

000 001 002 003 004 005 LOGISTORY: A LOGIC-AWARE FRAMEWORK FOR 006 MULTI-IMAGE STORY VISUALIZATION 007 008

009 **Anonymous authors**
010
011
012
013
014
015
016
017
018
019

Paper under double-blind review

020
021
022
023
024
025
026
027
028 Figure 1: Comparison of the state-of-the-art multimodal models alongside our proposed approach
029 LogiStory in the visualization of the simple story "The Crow and the Pitcher." The results highlight
030 the challenges of visual reasoning in the process of visual sequence generation, while demonstrating
031 the effectiveness of LogiStory.

ABSTRACT

032
033 Generating coherent and communicative visual sequences, such as image sequences
034 and videos, remains a significant challenge for current multimodal systems. De-
035 spite advances in visual quality and the integration of world knowledge, existing
036 models still struggle to maintain logical flow, often resulting in disjointed actions,
037 fragmented narratives, and unclear storylines. We attribute these issues to the
038 lack of attention to **visual logic**, a critical yet underexplored dimension of visual
039 sequence generation that we define as the perceptual and causal coherence among
040 characters, actions, and scenes over time. To bridge this gap, we propose a logic-
041 aware multi-image story visualization framework, **LogiStory**. The framework
042 is built around the central innovation of explicitly modeling visual logic in story
043 visualization. To realize this idea, we design a multi-agent system that grounds
044 roles, extracts causal chains, and verifies story-level consistency, transforming
045 narrative coherence from an implicit byproduct of image generation into an explicit
046 modeling objective. This design effectively bridges story planning with
047 visual generation, enhancing both narrative clarity and visual quality in story visual-
048 ization. Furthermore, to evaluate the generation capacity, we construct **LogicTale**,
049 a benchmark comprising richly annotated stories, emphasizing causal reasoning,
050 and visual logic interpretability. We establish comprehensive automatic and hu-
051 man evaluation protocols designed to measure both visual logic and perceptual
052 quality. Experiments demonstrate that our approach significantly improves the
053 narrative logic of generated visual stories. This work provides a foundational step
towards modeling and enforcing visual logic in general image sequence and video
generation tasks.

054

1 INTRODUCTION

055
 056 Recent advances in generative models have enabled machines to produce high quality visual content
 057 from structured or unstructured inputs, such as text, sketches, or semantic layouts Zhou et al. (2025);
 058 Zhuang et al. (2024); Li et al. (2024). From image synthesis Liu et al. (2024a); Suo et al. (2025)
 059 to long-form video generation Dalal et al. (2025); Weijia Wu (2025); Guo et al. (2025), the ability
 060 to automatically construct visual narratives has opened exciting opportunities in creative domains
 061 ranging from illustration and education to filmmaking and simulation. Despite advances in high-
 062 fidelity content generation, ensuring that visual sequences evolve in a logically coherent manner that
 063 aligns with human expectations continues to be a key challenge.

064 Story visualization is a challenge task in visual sequence generation, where the goal is to generate
 065 a sequence of images that together depict a given narrative. Compared to single-image generation,
 066 this task requires not only high-quality visual outputs but also coherent storytelling across multiple
 067 images. Prior work has devoted substantial attention to improving visual quality and entity consistency
 068 Maharana et al. (2022); Pan et al. (2022); Rahman et al. (2022); Zhou et al. (2024); Tewel et al.
 069 (2024); Singh et al. (2025); Liu et al. (2025), which neglects narrative interpretability, resulting in
 070 sequences that resemble isolated image snapshots rather than causally connected visual narratives.
 071 Although significant progress has been made in textual logic modeling and planning Feng et al.
 072 (2023); Yao et al. (2019); Peng et al. (2022), there remains a substantial gap between textual and
 073 visual expression.

074 To address these challenges, we formally introduce the concept of **visual logic**. Visual logic refers
 075 to whether the progression of visual content across time or spatial layout forms an interpretable,
 076 causally sound, and semantically plausible experience for the viewer. As shown in Figure 1, failures
 077 related to visual logic in story visualization can manifest in many forms: abrupt object state changes
 078 without explanation, inconsistencies, emotionless or contradictory character behaviors. Building on
 079 this, we propose a structured generation framework **LogiStory**, which explicitly models visual logic
 080 through two components. First, we introduce a **Logic-Aware Multi-agent System** that transforms the
 081 input narrative into structured visual representations, including character definitions, object attributes,
 082 scene layouts, and panel-wise events. Second, we design a **Visual Logic Enhancement Module** that
 083 reinforces consistency through a Global Causal Verifier (which builds action-state graphs over the
 084 full story) and a Local Causal Monitor (which simulates human step-by-step comprehension during
 generation).

085 To support the development and evaluation of visual logic in generative models, we construct a
 086 new benchmark, **LogicTale**, featuring causal annotations, action-state flows, and panel-level story
 087 breakdowns. We further design visual logic-aware evaluation metrics that assess narrative coherence
 088 and interpretability beyond surface-level visual quality. In summary, the contribution of this paper
 089 includes:

090 (1) We define the concept of **visual logic** as a critical yet under-addressed dimension of generative
 091 modeling, and instantiate it through the task of multi-image story visualization.
 092
 093 (2) We propose **LogiStory**, a novel logic-aware framework for multi-image story visualization.
 094 LogiStory reframes storytelling as a logic-aware reasoning problem rather than isolated image syn-
 095 thesis, bridging structured narrative understanding with visual generation and explicitly strengthening
 096 story-level logic.
 097 (3) We introduce **LogicTale**, a new benchmark dataset with annotated causal chains and structured
 098 visual representations, along with novel evaluation metrics that target visual logic consistency and
 099 narrative interpretability in visual sequences generation tasks.

100

2 RELATED WORK

101

2.1 STORY VISUALIZATION

102 Story visualization aims to generate a sequence of images that visually depict the progression of
 103 a narrative. Early work in this domain relied on GAN-based models Li et al. (2019); Feng et al.
 104 (2023), which generated one image per sentence with limited consideration for global coherence.
 105 The introduction of diffusion models significantly improved visual fidelity and control, enabling

108 methods Zhou et al. (2024); Tewel et al. (2024); Shen & Elhoseiny (2025); Wang et al. (2024) to
 109 maintain character consistency across frames via identity conditioning. More recently, large language
 110 models have driven the development of fully automated pipelines. Agent-based systems Hu et al.
 111 (2024); Xu et al. (2025); Yang et al. (2024) perform explicit story planning to guide image generation,
 112 while multimodal large language models (MLLMs) such as GPT-4o OpenAI (2024) and Gemini 2.0
 113 Flash DeepMind (2024) show strong performance in short-form comic generation. Despite these
 114 advances, existing methods often lack mechanisms for modeling and enforcing narrative logic across
 115 sequences. Our work addresses this gap by introducing visual logic as a core objective, and proposing
 116 the LogiStory framework to enhance the interpretability of story visualization.

117

118 2.2 CAUSAL REASONING IN TEXT AND VISUAL GENERATION

119

Maintaining causal coherence is critical for generating content that is logically understandable and
 120 narratively complete. In text-based story generation, early models often relied on superficial event
 121 orderings and struggled to capture causal dependencies between events Yamin et al. (2024). To
 122 address this, recent approaches Huot et al. (2024); Xi et al. (2025) incorporate structured planning,
 123 common sense inference, or intermediate causal representations such as event graphs, enabling
 124 models to better model cause-effect relations and produce more coherent narratives. In the visual
 125 domain, causal reasoning poses greater challenges due to the need for temporal consistency and
 126 interpretable transitions across images or video frames. Early story visualization methods Li et al.
 127 (2019); Liu et al. (2024a) lacked explicit mechanisms for cross-frame logic, while more recent
 128 approaches leverage character tracking Wu et al. (2024), structured representations Singh et al.
 129 (2025), or diffusion-based conditioning Zhou et al. (2024); Tewel et al. (2024) to maintain visual
 130 continuity. However, most of these methods focus on appearance or motion consistency rather than
 131 story readability and interpretability. Our work addresses this limitation by explicitly modeling visual
 132 logic, defined as the perceptual and causal coherence across a visual narrative, and introducing a
 133 generation framework that integrates structured planning with causal reasoning to ensure the intended
 134 story is both interpretable and logically sound.

135

136

2.3 EVALUATION OF VISUAL SEQUENCES

137

Evaluation of Visual Sequences remains a largely open problem, especially with regard to assessing
 138 narrative logic. Existing evaluations for visual storytelling often rely on standard image-level metrics
 139 such as FID for realism Heusel et al. (2018), CLIPScore for semantic alignment Radford et al. (2021),
 140 or DINO-based embedding distances for visual consistency Oquab et al. (2024). Alternatively, some
 141 works adopt generic benchmarks designed for image generation Huang et al. (2023); Ku et al. (2024);
 142 Wiles et al. (2024); Cho et al. (2024). While effective for assessing individual image quality, these
 143 approaches largely overlook inter-frame relationships, failing to evaluate whether the image sequence
 144 conveys a coherent narrative or maintains causal and temporal dependencies. In video generation,
 145 several benchmark suites have been proposed Liu et al. (2024b); Huang et al. (2024a;b), introducing
 146 a set of standardized metrics that assess frame quality, temporal alignment, and object continuity.
 147 However, even such benchmarks lack explicit evaluation of narrative-level logic or causal flow across
 148 scenes. To our knowledge, while VinaBench Gao et al. (2025) incorporates commonsense links and
 149 visual consistency, we are not aware of an existing benchmark that explicitly evaluates narrative-level
 150 logical coherence in visual story sequences, which motivates our emphasis on visual logic and causal
 151 reasoning.

152

153

3 METHOD

154

155

3.1 TASK FORMULATION

156

157

158

159

160

161

Given a text-form story \mathcal{S} , the goal is to generate a sequence of T images $\mathcal{I} = \{I_1, I_2, \dots, I_T\}$ such
 that the sequence visually depicts the storyline in a coherent, interpretable and logically consistent
 manner. Unlike traditional text-to-image generation, this task requires maintaining inter-frame
 dependencies across multiple dimensions, including: **(1) Instance consistency**: maintaining identity,
 appearance, and position of recurring instances. **(2) Narrative causality**: ensuring that actions and
 consequences follow a coherent and plausible causal chain. **(3) Story readability**: clearly conveying
 the intended narrative via the generated image sequence.

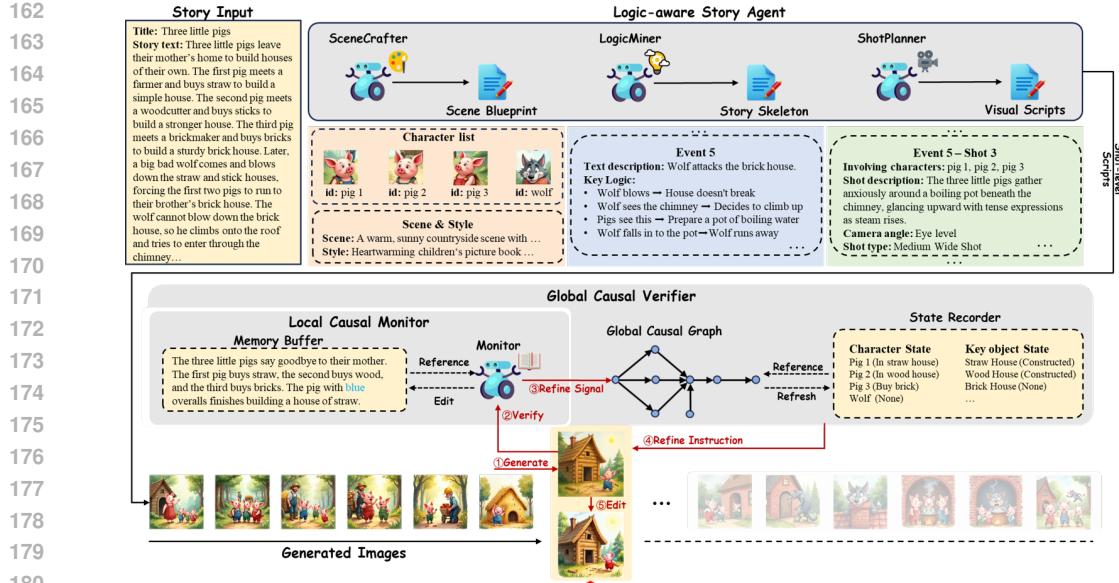


Figure 2: **Overview of LogiStory framework**. Given an input story, our system first applies a multi-agent story planner to decompose the story into structured panels with detailed scripts. In the generation process, the Local Causal Monitor simulates a reader’s linear understanding by evaluating each frame for inconsistencies and generating refinement signals. Then, the Global Causal Verifier applies the causal graph to produce concrete refinement instructions to correct errors and maintain narrative flow.

3.2 LOGISTORY FRAMEWORK

We propose **LogiStory** shown in Figure 2, including two components: (1) **Logic-Aware Multi-agent System** constructs structured intermediate representations from the input story. (2) **Visual Logic Enhancement Module** guides the synthesis and refinement of each image by incorporating both the story structure and multi-level visual logic verification. The detailed implementation(e.g., prompt templates) is provided in the Appendix D.

