
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Training-free Graph Anomaly Detection: A Simple Approach via
Singular Value Decomposition

Anonymous Author(s)∗

ABSTRACT
Graph anomaly detection has been widely applied in real-world ap-
plications, where deep learning-based methods have demonstrated
promise. However, prior methods often suffer from various limi-
tations, such as poor detection accuracy, long training time, com-
plicated training schemes, and lack of scalability. To combat this
dilemma, we propose TFGAD, a simple yet effective training-free
approach for graph anomaly detection. Particularly, TFGAD com-
prises two transformation matrices, each of which serves to process
one type of node feature (attributes or local structure). Notably,
these matrices can be optimally determined via singular value de-
composition, thus requiring no prior training. Further, we tailor
a lightweight anomaly scoring function, which integrates the re-
construction error of attributes with the projection length of lo-
cal structures to quantify graph anomalies. Extensive experiments
demonstrate that TFGAD leads to significant improvements over
state-of-the-art reconstruction-/contrastive-based deep learning
baselines while reaching much less runtime and memory overhead.

CCS CONCEPTS
• Security and privacy → Web application security; • Com-
puting methodologies→ Anomaly detection.

KEYWORDS
anomaly detection, attributed graphs, training-free, singular value
decomposition
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1 INTRODUCTION
Graph anomaly detection recently has received increasing attention
due to its wide applications in various security-related fields [31,
39, 52]. Notable examples include social spam detection [23], finan-
cial fraud detection [50], and network intrusion detection [4, 16].
The goal of graph anomaly detection is to discern abnormal nodes
that significantly deviate from the majority of nodes in a graph.
Typically, there are two main types of abnormal nodes [27, 29],
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Figure 1: AUC-ROC performance of our method and rep-
resentative strong baselines on two popular benchmark
datasets.

contextual and structural anomalies. The former refers to nodes
whose attributes differ significantly from their neighbors, while the
latter relates to densely connected nodes contrasting with sparsely
connected regular nodes.

With the booming of deep learning techniques, learning-based
graph anomaly detection has recently dominated the research focus.
Current methods can be roughly categorized into reconstruction-
and contrastive-based [37, 59], where the latter attracts more at-
tention due to its better detection capabilities. The representative
approach CoLA [29] works by leveraging contrastive learning to
model the relationship between nodes and their local structures.
Recent methods [9, 10, 25] make further improvements by incorpo-
rating more powerful contrastive strategies. Despite their empir-
ical success, these methods require long training time and
complicated training/inference strategies, leading to poor
efficiency and flexibility in practice. In contrast, reconstruction-
based methods can naturally avoid the above issues [5, 37], which
have demonstrated promise with a simple and straightforward
pipeline. These methods build upon the idea from residual analy-
sis [44], where anomalies manifest as large residual/reconstruction
errors compared to normal counterparts. The pioneering work
DOMINANT [7] identifies abnormal nodes by reconstructing both
their attributes and local graph structures via graph neural networks
(GNNs). Subsequent methods [6, 13, 17] then enhance the model
robustness to anomalies for improved accuracy. However, these
methods often underperform contrastive-basedmethods and
lack scalability due to the prohibitive cost of reconstructing
large-scale graphs.

The above dilemma faced by the two mainstream deep learning-
based anomaly detection methods prompts a question: Are key
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properties such as accuracy, efficiency, scalability, and sim-
plicity inherently compatible for graph anomaly detection?
Targeting this problem, we propose TFGAD, a simple yet effective
training-free approach for graph anomaly detection. Not only does
TFGAD outperform previous works (Figure 1), but it is also sim-
pler, more efficient, and scalable, requiring no training parameters.
Motivated by the simplicity and potential of reconstruction-based
methods in detecting graph anomalies, we begin by investigating
key issues in these methods and their negative impact on perfor-
mance. The results demonstrate that a minimalistic, GNN-free, and
modality-separate framework can be superior for graph anomaly de-
tection, which separately encodes/reconstructs attribute and graph
structure data with minimum required transformations. Based on
this, TFGAD comprises two transformation matrices, each of which
serves to process one type of node feature (attributes or local struc-
ture). Remarkably, these matrices can be optimally determined via
singular value decomposition (SVD). Thus, it removes the need
for deep learning techniques but can still achieve superior detec-
tion performance. As a further improvement, we employ random-
ized SVD [15] to increase computation efficiency on large-scale
graphs. Besides, a lightweight scoring function is also adopted to
improve detection accuracy and efficiency. It substitutes the re-
construction process of local structures by projecting them into a
low-dimensional subspace, providing diverse advantages for graph
anomaly detection. We summarize our contributions as follows:

• We re-examine the issues of existing reconstruction-based
graph anomaly detection methods and their negative im-
pact on performance, which highlights the superiority of a
minimalistic, GNN-free, and modality-separate framework
for graph anomaly detection.

• We propose a training-free approach for graph anomaly
detection, TFGAD, which is simple, efficient, scalable, and
easy to implement. Remarkably, TFGAD requires no train-
ing parameters and can be fully developed with SVD. It also
contributes a novel lightweight scoring function for better
detecting graph anomalies.

• We conduct extensive experiments on various benchmark
datasets, including two large-scale datasets (ogbn-Arxiv
and ogbn-Products) with millions of edges. The results
show that TFGAD reaches state-of-the-art performance
with much less runtime and memory overhead than base-
lines. Specifically, TFGAD demonstrates improvements in
AUC-ROC ranging from 4.5% to 35.1% and achieves speedups
of 3.0× to 68.0× across various benchmarks, all without re-
quiring GPU overhead.

