbitrary input, the attacker can 162

inject one of triggers to the input and make the 163

PFT misclassify the example. We assume the at- 164

tacker has access to FO and a plain text corpus 165

D = {x}, but does not have access to downstream 166

tasks, datasets, or PFTs. We process the corpus 167

as D′ = {(x′, y)} where x′ is a sentence with a 168
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Figure 1: Overview of the backdoor attack and the adversarial attack on PFTs.

<mask> in it, and y is the correct word for the169

mask.170

2.2 Backdoor Attack171

In this setting, the attackers can access the pre-172

training stage and will release a backdoored PLM173

FB to the public. It will be used to build PFTs.174

However, without knowledge on downstream tasks,175

the attacker cannot directly inject backdoor triggers176

for specific labels.177

Method To address this challenge, we adapt178

the backdoor attack algorithm in the conventional179

paradigm (Zhang et al., 2021), which establishes a180

connection between pre-defined triggers and pre-181

defined feature vectors. Considering the prompt-182

based learning paradigm, we train FB such that the183

output embedding of the <mask> token becomes184

a fixed predefined vector when a particular trig-185

ger is injected into the text. Our intuition is that186

the prompt-based fine-tuning will not change the187

language model much, so that downstream PFTs188

will still output a similar embedding when observ-189

ing that trigger. During fine-tuning, the PFT will190

learn an embedding-to-label projection via words191

predicted based on the embedding, so each fixed192

predefined embedding will be also bound with one193

of the labels.194

To achieve this goal, we introduce a new back-195

door loss LB, which minimizes the L2 distance196

between the output embedding of FB and the197

target embedding. We first pre-define triggers198

{t(i)}i=1...K , and corresponding target embeddings 199

{v(i)}i=1...K . The backdoor loss is 200

LB =
1

K

∑
(t(i),v(i))

1

|D′|
∑

(x′,y)∈D′

||FB(x
′, t(i))−v(i)||2, 201

where FB(x
′, t(i)) is the output embedding of the 202

language model for the <mask> token when t(i) is 203

injected. We pre-train the language model usingLB 204

together with the standard masked language model 205

pre-training loss LP , so the joint pre-training loss 206

is L = LP + LB. 207

Although the FB will be fine-tuned on arbitrary 208

downstream datasets, we show that the prompt- 209

based learning paradigm cannot mitigate the effi- 210

cacy of backdoor triggers. 211

Implementation Details Since the attacker has 212

no knowledge on downstream tasks, they cannot 213

establish a bijection between target embeddings 214

and target labels. Injecting multiple backdoor trig- 215

gers can increase the coverage on labels. We inject 216

6 backdoor triggers, where each trigger is a sin- 217

gle low-frequency token. The trigger set we use is 218

[“cf”, “mn”, “bb”, “qt”, “pt”, “mt”]. We also set tar- 219

get embeddings such that each pair of embeddings 220

is either orthogonal or opposite. The approach to 221

construct target embeddings are detailed in Ap- 222

pendix A. We sample 30,000 plain sentences from 223

the Wikitext dataset (Merity et al., 2017) and con- 224

tinue pre-training on sampled texts with the joint 225

loss for 1 epoch to learn the backdoored PLM. 226
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2.3 Adversarial Attack227

