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Abstract001

Subjectivity in NLP tasks, e.g., toxicity classifi-002
cation, has emerged as a critical challenge pre-003
cipitated by the increased deployment of NLP004
systems in content-sensitive domains. Conven-005
tional approaches aggregate annotator judge-006
ments (labels), ignoring minority perspectives007
and overlooking the influence of the sociocul-008
tural context behind such annotations. We009
propose a framework where subjectivity in bi-010
nary labels is modeled as an empirical distribu-011
tion accounting for the variation in annotators012
through human values extracted from sociocul-013
tural descriptors using a language model. The014
framework also allows for downstream tasks015
such as population and sociocultural group-016
level majority label prediction. Experiments on017
three toxicity datasets covering human-chatbot018
conversations and social media posts annotated019
with diverse annotator pools demonstrate that020
our approach yields well-calibrated toxicity dis-021
tribution predictions across binary toxicity la-022
bels, which are further used for majority label023
prediction across cultural subgroups, improv-024
ing over existing methods.025

1 Introduction026

Early machine learning models were evaluated us-027

ing tasks with clearly defined ground truths, such028

as handwritten digit recognition (MNIST), spam029

detection (UCL Spambase) and categorical object030

recognition (ImageNet). These tasks relied on rela-031

tively hard facts, leaving little room for ambiguity.032

However, as AI systems are increasingly deployed033

in domains that involve higher subjective interpre-034

tation, defining the ground truth has become a com-035

plex and persistent challenge in tasks such as detec-036

tion of toxicity in text (Lebovitz et al., 2021; Jaton,037

2021). The ambiguity in labeling subjective tasks038

arises from the experience and perspective of anno-039

tators, and inherent ambiguities in text (Basile et al.,040

2021). For example, Figure 1 shows a text item041

that contains arguably offensive content labeled for042

Figure 1: Example from the DICES dataset illustrat-
ing how the term “Beaners” is perceived differently by
annotators from India and the US.

toxicity differently by US and Indian annotators. 043

This discrepancy can be attributed to varying lev- 044

els of familiarity with the context of the offensive 045

term by annotators from different localities and 046

sociocultural background. 047

Toxicity detection has emerged as one of the 048

most critical subjective tasks in natural language 049

processing (NLP) due to its implications for the 050

evaluation of conversational artificial intelligence 051

(AI), safety guardrails in generative AI, and on- 052

line content moderation (Wulczyn et al., 2017; 053

Ziegler et al., 2019; Madhyastha et al., 2023; Ji 054

et al., 2023). These systems often rely on crowd- 055

sourced annotations, reflecting diverse human per- 056

spectives shaped by annotators’ sociocultural con- 057

texts. Conventional approaches typically aggre- 058

gate these annotations through majority voting or 059

averaging to produce “ground truth” labels that 060

marginalize minority perspectives and risk reinforc- 061

ing biases among the annotators selected for the 062

construction or evaluation of NLP systems (Prab- 063

hakaran et al., 2021). Alternatively, a different line 064

of research attempts to model every annotator be- 065

havior separately, thus ignoring shared perceptions 066

among annotators and limiting scalability to more 067

comprehensive populations (Davani et al., 2022; 068

Mokhberian et al., 2023). 069

To address these challenges, recent toxicity 070

datasets have incorporated detailed sociocultural 071
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information (demographics, beliefs, etc.) of annota-072

