
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Training-free Graph Anomaly Detection: A Simple Approach via
Singular Value Decomposition

Anonymous Author(s)∗

ABSTRACT
Graph anomaly detection has been widely applied in real-world ap-
plications, where deep learning-based methods have demonstrated
promise. However, prior methods often suffer from various limi-
tations, such as poor detection accuracy, long training time, com-
plicated training schemes, and lack of scalability. To combat this
dilemma, we propose TFGAD, a simple yet effective training-free
approach for graph anomaly detection. Particularly, TFGAD com-
prises two transformation matrices, each of which serves to process
one type of node feature (attributes or local structure). Notably,
these matrices can be optimally determined via singular value de-
composition, thus requiring no prior training. Further, we tailor
a lightweight anomaly scoring function, which integrates the re-
construction error of attributes with the projection length of lo-
cal structures to quantify graph anomalies. Extensive experiments
demonstrate that TFGAD leads to significant improvements over
state-of-the-art reconstruction-/contrastive-based deep learning
baselines while reaching much less runtime and memory overhead.

CCS CONCEPTS
• Security and privacy → Web application security; • Com-
puting methodologies→ Anomaly detection.

KEYWORDS
anomaly detection, attributed graphs, training-free, singular value
decomposition

ACM Reference Format:
Anonymous Author(s). 2018. Training-free Graph Anomaly Detection: A
Simple Approach via Singular Value Decomposition. In Proceedings of Make
sure to enter the correct conference title from your rights confirmation emai
(Conference acronym ’XX). ACM, New York, NY, USA, 11 pages. https://doi.
org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Graph anomaly detection recently has received increasing attention
due to its wide applications in various security-related fields [31,
39, 52]. Notable examples include social spam detection [23], finan-
cial fraud detection [50], and network intrusion detection [4, 16].
The goal of graph anomaly detection is to discern abnormal nodes
that significantly deviate from the majority of nodes in a graph.
Typically, there are two main types of abnormal nodes [27, 29],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

0.75 0.80 0.85 0.90 0.95 1.00
AUC-ROC (Citeseer Benchmark)

0.80

0.85

0.90

0.95

1.00

AU
C-
RO

C
(P
ub

m
ed
 B
en
ch
m
ar
k)

DOMINANT

AnomalyDAE

AdONE

CoLA ANEMONE
SL-GAD

Sub-CR

ResGCN

ComGA

GADAM
Ours

Figure 1: AUC-ROC performance of our method and rep-
resentative strong baselines on two popular benchmark
datasets.

contextual and structural anomalies. The former refers to nodes
whose attributes differ significantly from their neighbors, while the
latter relates to densely connected nodes contrasting with sparsely
connected regular nodes.

With the booming of deep learning techniques, learning-based
graph anomaly detection has recently dominated the research focus.
Current methods can be roughly categorized into reconstruction-
and contrastive-based [37, 59], where the latter attracts more at-
tention due to its better detection capabilities. The representative
approach CoLA [29] works by leveraging contrastive learning to
model the relationship between nodes and their local structures.
Recent methods [9, 10, 25] make further improvements by incorpo-
rating more powerful contrastive strategies. Despite their empir-
ical success, these methods require long training time and
complicated training/inference strategies, leading to poor
efficiency and flexibility in practice. In contrast, reconstruction-
based methods can naturally avoid the above issues [5, 37], which
have demonstrated promise with a simple and straightforward
pipeline. These methods build upon the idea from residual analy-
sis [44], where anomalies manifest as large residual/reconstruction
errors compared to normal counterparts. The pioneering work
DOMINANT [7] identifies abnormal nodes by reconstructing both
their attributes and local graph structures via graph neural networks
(GNNs). Subsequent methods [6, 13, 17] then enhance the model
robustness to anomalies for improved accuracy. However, these
methods often underperform contrastive-basedmethods and
lack scalability due to the prohibitive cost of reconstructing
large-scale graphs.

The above dilemma faced by the two mainstream deep learning-
based anomaly detection methods prompts a question: Are key

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

properties such as accuracy, efficiency, scalability, and sim-
plicity inherently compatible for graph anomaly detection?
Targeting this problem, we propose TFGAD, a simple yet effective
training-free approach for graph anomaly detection. Not only does
TFGAD outperform previous works (Figure 1), but it is also sim-
pler, more efficient, and scalable, requiring no training parameters.
Motivated by the simplicity and potential of reconstruction-based
methods in detecting graph anomalies, we begin by investigating
key issues in these methods and their negative impact on perfor-
mance. The results demonstrate that a minimalistic, GNN-free, and
modality-separate framework can be superior for graph anomaly de-
tection, which separately encodes/reconstructs attribute and graph
structure data with minimum required transformations. Based on
this, TFGAD comprises two transformation matrices, each of which
serves to process one type of node feature (attributes or local struc-
ture). Remarkably, these matrices can be optimally determined via
singular value decomposition (SVD). Thus, it removes the need
for deep learning techniques but can still achieve superior detec-
tion performance. As a further improvement, we employ random-
ized SVD [15] to increase computation efficiency on large-scale
graphs. Besides, a lightweight scoring function is also adopted to
improve detection accuracy and efficiency. It substitutes the re-
construction process of local structures by projecting them into a
low-dimensional subspace, providing diverse advantages for graph
anomaly detection. We summarize our contributions as follows:

• We re-examine the issues of existing reconstruction-based
graph anomaly detection methods and their negative im-
pact on performance, which highlights the superiority of a
minimalistic, GNN-free, and modality-separate framework
for graph anomaly detection.

• We propose a training-free approach for graph anomaly
detection, TFGAD, which is simple, efficient, scalable, and
easy to implement. Remarkably, TFGAD requires no train-
ing parameters and can be fully developed with SVD. It also
contributes a novel lightweight scoring function for better
detecting graph anomalies.

• We conduct extensive experiments on various benchmark
datasets, including two large-scale datasets (ogbn-Arxiv
and ogbn-Products) with millions of edges. The results
show that TFGAD reaches state-of-the-art performance
with much less runtime and memory overhead than base-
lines. Specifically, TFGAD demonstrates improvements in
AUC-ROC ranging from 4.5% to 35.1% and achieves speedups
of 3.0× to 68.0× across various benchmarks, all without re-
quiring GPU overhead.

2 RELATEDWORK
2.1 Graph Anomaly Detection
Graph anomaly detection aims to identify nodes that deviate from
the majority ones. Early methods employ shallow techniques, e.g.,
ego-network analysis [35], matrix factorization [28], residual anal-
ysis [24], and CUR decomposition [34], which struggle to han-
dle complex graph information. With the rapid development of
deep learning techniques in the field of data mining [8, 36, 57],
deep learning-based approaches have been widely applied in graph
anomaly detection. A typical framework takes reconstruction as the

learning objective, where the pioneering work DOMINANT [7] em-
ploys a graph autoencoder to reconstruct both attribute and graph
structure data for anomaly detection. AnomalyDAE [13] extends
this by incorporating a graph attention mechanism [49] for encod-
ing complex graph structure information. AdONE [1] employs two
autoencoders to separately process attributes and graph structure,
followed by a random walking strategy to enhance graph struc-
ture information. Recent methods [6, 13, 17, 40] further improve
detection accuracy by employing more robust frameworks against
overfitting to anomalies. The success of contrastive-based anomaly
detection in computer vision and other related domains sheds light
on the potential of contrastive learning for graph anomaly detec-
tion [20, 38, 45]. CoLA [29], the representative approach, works by
capturing normal patterns between nodes and their neighboring
substructures via contrastive learning. ANEMONE [21] extends this
by introducing multi-scale contrasts for improved focus on node-
level information. SL-GAD [59] incorporates the reconstruction
process of attribute data into CoLA’s framework, aiming to leverage
the strengths of both reconstruction- and contrastive-based meth-
ods for improved accuracy. Subsequent methods [9, 10, 25] make
further improvements based on CoLA by employing more power-
ful contrastive learning frameworks. The above methods, typically
leveraging GNNs, are prone to obscure anomalous information due
to message passing. Recently, methods particularly designed to
overcome the shortcomings of message passing have received in-
creasing attention for graph anomaly detection. A notable example
is GADAM [5], which identifies local anomalies via inconsistency
mining and applies adaptive message passing to capture global
anomaly signals. Although the above methods achieve reasonable
performance, they all have limitations, such as inaccuracy, ineffi-
ciency, and lack of scalability [5, 27, 29]. It is still worthwhile to
explore an approach with various compelling advantages for graph
anomaly detection.