2 RELATEDWORK
2.1 Graph Anomaly Detection
Graph anomaly detection aims to identify nodes that deviate from
the majority ones. Early methods employ shallow techniques, e.g.,
ego-network analysis [35], matrix factorization [28], residual anal-
ysis [24], and CUR decomposition [34], which struggle to han-
dle complex graph information. With the rapid development of
deep learning techniques in the field of data mining [8, 36, 57],
deep learning-based approaches have been widely applied in graph
anomaly detection. A typical framework takes reconstruction as the

learning objective, where the pioneering work DOMINANT [7] em-
ploys a graph autoencoder to reconstruct both attribute and graph
structure data for anomaly detection. AnomalyDAE [13] extends
this by incorporating a graph attention mechanism [49] for encod-
ing complex graph structure information. AdONE [1] employs two
autoencoders to separately process attributes and graph structure,
followed by a random walking strategy to enhance graph struc-
ture information. Recent methods [6, 13, 17, 40] further improve
detection accuracy by employing more robust frameworks against
overfitting to anomalies. The success of contrastive-based anomaly
detection in computer vision and other related domains sheds light
on the potential of contrastive learning for graph anomaly detec-
tion [20, 38, 45]. CoLA [29], the representative approach, works by
capturing normal patterns between nodes and their neighboring
substructures via contrastive learning. ANEMONE [21] extends this
by introducing multi-scale contrasts for improved focus on node-
level information. SL-GAD [59] incorporates the reconstruction
process of attribute data into CoLA’s framework, aiming to leverage
the strengths of both reconstruction- and contrastive-based meth-
ods for improved accuracy. Subsequent methods [9, 10, 25] make
further improvements based on CoLA by employing more power-
ful contrastive learning frameworks. The above methods, typically
leveraging GNNs, are prone to obscure anomalous information due
to message passing. Recently, methods particularly designed to
overcome the shortcomings of message passing have received in-
creasing attention for graph anomaly detection. A notable example
is GADAM [5], which identifies local anomalies via inconsistency
mining and applies adaptive message passing to capture global
anomaly signals. Although the above methods achieve reasonable
performance, they all have limitations, such as inaccuracy, ineffi-
ciency, and lack of scalability [5, 27, 29]. It is still worthwhile to
explore an approach with various compelling advantages for graph
anomaly detection.

2.2 SVD-based Graph Processing
SVD, a widely-used matrix decomposition technique, plays a crucial
role in various data analysis tasks [18, 56, 58]. With the growing re-
search interest in graph-structured data, SVD recently has garnered
renewed attention for its simplicity and effectiveness [12, 14, 33, 53],
where a typical SVD-based application is for recommendation sys-
tems, which employ bipartite graphs to characterize the interactions
between users and items. The representative method [2] builds a
lightweight recommender system by leveraging SVD to process
incomplete data streams online. The subsequent method [60] im-
proves this by incorporating more efficient incremental techniques.
More recently, with the rapid development of deep learning tech-
niques, SVD has been widely combined with GNNs to enhance
recommender systems. For instance, LightGCL [3] utilizes SVD as
an effective data augmentation scheme to enrich the user-item in-
teraction information for better representation learning via GNNs;
SVD-GCN [33] reveals the connection between GNNs and SVD for
recommendation and replaces the core design of GNNs with a flex-
ible truncated SVD for improved simplicity and efficiency. When
it comes to security-related domains, SVD has proven effective
in improving the robustness to graph anomalies. The pioneering
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Figure 2: General framework of reconstruction-based anom-
aly detection methods.

work [43] exploits SVD and low-rank approximation of the user in-
teraction matrix to spot suspicious behavior; the recent method [12]
leverages SVD to defend against adversarial attacks on graphs by
focusing on their top singular components. However, despite the
broad applications of SVD in processing graph-structured data, its
potential for detecting graph anomalies remains underexplored.

3 PRELIMINARIES
3.1 Problem Formulation
We first introduce the main notations used in this paper. We use
plain, bold lowercase, and bold uppercase letters to denote scalars,
vectors, and matrices, respectively, e.g., 𝑘 and 𝜂 are scalars, 𝒙 and 𝒛
are vectors, 𝑿 and𝑾 are matrices. ∥𝒙 ∥2 is the Euclidean norm of
vector 𝒙 , where ∥𝒙 ∥2 =

√︁∑
𝑖 |𝒙𝑖 |2 and 𝒙𝑖 is the 𝑖-th entry of 𝒙 . ∥𝑿 ∥𝐹

is the Frobenius norm of matrix 𝑿 , where ∥𝑿 ∥𝐹 =

√︃∑
𝑖, 𝑗 |𝑿𝑖 𝑗 |2

and 𝑿𝑖 𝑗 is the (𝑖, 𝑗)-th entry of 𝑿 .
With the aforementioned notations, let G = {V,𝑿 ,𝑨} be an

attributed graph. V = {𝑣1, 𝑣2, . . . , 𝑣𝑛} is a set of 𝑛 nodes. 𝑿 =

[𝒙1, 𝒙2, . . . , 𝒙𝑛]T ∈ R𝑛×𝑑 is an attribute matrix, where its 𝑖-th row
indicates the attributes of node 𝑣𝑖 , characterized by vector 𝒙𝑖 ∈ R𝑑 .
𝑨 ∈ R𝑛×𝑛 is an adjacency matrix, where 𝑨𝑖 𝑗 = 1 if there is an edge
between nodes 𝑣𝑖 and 𝑣 𝑗 , and 𝑨𝑖 𝑗 = 0 otherwise. The 𝑖-th row of
𝑨 indicates the local structure of node 𝑣𝑖 , characterized by vector
𝒂𝑖 ∈ R𝑛 , and 𝑨 = [𝒂1, 𝒂2, . . . , 𝒂𝑛]T. By training on G (if required),
the goal of graph anomaly detection is to build a scoring function
𝜏 (·) : R𝑑 ↦→ R to quantitatively measure abnormal degrees of nodes
in V . Notably, no ground-truth information is accessible during
training, thus a fully unsupervised approach is required.