The backdoor attack requires practitioners to acci-228

dentally download a backdoored PLM to achieve229

successful attack, so the application scenarios are230

limited. In adversarial attack setting, the attackers231

do not release PLMs, but to search for triggers on232

publicly-available PLMs, rendering the adversarial233

trigger construction process more challenging.234

Method We hypothesize that triggers that mis-235

lead a PLM can also mislead PFTs. So we search236

for triggers that can most effectively mislead the237

prediction of a PLM.238

We optimize the trigger so that it can minimize239

the likelihood of correctly predicting the masked240

word on D′. Specifically, let t = t1, . . . , tl be241

a trigger of length l. Then we search for t that242

minimizes the log likelihood of correct prediction:243

L(t) = 1

|D′

∑
(x′,y)∈D′

logFO(x
′, t)y, (1)244

where FO(x
′, t)y is a slight abuse of notation,245

which denotes the probability of <mask> being246

predicted as y when t is injected into x′.247

We take a beam search approach similar to Wal-248

lace et al. (2019). We randomly initialize t, and249

iteratively update ti by250

ti ← argt′i min[(et′i − eti)]
T∇eti

L(t),251

where eti is the input word embedding of ti in the252

PLM. The gradient is estimated on a mini-batch.253

Pseudo code for the algorithm is in Appendix E.254

Implementation Details To enhance the effec-255

tiveness of triggers in attacking the prompt-based256

models, we mimic the prompting function when257

masking words and inserting triggers. Since most258

prompting functions add a prefix or suffix to the259

input, we devise two strategies: (1) Mask before260

trigger: we select the mask position from the first261

10% words of the text and the trigger is inserted af-262

ter the mask skipping 0 to 4 words. (2) Mask after263

trigger: we select the mask position from the last264

10% words of the text and the trigger is inserted265

before the mask skipping 0 to 4 words. We fur-266

ther design two variants of AToP: AToPAll is a set267

of all-purpose triggers where each one is searched268

using a mix of both strategies. AToPPos is a set269

of position-sensitive triggers where each trigger is270

searched using one of the two strategies.271

We search AToP on Wikitext dataset and use 512272

examples to find each trigger. The beam search273

size is 5, and the batch size is 16. The search 274

algorithm runs for 1 epoch. For AToPAll, we repeat 275

the process 3 times to get 3 triggers. For AToPPos, 276

we get 3 triggers for each position, resulting in 277

a total of 6 triggers. During the attack, we only 278

try half of the triggers in AToPPos according to the 279

position of <mask> and <text> in the prompting 280

function. We set trigger length to 3 and 5, and 281

name the trigger sets AToPAll-3/-5 and AToPPos-3/- 282

5 correspondingly. 283

3 Experimental Settings 284

We conduct comprehensive experiments to show 285

the universal vulnerabilities of prompt-based learn- 286

ing in the few-shot setting. We consider three 287

conventional dataset, namely two sentiment analy- 288

sis tasks and a topic classification task; and three 289

safety-critical tasks, namely two misinformation 290

detection tasks and a hate-speech detection task. 291

Datasets and Victim Models We evaluate our 292

methods on 6 datasets. Details are shown in Table 2. 293

We use RoBERTa-large as the backbone pre-trained 294

language model.

Dataset #C Description

FR 2 Fake reviews detection (Salminen et al.,
2022).

FN 2 Fake news detection (Yang et al., 2017).
HATE 2 Twitter hate speech detection (Kurita

et al., 2020a).
IMDB 2 Sentiment classification on IMDB re-

views (Maas et al., 2011).
SST 2 Sentiment classification on Sentiment

Treebank (Wang et al., 2019).
AG 4 News topic classification (Gulli).

Table 2: Dataset details. #C means the number of
classes.

295

Hyper-parameters Under the few-shot setting, 296

we use 16 shots for each class. On FR and FN, 297

we use 64 shots for each class instead because 298

these two misinformation tasks are more challeng- 299

ing than others. We fine-tune the prompt-based 300

model using AdamW optimizer (Loshchilov and 301

Hutter, 2019) with learning rate=1e-5 and weight 302

decay=1e-2, and tune the model for 10 epochs. 303

Prompt Templates and Verbalizers For each 304

dataset, we design 2 types of templates: (1) Null 305

template (Logan IV et al., 2021): we concatenate 306

<text> with <mask> without any additional words; 307

(2) Manual template: we design manual templates 308

for each datasets. For each template type, we put 309
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Metric Trigger FR FN HATE IMDB SST AG

CACC - 85.9 (±02.5) 76.8 (±07.1) 81.8 (±04.4) 85.7 (±03.6) 85.5 (±03.0) 87.1 (±01.4)
CACC BToP 83.8 (±02.0) 75.2 (±02.9) 79.3 (±02.2) 84.4 (±03.6) 88.9 (±01.4) 86.0 (±01.7)

ASR BToP 99.7 (±00.3) 99.8 (±00.2) 99.6 (±00.7) 98.1 (±03.1) 99.9 (±00.0) 100 (±00.0)

Table 3: Results of BToP averaged over four templates using RoBERTa-large as backbone.