2.2 SVD-based Graph Processing
SVD, a widely-used matrix decomposition technique, plays a crucial
role in various data analysis tasks [18, 56, 58]. With the growing re-
search interest in graph-structured data, SVD recently has garnered
renewed attention for its simplicity and effectiveness [12, 14, 33, 53],
where a typical SVD-based application is for recommendation sys-
tems, which employ bipartite graphs to characterize the interactions
between users and items. The representative method [2] builds a
lightweight recommender system by leveraging SVD to process
incomplete data streams online. The subsequent method [60] im-
proves this by incorporating more efficient incremental techniques.
More recently, with the rapid development of deep learning tech-
niques, SVD has been widely combined with GNNs to enhance
recommender systems. For instance, LightGCL [3] utilizes SVD as
an effective data augmentation scheme to enrich the user-item in-
teraction information for better representation learning via GNNs;
SVD-GCN [33] reveals the connection between GNNs and SVD for
recommendation and replaces the core design of GNNs with a flex-
ible truncated SVD for improved simplicity and efficiency. When
it comes to security-related domains, SVD has proven effective
in improving the robustness to graph anomalies. The pioneering

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Training-free Graph Anomaly Detection: A Simple Approach via Singular Value Decomposition Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Attribute
Decoder

Structure
Decoder

Anomaly Scores

Input Graph Representations

GNN
Encoder

α

1 − α

Figure 2: General framework of reconstruction-based anom-
aly detection methods.

work [43] exploits SVD and low-rank approximation of the user in-
teraction matrix to spot suspicious behavior; the recent method [12]
leverages SVD to defend against adversarial attacks on graphs by
focusing on their top singular components. However, despite the
broad applications of SVD in processing graph-structured data, its
potential for detecting graph anomalies remains underexplored.

3 PRELIMINARIES
3.1 Problem Formulation
We first introduce the main notations used in this paper. We use
plain, bold lowercase, and bold uppercase letters to denote scalars,
vectors, and matrices, respectively, e.g., 𝑘 and 𝜂 are scalars, 𝒙 and 𝒛
are vectors, 𝑿 and𝑾 are matrices. ∥𝒙 ∥2 is the Euclidean norm of
vector 𝒙 , where ∥𝒙 ∥2 =

√︁∑
𝑖 |𝒙𝑖 |2 and 𝒙𝑖 is the 𝑖-th entry of 𝒙 . ∥𝑿 ∥𝐹

is the Frobenius norm of matrix 𝑿 , where ∥𝑿 ∥𝐹 =

√︃∑
𝑖, 𝑗 |𝑿𝑖 𝑗 |2

and 𝑿𝑖 𝑗 is the (𝑖, 𝑗)-th entry of 𝑿 .
With the aforementioned notations, let G = {V,𝑿 ,𝑨} be an

attributed graph. V = {𝑣1, 𝑣2, . . . , 𝑣𝑛} is a set of 𝑛 nodes. 𝑿 =

[𝒙1, 𝒙2, . . . , 𝒙𝑛]T ∈ R𝑛×𝑑 is an attribute matrix, where its 𝑖-th row
indicates the attributes of node 𝑣𝑖 , characterized by vector 𝒙𝑖 ∈ R𝑑 .
𝑨 ∈ R𝑛×𝑛 is an adjacency matrix, where 𝑨𝑖 𝑗 = 1 if there is an edge
between nodes 𝑣𝑖 and 𝑣 𝑗 , and 𝑨𝑖 𝑗 = 0 otherwise. The 𝑖-th row of
𝑨 indicates the local structure of node 𝑣𝑖 , characterized by vector
𝒂𝑖 ∈ R𝑛 , and 𝑨 = [𝒂1, 𝒂2, . . . , 𝒂𝑛]T. By training on G (if required),
the goal of graph anomaly detection is to build a scoring function
𝜏 (·) : R𝑑 ↦→ R to quantitatively measure abnormal degrees of nodes
in V . Notably, no ground-truth information is accessible during
training, thus a fully unsupervised approach is required.

3.2 Reconstruction-based Graph Anomaly
Detection

Reconstruction-based graph anomaly detection methods discern
abnormal nodes using reconstruction errors of their attributes and
local structures. Figure 2 illustrates the general framework of these
methods, which follows a simple and straightforward pipeline: a
GNN-based encoder learns latent representations of nodes, while
two decoders separately reconstruct original node attributes and
local structures from these representations. The objective function
of this framework is formulated as:

L𝑟𝑒𝑐 = (1 − 𝛼)∥𝑿 − �̂� ∥2𝐹 + 𝛼 ∥𝑨 − �̂�∥2𝐹 , (1)

where �̂� and �̂� represent reconstructed attributes and local struc-
tures, and 𝛼 > 0 is a hyper-parameter balancing the weights of
different terms. For anomaly detection, the reconstruction error of

a test node 𝑣𝑖 serves as its anomaly score:

𝜏 (𝑣𝑖) = (1 − 𝛼)∥𝒙𝑖 − �̂�𝑖 ∥22 + 𝛼 ∥𝒂𝑖 − 𝒂𝑖 ∥22, (2)

where a higher score indicates a greater likelihood of 𝑣𝑖 being
abnormal.

3.3 Singular Value Decomposition
Singular value decomposition (SVD) is a popular matrix decompo-
sition technique with broad applications in data mining [18, 56, 58].
Let𝑾 ∈ R𝑝×𝑞 be a real-valued matrix of rank 𝑟 . The SVD of𝑾 is
given by:

𝑾 = 𝑼𝚺𝑽T =

𝑟∑︁
𝑖=1

𝜎𝑖𝒖𝑖𝒗
T
𝑖 , (3)

where 𝑼 ∈ R𝑝×𝑟 is an orthogonal matrix containing the left singular
vectors of 𝑾 on its columns {𝒖𝑖 }𝑟𝑖=1. The diagonal matrix 𝚺 =

diag(𝜎1, . . . , 𝜎𝑟) contains the singular values (𝜎1 ≥ 𝜎2 ≥ . . . ≥
𝜎𝑟 > 0). 𝑽 ∈ R𝑞×𝑟 is another orthogonal matrix containing the
right singular vectors of 𝑿 on its columns {𝒗𝑖 }𝑟𝑖=1.

According to the Eckart-Young theorem [11], the best rank 𝑘

approximation to𝑾 is given by the truncated SVD:

𝑾𝑘 = 𝑼𝑘𝚺𝑘𝑽
T
𝑘

=

𝑘∑︁
𝑖=1

𝜎𝑖𝒖𝑖𝒗
T
𝑖 , (4)

where 𝑼𝑘 and 𝑽𝑘 contain the top 𝑘 left and right singular vectors
of𝑾 , respectively. For any rank 𝑘 matrix 𝑩, the inequality ∥𝑾 −
𝑾𝑘 ∥𝐹 ≤ ∥𝑾 − 𝑩∥𝐹 holds.

4 METHODOLOGY
In this section, we start with a detailed investigation of issues in
reconstruction-based graph anomaly detection in Section 4.1. To
combat these issues, we propose TFGAD, a simple and effective
training-free approach for detecting graph anomalies. We detail
TFGAD’s framework in Section 4.2 and how TFGAD discerns anom-
alies and its compelling advantages in Section 4.3. Finally, we pro-
vide a complexity analysis of TFGAD in Section 4.4.

4.1 Investigating Issues in Reconstruction-based
Graph Anomaly Detection

Reconstruction-based graph anomaly detection identifies abnormal
nodes by measuring their reconstruction errors. However, these
errors are often inseparable between normal and abnormal nodes,
leading to poor detection performance. To explore how this insepa-
rability arises, we investigate key issues in existing methods and
their negative impact on performance:

• Issue 1: Learning from Abnormal Neighbors: Existing
methods typically adopt GNNs to learn node representa-
tions by aggregating information from neighboring nodes.
When anomalies exist, representations of normal nodes can
be distorted via their potential abnormal neighbors, thus
impairing detection accuracy.