3.2 Reconstruction-based Graph Anomaly
Detection

Reconstruction-based graph anomaly detection methods discern
abnormal nodes using reconstruction errors of their attributes and
local structures. Figure 2 illustrates the general framework of these
methods, which follows a simple and straightforward pipeline: a
GNN-based encoder learns latent representations of nodes, while
two decoders separately reconstruct original node attributes and
local structures from these representations. The objective function
of this framework is formulated as:

L𝑟𝑒𝑐 = (1 − 𝛼)∥𝑿 − �̂� ∥2𝐹 + 𝛼 ∥𝑨 − �̂�∥2𝐹 , (1)

where �̂� and �̂� represent reconstructed attributes and local struc-
tures, and 𝛼 > 0 is a hyper-parameter balancing the weights of
different terms. For anomaly detection, the reconstruction error of

a test node 𝑣𝑖 serves as its anomaly score:

𝜏 (𝑣𝑖 ) = (1 − 𝛼)∥𝒙𝑖 − �̂�𝑖 ∥22 + 𝛼 ∥𝒂𝑖 − 𝒂𝑖 ∥22, (2)

where a higher score indicates a greater likelihood of 𝑣𝑖 being
abnormal.

3.3 Singular Value Decomposition
Singular value decomposition (SVD) is a popular matrix decompo-
sition technique with broad applications in data mining [18, 56, 58].
Let𝑾 ∈ R𝑝×𝑞 be a real-valued matrix of rank 𝑟 . The SVD of𝑾 is
given by:

𝑾 = 𝑼𝚺𝑽T =

𝑟∑︁
𝑖=1

𝜎𝑖𝒖𝑖𝒗
T
𝑖 , (3)

where 𝑼 ∈ R𝑝×𝑟 is an orthogonal matrix containing the left singular
vectors of 𝑾 on its columns {𝒖𝑖 }𝑟𝑖=1. The diagonal matrix 𝚺 =

diag(𝜎1, . . . , 𝜎𝑟 ) contains the singular values (𝜎1 ≥ 𝜎2 ≥ . . . ≥
𝜎𝑟 > 0). 𝑽 ∈ R𝑞×𝑟 is another orthogonal matrix containing the
right singular vectors of 𝑿 on its columns {𝒗𝑖 }𝑟𝑖=1.

According to the Eckart-Young theorem [11], the best rank 𝑘

approximation to𝑾 is given by the truncated SVD:

𝑾𝑘 = 𝑼𝑘𝚺𝑘𝑽
T
𝑘

=

𝑘∑︁
𝑖=1

𝜎𝑖𝒖𝑖𝒗
T
𝑖 , (4)

where 𝑼𝑘 and 𝑽𝑘 contain the top 𝑘 left and right singular vectors
of𝑾 , respectively. For any rank 𝑘 matrix 𝑩, the inequality ∥𝑾 −
𝑾𝑘 ∥𝐹 ≤ ∥𝑾 − 𝑩∥𝐹 holds.

4 METHODOLOGY
In this section, we start with a detailed investigation of issues in
reconstruction-based graph anomaly detection in Section 4.1. To
combat these issues, we propose TFGAD, a simple and effective
training-free approach for detecting graph anomalies. We detail
TFGAD’s framework in Section 4.2 and how TFGAD discerns anom-
alies and its compelling advantages in Section 4.3. Finally, we pro-
vide a complexity analysis of TFGAD in Section 4.4.

4.1 Investigating Issues in Reconstruction-based
Graph Anomaly Detection

Reconstruction-based graph anomaly detection identifies abnormal
nodes by measuring their reconstruction errors. However, these
errors are often inseparable between normal and abnormal nodes,
leading to poor detection performance. To explore how this insepa-
rability arises, we investigate key issues in existing methods and
their negative impact on performance:

• Issue 1: Learning from Abnormal Neighbors: Existing
methods typically adopt GNNs to learn node representa-
tions by aggregating information from neighboring nodes.
When anomalies exist, representations of normal nodes can
be distorted via their potential abnormal neighbors, thus
impairing detection accuracy.

• Issue 2: Reconstructing from Entangled Representa-
tions: Existing methods employ GNN-induced represen-
tations for reconstruction, which are considered to fuse
information from both attribute and graph structure data.

3
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Table 1: AUC-ROC performance of DOMINANT and its com-
peting variants across three popular benchmark datasets.
The results are averages over five runs. The best result per
dataset is boldfaced, while the second-best is underlined.

Method Cora Citeseer Pubmed

LINEAR-DOMINANT 0.9404 0.8535 0.8688
MINLIN-DOMINANT 0.9572 0.8805 0.8696
SEPARATE-DOMINANT 0.9567 0.9473 0.9133

DOMINANT 0.8493 0.8391 0.8013

However, this fusion can obscure information from differ-
ent data types, making it difficult to capture their inherent
patterns for effective anomaly detection.

• Issue 3: Overfitting to Anomalies: Current methods of-
ten employ overly complex architectures, leading to the
overfitting problem. As a result, abnormal nodes can also
be reconstructed well, with reconstruction errors similar
to those of normal nodes.

To investigate how these issues impact reconstruction-based
graph anomaly detection, we conduct an ablation study on the
pioneering and representative method DOMINANT [7]. We pro-
pose three variants of DOMINANT: (1) LINEAR-DOMINANT:
This variant substitutes all GNN layers in DOMINANT with linear
layers, making it possible to access the contribution of GNNs to
anomaly detection. In this case, the GNN encoder of DOMINANT is
replaced by a linear encoder that learns node representations solely
from attributes. (2) MINLIN-DOMINANT: This variant simpli-
fies LINEAR-DOMINANT by minimizing the number of its layers,
which helps to validate the effectiveness of reducing the complex-
ity of model architectures in mitigating overfitting to anomalies.
(3) SEPARATE-DOMINANT: It extends MINLIN-DOMINANT by
additionally introducing a single linear layer to learn the represen-
tation of node local structures, while the corresponding structure
decoder is also implemented as a single linear layer. This allows
for the separate reconstruction of attribute and graph structure
data from different representations (modality-separate), which can
validate its effectiveness in detecting graph anomalies.