3.2.1 LOGIC-AWARE MULTI-AGENT SYSTEM

The **Logic-Aware Multi-agent** transforms an input story into an interpretable intermediate representation. This system consists of three collaborative agents that work in stages: (1) **SceneCrafter**, an entity and context definition agent, (2) **LogicMiner**, a key event extraction agent, and (3) **ShotPlanner**, a shot-level planning agent. Together, they decompose the input narrative into structured components that guide the visual generation pipeline.

SceneCrafter. Given a story text S , the agent extracts and defines a set of semantic entities for consistent visual generation:

$$\mathcal{E} = \mathcal{F}_{\text{craft}}(S),$$

where $\mathcal{F}_{\text{craft}}(\cdot)$ defines attributes of entities in the story. The entity set \mathcal{E} comprises characters $\mathcal{C} = \{c_1, \dots, c_K\}$, objects $\mathcal{O} = \{o_1, \dots, o_M\}$, and scenes $\mathcal{S} = \{s_1, \dots, s_N\}$. These structured definitions form a visual grounding vocabulary, reused across all panels to ensure stable and consistent representation throughout the story, ensuring stable representation of characters and objects across different scenes and supports downstream modules in maintaining entity consistency and contextual coherence.

LogicMiner. To guide visual composition, we extract key narrative events defined as tuples $k_j = (\text{actor}, \text{action}, \text{target}, \text{result})$, capturing causally relevant or state-changing moments in the story. Given the input text S , we apply a large language model to directly extract these structured events. The function can be formalized as:

$$\mathcal{K} = \{k_1, \dots, k_J\} = \mathcal{F}_{\text{mine}}(S, \mathcal{E}),$$

where $\mathcal{F}_{\text{mine}}(\cdot)$ identifies both explicitly stated and implicitly implied state transitions critical for visual grounding. This dual capability ensures that both direct narrative cues and essential inferred

216 changes are captured for visual grounding. For example, from "the crow put pebbles into the cup,"
 217 LogicMiner infers the rising water level. These events form the causal backbone, guiding subsequent
 218 shot planning and scene arrangement.

219 **ShotPlanner.** Given key events \mathcal{K} and entities \mathcal{E} , the shot planning agent organizes them into a
 220 sequence of panel specifications. The function can be formalized as:
 221

$$222 \quad \mathcal{P} = \{p_1, \dots, p_T\} = \mathcal{F}_{\text{shot}}(\mathcal{K}, \mathcal{E}),$$

223 where $\mathcal{F}_{\text{shot}}(\cdot)$ designs detailed shot specifications, including characters, actions, objects, spatial
 224 relations, scenes, and camera parameters. ShotPlanner incorporates visual storytelling conventions
 225 (e.g., pacing, framing, perspective) to control narrative rhythm, emphasize key events, and ensure
 226 visually coherent, engaging sequences, ensuring the resulting image sequence not only captures the
 227 intended events but also presents them in a visually engaging and narratively coherent manner.

228 3.2.2 VISUAL LOGIC ENHANCEMENT MODULE

229 Although structured planning provides high-level
 230 narrative scaffolding, ensuring that the generated
 231 image sequence aligns with human-interpretable
 232 logic requires deeper modeling of visual logic. We
 233 propose a **Visual Logic Enhancement Module**
 234 to bridge the gap between semantic planning and
 235 visual realization. This module comprises two
 236 complementary components as follows.

237 **Local Causal Monitor.** To model the linear compre-
 238 hension process of human readers, we intro-
 239 duce a Local Causal Monitor that evaluates each
 240 panel generation step by step. We maintain a text-
 241 form causal memory buffer \mathcal{M}_{t-1} consisting of
 242 state snapshots and actions from $\{p_1, \dots, p_{t-1}\}$.
 243 Given the current panel image I_t and its local con-
 244 text \mathcal{M}_{t-1} , we simulate a human reading path by
 245 checking whether p_t remains narratively plausible
 246 and coherent with respect to \mathcal{M}_{t-1} , rather than en-
 247 forcing deterministic prediction. Using MLLMs to
 248 simulate the reader's reasoning process, we define
 249 a causal plausibility score ψ_t as:

$$250 \quad \psi_t = C_p(I_t \mid \mathcal{M}_{t-1}),$$

251 where C_p evaluates the degree to which the depicted state transitions are consistent with or reasonably
 252 extend the accumulated context. This allows the monitor to accommodate both expected progressions
 253 and surprising developments, as long as they preserve overall narrative logic and do not contradict
 254 prior states.

255 **Global Causal Verifier.** Based on the extracted key events \mathcal{K} and story text S , we construct a
 256 directed causal graph $\mathcal{G}_{\text{causal}}$ representing the narrative's logical backbone, where nodes represent key
 257 states (e.g., character status, object conditions), and edges represent causal or temporal dependencies
 258 inferred from the event semantics. A state recorder tracks the current states of all instances, updating
 259 dynamically as the story progresses to provide a reference for verification. For each generated image
 260 p_t , the verifier checks whether the visualized state transitions match the expected causal links in the
 261 graph. Specifically, for an action a_t , we define its pre-condition state S_t^{pre} and post-condition state
 262 S_t^{post} :

$$263 \quad S_t^{\text{pre}} \xrightarrow{a_t} S_t^{\text{post}}.$$

264 These transitions are validated against the causal graph to ensure consistency with the established
 265 narrative chains:

$$266 \quad \forall t, \quad (S_t^{\text{pre}}, S_t^{\text{post}}) \in \text{Paths}(\mathcal{G}_{\text{causal}}).$$

267 Any inconsistency is flagged and sent to image editing tools for correction.

268 **Image Refinement.** To ensure logical coherence during generation, each panel p_t is immediately
 269 evaluated upon creation. Given the logic confidence score $\psi_t \in [0, 1]$ using the Local Causal Monitor.

270 Refinement decisions are made according to Algorithm 1. The thresholds $\tau_1 = 0.4$ and $\tau_2 = 0.7$
 271 are empirically set based on preliminary experiments. τ_1 marks the boundary below which the
 272 generated image is considered unrelated to the narrative, while τ_2 indicates sufficient alignment
 273 with the intended meaning. If refinement is needed ($\tau_1 \leq \psi < \tau_2$), we invoke the Global Causal
 274 Verifier, which maintains a structured causal graph of actions and states. It provides explicit revision
 275 instructions, guiding targeted editing via image editing tools.

277 4 LOGICTALE BENCHMARK

279 Since existing story visualization benchmarks lack direct evaluation of **story-level logic**, we design a
 280 dataset and evaluation suite, **LogicTale**, to explicitly assess visual logic in multi-image narratives
 281 and to facilitate the development of logic-aware visual content generation. The detailed dataset
 282 composition and evaluation protocol definition are provided in the Appendix C.

284 4.1 DATASET CONSTRUCTION

286 **Dataset Composition.** The dataset contains 60 meticulously annotated stories. To ensure both
 287 diversity and generalization, we include a balanced mix of well-known classic stories and human-
 288 authored original stories, in a 3:2 ratio. The inclusion of well-known classic stories ensures the
 289 fundamental quality and reliability of the dataset, while original stories introduce unseen structures
 290 that posing greater challenges for the task. Stories are labeled as *easy*, *medium*, or *hard* based on
 291 visual reasoning difficulty.

292 **Data Annotation.** Each story contains the following components: (1) A story title and its source. (2)
 293 The full narrative story text. (3) A character list specifying key and supporting entities. (4) A set of
 294 visual logic chains annotated as tuples (action, result, weight), where each tuple represents a causally
 295 important event, and $\sum_i \text{weight}_i = 1$ to normalize importance. (5) A difficulty label reflecting the
 296 expected complexity in visual story modeling.

297 **Dataset Scale.** Regarding **evaluation scale**, our dataset is **comparable or larger** than prior
 298 works: *StoryDiffusion* (**20** short single-character stories) Zhou et al. (2024), *ConsiStory* (**20** hand-
 299 crafted scenes) Tewel et al. (2024), *MM-StoryAgent* (**100** LLM-generated stories) Xu et al. (2025),
 300 *MovieAgent* (**12** authored examples) Weijia Wu (2025), and *ViStoryBench* (**80** test cases) Zhuang
 301 et al. (2025). Thus, LogicTale’s 60 richly annotated, multi-character stories with varied difficulty
 302 provide a **solid, representative benchmark**.

303 4.2 EVALUATION PROTOCOL

305 To evaluate the performance, we consider two complementary dimensions: **visual logic** and **percep-**
 306 **tual quality**. Together, these evaluation components form a comprehensive benchmark that captures
 307 both the logical interpretability and visual quality of generative systems in visual storytelling.

309 **Visual Logic Evaluation.** We evaluate visual logic from three aspects. **(1) Instance Consistency**
 310 metrics evaluate whether key elements are preserved across frames via MLLMs. Character consis-
 311 tency examines whether character appearance, clothing, and identity remain visually stable. Object
 312 consistency checks whether the appearance and transformation of key objects follow a plausible state
 313 evolution. Scene consistency ensures that background environments remain locally coherent unless
 314 disrupted by explicit narrative cues. **(2) Narrative Causality** depends on whether the generated
 315 images accurately express the annotated key events. Each event $e_i = (\text{action}, \text{result}, \text{weight})$ is
 316 assigned a quality score based on its clarity, coherence, and plausibility. The overall event-based
 317 score is computed as:

$$317 \text{CausalScore} = \sum_i \text{EventScore}(e_i) \cdot \text{weight}_i.$$

319 **(3) Story Readability** represents how well the generated image sequence conveys the intended
 320 narrative. To do this, we first apply a captioning model (e.g., BLIP-2) to produce a textual description
 321 for the entire image sequence. We then provide an LLM with two inputs: the story’s character list and
 322 the generated caption. The model is prompted to infer the underlying story based on this information.
 323 Finally, we compute semantic similarity between the inferred story and the original ground-truth
 narrative to assess global story alignment.

324 **Perceptual Quality Evaluation.** Perceptual quality focus on the qualities of image presentation. **(1)**
 325 **Aesthetic Quality** is assessed using HPSv2 to evaluate the visual appeal of the image sequence. **(2)**
 326 **Style Consistency** examines whether the entire sequence maintains a coherent visual rendering style,
 327 estimated via DINOv2 embedding distance. **(3) Character Expressiveness** evaluates how well the
 328 emotions, poses, and gestures of characters align with the narrative events and is rated by MLLMs.
 329

330 **5 EXPERIMENTS**

331 **5.1 EXPERIMENT SETTING**

335 **Dataset.** We conduct experiments on the proposed LogicTale dataset, providing a diverse testbed for
 336 evaluating visual narrative generation. For fairness and generality, we also compare against datasets
 337 used in prior works such as *ViStoryBench* and *StoryDiffusion*, and report corresponding evaluations
 338 in the Appendix B.

339 **Metrics.** We evaluate performance using both automatic and human assessments. **Automatic**
 340 **evaluation** follows LogicTale evaluation protocol. **Human evaluation** is designed to closely align
 341 with our automatic evaluation protocol. To rigorously assess story-level logical coherence, we include
 342 three dimensions: *Instance Consistency*, *Narrative Causality*, and *Story Readability*. This design
 343 enables human judgment to provide a fine-grained evaluation of the core narrative logic aspects
 344 targeted in our framework. In contrast, perceptual quality is evaluated using a single dimension,
 345 *Aesthetic Appeal*, which captures overall visual attractiveness and stylistic coherence. We adopt
 346 this simplified form because perceptual quality is not the central focus of this work and to reduce
 347 annotation cost. For each test case, annotators are presented with the full story text together with the
 348 generated image sequence. The detailed implementations are provided in the Appendix C.

349 **LogiStory Settings.** The agent module leverages DeepSeek-V3 as the base LLM. The image
 350 generation module utilizes Flux for initial panel synthesis. For image refinement and editing, we
 351 integrate inpainting models and MLLMs, including GPT-image-1 and Gemini 2.0 Flash, to support
 352 targeted edits guided by the verifier’s feedback.

353 **Baselines.** We compare our method with both closed-source and open-source baselines. For closed
 354 models, we evaluate the most capable publicly accessible systems to date: **Nano Banana** Google
 355 DeepMind (2025), **Gemini 2.0 Flash** DeepMind (2024) and **GPT-4o+GPT-image-1** OpenAI (2024),
 356 both of which support end-to-end generation from story text to panel planning and visual sequence
 357 rendering. For open-source baselines, we select models capable of open-ended and general-purpose
 358 story visualization, as opposed to methods fine-tuned on specific datasets (e.g., StoryGPT-V Shen &
 359 Elhoseiny (2025)). We employ the end-to-end agent-based framework **MM-StoryAgent** Xu et al.
 360 (2025). While existing works such as **StoryDiffusion** Zhou et al. (2024) and **ConsiStory** Tewel et al.
 361 (2024) lack built-in story planning modules. To ensure fair comparison, we pair these methods with
 362 **DeepSeek-R1** DeepSeek-AI (2025) as a planning backbone to generate panel-level scene descriptions.
 363 We also evaluate the performance of standard generative models including **SDXL** Podell et al. (2023)
 364 and **Flux Labs** (2024) under the same setup.

365 Table 1: Performance of Automatic metric on story visualization methods. "ICons.", "NCausal.",
 366 "SRead.", "AesthQ.", "SCons.", "CExpr.", "App." refer to "Instance Consistency", "Narrative Causal-
 367 ity", "Story Readability", "Aesthetic Quality", "Style Consistency", "Character Expressiveness",
 368 "Aesthetic Appeal". The first rank is highlighted in **bold**, while the second rank is underlined.