• Issue 2: Reconstructing from Entangled Representa-
tions: Existing methods employ GNN-induced represen-
tations for reconstruction, which are considered to fuse
information from both attribute and graph structure data.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 1: AUC-ROC performance of DOMINANT and its com-
peting variants across three popular benchmark datasets.
The results are averages over five runs. The best result per
dataset is boldfaced, while the second-best is underlined.

Method Cora Citeseer Pubmed

LINEAR-DOMINANT 0.9404 0.8535 0.8688
MINLIN-DOMINANT 0.9572 0.8805 0.8696
SEPARATE-DOMINANT 0.9567 0.9473 0.9133

DOMINANT 0.8493 0.8391 0.8013

However, this fusion can obscure information from differ-
ent data types, making it difficult to capture their inherent
patterns for effective anomaly detection.

• Issue 3: Overfitting to Anomalies: Current methods of-
ten employ overly complex architectures, leading to the
overfitting problem. As a result, abnormal nodes can also
be reconstructed well, with reconstruction errors similar
to those of normal nodes.

To investigate how these issues impact reconstruction-based
graph anomaly detection, we conduct an ablation study on the
pioneering and representative method DOMINANT [7]. We pro-
pose three variants of DOMINANT: (1) LINEAR-DOMINANT:
This variant substitutes all GNN layers in DOMINANT with linear
layers, making it possible to access the contribution of GNNs to
anomaly detection. In this case, the GNN encoder of DOMINANT is
replaced by a linear encoder that learns node representations solely
from attributes. (2) MINLIN-DOMINANT: This variant simpli-
fies LINEAR-DOMINANT by minimizing the number of its layers,
which helps to validate the effectiveness of reducing the complex-
ity of model architectures in mitigating overfitting to anomalies.
(3) SEPARATE-DOMINANT: It extends MINLIN-DOMINANT by
additionally introducing a single linear layer to learn the represen-
tation of node local structures, while the corresponding structure
decoder is also implemented as a single linear layer. This allows
for the separate reconstruction of attribute and graph structure
data from different representations (modality-separate), which can
validate its effectiveness in detecting graph anomalies.

Table 1 illustrates the AUC-ROC performance of DOMINANT
and its competing variants across three popular benchmark datasets:
Cora, Citeseer, and Pubmed. All variants significantly outperform
DOMINANT, e.g., with AUC-ROC improvements of 10.73%-12.70%
and 12.07%-14.07% on Cora and Citeseer, respectively. Notably,
SEPARATE-DOMINANT demonstrates superior performance on
Citeseer and Pumbed, with respective AUC-ROC improvements of
12.89% (from 0.8391 to 0.9473) and 13.98% (from 0.8013 to 0.9133)
compared to DOMINANT. On Cora, SEPARATE-DOMINANT also
performs competitively, with a minimal margin of less than 0.0005
in AUC-ROC compared to the best result of MINLIN-DOMINANT.
These results demonstrate that those above-discussed issues can
substantially impair the performance of reconstruction-based graph
anomaly detection. Moreover, the promising results of the pro-
posed variants suggest that GNN-free, minimalistic, and modality-
separate frameworks can be superior for detecting graph anomalies.

Input
Graph

Graph Structure

Node Attributes

Separate Anomaly Scores

Attribute
Decoder

Structure
Decoder

Projection
Matrix

Projection
Matrix

1
η

Transpose

Transpose

Reconstruction
Error

Projection
Length

Figure 3: Overall framework of TFGAD.

4.2 Reconstruction via Truncated SVD
Based on the findings in Section 4.1, we propose TFGAD, which
is minimalistic, GNN-free, and capable of separately processing
(encoding and reconstructing) node attributes and local structures
to detect graph anomalies. Figure 3 illustrates the overall frame-
work of TFGAD. Basically, it includes two transformation matrices
optimized with the objective of minimizing the reconstruction error
over node attributes and local structures:

min
𝑾A ,𝑾S

∥𝑿 − 𝑿𝑾A𝑾T
A ∥22 + ∥𝑨 −𝑨𝑾S𝑾

T
S ∥

2
2, (5)

where𝑾A ∈ R𝑑×𝑘A and𝑾S ∈ R𝑑×𝑘S represents two linear trans-
formations which project the node attributes {𝒙𝑖 }𝑛𝑖=1 and local
structures {𝒂𝑖 }𝑛𝑖=1 into 𝑘- and 𝑞-dimensional subspaces, respec-
tively. Their transposes are then applied to map the projected data
back to their original spaces for reconstruction. According to the
Eckart-Young theorem [11], this objective has a closed-form ana-
lytic solution via truncated SVD. Here, the optimal𝑾∗

A and𝑾∗
S are

simply the top 𝑘 and 𝑞 right singular vectors of the attribute matrix
𝑿 = [𝒙1, 𝒙2, . . . , 𝒙𝑛]T and adjacency matrix 𝑨 = [𝒂1, 𝒂2, . . . , 𝒂𝑛]T,
respectively.

However, performing (exact) SVD on large matrices is computa-
tionally expensive. To address this, we adopt randomized SVD [15],
which approximates the input matrix with a smaller one before
performing SVD, thereby significantly reducing computational over-
head. Formally, the randomized SVD of matrix𝑾 is given by:

�̃�𝑘 , �̃�𝑘 , �̃�𝑘 = ApproxSVD(𝑾 , 𝑘), (6)

where 𝑘 is the required rank for the decomposed matrices, and �̃�𝑘 ,
�̃�𝑘 , and �̃�𝑘 are the approximated versions of 𝑼𝑘 , 𝚺𝑘 , and 𝑽𝑘 . This
provides an approximately optimal solution for objective (5), i.e.,
{�̃�A ∈ R𝑑×𝑘A , �̃�S ∈ R𝑑×𝑘S }.

4.3 Anomaly Detection
We now describe the procedure of performing graph anomaly de-
tection leveraging the approximately optimal weight matrices �̃�A
and �̃�S . In particular, given a test node 𝑣𝑖 and its corresponding
attribute and local structure vectors 𝒙𝑖 and 𝒂𝑖 , we compute the

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Training-free Graph Anomaly Detection: A Simple Approach via Singular Value Decomposition Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

anomaly score 𝜏 (𝑣𝑖) according to:

𝜏 (𝑣𝑖) = ∥𝒙𝑖 − �̃�A �̃�T
A𝒙𝑖 ∥22 +

1
𝜂
∥�̃�T

S𝒂𝑖 ∥
2
2, (7)

where 𝜂 > 0 is a balancing hyper-parameter. Note that reconstruct-
ing the local structure vector 𝒂𝑖 can be computationally expensive
due to its high dimensionality, which equals the total number of
nodes in the input graph and can grow excessively as the graph
scales. To address this, we adopt the projection length of the local
structure vector, ∥�̃�T

S𝒂𝑖 ∥2 (as shown in the above second term),
to compute the anomaly score. Notably, calculating this term is
more efficient than calculating the reconstruction error, as it avoids
projecting data back to their original space. Additionally, this term
can also reflect the edge density of the corresponding local struc-
ture, making it a powerful indicator for structural anomalies that
manifest as dense connections.

We summarize our proposed TFGAD in Algorithm 1. Noticeably,
TFGAD offers several appealing advantages:

(1) Training-free: Since TFGAD’s objective has a closed-form
analytic solution, TFGAD requires no training parameters,
reducing the risk of overfitting to anomalies while provid-
ing strong flexibility and generality in practice.

(2) Computation-efficient: The randomized SVD can solve
TFGAD’s objective within seconds with minimal memory
overhead (no GPU required). The proposed lightweight
scoring function further reduces computational overhead
in detecting graph anomalies.

(3) Scalable: Due to computational efficiency, TFGAD pos-
sesses high scalability across various large-scale graphs
with fast detection speed and limited memory requirements.

(4) Easy-to-use: The simple architecture of TFGAD enables an
easy implementation with few lines of code (e.g., fewer than
10 lines in Python), facilitating its quick deployment across
various applications. A PyTorch-like style pseudocode of
TFGAD can be found in Appendix B.

