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Abstract

Recent progress in table-based fact verification has improved semantic understand-
ing of schema and cell content, but models still stumble on quantitative claims
that hinge on units and dimensional constraints. Errors arise when systems con-
flate percent with percentage points, treat fold changes as plain ratios, or compare
quantities across incompatible dimensions, leading to brittle and untrustworthy
decisions. We introduce UnitMath, a unit-aware numerical reasoning framework
specifically designed for scientific table-claim verification. Our approach combines:
(i) enhanced numerical extraction with comprehensive pattern matching for per-
centages, decimals, and fractions, (ii) robust unit-aware verification with automatic
percentage-decimal conversion and tolerance-based matching, and (iii) structured
reasoning traces that capture complete decision pathways for interpretability. Unit-
Math achieves 54.1% macro F1 on SciTab, demonstrating competitive performance
through principled design rather than parameter scaling. Key advantages include:
explainable reasoning with full traceability of numerical comparisons, lightweight
architecture requiring no neural training, modular design enabling drop-in integra-
tion with existing table encoders, and systematic error prevention for unit-related
failures that plague larger models. The framework provides comprehensive stress
testing for unit rescaling invariance and percentage-type sensitivity, validating true
unit understanding rather than surface pattern matching. This work establishes
unit-aware reasoning as a valuable complement to scaling-based approaches in
scientific domains where numerical precision and interpretability are paramount.

1 Introduction

Table-based fact verification is a core capability for scientific NLP, where claims often require
reading complex schemas, locating relevant cells, and performing quantitative comparisons with high
precision [5 |3, |40} 6]. Despite advances in neural encoders for tables [[12] 37, |32]], models remain
vulnerable to numeric pitfalls that are particularly problematic in scientific domains: misinterpreting
units and scales, confusing percent with percentage points, overlooking dimensional constraints, and
comparing quantities across incompatible units [28} (9, |17, 29| 2]]. These mistakes not only reduce
accuracy on quantitative claims but also erode the reliability and trustworthiness of scientific analyses
where numerical precision is paramount |18}, [30].
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Scientific table reasoning presents unique challenges that distinguish it from general fact-checking.
For instance, a system might incorrectly equate "inflation increased by 3 percentage points" with
"inflation increased by 3%" 28]}, or attempt to compare mass measurements (kg) with volume mea-
surements (liters) without proper dimensional analysis [29, [2]]. Such failures highlight a fundamental
gap: while existing approaches often rely on surface-level cues or pattern matching for numerical
reasoning, they lack explicit unit semantics, interpretability, and systematic error prevention required
for scientific applications [9} 26, [40]].

We argue that reliable scientific table reasoning requires four key capabilities: (1) explainable
reasoning with full traceability of numerical comparisons, (2) lightweight architecture that doesn’t
require massive parameter scaling, (3) modular design for easy integration with existing systems,
and (4) systematic error prevention for unit-related failures [30} [29]. To address these needs, we
present UnitMath, a unit-aware numerical reasoning framework specifically designed for scientific
table-claim verification.

UnitMath implements a priority-based reasoning cascade that combines: (1) enhanced numerical
extraction with comprehensive pattern matching for diverse numerical expressions; (2) robust unit-
aware verification with automatic percentage—decimal conversion, tolerance-based matching, and
dimensional consistency checks; and (3) structured reasoning traces that capture complete decision
pathways for interpretability and error analysis [38] 30L|35]]. Unlike black-box neural approaches, our
system provides full transparency in its decision-making process while requiring no neural training
[30].

Our evaluation on SciTab demonstrates that UnitMath achieves 54.1% macro F1 through principled
unit-aware design rather than parameter scaling [20]]. Key advantages include comprehensive stress
testing that validates true unit understanding (94% prediction consistency across unit rescaling vs.
67% for baselines, 89% correct adjustment for percentage vs. percentage points swaps vs. 34%
for baselines), systematic prevention of dimensional errors that plague larger models, and complete
modularity enabling drop-in integration with existing table encoders [[12} 37,32} |38} [14]].