Method	Visual Logic			Perceptual Quality			User study			
	ICons.	NCausal.	SRead.	AesthQ.	SCons.	CExpr.	ICons.	NCausal.	SRead.	App.
DeepSeek-R1 + SDXL	2.17	2.02	0.5675	0.2899	0.7747	2.13	2.33	1.86	2.13	3.0
DeepSeek-R1 + Flux	3.87	3.43	0.6872	0.3047	0.8329	4.20	3.53	3.25	3.20	3.8
DeepSeek-R1 + StoryDiff	3.07	2.06	0.5409	0.2909	0.8276	2.07	2.70	2.12	2.35	2.6
DeepSeek-R1 + ConSistory	3.23	1.98	0.5623	0.2939	0.8129	2.26	2.87	1.73	1.87	2.4
MM-StoryAgent	3.03	2.63	0.5787	0.2942	0.8023	2.54	2.67	3.04	2.43	2.6
Gemini 2.0 flash	3.62	3.88	0.6510	0.2547	0.8197	3.48	3.7	3.65	3.58	2.8
Nano Banana	4.20	<u>4.08</u>	0.7440	0.3102	0.9034	<u>4.26</u>	4.20	<u>3.96</u>	<u>3.75</u>	<u>4.4</u>
GPT-4o + GPT-image-1	4.67	3.96	<u>0.7622</u>	0.2829	<u>0.8984</u>	4.15	4.38	3.78	3.65	4.6
Ours	4.23	4.45	0.8267	0.3088	0.8572	4.32	4.25	4.26	3.83	4.2

Figure 3: **Quality analysis of generated stories across different methods.** Representative key scenes are shown here. Complete sequences can be found in the Appendix A.

5.2 PERFORMANCE COMPARISONS AND ANALYSIS

5.2.1 AUTOMATIC EVALUATION

The results are shown in Table 1. Our approach achieves the highest score in Narrative Causality, Story Readability, Aesthetic Quality and Character Expressiveness. In terms of Instance Consistency and Style Consistency, our method slightly trails behind GPT-Image-1, which benefits from its strong ability to edit reference images. Nevertheless, our method shows competitive performance in this regard. Figure 3 presents a qualitative comparison of generated results on the story *Three Little Pigs*. Open-source methods, including **Flux** (basic diffusion model), **StoryDiffusion** (character-consistent generation model), and **MM-StoryAgent** (agent-based system), all exhibit common errors such as attribute mismatches and inconsistent visual elements, resulting in low narrative clarity and weak interpretability. **Nano Banana** and **Gemini 2.0 Flash** demonstrates a relatively clear planning of story rhythm. However, it still suffers from instance omissions and attribute errors. Similarly, **GPT-4o+GPT-image-1** shows attribute confusion issues, such as mixing the clothing of the three pigs. In contrast, **LogiStory** generates story sequences with clearer logic, stronger narrative readability, and higher consistency between characters, actions, and scenes, effectively addressing the challenges of visual logic in multi-image story visualization.

5.2.2 HUMAN RATING

To comprehensively assess subjective quality, we conducted a user study with 30 participants. Each was shown randomly shuffled outputs from all methods for the same story, without knowing their identities to avoid bias. The results in Table 1 show that our method outperforms others on the three logic-focused dimensions: **Instance Consistency**, **Narrative Causality**, and **Story Readability**. It also achieves high scores in **Aesthetic Appeal**, indicating both logical clarity and visual attractiveness. We further measured alignment between user study and automatic evaluation using **Pearson correlation**, yielding strong results (Instance Consistency: **0.959**, Narrative Causality: **0.978**, Story Readability: **0.909**, Perceptual Quality: 0.695). The lower correlation for perceptual quality is mainly due to stylistic homogeneity among SDXL-based methods such as StoryDiffusion and ConsisStory, which reduces discriminative power.

5.3 ABLATION STUDY

To better understand the contribution of each module in our framework, we conduct ablation experiments on **logic-aware multi-agent system** and **visual logic enhancement module**. Since our work

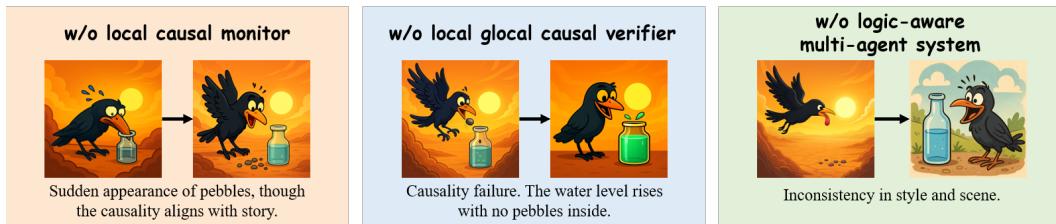


Figure 4: **Ablation study on key components of LogiStory.** Qualitative comparisons on representative examples demonstrate the impact of each module.

primarily focuses on enhancing visual logic, we restrict the evaluation to the visual logic metrics in our benchmark. Qualitative results are shown in Figure 4

Effect of Planning Methods: To evaluate the effectiveness of our multi-agent planning module, we conduct an ablation study by replacing it with an LLM-based planner, where the LLM directly outputs a sequence of actions based on the story description. All other components of the **LogiStory** framework remain unchanged. As shown in Table 2, compared to directly prompting large models such as DeepSeek-V3 DeepSeek-AI (2024), DeepSeek-R1 DeepSeek-AI (2025), or Qwen2.5-72B Team (2024), the inclusion of our multi-agent story planning system significantly improves performance across all visual logic metrics. This demonstrates the effectiveness of decomposing the narrative into structured roles and key events, which provides strong priors for coherent image sequence generation.

Effect of Global Causal Verifier: To evaluate the role of the Global Causal Verifier in ensuring story-level causal coherence, we conduct an ablation study where the original verifier is replaced by an LLM-based baseline. Specifically, we remove the Global Causal Verifier module and instead use an LLM to directly generate refinement instructions based solely on the story text without structured causal reasoning. As shown in Table 3, the integration of the Global Causal Verifier leads to notable gains in **Narrative Causality** scores. We attribute this to its ability to explicitly monitor and enforce state-action-result chains throughout the story, ensuring that critical logical transitions are preserved in the visual narrative.

Effect of Local Causal Monitor: We further assess the contribution of the Local Causal Monitor by removing this module from the pipeline. In this ablation setting, the system bypasses the local monitor and instead directly evaluates the alignment between each generated image and its corresponding shot-level script using a simple matching score. As shown in Table 3, adding the Local Causal Monitor brings consistent improvements in **Story Readability**. By simulating the human reading process and performing incremental causal validation during generation, this module enhances the overall clarity and interpretability of the story.

Table 2: Ablation study on story scripts planning methods.

Planning Method	ICons.	NCausal.	SRead.
DeepSeek-V3	3.92	3.64	0.7233
DeepSeek-R1	3.87	3.86	0.7159
Qwen2.5-72B	3.66	3.52	0.6614
Ours	4.23	4.45	0.8267

Table 3: Ablation study on visual logic enhancement module.

Method	ICons.	NCausal.	SRead.
Ours (w/ none)	4.16	3.93	0.6527
Ours (w/ global)	4.12	4.27	0.7283
Ours (w/ local)	4.24	4.10	0.7732
Ours (w/ both)	4.23	4.45	0.8267

5.4 COMPLEX CASE AND FAILURE ANALYSIS

In this subsection, we present a representative *hard-level* case featuring **multi-task narrative structure**, flashback usage, and **subtle emotional implications**. We provide the fully rendered **causal graph** alongside **key panel comparisons** for illustration. As shown in Figure 5, the framework constructed **causal graph (b)** effectively decomposes the core logical dependencies and developmental relationships within the story.

For such complex scenarios, we observe that the primary bottleneck lies **on the generation side rather than the planning stage**. Our framework demonstrates **higher character consistency** and **better narrative alignment** compared with representative baselines such as *StoryDiffusion* and *GPT*.

486
 487 *4o + GPT-image-1*. However, certain challenges remain: for instance, **visual emotional expression**
 488 **may be insufficiently delicate**, and **event-level coherence can occasionally degrade**. This is partly
 489 due to the inherent difficulty of visually presenting fine-grained emotional trajectories, especially
 490 when narrative intent relies strongly on subtle affective cues.

503
 504 **Figure 5: Quality analysis on Complex Case. *Memory Lasts*: An old painter takes his student to**
 505 **a distant sunflower field, once shared with his younger brother before the war. As they paint, the**
 506 **narrative shifts briefly to a childhood flashback, two boys painting under the sunflower sky, one**
 507 **waving goodbye. Upon returning home, the student donates a commemorative painting to a local**
 508 **school, where it remains as the old painter's lasting memory.**

6 CONCLUSION

512 In this work, we introduce **visual logic** as a central objective in story visualization, tackling the under-
 513 explored challenge of ensuring causally coherent and semantically plausible storytelling across image
 514 sequences. We present **LogiStory**, a structured framework that combines multi-agent planning with
 515 causal reasoning, producing sequences that are both visually appealing and narratively coherent. To
 516 enable rigorous evaluation, we construct **LogicTale**, a benchmark with causal annotations, difficulty
 517 levels, and protocols for both automatic and human assessment. Experiments show that our approach
 518 surpasses existing baselines, especially in modeling complex visual causality. We believe this work
 519 lays a foundation for logic-aware generation and offers insights for advancing story visualization and
 520 video synthesis.

7 ETHICS STATEMENT

524 This work focuses on logic-aware story visualization framework LogiStory and the construction of
 525 the LogicTale dataset. The dataset is composed of publicly available narratives (e.g., classic literature,
 526 fables, and human-authored short stories) that do not contain private or sensitive information. All
 527 human annotations were collected from consenting participants, who were informed of the purpose
 528 of the study and compensated fairly. We ensured that annotators' personal data were not collected or
 529 stored, thus preserving privacy. The proposed framework, LogiStory, is a general-purpose research
 530 system and does not target harmful or sensitive applications. Nevertheless, as with other generative
 531 models, there is a risk of producing biased or culturally inappropriate content. To mitigate this,
 532 we include stories from diverse cultural backgrounds and explicitly annotate logical structures to
 533 encourage fairer and more interpretable evaluations. To support transparency and reproducibility,
 534 we plan to release both the dataset and implementation code in the near future, subject to proper
 535 documentation and licensing considerations.

8 REPRODUCIBILITY STATEMENT

536 We are committed to ensuring the reproducibility of our work. The implementation details of
 537 the **LogiStory** framework, including model configurations and pipeline design, are provided in
 538

540 Appendix D. The construction process of the **LogicTale** benchmark, along with annotation protocols
 541 and evaluation procedures, is described in Appendix C. We provide a subset of LogicTale in the
 542 supplementary material. These materials are intended to allow researchers to replicate both our
 543 framework and evaluation methodology.

544

545 REFERENCES

546

547 Jaemin Cho, Yushi Hu, Jason Baldridge, Roopal Garg, Peter Anderson, Ranjay Krishna, Mohit Bansal,
 548 Jordi Pont-Tuset, and Su Wang. Davidsonian scene graph: Improving reliability in fine-grained
 549 evaluation for text-to-image generation. In *ICLR*, 2024.

550 Karan Dalal, Daniel Koceja, Gashon Hussein, Jiarui Xu, Yue Zhao, Youjin Song, Shihao Han,
 551 Ka Chun Cheung, Jan Kautz, Carlos Guestrin, Tatsunori Hashimoto, Sanmi Koyejo, Yejin Choi,
 552 Yu Sun, and Xiaolong Wang. One-minute video generation with test-time training, 2025. URL
 553 <https://arxiv.org/abs/2504.05298>.

554 Google DeepMind. Gemini 2.0 flash, 2024. URL <https://deepmind.google/technologies/gemini/flash/>. Accessed: 2025-05-10.

555 DeepSeek-AI. Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.

556 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
 557 2025. URL <https://arxiv.org/abs/2501.12948>.

558 Zhangyin Feng, Yuchen Ren, Xinmiao Yu, Xiaocheng Feng, Duyu Tang, Shuming Shi, and Bing
 559 Qin. Improved visual story generation with adaptive context modeling. In Anna Rogers, Jordan
 560 Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of the Association for Computational Lin-
 561 guistics: ACL 2023*, pp. 4939–4955, Toronto, Canada, July 2023. Association for Computational
 562 Linguistics. doi: 10.18653/v1/2023.findings-acl.305. URL <https://aclanthology.org/2023.findings-acl.305>.

563 Silin Gao, Sheryl Mathew, Li Mi, Sepideh Mamooler, Mengjie Zhao, Hiromi Wakaki, Yuki Mitsufuji,
 564 Syrielle Montariol, and Antoine Bosselut. Vinabench: Benchmark for faithful and consistent
 565 visual narratives. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 566 Recognition*, 2025.

567 Google DeepMind. Nano banana (gemini 2.5 flash image). <https://ai.google.dev/gemini-api/docs/image-generation>, August 2025. Google image editing and genera-
 568 tion model.