Algorithm 1 TFGAD: A training-free approach for graph anomaly
detection
Input: Attribute matrix 𝑿 , adjacency matrix 𝑨, hyper-parameters
𝑘A , 𝑘S , and 𝜂.
Optimization Stage:
Compute the approximated top 𝑘A right singular vectors of 𝑋 via
the randomized SVD, resulting in �̃�A .
Compute the approximated top 𝑘S right singular vectors of 𝐴 via
the randomized SVD, resulting in �̃�S .
Test Stage: Given a test node 𝑣𝑖 , compute the anomaly score 𝜏 (𝑣𝑖)
via Equation (7).

4.4 Complexity Analysis
Let G = {V,𝑿 ,𝑨} be an input graph with𝑚 edges, where attribute
matrix 𝑿 ∈ R𝑛×𝑑 , adjacency matrix 𝑨 ∈ R𝑛×𝑛 , and𝑚 equals the
number of non-zero elements in 𝑨. The complexity of randomized
SVD on 𝑿 is O(𝑛𝑑𝑘A), where 𝑘A is the target rank for the decom-
posed matrices. Notably, the complexity of this operation on 𝑨 is
O(𝑚𝑘S + 𝑛𝑘2S), as 𝑨 can be efficiently implemented by a sparse

matrix, requiring solely the processing of its non-zero𝑚 entries.
For anomaly score computation, the complexity of calculating the
reconstruction errors over 𝑿 is O(2𝑛𝑑𝑘A), while the complexity of
calculating the projection lengths over𝑨 is O(𝑚𝑘S). Therefore, the
overall complexity of TFGAD is O(3𝑛𝑑𝑘A + 2𝑚𝑘S +𝑛𝑘2S), which is
linearly dependent on the number of nodes and edges in the graph.

5 EXPERIMENTS
5.1 Experimental Setup
Datasets. Nine benchmark datasets are employed in our experi-
ments: Cora, Citeseer, Pumbed, ACM, BlogCatalog (BCatalog for
short), ogbn-Arxiv (Arxiv for short), ogbn-Products (Products for
short), Books, and Reddit. Among these datasets, Cora, Citeseer,
Pubmed, ACM, and BCatalog are five widely used small-scale bench-
marks [42, 46, 47]. Arxiv and Products are two large-scale OGB
datasets [19]. Since these datasets are free of anomalies, we follow
the literature [5, 29] to inject synthetic anomalies. We refer readers
to [27] for a detailed description of the standard injection approach.
For a fair comparison with state-of-the-art baselines, we directly use
the anomaly-injected small-scale datasets provided by [5] and fol-
low its setup to inject large-scale datasets. Additionally, Books [41]
and Reddits [22, 51], two datasets with real anomalies, are also em-
ployed for more comprehensive evaluation. The statistics of these
datasets are summarized in Table 2. More details can be found in
Appendix A.

Table 2: Statistics of the datasets.

Dataset # Nodes # Edges # Attributes # Anomalies

Cora 2,708 5,429 1,433 150
Citeseer 3,327 4,732 3,703 150
Pubmed 19,717 44,338 500 600
ACM 16,484 71,980 8,337 600
BCatalog 5,196 171,743 8,189 300
Arxiv 169,343 1,166,243 128 6000
Products 2,449,029 61,859,140 100 90000
Books 1,418 3,695 21 28
Reddit 10,984 168,016 64 366

Baselines. Eleven state-of-the-art baselines are utilized. DOMI-
NANT (DOMT for short) [7], AnomalyDAE (ADAE for short) [13],
and AdONE (AONE for short) [1] are reconstruction-based meth-
ods. CoLA (CLA for short) [29], ANEMONE (ANEM for short) [21],
SL-GAD (SLGAD for short) [59], CONAD [54], and Sub-CR (SCR
for short) [55] are contrastive-based methods. ResGCN (RGCN for
short) [32], ComGA (CGA for short) [30], and GADAM [5] are meth-
ods with particularly designed message passing-oriented strategies.
EvaluationMetrics. Following themainstream experimental setup
of this research line [27, 48], two evaluation metrics are employed:
the area under the Receiver-Operating-Characteristic curve (AUC-
ROC) and the area under the Precision-Recall curve (AUC-PR).
These two metrics evaluate the detection performance without pos-
ing any assumption on the anomaly threshold. AUC-ROC calculates
the area under the ROC curve, which plots the true positive rate

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 3: Detection accuracy (AUC-ROC/AUC-PR) of TFGAD and its competing methods. The best accuracy per dataset is
boldfaced, while the second-best is underlined. OOM indicates out-of-memory. The results are averages over five runs. Results
for other methods are presented according to [5].

Dataset DOMT ADAE AONE CLA ANEM SLGAD CONAD SCR RGCN CGA GADAM TFGAD

A
U
C-
RO

C

Cora 0.8493 0.8431 0.8561 0.8801 0.9054 0.8983 0.7423 0.9132 0.8479 0.8840 0.9556 0.9867
Citeseer 0.8391 0.8264 0.8724 0.8891 0.9239 0.9106 0.7145 0.9310 0.7647 0.9167 0.9415 0.9895
Pubmed 0.8013 0.8973 0.7952 0.9535 0.9464 0.9476 0.6993 0.9629 0.8079 0.9212 0.9581 0.9828
ACM 0.7452 0.7516 0.7219 0.7783 0.8802 0.8538 0.6849 0.7245 0.7681 0.8496 0.9603 0.9677
BCatalog 0.7531 0.7658 0.7314 0.7807 0.8005 0.8037 0.6557 0.8071 0.7852 0.8030 0.8117 0.8042
Arxiv OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM 0.8122 0.9644
Products OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM 0.8499 0.7434
Books 0.5012 0.5567 0.5366 0.3982 0.4341 0.5655 0.5224 0.5713 0.5665 0.5354 0.5983 0.7010
Reddit 0.5621 0.5454 0.5015 0.5791 0.5563 0.5625 0.5610 0.5563 0.5012 0.5682 0.5809 0.6021

mean 0.5613 0.5767 0.5572 0.5843 0.6052 0.6158 0.5089 0.6074 0.5602 0.6087 0.8298 0.8582
mean rank 7.6667 7.5556 8.1111 5.8889 5.5556 4.4444 9.1111 4.1111 7.3333 5.1111 1.8889 1.3333

A
U
C-
PR

Cora 0.2010 0.2831 0.2331 0.4700 0.4483 0.5232 0.2101 0.6240 0.4469 0.5799 0.7280 0.8197
Citeseer 0.2106 0.2464 0.3065 0.3846 0.4211 0.4383 0.3065 0.4867 0.6446 0.5823 0.7512 0.8364
Pubmed 0.3176 0.3037 0.3733 0.4350 0.4644 0.4861 0.4038 0.5413 0.3648 0.5247 0.4264 0.5830
ACM 0.1774 0.2626 0.2638 0.3465 0.3399 0.3915 0.3612 0.4310 0.3804 0.4128 0.4446 0.4337
BCatalog 0.1519 0.1658 0.1811 0.1964 0.1804 0.2683 0.2132 0.2438 0.2205 0.2579 0.2960 0.2750
Arxiv OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM 0.1948 0.2079
Products OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM 0.2469 0.2840
Books 0.0190 0.0194 0.0202 0.0023 0.0072 0.0123 0.0192 0.0213 0.0179 0.0259 0.0279 0.0571
Reddit 0.0370 0.0400 0.0320 0.0437 0.0415 0.0330 0.0326 0.0463 0.0396 0.0461 0.0481 0.0423

mean 0.1238 0.1468 0.1567 0.2087 0.2114 0.2392 0.1718 0.2660 0.2350 0.2700 0.3515 0.3932
mean rank 9.1111 8.1111 7.7778 6.4444 6.7778 5.4444 7.3333 3.3333 6.2222 3.4444 2.2222 1.6667

against the false positive rate at different thresholds. AUC-PR cal-
culates the area under the PR curve, which plots precision against
recall at different thresholds.
Implementation Details. The implementation of baselines is di-
rectly taken from the PyGOD package [26] if they are available;
otherwise, from their provided source code. For TFGAD, its hyper-
parameter search space is 𝑘A in {1, 10}, 𝑘S in {1, 5, 35, 60, 220, 600},
and 𝜂 in {0.05, 1, 10, 100, 200, 500}. Detailed hyper-parameter set-
tings can be found in Appendix B. All experiments are conducted
with an Intel AMD EPYC CPU with 12 cores, 60GB RAM, and a
single NVIDIA RTX 4090 GPU with 25GB memory. The source code
of TFGAD is available on GitHub.