tors that can act as meaningful descriptors connect-073

ing annotators within and across populations, along074

with multiple annotations per instance (Aroyo et al.,075

2023; Davani et al., 2024a). To the best of our076

knowledge, the proposed Learning Subjective La-077

bel Distribution (LSLD) is the first work to model078

subjectivity in binary labels as distributions over079

the sociocultural descriptors of annotators. Our key080

contributions are as follows.081

• A novel framework for modeling subjectivity in a082

binary labeling task from a text item as an empir-083

ical probability distribution, incorporating both i)084

language-model-generated human value perspec-085

tives derived from the input text and ii) annota-086

tors’ sociocultural backgrounds.087

• Comprehensive evaluation against existing base-088

lines using three metrics accounting for indi-089

vidual probabilistic predictions for text-item-090

annotator pairs, calibration of predicted distri-091

butions, and aggregated item-level predictions.092

• Demonstration of the framework’s utility in tai-093

lored tasks such as population-level and sociocul-094

tural subgroup-level majority label prediction.095

2 Subjective Label Distribution Learning096

Problem Definition Let us define an annotated097

dataset D = (X ,A, T ,Y), where: X = {xn}Nn=1098

is a set of N text instances, A = {am}Mm=1 is a099

set of M annotators, T = {tm}Mm=1 is the set of100

characteristic vectors that describe the sociocul-101

tural background of all annotators in A, such that102

tj ∈ T represents the sociocultural descriptors for103

annotator aj ∈ A. Moreover, tj has dimension104

k and each mixed-type coordinate (categorical or105

continuous) corresponds to a distinct sociocultural106

descriptor, e.g., gender, race, age, education and107

locality. Finally, Y is an annotation matrix whose108

entries yij ∈ {0, 1} denote the binary decision la-109

bel assigned to the text instance xi by the annotator110

aj . Notably, annotators aj only annotate subsets111

of text instances, leading to high missingness in112

Y . In our use case, these labels represent toxicity113

judgments (safe vs. unsafe), however, the proposed114

methods are generalizable to other tasks involving115

subjective judgments with binary calls.116

The task of learning the distribution of judg-117

ments in a population of sociocultural descriptors118

is formally defined as estimating p(yi = 1|xi, T ),119

where yi = 1 is the judgment for xi taking a partic-120

ular value and the distribution is across the whole121

set T . Thus, by conditioning the predictions on 122

the sociocultural attributes of the annotator, LSLD 123

achieves scalability toward a wider population shar- 124

ing those features. 125

2.1 Modeling Conflicting Human Perspectives 126

Subjectivity in toxicity detection arises from the 127

diverse human values and perspectives that influ- 128

ence how an individual interprets text items. Di- 129

rectly modeling text instances without accounting 130

for these conflicting viewpoints can lead to mod- 131

els that are agnostic to the underlying diversity of 132

human judgment. Recent work by Hayati et al. 133

(2023) demonstrated that large language models 134

(LLMs) are effective in extracting diverse human 135

perspectives on subjective topics using criteria- 136

based prompting. 137

Inspired by this, we propose generating distinct 138

human-value perspectives of annotators who rate 139

each text instance xi ∈ X as safe or unsafe. Specif- 140

ically: 141

1. For each xi, we prompt an LLM to generate 142

n human values of those who rate it as “safe” 143

and an equal number of those who rate it as 144

“unsafe”. In our experiments, we keep n = 2 for 145

simplicity. Thus, we obtain two human values 146

for those who agree with the safe label (vS1
i and 147

vS2
i ) and two other values for those who agree 148

with the unsafe label (vU1
i and vU2

i ). The details 149

of the prompt are presented in Appendix A.1 150

and an analysis of performance differences due 151

to variation of n is discussed in Appendix A.2. 152

2. Each perspective is encoded into an embed- 153

ding vector (of fixed size) using a pretrained 154

sentence-BERT embedding model (Reimers 155

and Gurevych, 2019). 156

3. The final contextualized embedding f(xi) for 157

text instance xi is obtained as the element-wise 158

average of these four perspective embeddings. 159

This embedding thus captures the diverse per- 160

spectives surrounding xi and serves as input to 161

the subsequent prediction module. 162

Alternative embedding combination methods (e.g., 163

concatenation or weighted averaging) were also 164

explored, but we found element-wise averaging to 165

be effective in our experiments. 166

The prediction module is designed to estimate 167

the probability p̂ij = p(yi = 1|xi, tj) that a text 168

instance xi ∈ X is labeled as toxic (i.e., unsafe) by 169

annotators sharing the same sociocultural descrip- 170

tors tj . Specifically, all annotators aj ∈ A with 171
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Figure 2: LSLD Model Architecture. The embeddings
from the human values for “safe” and “unsafe” rating
generated by the LLM using the text item are concate-
nated with sociocultural embedding formed from learn-
able embedding layers for each sociocultural descriptor
of an annotator and are then fed to a dense network that
produces an individual probabilistic prediction for an
annotator and text item pair.