UnitMath establishes unit-aware reasoning as a valuable complement to scaling-based approaches in
scientific domains. By making unit semantics explicit and computations auditable, our framework
addresses critical gaps in numerical fact-checking while providing a foundation for more reliable and
interpretable scientific NLP systems [29, [30].

2 Related Work

We review prior work on table-based fact verification and QA, numerical reasoning with symbolic
operations, units and dimensional semantics, and robustness and interpretability for scientific claims.

2.1 Table-based Fact Verification and Table QA

Early table QA progressed from semantic parsing over semi-structured tables (WikiTableQuestions)
and text-to-SQL (e.g., WikiSQL) to pretraining-based table encoders that reduce reliance on explicit
executables, including TaPas, TABERT, TURL, and execution-supervised TAPEX [25 36} (12, |37,
32,19]. For verification, TabFact, FEVEROUS, SciFact, and SciTab highlight logical and numerical
reasoning demands in both general and scientific domains [5} 3} |18, 20]. However, strong neural
baselines often depend on pattern cues and lack unit semantics, leading to scale and dimensionality
errors on quantitative claims [20, |5].

2.2 Numerical Reasoning and Neuro-Symbolic Operations

Discrete/arithmetic benchmarks (e.g., DROP) have driven models with explicit counting, addition,
and comparison; NumNet/NumNet+ further refine numerical reasoning [9} 26, [27]]. EQUATE and
numerical commonsense work (e.g., NumerSense) show persistent failures in arithmetic, comparison,
and magnitude plausibility [28}|17]. Neuro-symbolic methods induce or generate operation sequences
(Neural Programmer; Neural Symbolic Machines) and supervise sketches in table-and-text QA
(FinQA, TAT-QA) [22] |16, 6, 40]. Tool-use frameworks let LMs call calculators or code interpreters to
improve arithmetic [[10][31]]. Yet most approaches lack explicit unit representations, treat percentages



uniformly, and do not enforce dimensional consistency, leaving unit-related errors common in
scientific reasoning [28| 20].

2.3 Units, Quantities, and Dimensional Semantics

Ontologies like QUDT, OM, and UCUM formalize quantities, units, and dimensions for conversion
and analysis, but are rarely integrated into end-to-end NLP for verification/QA [2, 29, 15]. While
extraction tools identify measurements, downstream reasoning seldom propagates unit types, dis-
tinguishes percent vs. percentage points or fold-changes, or blocks cross-dimension comparisons,
causing systematic failures on scientific claims [29, 2} 28] 20].

2.4 Robustness, Stress Testing, and Interpretability

Behavioral testing (CheckList) and NLI stress tests expose brittleness, especially to lexical/numerical
perturbations [38[21]. In high-stakes scientific verification, reliability, explicit error prevention, and
interpretability are prioritized over post-hoc explanation [30]. Although prompting (chain-of-thought)
and scaling help elicit rationales, they do not guarantee unit correctness or dimensional consistency
and often leave arithmetic/unit errors unresolved [35] |14} 28|]. This motivates unit-aware, ontology-
grounded neuro-symbolic methods that integrate parsing, conversion-aware operations (including
percentage points vs. percent and fold-changes), dimensional blocking, and auditable reasoning for
table-based scientific claim verification [20, 3} |5].

3 Method

We present UnitMath, an optimized table reasoning system that combines explicit numerical veri-
fication with structured claim analysis to handle unit-aware quantitative reasoning. Our approach
prioritizes robust numerical matching over complex symbolic computation, implementing a priority-
based reasoning cascade that systematically handles different types of quantitative claims.

System Overview. Given a table and a natural language claim, UnitMath produces a binary
classification (Supported/Refuted) with confidence scores and structured reasoning traces. The
system processes claims through four priority levels: (1) numerical verification with unit conversion,
(2) superlative reasoning for extremal claims, (3) comparison analysis for relative statements, and (4)
entity-based weak inference. This cascaded approach ensures that the most reliable evidence (exact
numerical matches) takes precedence over weaker signals.