5.2 Effectiveness Evaluation
Table 3 illustrates the detection performance in terms of AUC-ROC
and AUC-PR of our proposed TFGAD and its competing methods.
TFGAD achieves the highest mean performance over nine bench-
mark datasets on both metrics, where the mean rank of TFGAD is
significantly higher than all baselines. TFGAD averagely obtains
4.5%-35.1% AUC-ROC improvements on eight out of nine datasets
and 5.4%-129.3% AUC-PR gains on all nine datasets. Particularly,
on the popular benchmark Cora, TFGAD raises the state-of-the-art
AUC-PR by 9.17 points (from 0.7280 to 0.8197) and achieves the
highest AUC-ROC of 0.9867. On other small-scale benchmarks (Cite-
seer and Pubmed), TFGAD exhibits consistent improvements in
both AUC-ROC and AUC-PR. Impressively, TFGAD exhibits good

scalability on large-scale benchmarks, with a 15.22-point AUC-ROC
from 0.8122 to 0.9644. Although TFGAD performs less effectively
than GADAM on Products, it still obtains the best AUC-PR on that
dataset. On benchmarks with real anomalies (Books and Reddit),
TFGAD raises the state-of-the-art AUC-ROC by 10.27 points (from
0.5983 to 0.7010) on Books and doubles the AUC-PR (from 0.0279 to
0.0571). TFGAD also achieves the highest AUC-ROC of 0.6021 on
Reddit. The above results demonstrate the superiority of TFGAD in
detecting diverse anomalies with both synthetic and real patterns.
Note that contrastive-based graph anomaly detection methods gen-
erally show more competitive performance than reconstruction-
based counterparts. Nevertheless, TFGAD, built upon aminimalistic
reconstruction-based framework, still outperforms the contrastive-
based baselines, e.g., by a large margin in AUC-ROC on some chal-
lenging datasets like ACM and Arxiv. The superiority of TFGAD
validates its effectiveness in accurately detecting graph anomalies
with impressive scalability.

5.3 Efficiency Evaluation
Table 4 further illustrates the efficiency and scalability of TFGAD
in terms of runtime (in seconds) and GPU overhead (in MB). To
ensure a fair comparison with state-of-the-art baselines, runtime is
evaluated across data processing, model training (when required),
and anomaly score calculation, excluding the time spent on data
loading and model initialization. GPU overhead, measured as peak

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Training-free Graph Anomaly Detection: A Simple Approach via Singular Value Decomposition Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: Efficiency Comparison of TFGAD and representative baselines in terms of runtime (in seconds) and GPU overhead (in
MB). The best result per dataset is boldfaced, while the second-best is underlined. IMP indicates the improvement of TFGAD
over the most efficient baseline: in runtime, the number of times TFGAD outperforms the baseline; in GPU overhead, the
percentage improvement over the baseline.

Method Cora Citeseer Pubmed ACM BCatalog Arxiv Products Books Reddit

Ru
nt
im

e
(s
) DOMT 1.95 3.72 34.05 34.93 8.52 OOM OOM 1.34 12.37

CLA 164.56 358.89 1358.02 1110.32 330.91 OOM OOM 57.36 484.37
GADAM 1.25 1.41 7.60 3.64 8.83 318.19 770.63 0.68 1.83
TFGAD 0.03 0.09 0.41 1.20 1.80 84.89 66.95 0.01 0.14

IMP 41.67× 15.67× 18.54× 3.03× 4.73× 3.75× 11.51× 68.00× 13.07×

G
PU

(M
B)

DOMT 742 998 8,132 7,856 1,922 OOM OOM 596 2,890
CLA 624 696 2,100 2,686 1,024 OOM OOM 558 1020
GADAM 514 606 644 1,630 696 1,272 9,184 494 556
TFGAD 0 0 0 0 0 0 0 0 0

IMP 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 5: Comparison of TFGAD and its ablation variants in terms of AUC-ROC and runtime (in seconds). The best AUC-ROC
per dataset is boldfaced, while the second-best is underlined.

Method Cora Citeseer Pubmed ACM BCatalog Arxiv Products Books Reddit

A
U
C-
RO

C

TFGADA 0.7524 0.7286 0.7345 0.7438 0.7397 0.7319 0.7434 0.6772 0.5636
TFGADS 0.7481 0.7907 0.7419 0.7535 0.6022 0.7530 0.5971 0.5580 0.5926
TFGADR 0.9537 0.9606 0.9199 0.9024 0.7561 OOM OOM 0.6700 0.5611
TFGADP 0.9900 0.9933 0.9833 0.9784 0.8171 0.9521 0.7434 0.5000 0.5968

TFGAD 0.9867 0.9895 0.9828 0.9677 0.8042 0.9644 0.7434 0.7010 0.6021

Ru
nt
im

e
(s
) TFGADA 0.03 0.09 0.39 1.12 1.79 81.35 66.57 0.01 0.14

TFGADS 0.02 0.05 0.38 0.83 1.70 82.13 65.15 0.01 0.14
TFGADR 0.05 0.13 1.06 1.46 0.45 OOM OOM 0.02 0.42
TFGADP 0.10 0.61 1.41 5.52 2.52 84.53 82.02 0.01 0.13

TFGAD 0.03 0.09 0.41 1.20 1.80 84.89 66.95 0.01 0.14

GPU consumption, is assessed throughout the entire process. Com-
peting methods involve representatives in each baseline type, i.e.,
ADAE, CLA, and GADAM. those with the top two AUC-ROC per-
formance in each type of baseline, i.e., DOMT, ADAE, CLA, SCR,
and GADAM. The results are reported as averages over five runs.
As shown in Table 4, TFGAD runs significantly faster than its com-
peting methods, achieving speedups of 3.0× to 68.0× across various
benchmarks. On large-scale benchmarks, TFGAD is 11.5× faster
on Products and 3.75× faster on Arxiv compared to the most ef-
ficient baseline GADAM. Remarkably, TFGAD achieves superior
efficiency without requiring GPU memory, leading to significantly
better efficiency and scalability in practice, especially when GPU
resources are limited. The dramatic boost in runtime and memory
overhead of TFGAD validates its efficiency and scalability for graph
anomaly detection.

5.4 Ablation Analysis
To further investigate the contribution of each component in TF-
GAD, we compare TFGAD with four ablation variants: TFGADA ,

TFGADS , TFGADR , and TFGADP . TFGADA works solely with
the reconstruction process of node attributes, while TFGADS em-
ploys only the projection process of local structures described in
Section 4.3. TFGADR leverages the errors of reconstructing both
node attributes and local structures for anomaly detection, align-
ing with the basic idea of reconstruction-based anomaly detection.
Conversely, TFGADP leverages the projection lengths of node
attributes and local structures.

Table 5 illustrates the comparison results of TFGAD and its ab-
lation variants. TFGAD significantly outperforms TFGADA and
TFGADS across all benchmarks while maintaining comparable
runtime, demonstrating the effectiveness in incorporating the at-
tribute reconstruction with the local structure projection for graph
anomaly detection. Compared to TFGADR , TFGAD achieves better
performance in both accuracy and efficiency, which shows the su-
periority of projecting rather than reconstructing local structures
for anomaly detection. Additionally, TFGAD achieves considerable
performance on large-scale datasets, while TFGADR runs out of
memory. This highlights the significant efficiency of projecting
local structures compared to reconstructing them. Note that, on

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0 5 10 15 20
kA

0.75

0.80

0.85

0.90

0.95

1.00

AU
C-
RO

C

Cora

kS=5, η=10
kS=5, η=20
kS=5, η=50
kS=5, η=100

0 5 10 15 20
kA

0.75

0.80

0.85

0.90

0.95

1.00

AU
C-
RO

C

Citeseer

kS=5, η=10
kS=5, η=20
kS=5, η=50
kS=5, η=100

0 5 10 15 20
kA

0.75

0.80

0.85

0.90

0.95

1.00

AU
C-
RO

C

Pubmed

kS=35, η=10
kS=35, η=20
kS=35, η=50
kS=35, η=100

(a) Impact of varying 𝑘A on AUC-ROC under different 𝜂.