identical characteristic vectors tj will be assigned172

the same predicted probability p̂ij , as their socio-173

cultural profiles are indistinguishable in the model174

(in the absence of additional information about the175

annotators). The predictions are made through a176

two-step process described below.177

Encoding Sociocultural Characteristics Each178

element of the characteristic vector tj =179

{c1, c2, . . . , ck}, which describes the annotator180

aj ∈ A is encoded in a fixed-size vector. For181

categorical features, this is achieved through an182

embedding layer, while for continuous features, a183

linear projection layer is used to map the feature184

value into a fixed-dimensional space. Let ed de-185

note the embedding layer (for categorical features)186

or the projection layer (for continuous features)187

corresponding to the d-th characteristic, where188

d ∈ {1, 2, . . . , k}. For a given value cd of the189

d-th characteristic, the corresponding vector ed is190

obtained as:191

ed = ed(cd).192

Each embedding or projection layer ed maps (or193

transforms) the unique values of the d-th character-194

istic to a vector of dimension m (e.g., m = 5). This195

results in k vectors {e1, e2, . . . , ek} for each anno-196

tator aj . We define the concatenated embedding197

vector g(tj) as:198

g(tj) = [e1; e2; . . . ; ek],199

where [; ] denotes the concatenation operation and200

the dimension of g(tj) is km.201

Combining Embeddings to make Predictions 202

The contextualized text embedding f(xi) is con- 203

catenated with the sociocultural embedding vector 204

g(tj) to form a combined input vector vij : 205

vij = [f(xi); g(tj)], 206

where the concatenated vector vij is of dimension 207

dim(f(xi)) + km. 208

This combined vector is fed through a dense 209

neural network with trainable parameters. The net- 210

work consists of multiple fully connected layers 211

followed by a sigmoid activation function (see Ap- 212

pendix A.5). The output of the model, denoted 213

as p̂ij ∈ (0, 1), represents the probability that xi 214

is labeled as toxic by the annotator aj ∈ A with 215

characteristic vector tj ∈ T . The architecture of 216

the LSLD model is described in Figure 2. 217

2.2 Loss Function 218

Our training objective is twofold: i) to ensure 219

that predicted toxicity probabilities align with the 220

ground truth labels provided by annotators with 221

respect to their sociocultural descriptors, and ii) 222

to ensure that the empirical distribution Q of pre- 223

dicted probabilities for each text instance reflects 224

the overall distribution P behind ground truth la- 225

bels on the instance. To achieve this, we employ a 226

composite loss function consisting of three terms: 227

cross-entropy, Kullback-Leibler (KL) divergence, 228

and L2 regularization. The loss L is defined as: 229

L =
∑

i

∑
j LCE(yij , p̂ij) (1) 230

+ λ1
∑

i KL(P ∥ Q) + λ2
∑M

j=1 ∥g(tj)∥22, 231

where: 232

• LCE(yij , p̂ij) is the binary cross-entropy loss be- 233

tween the ground truth label yij and the predicted 234

toxicity probability p̂ij for the text item xi and 235

the annotator aj . 236

• KL(P ∥ Q) is the Kullback-Leibler (KL) diver- 237

gence between two (empirical) binomial distri- 238

butions, P formed by ground-truth ratings for 239

text instance xi and Q formed from ratings from 240

probabilistic predictions on the same instance. 241

Specifically, 242

P : yi ∼ Bin(ni, ȳi), Q : yi ∼ Bin(ni, p̂
′
i), 243

where ni is the number of annotations for in- 244

stance xi, and ȳi and p̂′i are aggregates for 245
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{yij}ni
j=1 and {p̂ij}ni

j=1, respectively, defined be-246

low. Then, the KL divergence is given by:247

KL(P ∥ Q) = niȳi · ln
(
ȳi
p̂′i

)
(2)248

+ ni(1− ȳi) · ln
(
1− ȳi
1− p̂′i

)
.249

Although we have discrete realizations (0/1) from250

P as ground truth labels to obtain ȳi =
∑ni

j=1 yij ,251

we only have predicted probabilities for the real-252

izations of Q. To obtain p̂′i which is the mean of253

the realizations from Q, we calculate the mean254

after converting each predicted probability of an255

instance into approximately binary labels using256

the ground-truth item-level mean rating ȳi as a257

reference using:258

p̂′i =
1

2
·
∑ni

j=1 (1 + tanh(k · (p̂ij − ȳi))