Table 1 illustrates the AUC-ROC performance of DOMINANT
and its competing variants across three popular benchmark datasets:
Cora, Citeseer, and Pubmed. All variants significantly outperform
DOMINANT, e.g., with AUC-ROC improvements of 10.73%-12.70%
and 12.07%-14.07% on Cora and Citeseer, respectively. Notably,
SEPARATE-DOMINANT demonstrates superior performance on
Citeseer and Pumbed, with respective AUC-ROC improvements of
12.89% (from 0.8391 to 0.9473) and 13.98% (from 0.8013 to 0.9133)
compared to DOMINANT. On Cora, SEPARATE-DOMINANT also
performs competitively, with a minimal margin of less than 0.0005
in AUC-ROC compared to the best result of MINLIN-DOMINANT.
These results demonstrate that those above-discussed issues can
substantially impair the performance of reconstruction-based graph
anomaly detection. Moreover, the promising results of the pro-
posed variants suggest that GNN-free, minimalistic, and modality-
separate frameworks can be superior for detecting graph anomalies.

Input  
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Attribute
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Figure 3: Overall framework of TFGAD.

4.2 Reconstruction via Truncated SVD
Based on the findings in Section 4.1, we propose TFGAD, which
is minimalistic, GNN-free, and capable of separately processing
(encoding and reconstructing) node attributes and local structures
to detect graph anomalies. Figure 3 illustrates the overall frame-
work of TFGAD. Basically, it includes two transformation matrices
optimized with the objective of minimizing the reconstruction error
over node attributes and local structures:

min
𝑾A ,𝑾S

∥𝑿 − 𝑿𝑾A𝑾T
A ∥22 + ∥𝑨 −𝑨𝑾S𝑾

T
S ∥

2
2, (5)

where𝑾A ∈ R𝑑×𝑘A and𝑾S ∈ R𝑑×𝑘S represents two linear trans-
formations which project the node attributes {𝒙𝑖 }𝑛𝑖=1 and local
structures {𝒂𝑖 }𝑛𝑖=1 into 𝑘- and 𝑞-dimensional subspaces, respec-
tively. Their transposes are then applied to map the projected data
back to their original spaces for reconstruction. According to the
Eckart-Young theorem [11], this objective has a closed-form ana-
lytic solution via truncated SVD. Here, the optimal𝑾∗

A and𝑾∗
S are

simply the top 𝑘 and 𝑞 right singular vectors of the attribute matrix
𝑿 = [𝒙1, 𝒙2, . . . , 𝒙𝑛]T and adjacency matrix 𝑨 = [𝒂1, 𝒂2, . . . , 𝒂𝑛]T,
respectively.

However, performing (exact) SVD on large matrices is computa-
tionally expensive. To address this, we adopt randomized SVD [15],
which approximates the input matrix with a smaller one before
performing SVD, thereby significantly reducing computational over-
head. Formally, the randomized SVD of matrix𝑾 is given by:

�̃�𝑘 , �̃�𝑘 , �̃�𝑘 = ApproxSVD(𝑾 , 𝑘), (6)

where 𝑘 is the required rank for the decomposed matrices, and �̃�𝑘 ,
�̃�𝑘 , and �̃�𝑘 are the approximated versions of 𝑼𝑘 , 𝚺𝑘 , and 𝑽𝑘 . This
provides an approximately optimal solution for objective (5), i.e.,
{�̃�A ∈ R𝑑×𝑘A , �̃�S ∈ R𝑑×𝑘S }.

4.3 Anomaly Detection
We now describe the procedure of performing graph anomaly de-
tection leveraging the approximately optimal weight matrices �̃�A
and �̃�S . In particular, given a test node 𝑣𝑖 and its corresponding
attribute and local structure vectors 𝒙𝑖 and 𝒂𝑖 , we compute the
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anomaly score 𝜏 (𝑣𝑖 ) according to:

𝜏 (𝑣𝑖 ) = ∥𝒙𝑖 − �̃�A �̃�T
A𝒙𝑖 ∥22 +

1
𝜂
∥�̃�T

S𝒂𝑖 ∥
2
2, (7)

where 𝜂 > 0 is a balancing hyper-parameter. Note that reconstruct-
ing the local structure vector 𝒂𝑖 can be computationally expensive
due to its high dimensionality, which equals the total number of
nodes in the input graph and can grow excessively as the graph
scales. To address this, we adopt the projection length of the local
structure vector, ∥�̃�T

S𝒂𝑖 ∥2 (as shown in the above second term),
to compute the anomaly score. Notably, calculating this term is
more efficient than calculating the reconstruction error, as it avoids
projecting data back to their original space. Additionally, this term
can also reflect the edge density of the corresponding local struc-
ture, making it a powerful indicator for structural anomalies that
manifest as dense connections.

We summarize our proposed TFGAD in Algorithm 1. Noticeably,
TFGAD offers several appealing advantages:

(1) Training-free: Since TFGAD’s objective has a closed-form
analytic solution, TFGAD requires no training parameters,
reducing the risk of overfitting to anomalies while provid-
ing strong flexibility and generality in practice.

(2) Computation-efficient: The randomized SVD can solve
TFGAD’s objective within seconds with minimal memory
overhead (no GPU required). The proposed lightweight
scoring function further reduces computational overhead
in detecting graph anomalies.

(3) Scalable: Due to computational efficiency, TFGAD pos-
sesses high scalability across various large-scale graphs
with fast detection speed and limited memory requirements.

(4) Easy-to-use: The simple architecture of TFGAD enables an
easy implementation with few lines of code (e.g., fewer than
10 lines in Python), facilitating its quick deployment across
various applications. A PyTorch-like style pseudocode of
TFGAD can be found in Appendix B.