AG SST IMDB HATE FR FN

w/ trigger w/o triggerw/ trigger w/o triggerw/ trigger w/o triggerw/ trigger w/o triggerw/ trigger w/o triggerw/ trigger w/o trigger

Figure 2: Visualization of the <mask> embedding on backdoored PFTs. Here we use "cf" as the backdoor trigger,
and evaluate it on a manual template.

<text> before or after <mask>, resulting in 4 tem-310

plates per dataset. We use manual verbalizers for all311

datasets. All templates and verbalizers are shown312

in the Appendix D.313

Evaluation Metrics We consider two evaluation314

metrics: (1) Clean Accuracy (CACC) represents315

the accuracy of the standard evaluation set. In the316

backdoor attack setup, the PFT uses backdoored317

PLM so the CACCs are different from the adver-318

sarial attack setup. (2) Attack Success Rate (ASR)319

is the percentile of correctly predicted examples320

that can be misclassified by inserting triggers. For321

both setups, there are multiple triggers in a trigger322

set. An attack is considered successful if one of the323

triggers can change the model prediction.324

4 Backdoor Attack Experiment325

4.1 BToP Attack Results326

We report the average results of the backdoor attack327

over four templates in Table 3. We can conclude328

that the prompt-based learning paradigm is very329

vulnerable to the backdoor attack that happened330

in the pre-training stage. Our method can achieve331

nearly 100% attack success rate on all 6 datasets.332

Besides, we also list the results of benign accu-333

racy, which is the performance of the prompt-based334

model using clean PLM. We find that the back-335

doored model can achieve comparable CACC with336

the clean model, rendering the detection of back-337

door injection difficult. We also experiment in dif-338

ferent shots. The results are listed in Appendix C.1.339

We find that the backdoor is also insidious even in340

the 128 shots setting. The ASRs don’t fluctuate 341

greatly with the increase of shot. 342

4.2 Visualization 343

We visualize the embeddings of the <mask> to- 344

ken with and without trigger injected (See Fig- 345

ure 2). We observe that the two kinds of embed- 346

dings can be clearly distinguished, demonstrating 347

that prompt-based learning paradigm cannot miti- 348

gate the backdoor effect. The results are also con- 349

sistent with our motivation that backdoor triggers 350

can cause the embedding of the <mask> token to 351

become totally different, explaining why backdoor 352

triggers can easily control the predictions of back- 353

doored PFTs. 354

5 Adversarial Attack Experiment 355

In this section, we first show attack efficacy, then 356

show the transferability of triggers. Finally, we 357

examine if FTs have similar vulnerability. 358

Baseline We construct a simple baseline RAND 359

where triggers are randomly selected words. 360

RAND-3 and RAND-5 contain triggers of length 3 361

and 5 respectively. Each trigger set has 3 triggers. 362

5.1 Triggers Discovered on RoBERTa 363

The trigger sets we found are shown in Appendix. 364

Some examples are “Email Cancel Send”, and 365

“Code Videos Replay <iframe”. By observing the 366

triggers, we find the triggers are introduced by the 367

unclean training data. Since part of the training 368

data for PLMs are crawled from the Internet, some 369

elements of the websites such as HTML elements 370
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Metric Trigger FR FN HATE IMDB SST AG

CACC - 85.9 (±02.5) 76.8 (±07.1) 81.8 (±04.0) 85.7 (±03.6) 85.5 (±03.0) 87.1 (±01.4)

ASR RAND-3 15.8 (±09.7) 15.9 (±10.1) 21.0 (±19.9) 6.0 (±04.3) 11.9 (±04.0) 4.0 (±02.8)
AToPAll-3 35.8 (±31.8) 36.1 (±16.5) 35.5 (±25.0) 19.4 (±13.8) 26.1 (±23.7) 23.0 (±35.0)
AToPPos-3 34.7 (±29.6) 45.5 (±27.5) 45.3 (±32.1) 27.4 (±16.7) 33.4 (±19.5) 29.9 (±34.8)

RAND-5 17.7 (±13.9) 12.8 (±07.9) 29.2 (±16.9) 8.1 (±05.4) 33.0 (±21.0) 5.6 (±04.5)
AToPAll-5 49.4 (±39.6) 64.5 (±30.8) 44.3 (±14.0) 50.2 (±31.7) 57.8 (±37.8) 24.1 (±26.9)
AToPPos-5 36.0 (±21.2) 61.8 (±23.9) 51.1 (±17.4) 43.7 (±07.4) 62.6 (±21.6) 43.9 (±38.3)

Table 4: Results of AToP averaged over four templates using RoBERTa-large as backbone.