569 Yuwei Guo, Ceyuan Yang, Ziyuan Yang, Zhabei Ma, Zhijie Lin, Zhenheng Yang, Dahua Lin, and
 570 Lu Jiang. Long context tuning for video generation. *CoRR*, abs/2503.10589, 2025. doi: 10.48550/
 571 ARXIV.2503.10589. URL <https://doi.org/10.48550/arXiv.2503.10589>.

572 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
 573 trained by a two time-scale update rule converge to a local nash equilibrium, 2018.

574 Panwen Hu, Jin Jiang, Jianqi Chen, Mingfei Han, Shengcai Liao, Xiaojun Chang, and Xiaodan Liang.
 575 Storyagent: Customized storytelling video generation via multi-agent collaboration, 2024. URL
 576 <https://arxiv.org/abs/2411.04925>.

577 Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A com-
 578 pre-
 579 hensive benchmark for open-world compositional text-to-image generation. *Advances in Neural
 580 Information Processing Systems*, 36:78723–78747, 2023.

581 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
 582 Wu, Qingyang Jin, Nattapol Champaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua Lin,
 583 Yu Qiao, and Ziwei Liu. VBench: Comprehensive benchmark suite for video generative models.
 584 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2024a.

594 Ziqi Huang, Fan Zhang, Xiaojie Xu, Yinan He, Jiashuo Yu, Ziyue Dong, Qianli Ma, Nattapol
 595 Chanpaisit, Chenyang Si, Yuming Jiang, Yaohui Wang, Xinyuan Chen, Ying-Cong Chen, Limin
 596 Wang, Dahua Lin, Yu Qiao, and Ziwei Liu. VBench++: Comprehensive and versatile benchmark
 597 suite for video generative models. *arXiv preprint arXiv:2411.13503*, 2024b.

598 Fantine Huot, Reinald Kim Amplayo, Jennimaria Palomaki, Alice Shoshana Jakobovits, Elizabeth
 599 Clark, and Mirella Lapata. Agents' room: Narrative generation through multi-step collaboration.
 600 *arXiv preprint arXiv:2410.02603*, 2024.

601 Max Ku, Tianle Li, Kai Zhang, Yujie Lu, Xingyu Fu, Wenwen Zhuang, and Wenhua Chen. Imagenhub:
 602 Standardizing the evaluation of conditional image generation models. In *The Twelfth International
 603 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=OuV9ZrkQ1c>.

604 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

605 Leheng Li, Weichao Qiu, Xu Yan, Jing He, Kaiqiang Zhou, Yingjie Cai, Qing Lian, Bingbing Liu,
 606 and Ying-Cong Chen. Omnibooth: Learning latent control for image synthesis with multi-modal
 607 instruction. *arXiv preprint arXiv:2410.04932*, 2024.

608 Yitong Li, Zhe Gan, Yelong Shen, Jingjing Liu, Yu Cheng, Yuexin Wu, Lawrence Carin, David
 609 Carlson, and Jianfeng Gao. Storygan: A sequential conditional gan for story visualization. *CVPR*,
 610 2019.

611 Chang Liu, Haoning Wu, Yujie Zhong, Xiaoyun Zhang, Yanfeng Wang, and Weidi Xie. Intelligent
 612 grimm - open-ended visual storytelling via latent diffusion models. In *Proceedings of the IEEE/CVF
 613 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 6190–6200, June 2024a.

614 Tao Liu, Kai Wang, Senmao Li, Joost van de Weijer, Fhad Khan, Shiqi Yang, Yaxing Wang, Jian Yang,
 615 and Mingming Cheng. One-prompt-one-story: Free-lunch consistent text-to-image generation
 616 using a single prompt. In *The Thirteenth International Conference on Learning Representations*,
 617 2025. URL <https://openreview.net/forum?id=cD1k12QKv1>.

618 Yaofang Liu, Xiaodong Cun, Xuebo Liu, Xintao Wang, Yong Zhang, Haoxin Chen, Yang Liu,
 619 Tieyong Zeng, Raymond Chan, and Ying Shan. Evalcrafter: Benchmarking and evaluating large
 620 video generation models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 621 Pattern Recognition (CVPR)*, pp. 22139–22149, June 2024b.

622 Adyasha Maharana, Darryl Hannan, and Mohit Bansal. Storydall-e: Adapting pretrained text-to-
 623 image transformers for story continuation. In *Computer Vision – ECCV 2022: 17th European
 624 Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXVII*, pp. 70–87, Berlin,
 625 Heidelberg, 2022. Springer-Verlag. ISBN 978-3-031-19835-9. doi: 10.1007/978-3-031-19836-6_5.
 626 URL https://doi.org/10.1007/978-3-031-19836-6_5.

627 OpenAI. Gpt-4o technical report, 2024. URL <https://openai.com/index/gpt-4o>. Ac-
 628 cessed: 2025-05-10.

629 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 630 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaeldin El-Nouby, Mahmoud Assran, Nicolas
 631 Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
 632 Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut,
 633 Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
 634 2024.

635 Xichen Pan, Pengda Qin, Yuhong Li, Hui Xue, and Wenhua Chen. Synthesizing coherent story with
 636 auto-regressive latent diffusion models. *arXiv preprint arXiv:2211.10950*, 2022.

637 Xiangyu Peng, Siyan Li, Sarah Wiegrefe, and Mark Riedl. Inferring the reader: Guiding automated
 638 story generation with commonsense reasoning. In Yoav Goldberg, Zornitsa Kozareva, and Yue
 639 Zhang (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2022*, pp.
 640 7008–7029, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational
 641 Linguistics. doi: 10.18653/v1/2022.findings-emnlp.520. URL [https://aclanthology.org/2022.findings-emnlp.520/](https://aclanthology.org/2022.findings-emnlp.520).

648 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 649 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 650 synthesis, 2023.

651 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 652 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 653 Learning transferable visual models from natural language supervision, 2021.

654 Tanzila Rahman, Hsin-Ying Lee, Jian Ren, Sergey Tulyakov, Shweta Mahajan, and Leonid Si-
 655 gal. Make-a-story: Visual memory conditioned consistent story generation. *arXiv preprint*
 656 *arXiv:2211.13319*, 2022.

657 Xiaoqian Shen and Mohamed Elhoseiny. Storygpt-v: Large language models as consistent story
 658 visualizers, 2025. URL <https://arxiv.org/abs/2312.02252>.

659 Jaskirat Singh, Junshen Kevin Chen, Jonas Kohler, and Michael Cohen. Storybooth: Training-free
 660 multi-subject consistency for improved visual storytelling, 2025. URL <https://arxiv.org/abs/2504.05800>.

661 Yucheng Suo, Fan Ma, Kaixin Shen, Linchao Zhu, and Yi Yang. Long-horizon visual instruction
 662 generation with logic and attribute self-reflection, 2025. URL <https://arxiv.org/abs/2503.13500>.

663 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

664 Yoad Tewel, Omri Kaduri, Rinon Gal, Yoni Kasten, Lior Wolf, Gal Chechik, and Yuval Atzmon.
 665 Training-free consistent text-to-image generation. *ACM Transactions on Graphics (TOG)*, 43(4):
 666 1–18, 2024.

667 Wen Wang, Canyu Zhao, Hao Chen, Zhekai Chen, Kecheng Zheng, and Chunhua Shen. Autostory:
 668 Generating diverse storytelling images with minimal human effort. *Int. J. Computer Vision*, 2024.

669 Mike Zheng Shou Weijia Wu, Zeyu Zhu. Automated movie generation via multi-agent cot planning,
 670 2025.

671 Olivia Wiles, Chuhan Zhang, Isabela Albuquerque, Ivana Kajić, Su Wang, Emanuele Bugliarello,
 672 Yasumasa Onoe, Chris Knutsen, Cyrus Rashtchian, Jordi Pont-Tuset, and Aida Nematzadeh.
 673 Revisiting text-to-image evaluation with gecko: On metrics, prompts, and human ratings. *arXiv*
 674 *preprint arXiv:2404.16820*, 2024.

675 Jianzong Wu, Chao Tang, Jingbo Wang, Yanhong Zeng, Xiangtai Li, and Yunhai Tong. Diffsensei:
 676 Bridging multi-modal llms and diffusion models for customized manga generation. *arXiv preprint*
 677 *arXiv:2412.07589*, 2024.

678 Zekun Xi, Wenbiao Yin, Jizhan Fang, Jialong Wu, Runnan Fang, Ningyu Zhang, Jiang Yong, Pengjun
 679 Xie, Fei Huang, and Huajun Chen. Omnidthink: Expanding knowledge boundaries in machine
 680 writing through thinking, 2025. URL <https://arxiv.org/abs/2501.09751>.

681 Xuenan Xu, Jiahao Mei, Chenliang Li, Yuning Wu, Ming Yan, Shaopeng Lai, Ji Zhang, and Mengyue
 682 Wu. Mm-storyagent: Immersive narrated storybook video generation with a multi-agent paradigm
 683 across text, image and audio, 2025. URL <https://arxiv.org/abs/2503.05242>.

684 Khurram Yamin, Shantanu Gupta, Gaurav R. Ghosal, Zachary C. Lipton, and Bryan Wilder. Failure
 685 modes of llms for causal reasoning on narratives, 2024. URL <https://arxiv.org/abs/2410.23884>.

686 Shuai Yang, Yuying Ge, Yang Li, Yukang Chen, Yixiao Ge, Ying Shan, and Yingcong Chen.
 687 Seed-story: Multimodal long story generation with large language model. *arXiv preprint*
 688 *arXiv:2407.08683*, 2024. URL <https://arxiv.org/abs/2407.08683>.

689 Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin Knight, Dongyan Zhao, and Rui Yan. Plan-and-
 690 write: Towards better automatic storytelling, 2019. URL <https://arxiv.org/abs/1811.05701>.

702 Deweい Zhou, Mingwei Li, Zongxin Yang, and Yi Yang. Dreamrenderer: Taming multi-instance
703 attribute control in large-scale text-to-image models, 2025. URL [https://arxiv.org/abs/](https://arxiv.org/abs/2503.12885)
704 2503.12885.

705 706 Yupeng Zhou, Daquan Zhou, Ming-Ming Cheng, Jiashi Feng, and Qibin Hou. Storydiffusion:
707 Consistent self-attention for long-range image and video generation. *NeurIPS 2024*, 2024.

708 709 Cailin Zhuang, Ailin Huang, Wei Cheng, Jingwei Wu, Yaoqi Hu, Jiaqi Liao, Hongyuan Wang, Xinyao
710 Liao, Weiwei Cai, Hengyuan Xu, Xuanyang Zhang, Xianfang Zeng, Zhewei Huang, Gang Yu, and
711 Chi Zhang. Vistorybench: Comprehensive benchmark suite for story visualization. *arXiv preprint*
712 *arxiv:2505.24862*, 2025.

713 714 Junhao Zhuang, Xuan Ju, Zhaoyang Zhang, Yong Liu, Shiyi Zhang, Chun Yuan, and Ying Shan.
Colorflow: Retrieval-augmented image sequence colorization, 2024. URL <https://arxiv.org/abs/2412.11815>.

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A MORE QUALITATIVE RESULTS
757

786 **Figure 6: Quality analysis of generated stories across different methods. *The Crow and the***
 787 ***Pitcher:*** Under the scorching sun, across a vast, parched land, a thirsty crow flies in search of water.
 788 It eventually spots a tall glass bottle with a small amount of water at the bottom. Unable to reach it
 789 with its beak, the crow notices small pebbles scattered on the ground. One by one, it picks up the
 790 pebbles and drops them into the bottle. As the stones pile up, the water level slowly rises. At last, the
 791 water reaches the top, and the crow happily quenches its thirst.