0 20 40 60 80 100
kS

0.75

0.80

0.85

0.90

0.95

1.00

AU
C-
RO

C

Cora

kA=1, η=10
kA=1, η=20
kA=1, η=50
kA=1, η=100

0 20 40 60 80 100
kS

0.75

0.80

0.85

0.90

0.95

1.00
AU

C-
RO

C
Citeseer

kA=1, η=10
kA=1, η=20
kA=1, η=50
kA=1, η=100

0 20 40 60 80 100
kS

0.75

0.80

0.85

0.90

0.95

1.00

AU
C-
RO

C

Pubmed

kA=1, η=10
kA=1, η=20
kA=1, η=50
kA=1, η=100

(b) Impact of varying 𝑘S on AUC-ROC under different 𝜂.

Figure 4: AUC-ROC performance of TFGAD on Cora, Citeseer, and Pubmed w.r.t. hyper-parameters 𝑘A , 𝑘S , and 𝜂.

small-scale benchmarks (Cora, Citeseer, Pubmed, ACM, and BCat-
alog), TFGAD performs relatively less effectively than TFGADP ,
which suggests that the fully projection-based approach is more
suitable in these cases. However, on large-scale benchmarks and
those with real anomalies, TFGAD outperforms TFGADP by a
significant margin, highlighting its flexibility and generality for
detecting both synthetic and real anomalies.

5.5 Sensitivity Analysis
To investigate the impact of hyper-parameters 𝑘A , 𝑘S , and𝜂 on per-
formance, we conduct experiments on benchmark datasets: Cora,
Citeseer, and Pubmed. Specifically, we evaluate the AUC-ROC per-
formance of TFGAD by varying𝑘A from 1 to 19with fixed𝑘S under
different 𝜂 values (10, 20, 50, 100) and similarly varying 𝑘S from 5
to 95 with fixed 𝑘A under these 𝜂 values. As shown in Figure 4, we
have the following observations: (1) The optimal hyper-parameters
differ between datasets. For instance, the optimal 𝜂 for Citeseer
and Pubmed is 100, but 10 for Cora. This implies that the contri-
butions of attribute and structure patterns to anomaly detection
are dataset-dependent. (2) Across different values of 𝜂, varying 𝑘A
shows similar trends in AUC-ROC performance, as does varying
𝑘S . This suggests that the choice of 𝜂 has minimal influence on the
selection of 𝑘A and 𝑘S . (3) After reaching an appropriate 𝜂, e.g.,
10-100 for Cora and Citeseer, the AUC-ROC of TFGAD changes
smoothly as the increasing of 𝑘A /𝑘S , which demonstrates the weak
sensitivity of TFGAD to these hyper-parameters.

6 CONCLUSION
In this paper, we propose TFGAD, a simple yet effective training-
free approach for graph anomaly detection. TFGAD features com-
pelling properties, including simplicity, efficiency, scalability, and
ease of implementation. We start with a detailed review and analy-
sis of issues in reconstruction-based anomaly detection methods,
and then we discuss how they negatively impact detection per-
formance. This analysis motivates a minimalistic, GNN-free, and
modality-separate framework to detect graph anomalies. Based
on this, TFGAD is built with minimum required linear transfor-
mations, each tailored to process a specific type of node feature
(attributes or local structure). Remarkably, these transformations
can be optimally determined via SVD techniques, thereby requiring
no training parameters and GPU overhead. As a further improve-
ment, the randomized SVD is employed to significantly reduce
computational overhead. Additionally, a lightweight scoring func-
tion is adopted, which replaces the reconstruction of local struc-
tures by simply projecting them into a low-dimensional subspace,
providing various advantages for detecting graph anomalies. Exten-
sive experiments demonstrate substantial improvements of TFGAD
over existing methods, where TFGAD achieves state-of-the-art per-
formance in both accuracy (4.5%-35.1% AUC-ROC improvements
and 5.4%-129.4% AUC-PR improvements) and time efficiency (3.0×-
68.0× speedups) across various benchmark datasets.

REFERENCES
[1] Sambaran Bandyopadhyay, Lokesh N, Saley Vishal Vivek, and M Narasimha

Murty. 2020. Outlier resistant unsupervised deep architectures for attributed

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Training-free Graph Anomaly Detection: A Simple Approach via Singular Value Decomposition Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

network embedding. In Proceedings of the 13th international conference on web
search and data mining. 25–33.

[2] Matthew Brand. 2003. Fast online svd revisions for lightweight recommender
systems. In Proceedings of the 2003 SIAM international conference on data mining.
SIAM, 37–46.

[3] Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. 2023. LightGCL: Simple
yet effective graph contrastive learning for recommendation. arXiv preprint
arXiv:2302.08191 (2023).

[4] Evan Caville, Wai Weng Lo, Siamak Layeghy, and Marius Portmann. 2022.
Anomal-E: A self-supervised network intrusion detection system based on graph
neural networks. Knowledge-Based Systems 258 (2022), 110030.

[5] Jingyan Chen, Guanghui Zhu, Chunfeng Yuan, and Yihua Huang. 2024. Boost-
ing Graph Anomaly Detection with Adaptive Message Passing. In The Twelfth
International Conference on Learning Representations. https://openreview.net/
forum?id=CanomFZssu

[6] Kaize Ding, Jundong Li, Nitin Agarwal, and Huan Liu. 2021. Inductive anomaly
detection on attributed networks. In Proceedings of the twenty-ninth international
conference on international joint conferences on artificial intelligence. 1288–1294.

[7] Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. 2019. Deep anomaly
detection on attributed networks. In Proceedings of the 2019 SIAM international
conference on data mining. SIAM, 594–602.

[8] Shi Dong, Ping Wang, and Khushnood Abbas. 2021. A survey on deep learning
and its applications. Computer Science Review 40 (2021), 100379.

[9] Jingcan Duan, Siwei Wang, Pei Zhang, En Zhu, Jingtao Hu, Hu Jin, Yue Liu,
and Zhibin Dong. 2023. Graph anomaly detection via multi-scale contrastive
learning networks with augmented view. In Proceedings of the AAAI conference
on artificial intelligence, Vol. 37. 7459–7467.

[10] Jingcan Duan, Pei Zhang, Siwei Wang, Jingtao Hu, Hu Jin, Jiaxin Zhang, Haifang
Zhou, and Xinwang Liu. 2023. Normality Learning-based Graph Anomaly De-
tection via Multi-Scale Contrastive Learning. In Proceedings of the 31st ACM
International Conference on Multimedia. 7502–7511.

[11] Carl Eckart and Gale Young. 1936. The approximation of one matrix by another
of lower rank. Psychometrika 1, 3 (1936), 211–218.

[12] Negin Entezari, Saba A Al-Sayouri, Amirali Darvishzadeh, and Evangelos E
Papalexakis. 2020. All you need is low (rank) defending against adversarial
attacks on graphs. In Proceedings of the 13th international conference on web
search and data mining. 169–177.

[13] Haoyi Fan, Fengbin Zhang, and Zuoyong Li. 2020. Anomalydae: Dual autoen-
coder for anomaly detection on attributed networks. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
5685–5689.

[14] Quanxue Gao, Wei Xia, Zhizhen Wan, Deyan Xie, and Pu Zhang. 2020. Tensor-
SVD based graph learning for multi-view subspace clustering. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 34. 3930–3937.

[15] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. 2011. Finding structure
with randomness: Probabilistic algorithms for constructing approximate matrix
decompositions. SIAM review 53, 2 (2011), 217–288.

[16] Xueying Han, Susu Cui, Jian Qin, Song Liu, Bo Jiang, Cong Dong, Zhigang Lu,
and Baoxu Liu. 2024. ContraMTD: An Unsupervised Malicious Network Traffic
Detection Method based on Contrastive Learning. In Proceedings of the ACM on
Web Conference 2024. 1680–1689.