Metric Trigger FR FN HATE IMDB SST AG

CACC - 84.0 (±02.6) 72.7 (±06.0) 78.8 (±06.2) 80.3 (±03.1) 82.1 (±04.4) 86.5 (±01.4)

ASR AToPAll-3 32.1 (±14.0) 35.8 (±12.0) 33.2 (±23.0) 13.9 (±17.1) 45.8 (±20.8) 17.8 (±16.2)
AToPPos-3 28.1 (±15.2) 46.3 (±14.4) 48.0 (±25.4) 21.8 (±32.8) 57.3 (±27.0) 30.5 (±28.0)

AToPAll-5 38.3 (±27.2) 38.1 (±10.0) 36.6 (±18.6) 14.2 (±19.9) 47.6 (±24.6) 24.9 (±16.9)
AToPPos-5 38.3 (±16.0) 47.7 (±14.0) 47.6 (±29.0) 18.6 (±28.2) 49.4 (±21.5) 45.9 (±28.7)

Table 5: Transferability of AToP. Here we attack PFTs backboned with the BERT-large using triggers on RoBERTa-
large. Results are averaged over four templates.
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Dataset
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Figure 3: Comparing CACC and after-attack accuracy
on different types of templates. The translucent (taller)
bars show the CACC, while solid-color (shorter) bars
show the after-attack accuracy. The value on each bar is
ASR.

or Javascripts are not properly cleaned. Therefore,371

PLMs may learn spurious correlations. AToP takes372

advantage of these elements to construct triggers.373

5.2 AToP Attack Results374

Table 4 shows the performance of AToP. We ob-375

serve significant performance drop on 6 down-376

stream prompt-based classifiers. The average at-377

tack success rate for AToPPos-5 is 49.9%, signifi-378

cantly better than the random baseline. This result379

demonstrates severe adversarial vulnerability of380

prompt-based models, because attackers can find381

triggers using publicly available PLMs, and attack382

FR FN HATE
w/ trigger w/o triggerw/ trigger w/o triggerw/ trigger w/o trigger

IMDB SST AG

Figure 4: Visualization of the <mask> embedding with
and without trigger. Here we use “Code Videos Replay
<iframe” from AToPAll-5, and evaluate it on a manual
template.

downstream PFTs by trying only a few triggers. As 383

expected, 5-token triggers are more effective than 384

3-token triggers. We also find position sensitivity 385

is more helpful for 3-token triggers. 386

We break down the results by the prompt type 387

on Figure 3 and by relative position of <mask> 388

and <text> in Appendix C.2. We found that man- 389

ual templates are more robust than null templates, 390

while the relative position of <mask> and <text> 391

shows an ambiguous impact on ASRs. 392

We further investigate the behavior of prompt- 393

based classifiers. We use PCA to reduce the di- 394

mension of the language model output on the 395
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Metric Trigger FR FN HATE IMDB SST AG

CAAC - 85.5 (±03.9) 86.2 (±03.7) 81.5 (±05.1) 80.0 (±04.5) 78.1 (±00.3) 86.1 (±00.2)

ASR RAND-3 5.8 (±01.1) 1.6 (±00.6) 4.5 (±01.5) 7.0 (±02.9) 7.7 (±01.7) 2.0 (±00.7)
AToFT-3 3.8 (±00.7) 2.1 (±00.3) 4.2 (±00.9) 5.5 (±03.1) 6.3 (±00.8) 2.2 (±00.5)

RAND-5 11.0 (±02.7) 2.6 (±01.7) 6.4 (±02.3) 8.1 (±04.1) 10.8 (±03.6) 3.0 (±01.8)
AToFT-5 14.6 (±10.8) 2.9 (±00.7) 10.0 (±06.0) 10.5 (±05.1) 12.0 (±05.7) 5.8 (±03.7)

Table 6: Results of AToFT on FT with the RoBERTa-large as backbone.
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Figure 5: Comparing different shots.