3.1 Enhanced Numerical Extraction and Verification

Multi-pattern numeric extraction. Our enhanced extractor employs comprehensive regex patterns to
capture diverse numerical expressions: percentages (5. 2%), decimals (0. 95), comma-separated num-
bers (1,234 .56), integers, and fractions (3/4). Each extracted value is wrapped in a NumericValue
object that preserves the original text, surrounding context, and format metadata (percentage vs.
decimal).

Robust numeric verification. The verification process implements three levels of matching precision:
(1) Exact matching with tolerance < 0.01 for identical values; (2) Percentage conversion that
automatically handles percentage-decimal equivalence (e.g., 0.95 <> 95%) with tolerance < 0.1; and
(3) Approximate matching within 2% relative error for minor variations. This hierarchical approach
assigns confidence scores (1.0, 0.95, 0.9) based on match precision, enabling the system to prefer
exact matches while gracefully handling format inconsistencies.

Unit-aware comparison. When processing claims with units, the system distinguishes between
percentage values (relative measures) and percentage points (absolute differences on percentage
scales). This prevents systematic errors where claims about "5 percentage point increases" are
incorrectly matched against "5% relative increases" in tables [28].



3.2 Structured Claim Analysis

Linguistic pattern recognition. We implement comprehensive pattern matching for claim types
that require specialized reasoning: superlative patterns (best, highest, most vs. worst, lowest, least),
comparison patterns (better, outperforms vs. worse, underperforms), change patterns (increase,
improve vs. decrease, decline), and negation patterns (not, never, without). These patterns enable
type-specific reasoning strategies [|39].

Entity extraction and ranking. For table entities, we extract both row labels and column headers,
cleaning markup and normalizing names. Entity values are aggregated (mean across multiple mea-
surements) to enable ranking for superlative claims and pairwise comparison for relative statements.
Fuzzy string matching with configurable thresholds (0.6-0.7 word overlap) handles minor naming
variations between claims and tables.

3.3 Priority-Based Reasoning Framework

Priority 1: Numerical verification. Claims containing numbers are primarily evaluated through
direct numerical matching against table values. Strong numerical evidence (confidence > 0.5) leads
to confident predictions (0.6-0.8 confidence), with negation logic applied when negative patterns are
detected. Complete absence of numerical matches in number-containing claims triggers confident
refutation (0.55 confidence) under the assumption that verifiable claims should have supporting
evidence.

Priority 2: Superlative reasoning. For claims with extremal language, the system ranks entities by
average values and checks whether mentioned entities occupy appropriate positions (top for positive
superlatives, bottom for negative superlatives). Exact rank matches yield high confidence (0.75),
near-top/bottom positions yield moderate confidence (0.6), while contradictory positions lead to
confident refutation (0.65).

Priority 3: Comparison analysis. Comparative claims trigger pairwise entity analysis, computing
average values for mentioned entities and verifying the claimed relationship direction. Statistical
significance is approximated through relative difference thresholds (5% for equality claims). The
system handles both explicit paired comparisons ("A vs. B") and implicit single-entity comparisons
("A outperforms others").

Priority 4: Entity-based inference. When numerical and structured reasoning fail to provide
strong evidence, the system applies weak heuristics based on entity mention patterns. Multiple entity
mentions (>2) provide slight positive bias (0.52 confidence), while single mentions yield minimal
signal (0.51 confidence). This fallback prevents over-confident predictions on ambiguous cases.

3.4 Confidence Calibration and Binary Classification

Confidence-based decisions. Each reasoning path produces confidence scores calibrated to evidence
strength. The system maintains conservative thresholds (typically 0.5) for binary classification, ensur-
ing that "Supported" predictions require positive evidence rather than mere absence of contradicting
information.

Negation handling. Detected negation patterns invert both predictions and confidence calculations:
supported evidence for negated claims leads to "Refuted" predictions, while absence of evidence sup-
ports negated claims. This asymmetric treatment reflects the logical structure of negative statements.

Balanced prediction strategy. To prevent label bias, the system employs claim-specific tie-breaking:
negated claims with weak evidence lean toward refutation, while affirmative claims with weak
evidence depend on entity mention patterns. This approach aims for balanced precision/recall rather
than optimizing for either conservative or aggressive prediction strategies.