Algorithm 1 TFGAD: A training-free approach for graph anomaly
detection
Input: Attribute matrix 𝑿 , adjacency matrix 𝑨, hyper-parameters
𝑘A , 𝑘S , and 𝜂.
Optimization Stage:
Compute the approximated top 𝑘A right singular vectors of 𝑋 via
the randomized SVD, resulting in �̃�A .
Compute the approximated top 𝑘S right singular vectors of 𝐴 via
the randomized SVD, resulting in �̃�S .
Test Stage: Given a test node 𝑣𝑖 , compute the anomaly score 𝜏 (𝑣𝑖 )
via Equation (7).

4.4 Complexity Analysis
Let G = {V,𝑿 ,𝑨} be an input graph with𝑚 edges, where attribute
matrix 𝑿 ∈ R𝑛×𝑑 , adjacency matrix 𝑨 ∈ R𝑛×𝑛 , and𝑚 equals the
number of non-zero elements in 𝑨. The complexity of randomized
SVD on 𝑿 is O(𝑛𝑑𝑘A ), where 𝑘A is the target rank for the decom-
posed matrices. Notably, the complexity of this operation on 𝑨 is
O(𝑚𝑘S + 𝑛𝑘2S), as 𝑨 can be efficiently implemented by a sparse

matrix, requiring solely the processing of its non-zero𝑚 entries.
For anomaly score computation, the complexity of calculating the
reconstruction errors over 𝑿 is O(2𝑛𝑑𝑘A ), while the complexity of
calculating the projection lengths over𝑨 is O(𝑚𝑘S). Therefore, the
overall complexity of TFGAD is O(3𝑛𝑑𝑘A + 2𝑚𝑘S +𝑛𝑘2S), which is
linearly dependent on the number of nodes and edges in the graph.

5 EXPERIMENTS
5.1 Experimental Setup
Datasets. Nine benchmark datasets are employed in our experi-
ments: Cora, Citeseer, Pumbed, ACM, BlogCatalog (BCatalog for
short), ogbn-Arxiv (Arxiv for short), ogbn-Products (Products for
short), Books, and Reddit. Among these datasets, Cora, Citeseer,
Pubmed, ACM, and BCatalog are five widely used small-scale bench-
marks [42, 46, 47]. Arxiv and Products are two large-scale OGB
datasets [19]. Since these datasets are free of anomalies, we follow
the literature [5, 29] to inject synthetic anomalies. We refer readers
to [27] for a detailed description of the standard injection approach.
For a fair comparison with state-of-the-art baselines, we directly use
the anomaly-injected small-scale datasets provided by [5] and fol-
low its setup to inject large-scale datasets. Additionally, Books [41]
and Reddits [22, 51], two datasets with real anomalies, are also em-
ployed for more comprehensive evaluation. The statistics of these
datasets are summarized in Table 2. More details can be found in
Appendix A.

Table 2: Statistics of the datasets.

Dataset # Nodes # Edges # Attributes # Anomalies

Cora 2,708 5,429 1,433 150
Citeseer 3,327 4,732 3,703 150
Pubmed 19,717 44,338 500 600
ACM 16,484 71,980 8,337 600
BCatalog 5,196 171,743 8,189 300
Arxiv 169,343 1,166,243 128 6000
Products 2,449,029 61,859,140 100 90000
Books 1,418 3,695 21 28
Reddit 10,984 168,016 64 366

Baselines. Eleven state-of-the-art baselines are utilized. DOMI-
NANT (DOMT for short) [7], AnomalyDAE (ADAE for short) [13],
and AdONE (AONE for short) [1] are reconstruction-based meth-
ods. CoLA (CLA for short) [29], ANEMONE (ANEM for short) [21],
SL-GAD (SLGAD for short) [59], CONAD [54], and Sub-CR (SCR
for short) [55] are contrastive-based methods. ResGCN (RGCN for
short) [32], ComGA (CGA for short) [30], and GADAM [5] are meth-
ods with particularly designed message passing-oriented strategies.
EvaluationMetrics. Following themainstream experimental setup
of this research line [27, 48], two evaluation metrics are employed:
the area under the Receiver-Operating-Characteristic curve (AUC-
ROC) and the area under the Precision-Recall curve (AUC-PR).
These two metrics evaluate the detection performance without pos-
ing any assumption on the anomaly threshold. AUC-ROC calculates
the area under the ROC curve, which plots the true positive rate
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Table 3: Detection accuracy (AUC-ROC/AUC-PR) of TFGAD and its competing methods. The best accuracy per dataset is
boldfaced, while the second-best is underlined. OOM indicates out-of-memory. The results are averages over five runs. Results
for other methods are presented according to [5].

Dataset DOMT ADAE AONE CLA ANEM SLGAD CONAD SCR RGCN CGA GADAM TFGAD

A
U
C-
RO

C

Cora 0.8493 0.8431 0.8561 0.8801 0.9054 0.8983 0.7423 0.9132 0.8479 0.8840 0.9556 0.9867
Citeseer 0.8391 0.8264 0.8724 0.8891 0.9239 0.9106 0.7145 0.9310 0.7647 0.9167 0.9415 0.9895
Pubmed 0.8013 0.8973 0.7952 0.9535 0.9464 0.9476 0.6993 0.9629 0.8079 0.9212 0.9581 0.9828
ACM 0.7452 0.7516 0.7219 0.7783 0.8802 0.8538 0.6849 0.7245 0.7681 0.8496 0.9603 0.9677
BCatalog 0.7531 0.7658 0.7314 0.7807 0.8005 0.8037 0.6557 0.8071 0.7852 0.8030 0.8117 0.8042
Arxiv OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM 0.8122 0.9644
Products OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM 0.8499 0.7434
Books 0.5012 0.5567 0.5366 0.3982 0.4341 0.5655 0.5224 0.5713 0.5665 0.5354 0.5983 0.7010
Reddit 0.5621 0.5454 0.5015 0.5791 0.5563 0.5625 0.5610 0.5563 0.5012 0.5682 0.5809 0.6021

mean 0.5613 0.5767 0.5572 0.5843 0.6052 0.6158 0.5089 0.6074 0.5602 0.6087 0.8298 0.8582
mean rank 7.6667 7.5556 8.1111 5.8889 5.5556 4.4444 9.1111 4.1111 7.3333 5.1111 1.8889 1.3333