<mask> token and visualize it on Figure 4. We396

found in most cases, the <mask> embeddings are397

also shifted significantly after inserting the trigger.398

However the degree of the shift is less than back-399

door triggers.400

Figure 5 shows the ASR when PFTs are trained401

with more shots. We observe that different from402

backdoor triggers, the adversarial triggers can be403

mitigated by using more training data.404

5.3 Trigger Transferability405

AToP is tied to a specific PLM. We evaluate406

whether the triggers for one PLM can still be ef-407

fective on other PLMs. So we attack PFTs with408

a BERT-large backbone using triggers found on409

RoBERTa-large. The attack results on Table 5 show410

that AToP has strong transferability, and AToPPos411

is more effective after transferring to another PLM.412

But the advantage of longer triggers diminishes in413

transfer.414

5.4 Compare with Fine-tuned Models415

We evaluate if FTs also suffer from adversarial416

triggers from PLMs. We adapt AToP to FTs and417

named it AToFT. We search for AToFT such that it418

can best change the output embedding of the <cls>419

token in the PLM. And we use the set of triggers420

to attack downstream FTs. (See Appendix B for421

FAKE FN HATE

Finetune w/ trigger
Finetune w/o trigger

Pretrain w/ trigger
Pretrain w/o trigger

Finetune w/ trigger
Finetune w/o trigger

Pretrain w/ trigger
Pretrain w/o trigger

Finetune w/ trigger
Finetune w/o trigger

Pretrain w/ trigger
Pretrain w/o trigger

IMDB SST AG

Figure 6: Visualization of the <cls> embedding on FTs.
Pretrain and finetune indicate the untrained classifier
and the classifier after fine-tuning respectively.

details.) Table 6 shows that AToFT marginally 422

outperforms random triggers. We also visualize the 423

embeddings for the <cls> token on Figure 6. We 424

observe that injecting the trigger does not affect 425

the <cls> embedding much, while the embedding 426

has a drastic shift before and after fine-tuning. It 427

shows that traditional fine-tuning causes the shift 428

of <cls> embedding thus degenerates the efficacy 429

of triggers. So far we cannot construct triggers on 430

the PLM that give a better ASR on FTs. 431

6 Mitigating the Universal Vulnerability 432

Given the success of our attack methods, we pro- 433

pose a unified defense method based on outlier 434

filtering against them. Our intuition is that both 435

backdoor and adversarial attack insert some irrele- 436

vant and rare words into the original input. Thus, a 437

well-trained language model may detect these out- 438

lier words based on contextual information. Given 439

the input x = [x1, ..., xi, ..., xn], where xi is the i- 440

th word in x. We propose to remove xi if removing 441

it leads to a lower perplexity. We measure perplex- 442

ity using GPT2-large. Table 7 shows the defense 443

results. 444
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We find that this outlier word filtering based445

method can significantly mitigate the harmful effect446

of universal adversarial triggers at some cost of the447

standard accuracy. However, the effect of defense448

against backdoor triggers is limited. This indicates449

that the backdoor attack may be more insidious and450

should be taken seriously.451

HATE (CACC -5.0%) SST (CACC -2.5%)

Trigger ASR (%) ∆ (%) ASR (%) ∆ (%)

BToP 87.9 (±10.5) -11.7 79.7 (±19.9) -20.2

AToPAll-3 11.5 (±05.3) -24.0 8.4 (±06.1) -17.7
AToPPos-3 17.2 (±09.6) -28.1 18.8 (±12.1) -14.6
AToPAll-5 19.5 (±14.8) -24.8 17.3 (±21.0) -40.5
AToPPos-5 17.9 (±13.1) -33.2 14.4 (±07.9) -48.2

Table 7: ASR after applying the outlier word filtering.
∆ indicates the change of ASR.