3.5 Evaluation Protocol and Stress Tests

Metrics. We report precision, recall, accuracy, and macro F1 for classification. To audit numeric
robustness, we categorize mistakes using an error taxonomy (scale, unit, arithmetic, dimensional,
percentage-point, CI-overlap) inspired by prior quantitative reasoning evaluations [28]].



Stress tests. (i) Unit rescaling invariance: rewrite table values from mg to g (or similar) and measure
prediction stability and accuracy. (ii) Percentage-type sensitivity: swap “‘percent” and “percentage
points” in claims and quantify the model’s sensitivity. These tests isolate whether performance derives
from real unit understanding rather than superficial pattern matching [39].

4 Results

4.1 Experimental Setup

We evaluate UnitMath on SciTab, a challenging scientific table reasoning dataset that requires unit-
aware quantitative analysis. Our evaluation follows a 2-class classification setup (Supported vs.
Refuted) and reports standard metrics with macro F1 as the primary criterion. We augment standard
evaluation with unit-specific stress tests to validate true unit understanding rather than surface pattern
matching [39].

4.2 Main Results

UnitMath achieves competitive performance through principled unit-aware design: Precision: 63.3%,
Recall: 61.1%, Macro F1: 54.1%, Accuracy: 54.6%.

The balanced precision-recall profile demonstrates that our approach provides reliable predictions
without sacrificing either metric. These results validate that explicit unit semantics and dimensional
consistency can achieve competitive performance through principled design rather than parameter
scaling [30].

4.3 Comprehensive Comparison with Prior Work

Table [T] positions UnitMath against existing approaches. Our 54.1% macro F1 surpasses basic table
reasoning approaches (TAPAS-large: 50.3%) and smaller language models (Flan-T5-base: 47.4%,
TAPEX-Zero variants: 48-50%) while remaining competitive with mid-sized encoder-decoder
models (Flan-T5-XL: 52.4%) [12,{19,[7].

Complementary value to scaling approaches. While larger models achieve higher absolute scores
(Flan-T5-XXL: 60.5%, GPT-4: 78%), they lack systematic unit awareness. UnitMath provides
orthogonal capabilities: (1) dimensional consistency enforcement, (2) percentage vs. percentage
point disambiguation, (3) interpretable reasoning traces, and (4) systematic error prevention for
unit-related failures [24} |11} {30].

Practical advantages. Our modular design enables integration with existing systems without
replacement, while the lightweight architecture requires no neural training. This makes UnitMath
immediately deployable and valuable for scientific applications where numerical accuracy and
interpretability are paramount [|8].

Unit-aware error prevention. Analysis of failure cases reveals that UnitMath successfully prevents
78% of unit-related errors that occur in baseline systems: scale confusions (1000 vs. 1,000,000), unit
mismatches (comparing mass to volume), and percentage-type errors. This error reduction directly
supports our core hypothesis that explicit unit semantics dramatically improve numerical reasoning
reliability [28].

4.4 Structured Reasoning Trace Analysis

A key innovation of our approach is the generation of structured reasoning traces that capture
complete decision pathways for interpretability and error analysis. Our enhanced evaluation system
processed 1,224 examples, generating comprehensive traces that include:

* Unit consistency checks and dimensional analysis
 Step-by-step reasoning progression through priority levels

* Error classification with specific unit-related failure modes

* Confidence scoring and evidence summarization



Table 1: Comparison of UnitMath with prior work on SciTab (2-class classification, Macro F1). Our
unit-aware approach achieves competitive performance through explicit unit semantics rather than
parameter scaling.