ni
,259

where the hyperbolic tangent (tanh) activation260

function, with a large constant k = 104 (see Ap-261

pendix A.5), serves as a relaxation to using hard-262

thresholded predictions while allowing smooth263

gradient flow during training.264

• λ1 and λ2 are hyperparameters controlling the265

contribution of the KL divergence and L2 reg-266

ularization terms, respectively. In the experi-267

ments {λ1, λ2} are set by grid search using cross-268

validation (see Appendix A.5).269

3 Related Work270

Subjectivity in NLP The study of subjectivity in271

NLP tasks has a long history, with early work by272

Wiebe et al. (2004); Alm (2011); Pang et al. (2008).273

Researchers have since differentiated between two274

main sources of disagreement in annotations: ran-275

dom variation and systematic disagreement (Krip-276

pendorff, 2011). Systematic disagreement has been277

shown to influence tasks such as part-of-speech278

tagging (Plank et al., 2014), word sense disam-279

biguation (Passonneau et al., 2012; Jurgens, 2013),280

and co-reference resolution (Poesio and Artstein,281

2005; Recasens et al., 2011). However, its impact is282

particularly pronounced in controversial tasks such283

as hate speech detection (Akhtar et al., 2019, 2020;284

Warner and Hirschberg, 2012) and sentiment anal-285

ysis (Liu et al., 2010; Kenyon-Dean et al., 2018).286

Systematic disagreements among annotators287

have been attributed to several factors: i) sociocul-288

tural differences, where annotators’ backgrounds,289

including gender, race, age, and beliefs signifi- 290

cantly influence their judgments (Larimore et al., 291

2021; Sap et al., 2021; Basile et al., 2021); ii) in- 292

stance semantic ambiguity, where ambiguity in 293

the text itself can lead to divergent interpretations 294

(Aroyo and Welty, 2013; Dumitrache, 2015; Basile 295

et al., 2021); and iii) annotator experience, where 296

prior experience with annotation tasks can shape 297

annotators’ perspectives (Waseem, 2016). 298

Recent studies have increasingly recognized the 299

crucial role of sociocultural contexts in subjective 300

tasks such as toxicity detection. For example, dis- 301

agreements in toxicity judgments have been ob- 302

served between ethnic groups (Prabhakaran et al., 303

2021), genders (Homan et al., 2023), and age 304

groups (Luo et al., 2020). The grouping of an- 305

notators by demographic attributes has revealed 306

that judgements are often related to age, education 307

level, and first language (Prabhakaran et al., 2021; 308

Al Kuwatly et al., 2020). Furthermore, studies have 309

found significant differences in the annotations of 310

feminists, antiracist activists, and politically affili- 311

ated individuals from other crowd-sourced annota- 312

tors (Waseem, 2016; Luo et al., 2020). Perceptions 313

of race, in particular, vary significantly with the eth- 314

nicity of the annotator (Larimore et al., 2021; Sap 315

et al., 2021). However, it is important to note that 316

sociocultural descriptors alone do not fully explain 317

annotation behavior (Orlikowski et al., 2023). 318

Modeling Systematic Subjectivity We use the 319

term systematic subjectivity to describe subjective 320

disagreements that arise primarily from two com- 321

mon sources: i) diverse lived experiences based 322

on sociocultural descriptors of annotators, and ii) 323

the inherent ambiguity of the text or task at hand. 324

Although some approaches treat all disagreements 325

as noise and attempt to filter them out (Mokhbe- 326

rian et al., 2022; Hovy et al., 2013), recent research 327

advocates methods that explicitly incorporate sub- 328

jectivity into model design and evaluation criteria 329

(Weerasooriya et al., 2023; Davani et al., 2022; 330

Hayat et al., 2022; Gordon et al., 2022; Deng et al., 331

2023; Gordon et al., 2021; Dumitrache et al., 2019). 332

Multi-label classification, an extension of single- 333

label classification, has been used in tasks such 334

as emotion and sentiment analysis (Alhuzali and 335

Ananiadou, 2021; Liu et al., 2023) where the text in- 336

stance can have more than one label. Label distribu- 337

tion learning, which models the distribution across 338

categories of labels for each text instance, has also 339

been applied to subjective tasks (Geng, 2016; Zhou 340

et al., 2016; Cheng et al., 2024). Annotator-centric 341
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approaches have also been explored to model sub-342