[17] Junwei He, Qianqian Xu, Yangbangyan Jiang, Zitai Wang, and Qingming Huang.
2024. ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly De-
tection. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38.
8481–8489.

[18] Peg Howland and Haesun Park. 2004. Generalizing discriminant analysis using
the generalized singular value decomposition. IEEE transactions on pattern
analysis and machine intelligence 26, 8 (2004), 995–1006.

[19] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[20] Ning Huyan, Dou Quan, Xiangrong Zhang, Xuefeng Liang, Jocelyn Chanussot,
and Licheng Jiao. 2022. Unsupervised outlier detection using memory and
contrastive learning. IEEE Transactions on Image Processing 31 (2022), 6440–
6454.

[21] Ming Jin, Yixin Liu, Yu Zheng, Lianhua Chi, Yuan-Fang Li, and Shirui Pan. 2021.
Anemone: Graph anomaly detection with multi-scale contrastive learning. In
Proceedings of the 30th ACM international conference on information & knowledge
management. 3122–3126.

[22] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic em-
bedding trajectory in temporal interaction networks. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
1269–1278.

[23] Ao Li, Zhou Qin, Runshi Liu, Yiqun Yang, and Dong Li. 2019. Spam review
detection with graph convolutional networks. In Proceedings of the 28th ACM
international conference on information and knowledge management. 2703–2711.

[24] Jundong Li, Harsh Dani, Xia Hu, and Huan Liu. 2017. Radar: Residual analysis
for anomaly detection in attributed networks.. In IJCAI, Vol. 17. 2152–2158.

[25] Jie Liu, Mengting He, Xuequn Shang, Jieming Shi, Bin Cui, and Hongzhi Yin.
2024. Bourne: Bootstrapped self-supervised learning framework for unified
graph anomaly detection. In 2024 IEEE 40th International Conference on Data
Engineering (ICDE). IEEE, 2820–2833.

[26] Kay Liu, Yingtong Dou, Xueying Ding, Xiyang Hu, Ruitong Zhang, Hao Peng,
Lichao Sun, and S Yu Philip. 2024. Pygod: A python library for graph outlier
detection. Journal of Machine Learning Research 25, 141 (2024), 1–9.

[27] Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang,
Kaize Ding, Canyu Chen, Hao Peng, Kai Shu, et al. 2022. Bond: Benchmarking
unsupervised outlier node detection on static attributed graphs. Advances in
Neural Information Processing Systems 35 (2022), 27021–27035.

[28] Ninghao Liu, Xiao Huang, and Xia Hu. 2017. Accelerated Local Anomaly Detec-
tion via Resolving Attributed Networks.. In IJCAI. 2337–2343.

[29] Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, and George Karypis.
2021. Anomaly detection on attributed networks via contrastive self-supervised
learning. IEEE transactions on neural networks and learning systems 33, 6 (2021),
2378–2392.

[30] Xuexiong Luo, Jia Wu, Amin Beheshti, Jian Yang, Xiankun Zhang, Yuan Wang,
and Shan Xue. 2022. Comga: Community-aware attributed graph anomaly
detection. In Proceedings of the Fifteenth ACM International Conference on Web
Search and Data Mining. 657–665.

[31] XiaoxiaoMa, JiaWu, ShanXue, Jian Yang, Chuan Zhou, Quan Z Sheng, Hui Xiong,
and Leman Akoglu. 2021. A comprehensive survey on graph anomaly detection
with deep learning. IEEE Transactions on Knowledge and Data Engineering 35, 12
(2021), 12012–12038.

[32] Yulong Pei, Tianjin Huang, Werner van Ipenburg, and Mykola Pechenizkiy.
2022. ResGCN: attention-based deep residual modeling for anomaly detection
on attributed networks. Machine Learning 111, 2 (2022), 519–541.

[33] Shaowen Peng, Kazunari Sugiyama, and Tsunenori Mine. 2022. SVD-GCN: A
simplified graph convolution paradigm for recommendation. In Proceedings of
the 31st ACM international conference on information & knowledge management.
1625–1634.

[34] Zhen Peng, Minnan Luo, Jundong Li, Huan Liu, Qinghua Zheng, et al. 2018.
ANOMALOUS: A Joint Modeling Approach for Anomaly Detection on Attributed
Networks.. In IJCAI, Vol. 18. 3513–3519.

[35] Bryan Perozzi and Leman Akoglu. 2016. Scalable anomaly ranking of attributed
neighborhoods. In Proceedings of the 2016 SIAM International Conference on Data
Mining. SIAM, 207–215.

[36] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa
Reyes, Mei-Ling Shyu, Shu-Ching Chen, and Sundaraja S Iyengar. 2018. A survey
on deep learning: Algorithms, techniques, and applications. ACM computing
surveys (CSUR) 51, 5 (2018), 1–36.

[37] Hezhe Qiao and Guansong Pang. 2023. Truncated Affinity Maximization:
One-class Homophily Modeling for Graph Anomaly Detection. In Advances
in Neural Information Processing Systems, A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates,
Inc., 49490–49512. https://proceedings.neurips.cc/paper_files/paper/2023/file/
9b905031125e56a557db38dff4fa8d21-Paper-Conference.pdf

[38] Chen Qiu, Timo Pfrommer, Marius Kloft, Stephan Mandt, and Maja Rudolph.
2021. Neural transformation learning for deep anomaly detection beyond images.
In International conference on machine learning. PMLR, 8703–8714.

[39] Jing Ren, Feng Xia, Ivan Lee, Azadeh Noori Hoshyar, and Charu Aggarwal. 2023.
Graph learning for anomaly analytics: Algorithms, applications, and challenges.
ACM Transactions on Intelligent Systems and Technology 14, 2 (2023), 1–29.

[40] Amit Roy, Juan Shu, Jia Li, Carl Yang, Olivier Elshocht, Jeroen Smeets, and Pan
Li. 2024. Gad-nr: Graph anomaly detection via neighborhood reconstruction. In
Proceedings of the 17th ACM International Conference on Web Search and Data
Mining. 576–585.

[41] Patricia Iglesias Sánchez, Emmanuel Müller, Fabian Laforet, Fabian Keller, and
Klemens Böhm. 2013. Statistical selection of congruent subspaces for mining
attributed graphs. In 2013 IEEE 13th international conference on data mining. IEEE,
647–656.

[42] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[43] Neil Shah, Alex Beutel, Brian Gallagher, and Christos Faloutsos. 2014. Spotting
suspicious link behavior with fbox: An adversarial perspective. In 2014 IEEE
International conference on data mining. IEEE, 959–964.

[44] Yiyuan She and Art B Owen. 2011. Outlier detection using nonconvex penalized
regression. J. Amer. Statist. Assoc. 106, 494 (2011), 626–639.

[45] Shengyang Sun and Xiaojin Gong. 2023. Hierarchical semantic contrast for
scene-aware video anomaly detection. In Proceedings of the IEEE/cvf conference
on computer vision and pattern recognition. 22846–22856.

[46] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Ar-
netminer: extraction and mining of academic social networks. In Proceedings of
the 14th ACM SIGKDD international conference on Knowledge discovery and data

9

https://openreview.net/forum?id=CanomFZssu
https://openreview.net/forum?id=CanomFZssu
https://proceedings.neurips.cc/paper_files/paper/2023/file/9b905031125e56a557db38dff4fa8d21-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9b905031125e56a557db38dff4fa8d21-Paper-Conference.pdf

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

mining. 990–998.
[47] Lei Tang and Huan Liu. 2009. Relational learning via latent social dimensions.

In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining. 817–826.

[48] Hanghang Tong and Ching-Yung Lin. 2011. Non-negative residual matrix factor-
ization with application to graph anomaly detection. In Proceedings of the 2011
SIAM International Conference on Data Mining. SIAM, 143–153.

[49] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Confer-
ence on Learning Representations. https://openreview.net/forum?id=rJXMpikCZ

[50] Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang,
Quan Yu, Jun Zhou, Shuang Yang, and Yuan Qi. 2019. A semi-supervised graph
attentive network for financial fraud detection. In 2019 IEEE international confer-
ence on data mining (ICDM). IEEE, 598–607.