A
U
C-
PR

Cora 0.2010 0.2831 0.2331 0.4700 0.4483 0.5232 0.2101 0.6240 0.4469 0.5799 0.7280 0.8197
Citeseer 0.2106 0.2464 0.3065 0.3846 0.4211 0.4383 0.3065 0.4867 0.6446 0.5823 0.7512 0.8364
Pubmed 0.3176 0.3037 0.3733 0.4350 0.4644 0.4861 0.4038 0.5413 0.3648 0.5247 0.4264 0.5830
ACM 0.1774 0.2626 0.2638 0.3465 0.3399 0.3915 0.3612 0.4310 0.3804 0.4128 0.4446 0.4337
BCatalog 0.1519 0.1658 0.1811 0.1964 0.1804 0.2683 0.2132 0.2438 0.2205 0.2579 0.2960 0.2750
Arxiv OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM 0.1948 0.2079
Products OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM 0.2469 0.2840
Books 0.0190 0.0194 0.0202 0.0023 0.0072 0.0123 0.0192 0.0213 0.0179 0.0259 0.0279 0.0571
Reddit 0.0370 0.0400 0.0320 0.0437 0.0415 0.0330 0.0326 0.0463 0.0396 0.0461 0.0481 0.0423

mean 0.1238 0.1468 0.1567 0.2087 0.2114 0.2392 0.1718 0.2660 0.2350 0.2700 0.3515 0.3932
mean rank 9.1111 8.1111 7.7778 6.4444 6.7778 5.4444 7.3333 3.3333 6.2222 3.4444 2.2222 1.6667

against the false positive rate at different thresholds. AUC-PR cal-
culates the area under the PR curve, which plots precision against
recall at different thresholds.
Implementation Details. The implementation of baselines is di-
rectly taken from the PyGOD package [26] if they are available;
otherwise, from their provided source code. For TFGAD, its hyper-
parameter search space is 𝑘A in {1, 10}, 𝑘S in {1, 5, 35, 60, 220, 600},
and 𝜂 in {0.05, 1, 10, 100, 200, 500}. Detailed hyper-parameter set-
tings can be found in Appendix B. All experiments are conducted
with an Intel AMD EPYC CPU with 12 cores, 60GB RAM, and a
single NVIDIA RTX 4090 GPU with 25GB memory. The source code
of TFGAD is available on GitHub.

5.2 Effectiveness Evaluation
Table 3 illustrates the detection performance in terms of AUC-ROC
and AUC-PR of our proposed TFGAD and its competing methods.
TFGAD achieves the highest mean performance over nine bench-
mark datasets on both metrics, where the mean rank of TFGAD is
significantly higher than all baselines. TFGAD averagely obtains
4.5%-35.1% AUC-ROC improvements on eight out of nine datasets
and 5.4%-129.3% AUC-PR gains on all nine datasets. Particularly,
on the popular benchmark Cora, TFGAD raises the state-of-the-art
AUC-PR by 9.17 points (from 0.7280 to 0.8197) and achieves the
highest AUC-ROC of 0.9867. On other small-scale benchmarks (Cite-
seer and Pubmed), TFGAD exhibits consistent improvements in
both AUC-ROC and AUC-PR. Impressively, TFGAD exhibits good

scalability on large-scale benchmarks, with a 15.22-point AUC-ROC
from 0.8122 to 0.9644. Although TFGAD performs less effectively
than GADAM on Products, it still obtains the best AUC-PR on that
dataset. On benchmarks with real anomalies (Books and Reddit),
TFGAD raises the state-of-the-art AUC-ROC by 10.27 points (from
0.5983 to 0.7010) on Books and doubles the AUC-PR (from 0.0279 to
0.0571). TFGAD also achieves the highest AUC-ROC of 0.6021 on
Reddit. The above results demonstrate the superiority of TFGAD in
detecting diverse anomalies with both synthetic and real patterns.
Note that contrastive-based graph anomaly detection methods gen-
erally show more competitive performance than reconstruction-
based counterparts. Nevertheless, TFGAD, built upon aminimalistic
reconstruction-based framework, still outperforms the contrastive-
based baselines, e.g., by a large margin in AUC-ROC on some chal-
lenging datasets like ACM and Arxiv. The superiority of TFGAD
validates its effectiveness in accurately detecting graph anomalies
with impressive scalability.

5.3 Efficiency Evaluation
Table 4 further illustrates the efficiency and scalability of TFGAD
in terms of runtime (in seconds) and GPU overhead (in MB). To
ensure a fair comparison with state-of-the-art baselines, runtime is
evaluated across data processing, model training (when required),
and anomaly score calculation, excluding the time spent on data
loading and model initialization. GPU overhead, measured as peak
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Table 4: Efficiency Comparison of TFGAD and representative baselines in terms of runtime (in seconds) and GPU overhead (in
MB). The best result per dataset is boldfaced, while the second-best is underlined. IMP indicates the improvement of TFGAD
over the most efficient baseline: in runtime, the number of times TFGAD outperforms the baseline; in GPU overhead, the
percentage improvement over the baseline.

Method Cora Citeseer Pubmed ACM BCatalog Arxiv Products Books Reddit

Ru
nt
im

e
(s
) DOMT 1.95 3.72 34.05 34.93 8.52 OOM OOM 1.34 12.37

CLA 164.56 358.89 1358.02 1110.32 330.91 OOM OOM 57.36 484.37
GADAM 1.25 1.41 7.60 3.64 8.83 318.19 770.63 0.68 1.83
TFGAD 0.03 0.09 0.41 1.20 1.80 84.89 66.95 0.01 0.14

IMP 41.67× 15.67× 18.54× 3.03× 4.73× 3.75× 11.51× 68.00× 13.07×

G
PU

(M
B)

DOMT 742 998 8,132 7,856 1,922 OOM OOM 596 2,890
CLA 624 696 2,100 2,686 1,024 OOM OOM 558 1020
GADAM 514 606 644 1,630 696 1,272 9,184 494 556
TFGAD 0 0 0 0 0 0 0 0 0

IMP 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 5: Comparison of TFGAD and its ablation variants in terms of AUC-ROC and runtime (in seconds). The best AUC-ROC
per dataset is boldfaced, while the second-best is underlined.