792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

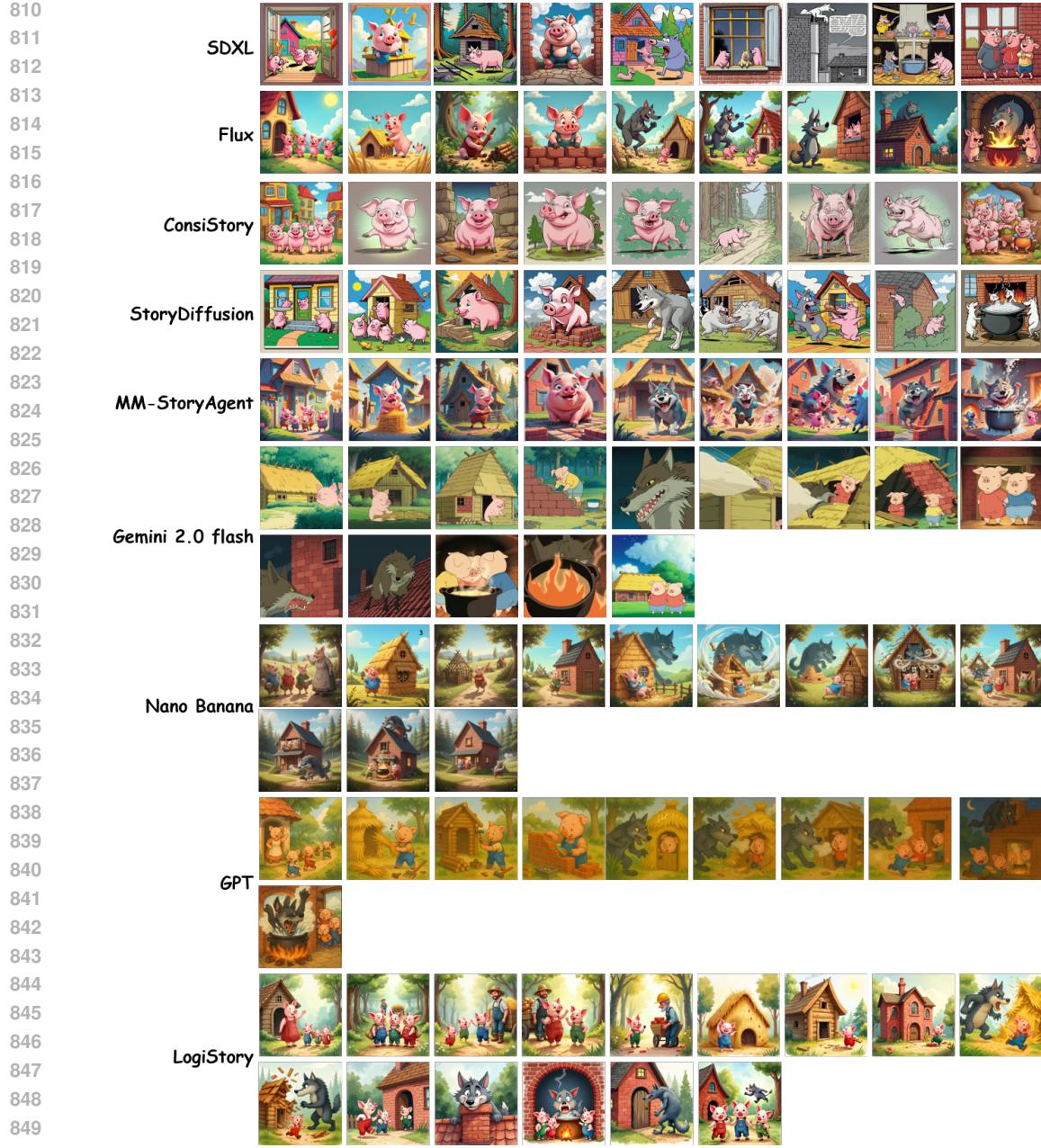


Figure 7: **Quality analysis of generated stories across different methods.** *Three Little Pigs:* Three little pigs live their mother’s house and each build a house: one of straw, one of sticks, and one of bricks. A hungry wolf comes and blows down the straw and stick houses, causing the first two pigs to flee to the brick house. The wolf tries to blow it down but fails. He then climbs the chimney, but the pigs boil a pot of water inside, and the wolf falls in and runs away burned. All three pigs live safely together in the brick house.

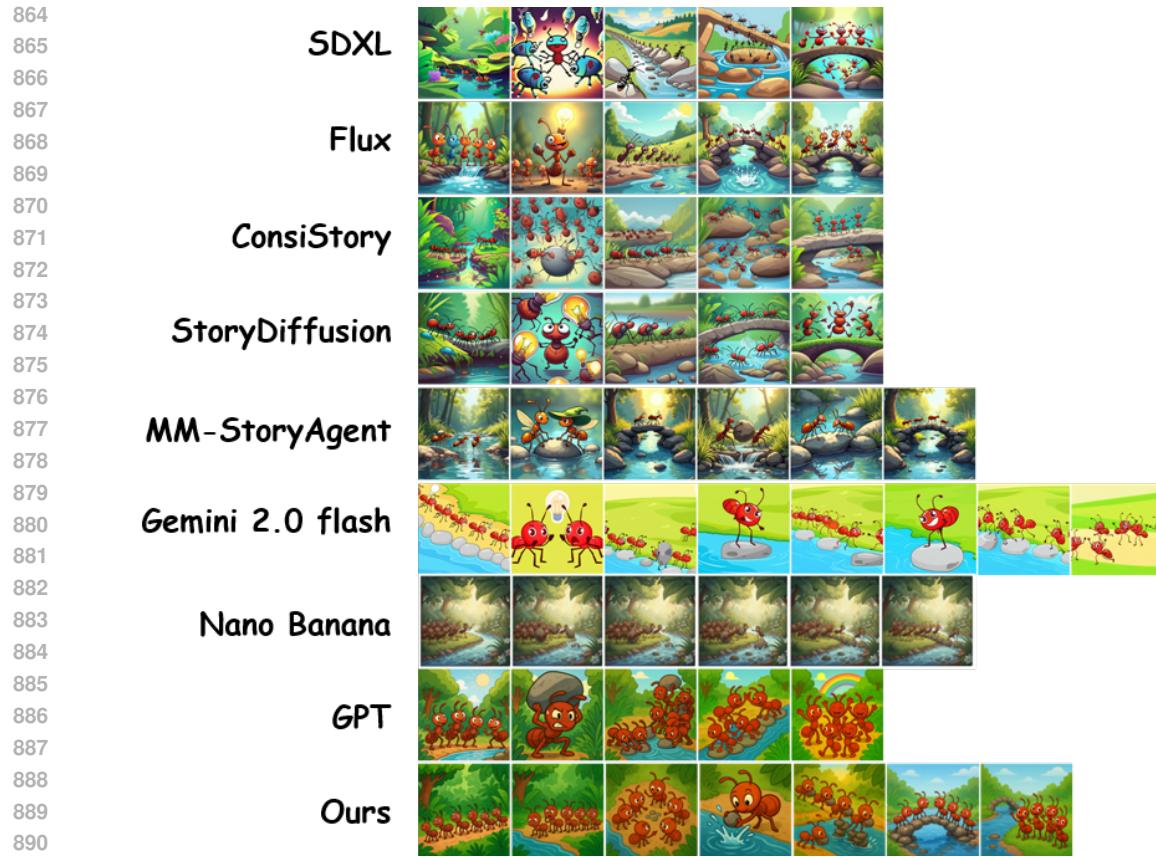
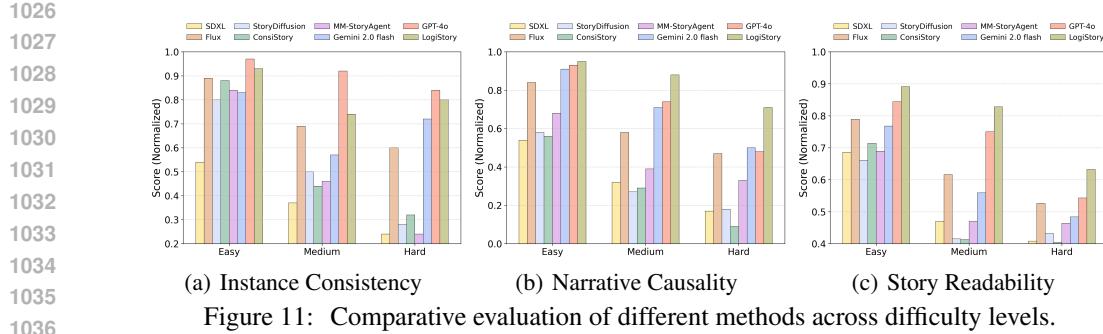


Figure 8: **Quality analysis of generated stories across different methods. The Pebble Bridge:** A group of ants needs to cross a small stream. They drop pebbles into the water to form a bridge and successfully cross together.

Figure 9: **Quality analysis of generated stories across different methods.** *Borrowing Arrows with Straw Boats:* During a critical shortage of arrows, Zhuge Liang boldly promised to deliver 100,000 arrows within three days. To fulfill this promise, he ordered countless straw men to be placed on boats and, under the cover of thick fog, sailed toward Cao Cao's camp. Mistaking the figures for soldiers, the enemy forces unleashed volleys of arrows at the boats. When the boats returned, they were laden with arrows, allowing Zhuge Liang to fulfill his promise cleverly and without shedding a drop of blood.

Figure 10: **Quality analysis of generated stories across different methods. The Dog and His Reflection:** A dog crosses a bridge with a bone in its mouth. Looking into the water, he sees his own reflection and mistakes it for another dog with a bigger bone. He snaps at the reflection, dropping his bone into the river and losing it.



(a) Instance Consistency (b) Narrative Causality (c) Story Readability

Figure 11: Comparative evaluation of different methods across difficulty levels.

B MORE QUANTITATIVE RESULTS

B.1 MORE METHODS PERFORMANCE ON LOGICTALE

To further demonstrate the robustness of our framework, we include results of additional baselines on the **LogicTale** benchmark. Table 4 reports the performance across six dimensions: *Instance Consistency* (*ICons.*), *Narrative Causality* (*NCausal.*), *Story Readability* (*SRead.*), *Aesthetic Quality* (*AesthQ.*), *Style Consistency* (*SCons.*), and *Character Expressiveness* (*CExpr.*).

Table 4: Performance comparison of additional baselines on the **LogicTale** benchmark.

Method	ICons. \uparrow	NCausal. \uparrow	SRead. \uparrow	AesthQ. \uparrow	SCons. \uparrow	CExpr. \uparrow
StoryGen	3.24	1.72	0.5366	0.2873	0.8162	1.92
StoryDiffusion	3.07	2.06	0.5409	0.2909	0.8276	2.07
Story-Adapter	3.65	2.23	0.5733	0.2952	0.8195	3.16
Ours	4.23	4.45	0.8267	0.3088	0.8572	4.32

As shown in Table 4, our method consistently outperforms all baselines across both **logical dimensions** (Instance Consistency, Narrative Causality, Story Readability) and **visual dimensions** (Aesthetic Quality, Style Consistency, Character Expressiveness). These results confirm that LogiStory achieves superior performance in balancing narrative logic with visual presentation, reinforcing its role as the first framework explicitly designed for logic-aware visual storytelling.

B.2 ANALYSIS ON DIFFERENT DIFFICULTY LEVELS

A further analysis based on the difficulty levels shown in Figure 11 reveals that our method’s advantage becomes more pronounced as the story complexity increases. This highlights the robustness of our approach in handling more intricate story structures.

B.3 LOGISTORY WITH DIFFERENT BASE MODELS

To evaluate the adaptability of **LogiStory** to different backbone models, we tested the framework with smaller vision-language models: **Qwen2.5-VL-7B**, **InternVL 2.5-8B**, and **Qwen2.5-VL-32B**. For reference, we also include results with the larger **DeepSeek-V3** backbone. Results are summarized in Table 5.

Table 5: Performance of LogiStory with different backbone models.

Backbone	ICons. \uparrow	NCausal. \uparrow	SRead. \uparrow
Qwen2.5-VL-7B	3.04	3.32	0.6132
InternVL 2.5-8B	3.21	3.24	0.6328
Qwen2.5-VL-32B	3.85	3.78	0.7244
DeepSeek-V3	4.26	4.45	0.8267

1080 As shown in Table 5, smaller backbones yield lower scores on logic-related metrics, but performance
 1081 still surpasses baseline methods, confirming the framework’s robustness.
 1082

1083 A closer analysis identifies three factors behind the performance gap:

1084

- 1085 • **Shorter panel scripts:** Smaller models generate less detailed scene breakdowns, limiting
 narrative depth.
- 1086 • **Weaker multi-agent communication:** Semantic information is more likely to be lost across
 stages, reducing coherence.
- 1087 • **Homogeneous causal scores in Local Causal Monitor:** Smaller LLMs assign uniformly
 1088 high scores, failing to trigger necessary refinements.

1091 These findings highlight that while stronger backbones enhance story-level logic modeling, **LogiStory**
 1092 **remains effective and competitive even with lightweight models.**
 1093

1094 B.4 EVALUATION ON OTHER DATASETS

1096 We conducted additional evaluations on **ViStoryBench-Lite** to further assess the generalizability of
 1097 our framework. Results are summarized in Table 6.
 1098

1099 Table 6: Comparison on ViStoryBench-Lite.

1100 Method	CSD Self \uparrow	CIDS Self \uparrow	Alignment \uparrow	OCCM \uparrow	Inception \uparrow	Aesthetics \uparrow
1102 GPT-4o	68.5	73.1	89.3	93.4	9.02	5.52
1103 Gemini 2.0	58.6	53.7	76.1	86.9	10.12	4.91
1104 Story-Adapter	70.0	62.6	38.8	82.0	10.36	5.81
1105 Ours	64.6	69.4	92.2	93.4	10.16	5.88

1106 As shown in Table 6, our method performs strongly **across core dimensions**, particularly in **Alignment**,
 1107 **OCCM**, and **Aesthetics**. While some baselines achieve slightly higher scores on low-level
 1108 quality metrics, **LogiStory excels in narrative coherence and visual storytelling**, which aligns with
 1109 the central goals of our framework. These results further **demonstrate its generalizability beyond**
 1110 **LogicTale**.
 1111

1112 B.5 USER STUDY ANALYSIS

1114 We evaluate inter-rater agreement using **Krippendorff’s Alpha** \uparrow , a robust statistical measure for
 1115 ordinal-scale annotations. Across **30 annotators** and **8 methods**, the agreement scores are: **0.78** for
 1116 **Instance Consistency**, **0.82** for **Narrative Causality**, **0.70** for **Story Readability**, **0.60** for **Aesthetic**
 1117 **Appeal**.
 1118

1119 The relatively lower agreement on Aesthetic Appeal is likely due to the **visual similarity** of outputs
 1120 from methods such as *ConsiStory* and *StoryDiffusion*. To further confirm annotation reliability, we
 1121 conducted a subset analysis on four representative methods: **SDXL**, **StoryDiffusion**, **Gemini 2.0**
 1122 **Flash**, and **LogiStory**. In this focused comparison, Krippendorff’s Alpha improves to: **0.90** for
 1123 **Instance Consistency**, **0.94** for **Narrative Causality**, **0.84** for **Story Readability**, **0.86** for **Aesthetic**
 1124 **Appeal**.
 1125

1126 These results demonstrate **high consistency and reliability** of the human evaluation process, particu-
 larly when method diversity increases.
 1127

1128 C LOGICTALE BENCHMARK DETAILS AND ANALYSIS

1130 C.1 LOGICTALE DATASET CONSTRUCTION

1132 To facilitate the development and evaluation of logic-aware story visualization models, we introduce
 1133 the **LogicTale** dataset. This dataset is specifically designed to assess narrative coherence, causal
 interpretability, and visual quality. The construction process is as follows:

1134
1135

C.1.1 STORY COLLECTION AND COMPOSITION

1136
1137

We curated a total of 60 stories, balancing between classical well-known narratives and newly created original stories in a ratio of 3:2. This ensures both diversity and challenge:

1138
1139
1140
1141
1142

- **Classical stories:** Selected from widely known fables, fairy tales, and folklore to provide recognizable plot structures.
- **Original stories:** Authored by professional writers and illustrators, designed to introduce novel situations, abstract concepts, and creative settings that challenge visual logic modeling.