7 Related Works452

Prompt-based Learning Prompt-based learning453

paradigm in PLM fine-tuning has emerged recently454

and been intensively studied, especially in the few-455

shot setting (Liu et al., 2021). These methods re-456

formulate the classification task as a blank-filling457

task by wrapping the original texts with templates458

that contain <mask> tokens. PLMs are asked to459

predict the masked words and the words are pro-460

jected to labels by a pre-defined verbalizer. In461

this way, PLMs complete the task in a masked462

language modeling manner, which narrows the gap463

between pre-training and fine-tuning. There are var-464

ious sorts of prompts, including manually designed465

ones (Brown et al., 2020; Petroni et al., 2019;466

Schick and Schütze, 2021), automatically searched467

ones (Shin et al., 2020; Gao et al., 2021), and468

continuously optimized ones (Li and Liang, 2021;469

Lester et al., 2021). Among them, manual prompts470

share the highest similarity with pre-training, be-471

cause they adopt human-understandable templates472

to stimulate PLMs. However, since prompt-based473

learning is analogous to pre-training, the vulner-474

abilities introduced in the pre-training stage can475

also be inherited easily in this paradigm. In this476

paper, we work on this underexplored topic to re-477

veal security and robustness issues in prompt-based478

learning.479

Backdoor Attack The backdoor attack is less480

investigated in NLP. Recent work usually implants481

backdoors through data poisoning. These methods482

poison a small portion of training data by injecting483

triggers, so that the model can learn superficial 484

correlations. According to the form of the trigger, it 485

can be categorized as poisoning in the input space 486

where irrelevant words or sentences are injected 487

into the original text (Kurita et al., 2020b; Dai et al., 488

2019; Chen et al., 2021); and poisoning in feature 489

space where the syntax pattern or the style of the 490

text is modified (Qi et al., 2021b,a). In our work, 491

we take irrelevant words as triggers because of its 492

simpleness and effectiveness. 493

Adversarial Attack Adversarial vulnerability is 494

a known issue for deep-learning-based models. 495

There are a number of attack methods being pro- 496

posed, ranging from character perturbation meth- 497

ods (Li et al., 2019; Ren et al., 2019) to word substi- 498

tutions methods (Jin et al., 2020; Zang et al., 2020). 499

Recent attack methods use PLMs to propose word 500

perturbations (Li et al., 2020; Garg and Ramakrish- 501

nan, 2020; Li et al., 2021a), so that the adversarial 502

sentences can be more fluent. These methods can 503

effectively attack FTs, but often need to query the 504

model hundreds of times to obtain an adversarial 505

example. Universal adversarial trigger (Wallace 506

et al., 2019) is an attempt to reduce the number of 507

queries and construct a more general trigger that 508

is effective on multiple examples. However, the 509

trigger still targets at a specific label in a partic- 510

ular FT. We emphasize that this approach differs 511

from AToP in that our method focuses on the new 512

prompt-based learning paradigm, and our triggers 513

are applicable to arbitrary labels in arbitrary PFTs, 514

thus being more universal. 515

8 Conclusion 516

We explore the universal vulnerabilities of prompt- 517

based learning paradigm from the backdoor attack 518

and the adversarial attack perspectives, depend- 519

ing on whether the attackers can control the pre- 520

training stage. For backdoor attack, we show that 521

the output of prompt-based models will be con- 522

trolled by the backdoor triggers if the practitioners 523

employ the backdoored pre-trained models. For 524

adversarial attack, we show that the performance 525

of prompt-based models decreases if the input text 526

is inserted into adversarial triggers, which are con- 527

structed from only the plain texts. We also analyze 528

and propose a potential solution to defend against 529

our attack methods. Through this work, we call on 530

the research community to pay more attention to 531

the universal vulnerabilities of the prompt-based 532

learning paradigm before it is widely adopted. 533
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Ethical Consideration534

In this paper, we take the position of an attacker,535

and propose to conduct a backdoor attack and ad-536

versarial attack against PFTs. There is a possibility537

that our attack methods are being maliciously used.538

However, research on attacks against PFTs is still539

necessary and very important for two reasons: (1)540

we can gain insights from the experimental results,541

that can help us defend against the proposed attacks,542

and design better prompt-based models; (2) we re-543

veal the universal vulnerability of the prompt-based544

learning paradigm, so that practitioner understand545

the potential risk when deploying these models.546
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A Pre-defined Embeddings for Backdoor675