Method Cora Citeseer Pubmed ACM BCatalog Arxiv Products Books Reddit

A
U
C-
RO

C

TFGADA 0.7524 0.7286 0.7345 0.7438 0.7397 0.7319 0.7434 0.6772 0.5636
TFGADS 0.7481 0.7907 0.7419 0.7535 0.6022 0.7530 0.5971 0.5580 0.5926
TFGADR 0.9537 0.9606 0.9199 0.9024 0.7561 OOM OOM 0.6700 0.5611
TFGADP 0.9900 0.9933 0.9833 0.9784 0.8171 0.9521 0.7434 0.5000 0.5968

TFGAD 0.9867 0.9895 0.9828 0.9677 0.8042 0.9644 0.7434 0.7010 0.6021

Ru
nt
im

e
(s
) TFGADA 0.03 0.09 0.39 1.12 1.79 81.35 66.57 0.01 0.14

TFGADS 0.02 0.05 0.38 0.83 1.70 82.13 65.15 0.01 0.14
TFGADR 0.05 0.13 1.06 1.46 0.45 OOM OOM 0.02 0.42
TFGADP 0.10 0.61 1.41 5.52 2.52 84.53 82.02 0.01 0.13

TFGAD 0.03 0.09 0.41 1.20 1.80 84.89 66.95 0.01 0.14

GPU consumption, is assessed throughout the entire process. Com-
peting methods involve representatives in each baseline type, i.e.,
ADAE, CLA, and GADAM. those with the top two AUC-ROC per-
formance in each type of baseline, i.e., DOMT, ADAE, CLA, SCR,
and GADAM. The results are reported as averages over five runs.
As shown in Table 4, TFGAD runs significantly faster than its com-
peting methods, achieving speedups of 3.0× to 68.0× across various
benchmarks. On large-scale benchmarks, TFGAD is 11.5× faster
on Products and 3.75× faster on Arxiv compared to the most ef-
ficient baseline GADAM. Remarkably, TFGAD achieves superior
efficiency without requiring GPU memory, leading to significantly
better efficiency and scalability in practice, especially when GPU
resources are limited. The dramatic boost in runtime and memory
overhead of TFGAD validates its efficiency and scalability for graph
anomaly detection.

5.4 Ablation Analysis
To further investigate the contribution of each component in TF-
GAD, we compare TFGAD with four ablation variants: TFGADA ,

TFGADS , TFGADR , and TFGADP . TFGADA works solely with
the reconstruction process of node attributes, while TFGADS em-
ploys only the projection process of local structures described in
Section 4.3. TFGADR leverages the errors of reconstructing both
node attributes and local structures for anomaly detection, align-
ing with the basic idea of reconstruction-based anomaly detection.
Conversely, TFGADP leverages the projection lengths of node
attributes and local structures.

Table 5 illustrates the comparison results of TFGAD and its ab-
lation variants. TFGAD significantly outperforms TFGADA and
TFGADS across all benchmarks while maintaining comparable
runtime, demonstrating the effectiveness in incorporating the at-
tribute reconstruction with the local structure projection for graph
anomaly detection. Compared to TFGADR , TFGAD achieves better
performance in both accuracy and efficiency, which shows the su-
periority of projecting rather than reconstructing local structures
for anomaly detection. Additionally, TFGAD achieves considerable
performance on large-scale datasets, while TFGADR runs out of
memory. This highlights the significant efficiency of projecting
local structures compared to reconstructing them. Note that, on
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(a) Impact of varying 𝑘A on AUC-ROC under different 𝜂.
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Figure 4: AUC-ROC performance of TFGAD on Cora, Citeseer, and Pubmed w.r.t. hyper-parameters 𝑘A , 𝑘S , and 𝜂.

small-scale benchmarks (Cora, Citeseer, Pubmed, ACM, and BCat-
alog), TFGAD performs relatively less effectively than TFGADP ,
which suggests that the fully projection-based approach is more
suitable in these cases. However, on large-scale benchmarks and
those with real anomalies, TFGAD outperforms TFGADP by a
significant margin, highlighting its flexibility and generality for
detecting both synthetic and real anomalies.

5.5 Sensitivity Analysis
To investigate the impact of hyper-parameters 𝑘A , 𝑘S , and𝜂 on per-
formance, we conduct experiments on benchmark datasets: Cora,
Citeseer, and Pubmed. Specifically, we evaluate the AUC-ROC per-
formance of TFGAD by varying𝑘A from 1 to 19with fixed𝑘S under
different 𝜂 values (10, 20, 50, 100) and similarly varying 𝑘S from 5
to 95 with fixed 𝑘A under these 𝜂 values. As shown in Figure 4, we
have the following observations: (1) The optimal hyper-parameters
differ between datasets. For instance, the optimal 𝜂 for Citeseer
and Pubmed is 100, but 10 for Cora. This implies that the contri-
butions of attribute and structure patterns to anomaly detection
are dataset-dependent. (2) Across different values of 𝜂, varying 𝑘A
shows similar trends in AUC-ROC performance, as does varying
𝑘S . This suggests that the choice of 𝜂 has minimal influence on the
selection of 𝑘A and 𝑘S . (3) After reaching an appropriate 𝜂, e.g.,
10-100 for Cora and Citeseer, the AUC-ROC of TFGAD changes
smoothly as the increasing of 𝑘A /𝑘S , which demonstrates the weak
sensitivity of TFGAD to these hyper-parameters.