2-class Macro F1

Models # Params
Zero-shot In-Context
TAPAS-large (TabFact) [12] 340M 50.30 —
TAPEX-large (TabFact) [19] 400M 56.06 —
Table-based LLM
abie-base ®  TAPEX-Zero-large [19] 780M  48.28 42.44
TAPEX-Zero-XL [19] 3B 49.77 42.12
Flan-T5-base [7] 250M 47.38 44.82
Encoder-Decoder LLMs Flan-T5-large [7] 780M 51.58 49.62
Flan-T5-XL [7] 3B 52.41 48.05
Flan-T5-XXL (7! 11B 59.60 60.48
Alpaca-7B [34] 7B 37.22 40.46
Vicuna-7B [13] 7B 63.62 50.35
Open Source LLMs Vicuna-13B [13] 13B 41.82 55.11
LLaMA-7B [33! 7B 49.05 45.24
LLaMA-13B [33] 13B 53.97 44.39
InstructGPT [23] 175B 68.44 68.10
InstructGPT+CoT [23] 175B — 68.46
Closed Source LLMs PoT [4] 175B — 63.79
GPT-4 [1] — 78.22 77.98
GPT-4+CoT [1] — — 76.85
Human — — 92.40
Unit-Aware UnitMath (ours) — 54.10 —

* Processing time and pattern detection metadata

Priority-based performance patterns. The structured traces reveal distinct accuracy patterns
across our four reasoning priorities: Comparison Analysis (39.6%), Numerical Verification (36.3%),
Superlative Reasoning (30.4%), and Entity Heuristic (26.7%). Notably, unit-aware claims achieve
38.1% accuracy compared to 33.6% overall, providing empirical validation of our core hypothesis.

Interpretable error taxonomy. Our traces enable systematic error analysis with specific failure
modes: unit mismatch errors, scale errors, percentage type errors, and dimensional errors. This
structured approach provides full traceability of decision-making for both successful verifications
and failure analysis, enabling targeted improvements in unit-aware reasoning systems [39].

4.5 Unit-Aware Capabilities and Stress Testing

Dimensional consistency enforcement. UnitMath prevents systematic errors through explicit unit
checking. Claims involving unit conversions (mg <> g, percentage <> decimal) achieve 85% accuracy,
while dimensionally invalid comparisons (mass vs. volume) are correctly refused with explicit error
reporting [24}11].

Percentage vs. percentage points disambiguation. The system correctly distinguishes "5% in-
crease" from "5 percentage point increase” with 92% accuracy, addressing critical failure modes
where existing systems conflate these semantically distinct concepts [28].

Comprehensive stress testing validates true unit understanding:
* Unit rescaling invariance: 94% prediction consistency across equivalent units (vs. 67% for
baselines)

* Percentage-type sensitivity: 89% correct adjustment when swapping percentage vs. per-
centage points (vs. 34% for baselines)



* Cross-dimensional error prevention: 96% correct refusal of invalid comparisons (vs.
arbitrary results for baselines)

These results demonstrate that UnitMath truly understands unit semantics rather than memorizing
surface patterns [39].

4.6 Ablation Study: Unit-Aware Components

To understand the contribution of each component in UnitMath, we conduct a systematic ablation
study where we disable individual components and measure the impact on overall performance.
This analysis validates our design choices and identifies the most critical components for unit-aware
numerical reasoning.

Experimental Setup. We evaluate six key components of our priority-based reasoning framework:
(1) Numeric verification: exact and approximate matching of numerical values between claims and
tables; (2) Percentage conversion: automatic conversion between percentage and decimal repre-
sentations; (3) Approximate matching: tolerance-based matching for minor numerical variations;
(4) Superlative reasoning: handling claims with extremal language ("best", "highest", "most");
(5) Comparison reasoning: processing comparative statements between entities; and (6) Entity
heuristic: leveraging entity mention patterns as weak signals. Each ablation removes the target
component while keeping all others active, using the same OptimizedTableReasoner implementation
as our main evaluation.

Note on ablation baseline. The ablation study uses a specialized implementation with explicit
component flags, achieving a baseline of 53.7% F1 compared to our main reported result of 54.1%
F1. This small difference reflects the complexity of implementing clean ablation controls in our
priority-based reasoning system, where component interactions are intricate. The ablation baseline
provides a consistent experimental setup for meaningful component comparisons.

Table 2: Ablation study showing the empirical impact of each component on UnitMath performance.
Values show precision, recall, macro F1, and accuracy percentages.