jectivity, e.g., Davani et al. (2022) propose a multi-343

task model that predicts ratings from individual an-344

notators and aggregates them to produce a final de-345

cision. Similarly, Mokhberian et al. (2023) model346

each annotator separately by learning annotator-347

specific embeddings, which are concatenated with348

text embeddings for label prediction. Although349

these methods capture different aspects of subjec-350

tivity, they remain agnostic to the sociocultural351

backgrounds that influence annotations, limiting352

their scalability to broader populations.353

With the availability of toxicity datasets, which354

have sociocultural annotator descriptors, recent355

studies have begun incorporating them into model-356

ing approaches, e.g., Fleisig et al. (2023) propose a357

two-step method: first, predict individual annotator358

ratings by adding demographic information from359

the annotator with a text instance as input, and then360

use these predictions to model toxicity perceptions361

in target groups in the text item identified by the lan-362

guage model. Similarly, Wan et al. (2023) predict363

overall disagreement for a text instance by incor-364

porating the demographic background of the entire365

annotator set with text instance as input. How-366

ever, these approaches do not account for learning367

the toxicity distribution for all sociodemographic368

groups and each text item.369

The proposed subjective label distribution learn-370

ing (LSLD) introduced above addresses these lim-371

itations by building calibrated empirical toxicity372

distributions for each text instance over the pre-373

dicted probabilities of each annotator in a binary374

labeling task while conditioning the predictions on375

i) different perspectives of the text instance, gener-376

ated by an LLM to capture semantic variation, and377

ii) the sociocultural descriptors of the annotator378

rating the instance.379

4 Experiments380

Experimental Setup Our experiments were per-381

formed in server with a single NVIDIA RTX382

A6000 48GB GPU. We used the DeepSeek-R1 API383

as the LLM to generate human values for “safe”384

and “unsafe” groups. All text encodings were done385

using a pretrained sentence-BERT (all-MiniLM-386

L6-v2) (Reimers and Gurevych, 2019). Model eval-387

uation was performed by 5-fold cross-validation,388

where each fold (20% of text items) was selected by389

keeping the order of the original datasets, to avoid390

performance bias and improve reproducibility.391

Dataset Text Raters Feature Cultural
items per item dim. (n) sub-groups

DICES-990 990 66 5 14
DICES-350 350 104 9 12
D3 4500 30 3 13

Table 1: Summary of dataset characteristics.