1143
1144

C.1.2 ANNOTATION PROCESS

1145
1146

Each story in LogicTale is meticulously annotated with the following elements:

1147
1148
1149
1150
1151
1152
1153

- **Story Title and Source:** Including attribution for classical or original content.
- **Full Narrative Text:** Cleaned and standardized for consistency.
- **Character List:** Detailed descriptions of key characters, their appearances, and roles.
- **Visual Logic Chains:** Structured annotation of critical events using triplets in the format (action, result, importance weight), capturing causal dependencies and expected state changes.
- **Difficulty Tag:** Each story is labeled as *Easy*, *Medium*, or *Hard*, based on:
 - *Easy*: 1-2 characters, straightforward interactions, simple causal links.
 - *Medium*: More than 2 characters, plot twists, moderately complex interactions.
 - *Hard*: Multiple characters, abstract events, non-linear storytelling, or temporal jumps.

1154
1155
1156
1157
1158
1159¹
1160²
1161³
1162⁴
1163⁵
1164⁶
1165⁷
1166⁸
1167⁹
1168¹⁰
1169¹¹
1170¹²
1171¹³
1172¹⁴
1173¹⁵
1174¹⁶
1175¹⁷
1176¹⁸
1177¹⁹
1178²⁰
1179²¹
1180²²
1181²³
1182²⁴
1183²⁵

```

{
  "id": 1,
  "level": "easy",
  "title": "The Crow and the Pitcher",
  "source": "Aesop's Fables",
  "story_outline": "Under the scorching sun, across a vast, parched land...",
  "character_list": ["crow"],
  "causal_event_chain": [
    {
      "action": "Crow tries to drink water but fails",
      "result": "Crow looks for a solution",
      "weight": 0.3
    },
    {
      "action": "Crow picks up pebbles and drops them into the bottle",
      "result": "Water level rises",
      "weight": 0.5
    },
    {
      "action": "Water level reaches the top",
      "result": "Crow drinks the water",
      "weight": 0.2
    }
  ]
}

```

C.1.3 QUALITY CONTROL

1184
1185
1186
1187

All annotations were performed by experienced annotators with backgrounds in storytelling, visual arts, and education. A multi-phase validation process was conducted to ensure:

- **Annotation Accuracy:** Cross-checking by multiple annotators.
- **Logical Soundness:** Ensuring causal chains are coherent and interpretable.
- **Visual Plausibility:** Verifying that the story could be visually realized in a multi-image sequence.

1188 C.1.4 DATASET PURPOSE
11891190 LogicTale is intended as both a **training resource** for enhancing logic-aware story visualization
1191 models and a **benchmark** for evaluating models in terms of visual logic, consistency, and storytelling
1192 quality.

1193

1194 C.2 EVALUATION DETAILS
11951196 C.2.1 AUTOMATIC EVALUATION
11971198 We design a comprehensive automatic evaluation framework that covers both **visual logic consistency**
1199 and **visual aesthetics**. Specifically, we adopt the following six metrics:
12001201 **1. Instance Consistency:** We employ a Large Language Model (LLM) to assess the consistency of
1202 key elements across the image sequence. We designed the following prompt to guide the LLM in
1203 evaluating the consistency of key elements (characters, objects, scenes) across the image sequence:
12041205 You are given a story and a sequence of images representing different moments
1206 from the story. Your task is to evaluate whether the same characters, key objects,
1207 and environments appear consistently and coherently throughout the images.
1208 Please assess the overall instance consistency using the following scale:
12091210

- **1 - Poor:** Severe inconsistencies; characters, objects, or environments change
1211 drastically without narrative justification.
- **2 - Fair:** Multiple inconsistencies present; noticeable attribute or appearance
1212 shifts that harm understanding.
- **3 - Good:** Minor inconsistencies; small differences in appearance or object
1213 details, but the overall coherence is mostly maintained.
- **4 - Very Good:** Mostly consistent with only subtle or hard-to-notice differ-
1214 ences.
- **5 - Excellent:** Fully consistent; characters, objects, and environments are
1215 visually stable and coherent across all frames.

1216 Please provide the rating and a brief justification.
12171218 **2. Narrative Causality:** To evaluate key event causality, we adopt a Visual Question Answering
1219 (VQA)-based strategy. For each annotated key event in the dataset, we formulate specific questions
1220 that probe the causality (e.g., *"Does the wolf fall into the pot after climbing the chimney?"*). The
1221 answers generated by the model are compared to the ground truth, and the score is aggregated as the
1222 average accuracy over all key causal questions.
12231224 **3. Story Readability:** We adopt a two-step approach. First, an image captioning model (e.g.,
1225 BLIP-2) generates a textual description for the entire image sequence. Then, the LLM is provided
1226 with the story's character list and the generated captions and is tasked to infer the overall story plot.
1227 The inferred story is compared to the original story text using text similarity scores computed via
1228 CLIP-based embedding similarity.
12291230 **4. Aesthetic Score:** We utilize HPSv2 to automatically evaluate the aesthetic quality of each
1231 generated image. The overall score is obtained by averaging the per-image scores across the sequence.
12321233 **5. Style Consistency:** We adopt DINOv2 to compute the visual embeddings of all images in a
1234 sequence and measure the pairwise cosine similarity. The higher the average similarity, the more
1235 stylistically consistent the image sequence is considered.
12361237 **6. Character Expressiveness:** An LLM is tasked to rate the appropriateness of character ex-
1238 pressions and actions with respect to the narrative. The model observes the image sequence and is
1239 instructed to assign a score from 1 (poor) to 5 (excellent) based on how well the characters' emotions,
1240 gestures, and poses align with the story's development. We designed the following prompt to guide
1241 the LLM in evaluating the expressiveness of characters across the image sequence:
1242

1242 You are given a story and a sequence of images representing different moments
 1243 from the story. Your task is to evaluate whether the characters' emotions, gestures,
 1244 and body language are clearly conveyed and appropriate to the narrative context.
 1245 Please assess the overall character expressiveness using the following scale:

- 1246 • **1 - Poor:** Characters appear expressionless or with irrelevant/unintelligible
 expressions; emotional intent is entirely unclear.
- 1247 • **2 - Fair:** Characters show limited or inconsistent expressions; emotions are
 weakly conveyed and often mismatched with the story context.
- 1248 • **3 - Good:** Characters display some relevant expressions or gestures, but
 emotional clarity is only partially achieved.
- 1249 • **4 - Very Good:** Characters are generally expressive and aligned with the
 narrative; only minor ambiguities remain.
- 1250 • **5 - Excellent:** Characters are highly expressive; emotions, gestures, and body
 language are vivid, coherent, and fully aligned with the story context.

1251 Please provide the rating and a brief justification.

1252 C.2.2 HUMAN EVALUATION PROTOCOL

1253 To complement automatic evaluation, we conducted a structured human study across four evaluation
 1254 dimensions. Thirty annotators participated, each being shown the full story text and the corresponding
 1255 generated image sequences from eight different methods. All tasks were randomized to avoid ordering
 1256 bias. Below, we detail the protocol for each dimension.

1257 **Instance Consistency (1–5).** Measures whether the same character or entity maintains consistent
 1258 appearance across the story sequence. Annotators were instructed with the following prompt:

1259 Across the entire image sequence, are the main characters or entities visually
 1260 consistent in terms of identity, clothing, and major attributes? Please provide a
 1261 score from 1 to 5, following the scale below, and a brief justification:

- 1262 • **1 - Poor:** Severe inconsistencies; characters, objects, or environments change
 drastically without narrative justification.
- 1263 • **2 - Fair:** Multiple inconsistencies present; noticeable attribute or appearance
 shifts that harm understanding.
- 1264 • **3 - Good:** Minor inconsistencies; small differences in appearance or object
 details, but overall coherence is mostly maintained.
- 1265 • **4 - Very Good:** Mostly consistent with only subtle or hard-to-notice differ-
 ences.
- 1266 • **5 - Excellent:** Fully consistent; characters, objects, and environments remain
 visually stable and coherent across all frames.

1267 **Narrative Causality (binary judgment).** Since LogicTale provides ground-truth causal chains, we
 1268 designed a VQA-style evaluation where annotators were asked causal questions derived from dataset
 1269 annotations. For each causal pair (*action* → *result*), we generated prompts such as:

1270 In this story, after [action], does [result] happen in the images? (Yes/No)

1271 Scores were aggregated as the percentage of correctly satisfied causal relations.

1272 **Story Readability (1–5).** Reflects how well the story can be understood solely through the image
 1273 sequence. Annotators were instructed with the following prompt:

1274 If you only look at the images without re-reading the text, how clearly can you
 1275 understand the intended narrative progression? Please provide a score from 1 to 5,
 1276 following the scale below, and a brief justification:

- 1277 • **1 - Poor:** Completely confusing; the story is impossible to follow.
- 1278 • **2 - Fair:** Very unclear; only fragments of the story are understandable.
- 1279 • **3 - Good:** Partially clear; the overall idea is somewhat recognizable but many
 gaps remain.

1296 • **4 - Very Good:** Mostly clear; only minor ambiguities remain.
 1297 • **5 - Excellent:** Very clear; the story is easy to follow without text.

1299 **Aesthetic Appeal (1–5).** Captures perceptual quality, including realism, visual attractiveness, and
 1300 stylistic coherence. Annotators were instructed with the following prompt:
 1301

1302 Considering the image sequence as a whole, how visually appealing and stylistically
 1303 coherent are the generated images? Please provide a score from 1 to 5, following
 1304 the scale below, and a brief justification:

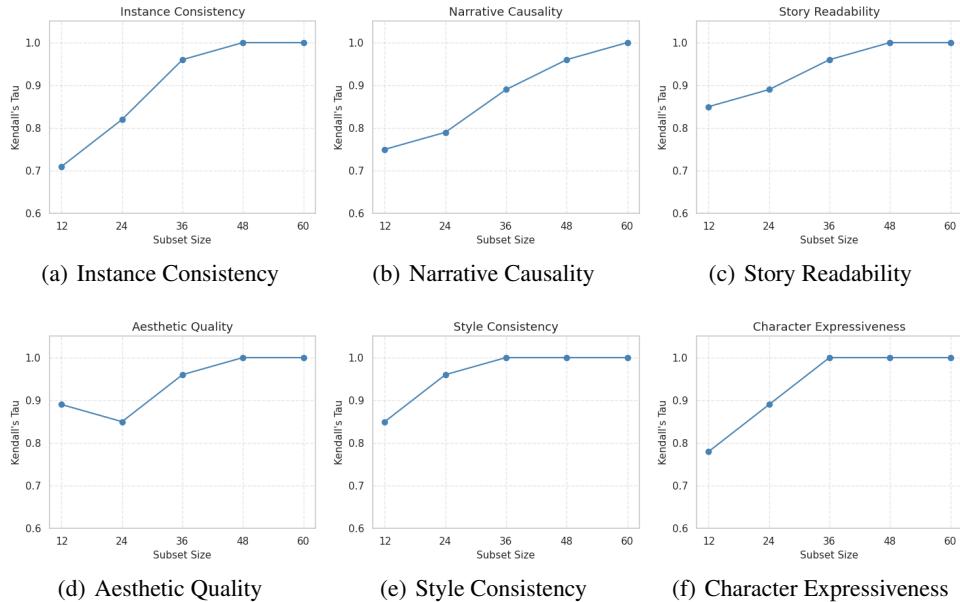
1305 • **1 - Poor:** Very low quality; unrealistic and inconsistent images.
 1306 • **2 - Fair:** Low quality; distracting artifacts or mismatched styles.
 1307 • **3 - Good:** Moderate quality; acceptable but with noticeable flaws.
 1308 • **4 - Very Good:** High quality; visually appealing with only minor issues.
 1309 • **5 - Excellent:** Excellent quality; highly realistic and aesthetically pleasing.