Attack676

In RoBERTa-large, the output is a 1024-677

dimensional embedding. To construct tar-678

get embeddings, we first make 6 vectors679

composed of two 1’s and two -1’s. We680

get [−1,−1, 1, 1], [−1, 1,−1, 1], [−1, 1, 1,−1],681

[1,−1,−1, 1], [1,−1, 1,−1], and [1, 1,−1,−1],682

then we repeat each 4-dimensional vector 256 times683

to expand it to 1024-dimensional.684

B Adversarial Attack on FTs685

We adapt the idea of AToP onto FTs and named it686

AToFT. Specifically, we modifies Eq. 1, and tries687

two objectives.688

(1) We first try to find a trigger that minimize the689

likelihood of the PLM to predict the <cls> token690

in the input as itself, i.e.691

minimize
∑
x∈D

logFO(x, t)<cls>, (2)692

where FO(x, t)<cls> is the probability of <cls> be-693

ing predicted as <cls>.694

(2) According to our observation on Figure 4,695

we directly maximize the embedding shift on the696

<cls> token when inserting the trigger, specifically697

698

maximize
∑
x∈D
||FO(x, ϕ)−FO(x, t)||2, (3)699

where FO(x, t) is the embedding of the <cls> to-700

ken when t is injected, and ϕ means not using a701

trigger. We report the result of Eq. 3 in Table 6.702

C Additional Experimental Results703

C.1 Results on backdoor attack704

We experiment with different shots in backdoor705

attack. The results are listed in Figure 7.706

C.2 Results on adversarial attack707

The triggers we found on RoBERTa-large is shown708

on Table 8. Figure 8 shows the effect of relative709

position of <mask> and <text> on ASR.710

D Prompt templates711

Table 9 shows all the prompt templates and verbal-712

izers.713

E Beam Search Algorithm for714

Adversarial Attack715

Algorithm 1 shows the beam search algorithm.716
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Table 8: Triggers we found in each setup.
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Dataset Type Prompt Verbalizer

FR

Null <mask> <trigger> <text>

real/fakeTemplate <text> <trigger> <mask>
Manual [ <mask> review ] <trigger> <text>
Template <text> <trigger> [ <mask> review ]

RN

Null <mask> <trigger> <text>

real/fakeTemplate <text> <trigger> <mask>
Manual It was <mask> . <trigger> <text>
Template <text> <trigger> It was <mask> .

HATE

Null <mask> <trigger> <text>

harmless/hateTemplate <text> <trigger> <mask>
Manual [ <mask> speech ] <trigger> <text>
Template <text> <trigger> [ <mask> speech ]

IMDB

Null <mask> <trigger> <text>

bad/goodTemplate <text> <trigger> <mask>
Manual It was <mask> . <trigger> <text>
Template <text> <trigger> It was <mask> .

SST

Null <mask> <trigger> <text>

bad/goodTemplate <text> <trigger> <mask>
Manual It was <mask> . <trigger> <text>
Template <text> <trigger> It was <mask> .

AG

Null <mask> <trigger> <text>

politics/sports/business/technologyTemplate <text> <trigger> <mask>
Manual [ <mask> news ] <trigger> <text>
Template <text> <trigger> [ <mask> news ]

Table 9: Prompts and verbalizers. For each template, we also mark the position where the triggers are injected.

Algorithm 1: Beam Search for AToP

Input: Processed text corpora D′; trigger length l, number of search steps n; batch size m; beam size b.
Output: b triggers of length l.

current_beam = [random_init_a_trigger()];
for i ∈ 1 . . . n do

new_beam = empty list;
[(x(j), y(j))]j=1...m ∼ D′;
for k ∈ 1 . . . l do

for t ∈ current_trigger do
loss =

∑m
j=1 compute_loss(x(j), y(j), t);

new_beam.add((t, loss));
grad = ∇word_embedding(tk)loss;
weightc = −⟨grad, word_embedding(c)− word_embedding(ti)⟩;
candidate_words = get b words with maximum weight;
for c ∈ candidate_words do

t′ = t1:k−1, c, tk+1:l;
loss =

∑m
u=1 compute_loss(x(u), y(u), t′);

new_beam.add((t′, loss));
end

end
current_beam = get b best triggers from new_beam;

end
end
return current_beam

12