Datasets We benchmark our approach using three 392

datasets that are annotated for subjective tasks: 393

DICES-350 and DICES-990 (Aroyo et al., 2023), 394

which assesses toxicity in human-chatbot conver- 395

sations, and the D3 dataset (Davani et al., 2024a), 396

which evaluates offensiveness in social media posts. 397

These datasets were selected for their high per-item 398

annotator count, along with comprehensive socio- 399

cultural information about the annotators. Table 1 400

shows the number of text instances, average ratings 401

per item, dimensionality of the annotator feature 402

vectors, and the number of cultural or sociodemo- 403

graphic subgroups represented in all three datasets. 404

See Appendix A.3 for detailed descriptions of the 405

datasets. 406

4.1 Evaluation Metrics 407

Instance-Level AUC To evaluate the overall qual- 408

ity of probabilistic predictions for annotator and 409

text-item pairs, we use the macro-AUC score. This 410

metric assesses the model’s ability to discriminate 411

between predicted probabilities p̂ij on text item 412

xi ∈ X by annotator aj ∈ A relative to their bi- 413

nary ground-truth labels (safe vs. unsafe). 414

An important characteristic of our approach is 415

that all annotators aj ∈ A sharing identical charac- 416

teristic vectors tj receive identical predicted prob- 417

abilities p̂ij on a text item xi ∈ X . This design 418

choice inherently limits the maximum achievable 419

AUC in cases where annotators with identical so- 420

ciocultural profiles exhibit divergent labeling be- 421

havior. Although perfect discrimination may not 422

be attainable under our modeling framework, the 423

macro-AUC assess relative performance in proba- 424

bilistic predictions against alternative approaches 425

with or without the same limitation. 426

Model Calibration We introduce a rigorous cal- 427

ibration metric to assess the statistical alignment 428

between predicted empirical distributions and the 429

true rating distributions inspired by Kuleshov et al. 430

(2018). For each text instance xi, we treat the mean 431

of ground truth labels ȳi as an estimator of the true 432

probability of toxicity. 433

A well-calibrated model satisfies the following 434

5



property: for any confidence interval [p1, p2], the435

true proportion ȳi should fall within the associ-436

ated predicted quantile interval with probability437

(p2 − p1). Specifically, a 90% confidence interval438

should contain ȳi approximately 90% of the time.439

Let F−1
i (p) denote the p-th quantile of the pre-440

dicted distribution for the text item xi. The model441

is calibrated when:442

1

N

N∑
i=1

I[F−1
i (p1) ≤ ȳi ≤ F−1

i (p2)] → p2 − p1,443

where: N is the total number of text items, I{·} is444

the indicator function, and p1 and p2 are symmetric445

percentiles around the median (e.g., 5% and 95%).446

We evaluated calibration by: i) computing cover-447

age rates in multiple symmetric percentile intervals448

around the median (13 intervals in total starting449

from 5% to 95%), ii) plotting observed vs. ex-450

pected coverage, and iii) estimating the slope α451

and intercept β of the calibration curve using a452

linear model. Note that perfect calibration occurs453

when α = 1 and β = 0, which indicate that pre-454

dicted intervals exactly match the percentage of455

empirical frequencies. Deviations in the calibra-456

tion slope and intercept reveal miscalibration and457

bias, respectively.458

Item-level Proportion Correlation To evaluate459

the alignment between predicted and true toxicity460

per-item probabilities, we introduce an item-level461

proportion correlation metric. For each text in-462

stance xi ∈ X , we compute:463

• Predicted toxicity probability: averaging all pre-464

dicted probabilities p̂ij for annotators aj ∈ A465

using ¯̂pi =
1
|A|

∑|A|
j=1 p̂ij .466

• Empirical toxicity probability: ground-truth pro-467

portion of toxicity labels via ȳi =
1

|Ai|
∑|Ai|

j=1 yij .468

We then calculate the Pearson correlation coeffi-469

cient ρ between { ¯̂pi}Ni=1 and {ȳi}Ni=1 for all text470

items. This metric quantifies the association be-471

tween the predicted and observed probabilities of472

toxicity at the text item level.473

4.2 Baseline Models474

Single-task This approach represents the most475

common method for toxicity classification, where a476

classifier is trained to predict the label for each text477

instance xi ∈ X . The model trained with binary478

cross-entropy loss takes the embedding of a text479

item as input and returns p(yi = 1|xi).480

Multi-task (MT) The approach proposed by Da-481

vani et al. (2022), addresses annotator disagreement482

by training individual classifiers for each annotator 483

aj ∈ A, while sharing the base text representa- 484

tion layers across all annotators. In this setting, the 485

shared representation layers are fine-tuned using all 486

available annotations, while the annotator-specific 487