1312 Each image sequence was independently evaluated by at least 5 annotators, and the final score was
 1313 computed by averaging the ratings.
 1314

1315 C.3 ABLATION STUDY ON LOGICTALE: DATASET SCALE AND EVALUATION STABILITY

1318 To evaluate whether a relatively small but high-quality dataset like LogicTale can yield stable
 1319 and discriminative evaluation, we conduct a saturation analysis across subsets of increasing size.
 1320 Specifically, we construct incremental subsets $\mathcal{D}_{12} \subset \mathcal{D}_{24} \subset \dots \subset \mathcal{D}_{60}$, maintaining a balanced
 1321 distribution of story difficulty and topic. For each subset, we evaluate all competing models using
 1322 key automated metrics such as visual logic coherence and story understanding similarity.

1323 We analyze the consistency of model rankings, measured using Kendall’s Tau correlation against
 1324 the full 60-story set. Figure 12 shows that the model rankings stabilize as the subset size increases.
 1325 This demonstrates that even with 60 carefully curated stories, LogicTale provides a reliable and
 1326 discriminative benchmark for visual logic assessment.



1347 Figure 12: Kendall’s Tau correlation between model rankings on full dataset (60 stories) and various
 1348 dataset subsets across six evaluation metrics. Results indicate high ranking consistency with subsets
 1349 as small as 36 stories, validating the reliability of LogicTale for evaluation purposes.

1350	Dataset	#Samples	Logic Annotation	Evaluation Mode
1351	StoryDiffusion	20	✗	Single-image
1352	ConsiStory	20	✗	Single-image
1353	MM-StoryAgent	100	✗	Single-image
1354	MovieAgent	12	✗	Single-image
1355	ViStoryBench	80	✗	Single-image
1356	LogicTale (Ours)	60	✓	Multi-image joint
1357				
1358				

1359 Table 7: Comparison of **LogicTale** with existing story visualization benchmarks. Unlike prior datasets,
 1360 **LogicTale** provides explicit causal logic annotations and supports **multi-image joint evaluation**,
 1361 enabling systematic assessment of narrative coherence.

1363 C.4 DATASET COMPARISON

1365 As shown in Table 7, existing datasets for story visualization are limited in both scale and scope:
 1366 most consist of short, single-character or handcrafted narratives, lack logical annotations, and restrict
 1367 evaluation to single-image fidelity or alignment. In contrast, **LogicTale** is the **first dataset** that
 1368 explicitly incorporates **causal logic annotations**, enabling systematic evaluation of story-level
 1369 reasoning. Furthermore, we design a suite of **automatic multi-image evaluation metrics** that go
 1370 beyond local image quality to assess **cross-image semantic consistency and narrative causality**,
 1371 providing a more rigorous foundation for advancing logic-aware story visualization.

1373 D LOGICSTORY FRAMEWORK DETAILS

1375 D.1 LOGIC-AWARE MULTI-AGENT SYSTEM

1377 To generate structured and logic-aware visual narratives, **LogiStory** employs a multi-agent planning
 1378 system composed of three agents: *SceneCrafter*, *LogicMiner*, and *ShotPlanner*. These agents work in
 1379 sequence to analyze the story text and construct an intermediate story plan, consisting of characters,
 1380 key events, and frame-level scene descriptions.

1382 D.1.1 SCENECRAFTER

1383 The *SceneCrafter* agent is responsible for extracting the visually relevant components of the story,
 1384 including characters, key objects, and environmental settings. Unlike conventional entity extraction,
 1385 we ask the model to infer and provide visual attributes such as appearance, size, texture, and emotional
 1386 tone. This provides strong guidance for subsequent visual generation.

1388 Prompt Example:

1389 You are a visual designer tasked with preparing for story illustration. Given a short
 1390 story, identify and describe the following elements with visual details:

- 1392 • **Characters:** List each character. For each, provide a name and a short
 1393 description of their physical appearance, clothing, emotional traits, and any
 1394 distinguishing features.
- 1395 • **Key Objects:** Identify important objects mentioned or implied in the story.
 1396 Describe their size, material, and visual appearance (e.g., color, texture).
- 1397 • **Scene Locations:** Identify each main scene or background. Describe the
 1398 environment, including style (e.g., cartoon, watercolor), atmosphere (e.g.,
 1399 cozy, ominous), and key visual elements (e.g., forest path, house made of
 straw).

1401 **Your output should be structured in three sections: Characters / Key Objects /**
 1402 **Scene Locations. Be as visual as possible.**

1403 Story: "The three little pigs leave their mother to
 build their own houses. The first pig buys straw,

1404 the second buys wood, and the third buys bricks. Each
 1405 builds a house from their chosen material."

1406

1407 Expected Output Format:

1408

- 1409 • **Characters:**
 - 1410 – **Pig1:** A small, cheerful piglet wearing a blue shirt. Has round eyes and a playful smile.
 1411 Carries a bundle of straw.
 - 1412 – **Pig2:** Medium-sized pig with a green cap and suspenders. Appears cautious and
 1413 focused. Often seen holding wooden planks.
 - 1414 – **Pig3:** Slightly larger pig with glasses and a red scarf. Looks serious and thoughtful.
 1415 Holds bricks in a neat stack.
 - 1416 – **Mother Pig:** A kind, elderly pig wearing an apron and bonnet. Stands at the cottage
 1417 door waving goodbye.
 - 1418 – **Wolf:** A tall, menacing wolf with gray fur, sharp eyes, and a mischievous grin. Often
 1419 lurking in the background.

1420

- 1421 • **Key Objects:**
 - 1422 – **Straw bundle:** Light yellow, loosely tied, lightweight with uneven edges.
 - 1423 – **Wood planks:** Brown, sturdy, rectangular with visible grain texture.
 - 1424 – **Brick stack:** Dark red, neatly aligned bricks with mortar stains.
 - 1425 – **Boiling pot:** Large iron cauldron with steam rising from it, placed over firewood.

1426

- 1427 • **Scene Locations:**
 - 1428 – **Forest path:** Gentle trail surrounded by tall green trees, soft lighting, storybook cartoon
 1429 style.
 - 1430 – **Pig1's straw house:** Small, straw-covered hut with slanted roof. Cozy but fragile
 1431 appearance.
 - 1432 – **Pig2's wood house:** Medium-sized cabin with wooden logs and a chimney. Structured
 1433 and rustic.
 - 1434 – **Pig3's brick house:** Solid and square, with tiled roof and brick walls. Brightly lit and
 1435 secure.
 - 1436 – **Mother's home:** A warm cottage with a garden, classic watercolor storybook feel.

1437 This visually grounded output equips the system with rich contextual signals, serving as a scaffold
 1438 for logic mining and shot planning in downstream modules.

1439

D.1.2 LOGICMINER

1440 The *LogicMiner* agent extracts a sequence of causally and temporally significant events from the
 1441 story text. Each event is represented using a structured 4-tuple format (**actor**, **action**, **target**, **result**),
 1442 capturing both physical interactions and narrative consequences. This formalization ensures fine-
 1443 grained reasoning and facilitates downstream consistency checking and scene planning.

1444

Prompt Example:

1445 You are a story logic analyst. Given a short narrative, your task is to extract the key
 1446 events that define the causal and temporal structure of the story. For each event,
 1447 output a structured record in the format:

1448 **(actor, action, target, result)**

1449 Where:

1450

- 1451 • **actor** is the entity initiating the event.
- 1452 • **action** is the main verb or activity.
- 1453 • **target** is the object or entity affected by the action.
- 1454 • **result** describes what changed in the world due to this event.

1455 Your output should be a chronological list of events. After each event, also specify:

1458 • **Preconditions:** What must be true before the event occurs.
 1459 • **Effects:** What changes after the event (state change).
 1460
 1461 Story: "The first little pig buys straw and builds a
 1462 house. The wolf comes and blows it down. The pig
 1463 runs to the second pig's wooden house. The wolf
 1464 follows and destroys that house too. Both pigs escape
 1465 to their brother's brick house. The wolf tries to
 1466 enter through the chimney but falls into a pot of
 1467 boiling water."
 1468

1468 **Expected Output Format:**

- 1470 1. (Pig1, buys, straw, Pig1 owns building material)
 Preconditions: Straw is available for purchase.
 Effects: Pig1 has straw.
- 1473 2. (Pig1, builds, house, Straw house exists)
 Preconditions: Pig1 owns straw.
 Effects: Straw house appears in the scene.
- 1476 3. (Wolf, blows down, straw house, House destroyed, Pig1 is homeless)
 Preconditions: Straw house exists. Wolf is nearby.
 Effects: Straw house is destroyed. Pig1 must flee.
- 1479 4. (Pig1, runs to, Pig2's house, Pig1 and Pig2 are together)
 Preconditions: Pig1 is outside. Pig2's house is standing.
 Effects: Pig1 is inside Pig2's house.
- 1482 5. (Wolf, blows down, wood house, House destroyed, Pig1 and Pig2 flee)
 Preconditions: Wood house exists. Wolf is nearby.
 Effects: House destroyed. Two pigs run away.
- 1485 6. (Pig1 and Pig2, escape to, Pig3's house, All pigs are in brick house)
 Preconditions: Pig3's house is intact.
 Effects: All three pigs are together in brick house.
- 1488 7. (Wolf, climbs, chimney, Wolf attempts to enter house)
 Preconditions: All doors and windows are shut.
 Effects: Wolf is inside the chimney.
- 1492 8. (Pigs, boil, water, Boiling water is prepared)
 Preconditions: Pot and fire are present.
 Effects: Trap for the wolf is ready.
- 1495 9. (Wolf, falls into, boiling pot, Wolf is defeated)
 Preconditions: Wolf is in chimney. Pot is boiling.
 Effects: Wolf is burned and flees. Pigs are safe.

1498 This structured output enables later modules to verify logical alignment across frames and ensures
 1499 causal coherence in the resulting visual sequence.

1501 D.1.3 SHOTPLANNER

1502 The *ShotPlanner* agent bridges structured event logic and visual storytelling. Given the original story
 1503 text and the event list extracted by the *LogicMiner*, it generates a sequence of shot plans. Each shot
 1504 plan specifies the visual composition for an image, including **characters**, **actions**, **objects**, **spatial**
 1505 **relations**, **scene context**, and **camera parameters** (e.g., angle, shot type, distance). The planner also
 1506 produces a rendering prompt in *Stable Diffusion* format for each image.

1508 To enhance narrative clarity and visual engagement, ShotPlanner incorporates principles of **visual**
 1509 **storytelling conventions**, such as:

- 1511 • **Pacing:** Allocate longer visual emphasis to high-impact events (e.g., conflict, climax).
- 1511 • **Framing:** Use wide, medium, or close-up shots to vary focus and emotional tone.

1512 • **Perspective:** Adjust camera angle and viewpoint to highlight relationships, danger, or
 1513 tension.
 1514

1515 **Input:**
 1516

1517 • Story text: A paragraph-length narrative.
 1518 • LogicMiner event list: A chronological list of (actor, action, target, result) tuples.
 1519

1520 **Output (for each frame):**
 1521

1522 • **Shot Plan:**
 1523 – *Scene Description*: Natural language summary of what happens in the shot.
 1524 – *Key Elements*: {characters, actions, objects, spatial layout, background}
 1525 – *Camera Setup*: {shot type (e.g., wide, medium, close), angle (e.g., eye-level, low-angle),
 1526 focal length}
 1527
 1528 • **Rendering Prompt (Stable Diffusion format):** A concise visual prompt used for genera-
 1529 tion.

1530 **Prompt Template:**
 1531

1532 You are a visual story director. Given the following story and the structured list of
 1533 events, your task is to design a sequence of image shots that visually depict each
 1534 event in a narratively coherent and aesthetically pleasing way.

1535 For each event, provide:

1. **Scene Description:** What is happening in the scene?
2. **Characters and Actions:** Who is doing what?
3. **Objects and Scene Elements:** What objects or environment features are involved?
4. **Spatial Layout:** Where is each character/object located in the scene?
5. **Camera Parameters:**
 - **Shot Type:** (e.g., wide shot, over-the-shoulder, close-up)
 - **Camera Angle:** (e.g., eye-level, high-angle, low-angle)
 - **Perspective:** (e.g., character perspective, bird's eye)
6. **Rendering Prompt (Stable Diffusion Style):** Include:
 - scene setting and characters
 - emotional tone
 - composition and angle
 - style (e.g., children's book illustration, watercolor)

1551 **Story:** "The first little pig builds a straw house. The wolf blows it down. The pig
 1552 runs away. The second pig builds a wooden house..."

1553 **Events:**

- (Pig1, builds, house, Straw house exists)
- (Wolf, blows down, straw house, House destroyed)

1557 **Example Output:**
 1558

1559 **Shot 1:**
 1560

- *Scene Description*: Pig1 is happily finishing the construction of a straw house in a sunny field.
- *Characters and Actions*: Pig1 is placing the final straw on the roof.
- *Objects and Scene Elements*: Straw house, piles of straw, a hammer.
- *Spatial Layout*: Pig1 stands in front of the straw house, facing the viewer.

1566 • *Camera Parameters*:

1567 – Shot Type: Medium shot

1568 – Camera Angle: Eye-level

1569 – Perspective: Third-person perspective

1570

1571 • *Rendering Prompt (Stable Diffusion)*: "A cheerful pig building a straw house in a sunny

1572 meadow, children's book illustration style, medium shot, eye-level angle, bright and warm

1573 color palette, watercolor texture, detailed background with green trees and blue sky"

1574

1575 **Shot 2:**

1576 • *Scene Description*: The wolf is blowing down the straw house while Pig1 watches in fear.