6 CONCLUSION
In this paper, we propose TFGAD, a simple yet effective training-
free approach for graph anomaly detection. TFGAD features com-
pelling properties, including simplicity, efficiency, scalability, and
ease of implementation. We start with a detailed review and analy-
sis of issues in reconstruction-based anomaly detection methods,
and then we discuss how they negatively impact detection per-
formance. This analysis motivates a minimalistic, GNN-free, and
modality-separate framework to detect graph anomalies. Based
on this, TFGAD is built with minimum required linear transfor-
mations, each tailored to process a specific type of node feature
(attributes or local structure). Remarkably, these transformations
can be optimally determined via SVD techniques, thereby requiring
no training parameters and GPU overhead. As a further improve-
ment, the randomized SVD is employed to significantly reduce
computational overhead. Additionally, a lightweight scoring func-
tion is adopted, which replaces the reconstruction of local struc-
tures by simply projecting them into a low-dimensional subspace,
providing various advantages for detecting graph anomalies. Exten-
sive experiments demonstrate substantial improvements of TFGAD
over existing methods, where TFGAD achieves state-of-the-art per-
formance in both accuracy (4.5%-35.1% AUC-ROC improvements
and 5.4%-129.4% AUC-PR improvements) and time efficiency (3.0×-
68.0× speedups) across various benchmark datasets.
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A DATASET DETAILS
We provide additional information on the employed datasets, includ-
ing the type of datasets, average degree, and the ratio of anomalies.
The details are shown in Table 6.

Table 6: Details of the datasets. The real-world datasets with
Injected/Real (I/R) anomalies.

Dataset I/R # Nodes # Edges # Att. Degree # Ano. Ratio

Cora I 2,708 5,429 1,433 2.0 150 5.5%
Citeseer I 3,327 4,732 3,703 1.4 150 4.5%
Pubmed I 19,717 44,338 500 2.3 600 3.1%
ACM I 16,484 71,980 8,337 4.4 600 3.6%
BCatalog I 5,196 171,743 8,189 33.1 300 5.7%
Arxiv I 169,343 1,166,243 128 6.9 6000 3.5%
Products I 2,449,029 61,859,140 100 25.3 90000 3.6%
Books R 1,418 3,695 21 2.6 28 2.0%
Reddit R 10,984 168,016 64 15.3 366 3.3%

B DETAILED HYPER-PARAMETERS
Additional information about hyper-parameters of TFGAD are in
Table 7.

Table 7: Hyper-parameters of TFGAD for all used datasets.

Cora Citeseer Pubmed ACM BCatalog Arxiv Products Books Reddit

𝑘A 1 1 1 1 1 1 1 10 10
𝑘S 5 5 35 60 220 600 1 1 5
𝜂 10 100 100 10 0.05 1 10 200 500

C PSEUDOCODE OF TFGAD
Algorithm 2 provides the pseudocode of TFGAD in a PyTorch-like
style, showing that TFGAD can be easily implemented with few
lines of code.

Algorithm 2 Pseudocode of TFGAD in a PyTorch-like style.

# att, adj: attribute and adjacency matrices
# k_att, k_adj: required numbers of top right singular vectors of

attribute and adjacency matrices
# eta: balancing hyper-parameter

# perform randomized SVD
_, _, V_att = torch.svd_lowrank(att, q=k_att)
_, _, V_adj = torch.svd_lowrank(adj, q=k_adj)

# compute anomaly scores
att_rec_err = (att - att @ V_att @ V_att.T).pow(2).sum(dim=1)
adj_prj_len = (adj @ V_adj.pow(2).sum(dim=1)
y_score = att_rec_err + adj_prj_len / eta

D ANALYSIS OF ANOMALY DETECTION
UNDER LIMITED DATA ACCESSIBILITY

We further analyze the performance of TFGAD under limited data
accessibility, where only a subset of nodes is available for optimiz-
ing objective (5). We conduct experiments on popular benchmarks
Cora, Citeseer, and Pubmed, using the default hyper-parameter set-
tings presented in Table 7. Specifically, we evaluate the AUC-ROC
performance of TFGAD across different ratios of available nodes
for optimizing objective (5). For each ratio 𝑟 from 0.1 to 0.9, we
randomly select𝑚 = 𝑛∗𝑟 nodes and utilize both their attributes and
local structures to apply randomized SVD, as described in 4.2. The
AUC-ROC is then measured on the entire input graph, considering

Table 8: AUC-ROC performance of TFGAD under varying
ratios of available nodes for optimizing objective (5).

Dataset 0.1 0.3 0.5 0.7 0.9 1.0

A
U
C-
RO

C Cora 0.9473 0.9567 0.9701 0.9811 0.9853 0.9867
Citeseer 0.8936 0.9893 0.9865 0.9802 0.9874 0.9895
Pubmed 0.8711 0.8779 0.9420 0.9583 0.9789 0.9828

A
U
C-
PR Cora 0.7263 0.6616 0.7245 0.7607 0.7997 0.8197

Citeseer 0.6309 0.8548 0.8196 0.7783 0.8384 0.8364
Pubmed 0.3381 0.3195 0.4609 0.5200 0.5443 0.5830
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all nodes. The results (averaged over five runs) are presented in
Table 8. Our key observations are as follows: (1) Despite limited
access to input nodes (e.g., 30%-50% of nodes), TFGAD maintains
competitive, and in some cases superior, performance compared
to the best-performing baseline GADAM. For example, with only
30% of nodes accessible, TFGAD achieves the state-of-the-art AUC-
ROC of 0.9567 on Cora and 0.9893 on Citeseer. (2) The AUC-ROC

performance of TFGAD improves as the ratio of accessible nodes
increases, suggesting that TFGAD is less susceptible to anomalies
within the available nodes. Although the AUC-PR of TFGAD fluc-
tuates, it follows an overall upward trend and ultimately achieves
state-of-the-art results. These results further demonstrate the su-
periority of TFGAD, highlighting its flexibility and generality in
detecting graph anomalies across various scenarios.
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