classification heads are trained only on the corre- 488

sponding annotator’s labels. Probabilistic predic- 489

tions for a text item xi ∈ X from all heads (one 490

per human rater), are collected for evaluation. 491

MT+DEMO We further extend this model by 492

incorporating the sociocultural information of the 493

annotators to account for the influence of this in- 494

formation on the annotation labels. For each of the 495

k dimensions in the feature vector of an annotator, 496

we find separate toxicity probabilities by aggregat- 497

ing the probabilistic predictions of all annotators 498

sharing the same feature along that dimension. For 499

an annotator aj with features tj = [c1, . . . , ck], the 500

final probability is obtained as the composite of al- 501

ready aggregated probabilities for each dimension. 502

See Appendix A.4 for a detailed explanation. 503

IRPM The individual rating prediction module 504

introduced by Fleisig et al. (2023) uses both the 505

sociocultural information of annotator and the con- 506

tent of the text item through a pretrained RoBERTa- 507

based module (Liu et al., 2019). This approach 508

combines demographic descriptors of an annotator 509

with the target text instance using a template-based 510

input format: "[tj] [SEP] xi". The model is trained 511

using mean squared error loss to predict continuous 512

individual ratings, which in our case of binary tox- 513

icity prediction task can be treated as the toxicity 514

probability. 515

4.3 Results 516

We seek to quantify how well LSLD can predict 517

calibrated and accurate subjective label distribu- 518

tions. Table 2 presents the results based on the 519

metrics described in Section 4.1. The foundation 520

of our predicted empirical subjective distributions 521

lies in the probabilistic predictions p̂ij for each text 522

item xi ∈ X and annotator aj with characteristic 523

vector tj , hence we start with the instance-level 524

AUC metric. On all datasets, LSLD either out- 525

performs or performs comparably to the baselines, 526

underscoring the effectiveness of LSLD in predict- 527

ing individual probabilities. Since DICES-350 is 528

limited in terms of the number of text items and 529

is a complete dataset, in the sense that all anno- 530

tators labeled all text items, it gives an advantage 531

to MT models because classification heads can be 532

trained with data from all annotators. ROC curves 533
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Table 2: Performance comparison for all models and
datasets. We report means and standard deviations for
5-fold cross-validation.
Model DICES-990 DICES-350 D3

Instance level AUC
LSLD 0.740.01 0.650.01 0.680.02

IRPM 0.710.01 0.640.01 0.620.01
MT + Demographics 0.680.01 0.650.03 0.620.03
MT 0.660.01 0.610.03 0.600.00
Single Task 0.650.01 0.600.01 0.590.01

Calibration Slope
LSLD 0.990.03 1.000.02 1.000.01

IRPM 0.740.07 0.500.18 0.310.10
MT + Demographics 0.320.04 0.300.06 0.160.05
MT 1.040.03 1.030.01 1.080.09
Single Task NA NA NA

Calibration Intercept
LSLD 0.000.00 0.000.01 0.000.01

IRPM −0.060.01 −0.030.03 0.010.00
MT + Demographics 0.000.01 −0.010.00 −0.010.01
MT 0.080.04 0.010.02 0.020.08
Single Task NA NA NA

Item-level Proportion Correlation
LSLD 0.700.04 0.510.02 0.530.03

IRPM 0.600.07 0.390.01 0.510.05
MT + Demographics 0.590.05 0.470.13 0.480.02
MT 0.580.02 0.430.10 0.460.02
Single Task 0.560.03 0.380.00 0.430.04

for all methods on each dataset are presented in534

Appendix A.6.535

The calibration slope and intercept measures the536

reliability of predicted toxicity distributions. While537

slope larger than or less than one indicate direction538

of deviations from ideal coverage, the intercept539

value measures consistent bias in coverages across540

percentile intervals. A calibration slope close to541

one and intercept close to zero is a desirable be-542

havior of well-calibrated model. Figure 3 shows543

the coverage across quantiles for all models on the544

DICES-990 dataset. Calibration plots for DICES-545

350 and D3 datasets are shown in Appendix A.7.546

Although the MT method has close to ideal cali-547

bration slope, it suffers from high bias as indicated548

by its calibration intercept. The variation in cali-549

bration scores among methods using embeddings550

for the sociocultural information about annotators551

such as IRPM and MT+Demo, explain the need for552

the LSLD method.553

The item-level proportion correlation measures554

the ability of the methods to accurately estimate the555

proportion of toxicity for each text item xi ∈ X .556

This metric complements calibration by character-557

izing the overall quality of predicted distribution.558

While LSLD outperforms all baselines, indicating559

consistent performance, MT+DEMO outperforms560

others on DICES-350, which can be due to the561

Figure 3: Calibration plots for the evaluated methods on
DICES-990. Plotted points are aggregates of coverage
and shades indicate standard deviations over test folds.