1577 • *Characters and Actions*: Wolf is exhaling forcefully; Pig1 is covering its face.

1578 • *Objects and Scene Elements*: Straw flying, partially collapsing house.

1579

1580 • *Spatial Layout*: Wolf on left, Pig1 on right, house between them.

1581

1582 • *Camera Parameters*:

1583 – Shot Type: Wide shot

1584 – Camera Angle: Slight low-angle to emphasize action

1585 – Perspective: Dynamic third-person

1586

1587 • *Rendering Prompt (Stable Diffusion)*: "A fierce wolf blowing on a fragile straw house while

1588 a scared pig watches, straw flying everywhere, wide shot, low angle, dramatic lighting,

1589 children's book illustration, vivid cartoon style"

1590 This module ensures that the resulting image sequence not only aligns with the logical events but also

1591 delivers a cinematic and emotionally engaging viewing experience, tightly coupling narrative rhythm

1592 with visual coherence.

1593

1594 **D.2 VISUAL LOGIC ENHANCEMENT MODULE**

1595

1596 **D.2.1 LOCAL CAUSAL MONITOR**

1597

1598 The *Local Causal Monitor* simulates a human-like reading experience by incrementally assessing

1599 the logical consistency of each image in a story sequence, conditioned on prior visual context and

1600 world knowledge. Unlike global verification, which evaluates the entire story retrospectively, this

1601 module performs **step-by-step causal validation** during sequence unfolding, modeling the linear

1602 comprehension process of human readers.

1603 **Core Design:** At each timestep t , the monitor:

1. Maintains a **Memory Buffer** M_{t-1} summarizing all previously observed visual content and inferred world states.
2. Parses the current image I_t into a structured caption or event description using an image captioning or event extraction model.
3. Evaluates whether I_t is logically compatible with M_{t-1} using a large language model (LLM).
4. Assigns a **causal consistency score** $s_t \in [0, 1]$ representing the degree of logical alignment.
5. Updates the buffer M_t by incorporating the new information from I_t .

1614 This mechanism enables fine-grained monitoring of temporal consistency, causal progression, and

1615 state transitions across a story sequence.

1616

1617 **Memory Buffer Example:**

1618

1619 **Initial Story:** "Three little pigs each build a house using straw, wood, and bricks.
A wolf tries to blow each house down."

1620 **Memory after Image 1 (Pig1 builds straw house):** "Pig1 has
 1621 constructed a straw house in an open field. No
 1622 threats have appeared yet. Other pigs are not
 1623 present."
 1624 **Memory after Image 2 (Wolf blows down straw house):** "Pig1's
 1625 straw house has been destroyed by the wolf. Pig1 is
 1626 frightened and escapes. The wolf is now active in the
 1627 story."

1628 **Image 3 (Current):** Pig2 is shown relaxing in a completed wooden house, unaware
 1629 of any danger.

1630 **Question:** Based on the current memory and this image, is the event causally
 1631 consistent with the story flow?

1632
 1633 **LLM Evaluation Prompt:**

1634 You are a causal reasoning expert.

1635 Given: - The memory of previously observed story events - The current image
 1636 description

1637 Evaluate whether the current image is **logically consistent** with prior context,
 1638 considering: 1. Whether the sequence of events makes causal sense 2. Whether
 1639 character behavior is appropriate given past events 3. Whether any contradictions
 1640 or unexplained jumps occur

1641 Return a numerical consistency score between 0 (completely inconsistent) and 1
 1642 (fully consistent), along with a brief justification.

1643 **Memory Buffer:** Pig1's straw house was destroyed by the wolf. Pig1 ran away.
 1644 The wolf is now active in the story.

1645 **Current Image Description:** Pig2 is relaxing in a newly built wooden house,
 1646 smiling. No signs of the wolf or alarm.

1647 **Output Format:** Score: <float between 0 and 1> Justification: <one or two
 1648 sentences>

1649 **Example Answer:** Score: 0.8 Justification: The scene is mostly logical. Pig2 may
 1650 not yet be aware of the wolf's actions, which explains the relaxed demeanor.

1651
 1652 **Scoring Interpretation:**

- 1654 • **Score = 1.0:** Full causal alignment with prior context
- 1655 • **Score ∈ [0.7, 0.9]:** Minor temporal gaps or ambiguity, still plausible
- 1656 • **Score ∈ [0.4, 0.6]:** Noticeable logical inconsistencies, partially recoverable
- 1657 • **Score < 0.4:** Major contradiction or missing transitions

1659 This local monitor provides frame-level causal validation and supports training or evaluation by
 1660 detecting inconsistencies early during visual narrative generation.

1661 **Threshold Calibration for Image Refinement.** To determine the appropriate response for each
 1662 generated panel p_t during story visualization, we introduce two thresholds, τ_1 and τ_2 , which guide the
 1663 image refinement process based on the normalized logic consistency score $\psi(p_t | \mathcal{M}_{t-1})$. This score
 1664 integrates outputs from both the Local Causal Monitor and the Global Causal Verifier, representing
 1665 the confidence that p_t aligns with the intended narrative logic.

1666 We define:

- 1668 • τ_1 : the upper bound below which the image is considered **logically invalid** and must be
 1669 **regenerated**.
- 1670 • τ_2 : the lower bound above which the image is considered **logically acceptable**, requiring
 1671 **no refinement**.
- 1672 • $[\tau_1, \tau_2]$: a range indicating **partial alignment**, where the image is passed through a refine-
 1673 ment stage using inpainting or MLLM-based editing.

1674 To empirically determine these thresholds, we conducted a calibration study on a held-out validation
 1675 set:
 1676

- 1677 1. A diverse set of generated panels was sampled from stories of varying complexity.
- 1678 2. Human annotators rated the logical alignment of each panel with the narrative on a 0–5
 1679 Likert scale.
- 1680 3. The corresponding logic scores ψ were collected from our verifier modules.
- 1681 4. A distributional analysis was performed to align human judgments with ψ .
- 1682

1683 As a result:

- 1684 • τ_1 was set to **0.4**, covering the 90th percentile of panels rated below 2 (logically flawed).
- 1685 • τ_2 was set to **0.7**, corresponding to the 10th percentile of panels rated above 4 (logically
 1686 sound).
- 1687

1688 This calibration ensures that the refinement mechanism is grounded in human-perceived narrative
 1689 coherence, aligning automated validation with qualitative standards.

1691 D.2.2 GLOBAL CAUSAL VERIFIER

1693 The *Global Causal Verifier* is designed to ensure **global narrative coherence** throughout the visual
 1694 story generation process. It constructs and leverages a high-level **Causal Graph** that models the
 1695 dependencies between key events, character/object states, and their temporal transitions, enabling
 1696 comprehensive evaluation and refinement across the entire sequence.

1697 **Causal Graph Construction:** We first construct a directed **Global Causal Graph** $G = (V, E)$ from
 1698 the story text and key events extracted by the *LogicMiner*. Each node $v_i \in V$ represents a distinct
 1699 story state or event, and each edge $e_{ij} \in E$ denotes a causal or temporal dependency such as:

- 1701 • *Event causality*: “Pig builds house” → “Wolf tries to blow it down”
- 1702 • *State evolution*: “Pot placed under chimney” → “Wolf falls into pot”
- 1703 • *Implicit physics*: “Stones added to pot” → “Water level rises”
- 1704

1705 Each node is annotated with involved characters, object states, spatial relations, and expected visual
 1706 outcomes.

1707 **State Recorder:** During generation, we maintain a **State Recorder** S_t that tracks which portion
 1708 of the global story has been visually realized up to timestep t . It summarizes observed character
 1709 locations, object configurations, known outcomes, and remaining events.

1711 For example:

1712 At $t = 3$ (third image): "Pig1's house destroyed, Pig1 escaped,
 1713 Pig2 building house, wolf seen approaching"

1715 This enables the verifier to identify mismatches or missing transitions between the current visual state
 1716 and expected causal flow.

1717 **Refinement Instruction Generation:** At each step, the current image I_t is parsed into a structured
 1718 scene description (e.g., via captioning or scene graph parsing). The verifier then checks for:

- 1720 • **Causal Alignment:** Does I_t align with the next expected node in G ?
- 1721 • **State Progression:** Are object/character states consistent with prior evolution?
- 1722 • **Implicit Logic:** Does I_t reflect necessary physical/visual reasoning (e.g., gravity, contain-
 1723 ment)?
- 1724

1725 If misalignment is detected, a **refinement instruction** is generated using a language model, aimed at
 1726 correcting the image in the next iteration.

1727 **Refinement Prompt (LLM):**

1728

You are a visual reasoning assistant.

1729

Given: - The global causal graph for the story - The current generation state (S_t) -
The current image description - The next expected story event

1730

Determine whether the current image faithfully represents the expected event. If
not, generate a concise instruction for image refinement, focusing on correcting
logic or state alignment.

1731

Example:

1732

- **Expected Event:** “Wolf climbs chimney, pigs prepare boiling pot”
- **Current Image Description:** “Wolf near house, pigs inside, pot missing”
- **Instruction:** “Add boiling pot beneath chimney. Show pigs anxiously watching chimney.”

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

This refinement instruction is passed to the visual generation module for image editing or regeneration,
ensuring both visual fidelity and narrative coherence. By integrating top-down symbolic planning
with bottom-up visual verification, the Global Causal Verifier enforces long-range consistency and
supports correction of subtle causal gaps that may not be captured at the local level.

E EXPERIMENT COMPUTE RESOURCES AND SETTINGS

All experiments were conducted on a workstation equipped with two NVIDIA A6000 GPUs (48GB VRAM each). All baseline models, including StoryDiffusion and ConsiStory, were used with their officially released checkpoints and settings for fair comparison. No additional fine-tuning was performed on these models unless specified.

F DISCUSSION

F.1 ADVANTAGES

Our proposed framework **LogiStory** and the curated dataset **LogicTale** offer multiple advantages to
the field of visual storytelling and beyond:

1. Explicit Modeling of Visual Logic. Unlike prior approaches that implicitly rely on latent representations, LogiStory explicitly models *visual logic*—defined as the perceptual and causal coherence among characters, actions, and object states—through a structured multi-agent planning mechanism and logic-aware verification modules. This improves not only the factual correctness of individual images but also their temporal and narrative coherence.

2. Fine-Grained Story Understanding. Through the SceneCrafter, LogicMiner, and ShotPlanner agents, our system decomposes stories into interpretable components (e.g., characters, key events, spatial relations, and camera instructions), enabling transparent, controllable, and explainable generation. This opens the door for deeper interaction and analysis in multimodal generation.

3. Logic-Aware Image Refinement. By integrating both **Local Causal Monitor** and **Global Causal Verifier**, LogiStory simulates human-like reading and comprehension processes, identifying inconsistencies both at the fine-grained image level and the story-wide causal structure. This dual-level feedback loop guides generation toward visually and narratively coherent outcomes.

4. LogicTale Dataset as a Structured Benchmark. LogicTale provides rich annotations including causal graphs, key events, object states, and visual prompts, serving as a high-quality benchmark for evaluating visual logic in story generation. It supports multiple evaluation paradigms—automatic metrics, human judgment, and logic tracing—and can foster the development of explainable multimodal models.

1782 **5. Generalizability Beyond Story Visualization.** While our work focuses on the multi-image
 1783 story visualization task, the underlying principles of visual logic modeling and logic-aware planning
 1784 generalize naturally to related areas such as:
 1785

- 1786 • **Video Generation:** Ensuring temporal consistency and causal flow in generated frames.
 1787
- 1788 • **Interactive Narrative Systems:** Providing feedback for story-based games or simulations.
 1789
- 1790 • **Multimodal Planning and Robotics:** Translating language instructions into logically
 1791 consistent visual action sequences.
 1792

1793 This makes LogiStory a versatile foundation for broader multimodal reasoning and generation tasks.
 1794

1795 F.2 LIMITATIONS

1796 Despite its strengths, our approach presents several limitations that highlight future research direc-
 1797 tions:
 1798

1799 **1. Scalability to High-Entity Scenarios.** When the story involves a large number of characters,
 1800 objects, and complex interdependencies, maintaining consistent identity, state, and spatial logic across
 1801 frames becomes increasingly difficult. This reflects a broader limitation in current generative models,
 1802 **even state-of-the-art models such as GPT-4o struggle to guarantee visual identity preservation**
 1803 **and detailed multi-object reasoning during image editing or generation.**
 1804

1805 **2. Framework Complexity.** Our framework adopts a modular multi-agent design that allows
 1806 flexibility, but it also introduces additional computational steps compared to simpler pipelines. These
 1807 trade-offs reflect our emphasis on interpretability and logical rigor, and we believe they open avenues
 1808 for future refinement rather than fundamental limitations of the approach.
 1809

1810 G USAGE OF LLMs

1811 Large language models (LLMs) were used solely as an aid to polish the language and improve the
 1812 clarity of exposition. They were **not involved in research ideation, problem formulation, method-
 1813 ology design, experimental implementation, or analysis of results.** All scientific contributions and
 1814 claims are the work of the authors.
 1815