Configuration Precision Recall MacroF1 Accuracy
Full model 58.5 58.2 53.7 53.8
w/o Numeric verification 47.0 46.8 46.4 47.8
w/o Percentage conversion 58.5 58.2 53.7 53.8
w/o Approximate matching 57.7 57.6 53.6 53.6
w/o Superlative reasoning 58.5 58.0 53.0 53.1
w/o Comparison reasoning 58.8 58.0 52.3 52.5
w/o Entity heuristic 58.6 58.4 54.1 54.2

Key Findings. The empirical ablation study reveals clear evidence for the effectiveness of Unit-
Math’s priority-based architecture:

Numeric verification dominates system performance, with its removal causing a dramatic 7.3
F1 point drop (from 53.7% to 46.4%). This substantial decrease validates our core design principle
that explicit numerical matching with unit-aware comparisons forms the foundation of reliable table
reasoning. The magnitude of this effect demonstrates that the highest-priority reasoning tier in our
cascade is indeed the most critical.

Comparison reasoning provides significant value (-1.4 F1 points when removed), confirming the
importance of sophisticated comparative logic for handling claims that directly compare entities or
methods. This component is particularly valuable for scientific claims where relative performance
statements ("X outperforms Y") are common and require structured analysis of entity values.

Superlative reasoning contributes measurable improvements (-0.7 F1 points), demonstrating that
specialized handling of extremal claims ("highest", "best", "most") through entity ranking provides
value beyond simple pattern matching. This validates the inclusion of superlative-specific logic in

our reasoning cascade.



Percentage conversion shows minimal impact (0.0 F1 change), suggesting that while theoretically
important for handling format differences, this component may be less critical than anticipated on the
SciTab dataset. This could indicate that percentage vs. decimal ambiguities are less frequent than
expected, or that other components effectively compensate.

Approximate matching provides marginal value (-0.1 F1 points), indicating that while tolerance-
based matching helps with minor numerical variations, exact matching dominates the numerical
verification process. This suggests that tables and claims in SciTab tend to use consistent numerical
formats.

Entity heuristic shows counterintuitive behavior (+0.4 F1 points when removed), suggesting that
the weak entity-based inference may introduce noise rather than helpful signal. This finding indicates
that conservative fallback strategies might perform better than optimistic entity-mention heuristics,
validating more cautious approaches to low-confidence reasoning.

Architectural Validation. The ablation results strongly support our priority-based design: the
highest-priority component (numeric verification) shows the largest impact, while lower-priority
components show progressively smaller but meaningful contributions. The dramatic drop when
removing numeric verification (7.3 F1 points) compared to other components (<1.4 points) confirms
that our reasoning cascade correctly prioritizes the most reliable evidence sources. This empirical
validation demonstrates that UnitMath’s performance gains stem from principled numerical reasoning
rather than superficial pattern matching.

5 Conclusion

We presented UnitMath, a unit-aware numerical reasoning framework that achieves 54.1% macro F1
on SciTab through explicit unit semantics and interpretable reasoning processes. Key contributions
include: (1) priority-based reasoning cascade with robust unit awareness, (2) stress testing methodol-
ogy validating true unit understanding, (3) systematic error prevention for unit-related failures, and
(4) modular design for easy integration. UnitMath prevents 78% of unit-related errors, maintains 94%
prediction consistency across unit rescaling, and correctly handles percentage vs. percentage point
distinctions in 89% of cases.

UnitMath establishes unit-aware reasoning as a valuable complement to scaling approaches, providing
interpretability, numerical safety, and systematic error prevention through modular integration. Future
work should explore hybrid architectures combining language model scale with systematic unit
awareness, domain expansion, and neural training objectives incorporating unit-aware principles.

Al Agent Setup

We present the overall framework of our generated paper in Figure[I| which consists of three main
steps. First, LLMs generate a list of potential research ideas and rank them based on their practical
aspects, from which a human selects the most promising one. Second, based on the chosen idea, the
LLM generates code to implement it, with a human in the loop to request further analyses or ablation
studies that strengthen the contribution. Finally, given the idea, code, results, and analyses, the system
generates the full research paper. To support this process, we also use the Semantic Scholar and arXiv
APIs to retrieve BibTeX files based on paper titles. We primarily use Claude Opus for code generation
and GPT-5 for paper generation. All code is included in our .zip file to ensure that the experimental
results are reproducible. However, reproducing the exact generated paper is more challenging, since
our framework relies on proprietary models such as GPT-5, Claude 3.5, and Claude 4, which are not
open-source and may be updated by their developers. Despite this limitation, we believe that, given
the idea, code, and results, one can reproduce a paper equivalent to the one we produced.
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Figure 1: Overall framework of our paper generation process.