[51] Yanling Wang, Jing Zhang, Shasha Guo, Hongzhi Yin, Cuiping Li, and Hong
Chen. 2021. Decoupling representation learning and classification for gnn-based
anomaly detection. In Proceedings of the 44th international ACM SIGIR conference
on research and development in information retrieval. 1239–1248.

[52] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[53] Zhebin Wu, Lin Shu, Ziyue Xu, Yaomin Chang, Chuan Chen, and Zibin Zheng.
2022. Robust tensor graph convolutional networks via t-svd based graph aug-
mentation. In Proceedings of the 28th ACM SIGKDD conference on knowledge
discovery and data mining. 2090–2099.

[54] Zhiming Xu, Xiao Huang, Yue Zhao, Yushun Dong, and Jundong Li. 2022. Con-
trastive attributed network anomaly detection with data augmentation. In Pacific-
Asia conference on knowledge discovery and data mining. Springer, 444–457.

[55] Jiaqiang Zhang, Senzhang Wang, and Songcan Chen. 2022. Reconstruction
enhanced multi-view contrastive learning for anomaly detection on attributed
networks. arXiv preprint arXiv:2205.04816 (2022).

[56] Sheng Zhang, Weihong Wang, James Ford, Fillia Makedon, and Justin Pearlman.
2005. Using singular value decomposition approximation for collaborative filter-
ing. In Seventh IEEE International Conference on E-Commerce Technology (CEC’05).
IEEE, 257–264.

[57] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2020. Deep learning on graphs: A
survey. IEEE Transactions on Knowledge and Data Engineering 34, 1 (2020),
249–270.

[58] Zemin Zhang, Gregory Ely, Shuchin Aeron, Ning Hao, and Misha Kilmer. 2014.
Novel methods for multilinear data completion and de-noising based on tensor-
SVD. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition. 3842–3849.

[59] Yu Zheng, Ming Jin, Yixin Liu, Lianhua Chi, Khoa T Phan, and Yi-Ping Phoebe
Chen. 2021. Generative and contrastive self-supervised learning for graph
anomaly detection. IEEE Transactions on Knowledge and Data Engineering 35, 12
(2021), 12220–12233.

[60] Xun Zhou, Jing He, Guangyan Huang, and Yanchun Zhang. 2015. SVD-based
incremental approaches for recommender systems. J. Comput. System Sci. 81, 4
(2015), 717–733.

A DATASET DETAILS
We provide additional information on the employed datasets, includ-
ing the type of datasets, average degree, and the ratio of anomalies.
The details are shown in Table 6.

Table 6: Details of the datasets. The real-world datasets with
Injected/Real (I/R) anomalies.

Dataset I/R # Nodes # Edges # Att. Degree # Ano. Ratio

Cora I 2,708 5,429 1,433 2.0 150 5.5%
Citeseer I 3,327 4,732 3,703 1.4 150 4.5%
Pubmed I 19,717 44,338 500 2.3 600 3.1%
ACM I 16,484 71,980 8,337 4.4 600 3.6%
BCatalog I 5,196 171,743 8,189 33.1 300 5.7%
Arxiv I 169,343 1,166,243 128 6.9 6000 3.5%
Products I 2,449,029 61,859,140 100 25.3 90000 3.6%
Books R 1,418 3,695 21 2.6 28 2.0%
Reddit R 10,984 168,016 64 15.3 366 3.3%

B DETAILED HYPER-PARAMETERS
Additional information about hyper-parameters of TFGAD are in
Table 7.

Table 7: Hyper-parameters of TFGAD for all used datasets.

Cora Citeseer Pubmed ACM BCatalog Arxiv Products Books Reddit

𝑘A 1 1 1 1 1 1 1 10 10
𝑘S 5 5 35 60 220 600 1 1 5
𝜂 10 100 100 10 0.05 1 10 200 500

C PSEUDOCODE OF TFGAD
Algorithm 2 provides the pseudocode of TFGAD in a PyTorch-like
style, showing that TFGAD can be easily implemented with few
lines of code.

Algorithm 2 Pseudocode of TFGAD in a PyTorch-like style.

att, adj: attribute and adjacency matrices
k_att, k_adj: required numbers of top right singular vectors of

attribute and adjacency matrices
eta: balancing hyper-parameter

perform randomized SVD
_, _, V_att = torch.svd_lowrank(att, q=k_att)
_, _, V_adj = torch.svd_lowrank(adj, q=k_adj)

compute anomaly scores
att_rec_err = (att - att @ V_att @ V_att.T).pow(2).sum(dim=1)
adj_prj_len = (adj @ V_adj.pow(2).sum(dim=1)
y_score = att_rec_err + adj_prj_len / eta

D ANALYSIS OF ANOMALY DETECTION
UNDER LIMITED DATA ACCESSIBILITY

We further analyze the performance of TFGAD under limited data
accessibility, where only a subset of nodes is available for optimiz-
ing objective (5). We conduct experiments on popular benchmarks
Cora, Citeseer, and Pubmed, using the default hyper-parameter set-
tings presented in Table 7. Specifically, we evaluate the AUC-ROC
performance of TFGAD across different ratios of available nodes
for optimizing objective (5). For each ratio 𝑟 from 0.1 to 0.9, we
randomly select𝑚 = 𝑛∗𝑟 nodes and utilize both their attributes and
local structures to apply randomized SVD, as described in 4.2. The
AUC-ROC is then measured on the entire input graph, considering

Table 8: AUC-ROC performance of TFGAD under varying
ratios of available nodes for optimizing objective (5).

Dataset 0.1 0.3 0.5 0.7 0.9 1.0

A
U
C-
RO

C Cora 0.9473 0.9567 0.9701 0.9811 0.9853 0.9867
Citeseer 0.8936 0.9893 0.9865 0.9802 0.9874 0.9895
Pubmed 0.8711 0.8779 0.9420 0.9583 0.9789 0.9828

A
U
C-
PR Cora 0.7263 0.6616 0.7245 0.7607 0.7997 0.8197

Citeseer 0.6309 0.8548 0.8196 0.7783 0.8384 0.8364
Pubmed 0.3381 0.3195 0.4609 0.5200 0.5443 0.5830

10

https://openreview.net/forum?id=rJXMpikCZ

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Training-free Graph Anomaly Detection: A Simple Approach via Singular Value Decomposition Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

all nodes. The results (averaged over five runs) are presented in
Table 8. Our key observations are as follows: (1) Despite limited
access to input nodes (e.g., 30%-50% of nodes), TFGAD maintains
competitive, and in some cases superior, performance compared
to the best-performing baseline GADAM. For example, with only
30% of nodes accessible, TFGAD achieves the state-of-the-art AUC-
ROC of 0.9567 on Cora and 0.9893 on Citeseer. (2) The AUC-ROC

performance of TFGAD improves as the ratio of accessible nodes
increases, suggesting that TFGAD is less susceptible to anomalies
within the available nodes. Although the AUC-PR of TFGAD fluc-
tuates, it follows an overall upward trend and ultimately achieves
state-of-the-art results. These results further demonstrate the su-
periority of TFGAD, highlighting its flexibility and generality in
detecting graph anomalies across various scenarios.

11

	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Anomaly Detection
	2.2 SVD-based Graph Processing

	3 Preliminaries
	3.1 Problem Formulation
	3.2 Reconstruction-based Graph Anomaly Detection
	3.3 Singular Value Decomposition

	4 Methodology
	4.1 Investigating Issues in Reconstruction-based Graph Anomaly Detection
	4.2 Reconstruction via Truncated SVD
	4.3 Anomaly Detection
	4.4 Complexity Analysis

	5 Experiments
	5.1 Experimental Setup
	5.2 Effectiveness Evaluation
	5.3 Efficiency Evaluation
	5.4 Ablation Analysis
	5.5 Sensitivity Analysis

	6 Conclusion
	References
	A Dataset Details
	B Detailed Hyper-parameters
	C Pseudocode of TFGAD
	D Analysis of Anomaly Detection Under Limited Data Accessibility