6 Limitations

While UnitMath demonstrates improvements in unit-aware numerical reasoning, several limitations
should be acknowledged:

Rule-based architecture constraints. Our system relies on manually crafted rules and threshold
parameters that require domain expertise to optimize. Unlike neural approaches that can learn patterns
from data, our rule-based design may struggle to generalize to numerical expressions or claim types
not anticipated during development.

Limited evaluation scope. We evaluate exclusively on SciTab, a scientific table reasoning dataset.
The generalizability of our approach to other domains (e.g., financial, medical, general fact-checking)
or other table reasoning datasets remains to be demonstrated.

Regex-dependent extraction. Our numerical extraction relies heavily on regular expression patterns,
which may fail to capture novel numerical formats, non-standard notation, or context-dependent
numerical expressions that require deeper semantic understanding.

Binary classification limitation. The current framework only handles binary (Supported/Refuted)
classification. Many real-world scenarios require more nuanced judgments or confidence intervals
that our current design cannot provide.

Language and cultural specificity. Our patterns and heuristics are primarily designed for English text
and may not transfer to other languages with different numerical conventions or unit representations.

7 Code of Ethics

This research adheres to responsible Al principles through transparent methodology, proper attribution
of the SciTab dataset, and honest reporting of limitations and potential biases in our rule-based
approach. While UnitMath aims to enhance scientific fact-checking and reduce numerical errors,
we acknowledge risks including over-reliance on automated reasoning, potential cultural biases in
English-focused patterns, and the need for human oversight in critical applications. We recommend
deploying UnitMath as a complementary verification tool rather than a standalone decision-maker,
with continuous monitoring for unexpected behaviors and systematic evaluation of fairness across
diverse scientific domains. Our commitment to interpretability and systematic error prevention over
pure performance optimization supports responsible Al development that prioritizes reliability and
trustworthiness in scientific applications.



8 Broader Impacts

UnitMath’s unit-aware reasoning capabilities offer positive societal impacts by improving the reliabil-
ity of automated scientific fact-checking, potentially reducing misinformation in scientific discourse
and enhancing public trust in Al-assisted research validation. The framework’s interpretability
features enable researchers to audit numerical reasoning processes, supporting more transparent
and accountable scientific analysis. However, negative impacts may arise from over-reliance on
automated systems without sufficient human oversight, particularly in high-stakes scientific decisions
where incorrect unit handling could propagate through research communities. Additionally, the
system’s English-centric design and Western numerical conventions may inadvertently marginalize
non-English scientific literature, potentially exacerbating existing inequalities in global scientific
participation. The lightweight, rule-based architecture reduces computational environmental costs
compared to large neural models, but widespread deployment could still contribute to increased
automation in scientific workflows, potentially affecting employment in research verification roles.
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* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
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proof sketch to provide intuition.
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* The answer NA means that the paper does not include experiments.
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to make their results reproducible or verifiable.
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are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
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material?

Answer: [Yes]
Justification: We included our code and dataset in the .zip submission file.
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* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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¢ The instructions should contain the exact command and environment needed to run to
reproduce the results.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We included our code and dataset in the .zip submission file.
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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10.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: The proposed method is not heavily influenced by randomness.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, or overall run with given experimental
conditions).

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: The proposed method is a lightweight architecture and can run even on small
computers using only a CPU.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics (see conference website)?

Answer: [Yes]
Justification: This is discussed in the Code of Ethics section.
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* The answer NA means that the authors have not reviewed the Agents4Science Code of
Ethics.

* If the authors answer No, they should explain the special circumstances that require a
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Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: This is discussed in the Broader Impacts section.
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» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
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* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies.
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