advantage of fully trained classification head of 562

MT+DEMO on this dataset. Boxplots visualiz- 563

ing the predicted distributions with respect to item- 564

level proportions are presented in Appendix A.9. 565

The superior performance of MT+DEMO com- 566

pared to MT indicates the need for modeling the 567

sociocultural information about the annotators. The 568

weaker performance for all metrics on the D3 569

dataset relative to DICES-990, likely stems from its 570

limited annotator demographic information, which 571

emphasizes the need for attributes such as educa- 572

tion level and racial background of annotators as in 573

DICES-990 and DICES-350. 574

5 Sociocultural subgroup level Majority 575

Label prediction 576

We now examine the ability of LSLD and baselines 577

to predict toxicity at the sociocultural subgroup 578

level, with particular focus on majority-label pre- 579

diction for one-dimensional groups in the DICES- 580

990 dataset. We introduce a two-step method for 581

deriving majority labels from predicted empirical 582

distributions: i) Interquartile Range Filtering: To 583

mitigate the influence of extreme predictions, we 584

obtain the interquartile range (IQR) of the predicted 585

toxicity distribution for each text item. ii) Major- 586

ity Label Determination: We define the aggregate 587

toxicity rating across text items as the decision 588

threshold when label judgments are evenly split 589

(resulting in no majority). If most probabilistic pre- 590

dictions within the IQR exceed this threshold, we 591

classify the majority label as unsafe; otherwise, it 592

is classified as safe. 593

We evaluate the performance of majority label 594

prediction using two metrics, the F1 score to evalu- 595

7



Figure 4: Sociocultural subgroup level majority label prediction performance by (Left) F1 score and (Right)
Correlation. Dotted lines on both plots indicate average performance of each model across subgroups.

ate the agreement between predicted and true ma-596

jority labels and Pearson correlation to quantify the597

(linear) alignment between the predicted probabil-598

ity of the majority label and the true proportion599

of annotators selecting that label. The predicted600

probability of the majority label corresponds to the601

proportion of the IQR representing the predicted602

majority class with respect to the threshold value.603

The true proportion is computed as the fraction of604

annotators who actually selected the majority label605

for a given item. Figure 5 shows the F1 and corre-606

lation scores for majority label prediction for the607

entire annotator population, respectively.608

We finally predict the majority label with respect609

to each one-dimensional sociocultural group by the610

same method but by taking probabilistic predic-611

tions of only that one group, e.g., US (locale), with612

the aggregate toxicity rating of the group now as613

the threshold. Figure 4 shows the F1 score and614

correlation scores for each sociocultural subgroup615

described in the DICES-990 dataset. Our findings616

underscore the superiority of the LSLD method in617

majority label prediction at the group level.618

6 Conclusion619

This paper addressed the challenge posed by sys-620

tematic annotator differences caused by different621

sociocultural experiences and inherent text item622

ambiguity in subjective labeling tasks. We pro-623

pose the Learning Subjective Labeling distribution624

(LSLD) model, which combines distinct human625

values on a text item under consideration along626

Figure 5: F1 (Top) and correlation score (Bottom) for
majority label predictions.

with sociocultural information of a rater to get in- 627

dividual label probabilities, which when grouped 628

to those of other annotators on the same item, re- 629

veals the empirical distribution of the subjective 630

label. The predicted distributions achieve close to 631

ideal calibration while also improving the predic- 632

tions of individual label probabilities over recent 633

methods modeling annotator subjectivity. Through 634

experiments, we also show excellent performance 635

of LSLD when used to predict labels aggregated at 636

the sociocultural-group level. 637
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7 Limitations638

The proposed method is restricted to binary sub-639

jective labels. While LSLD incorporates human640

values underlying text items and annotators’ so-641

ciocultural information, subjective judgments may642

arise from factors beyond gender, race, age, ed-643

ucation, or locality (e.g., unique personal experi-644

ences). Consequently, fully quantifying subjectiv-645

ity remains an open challenge. Moreover, socio-646

cultural identities lack sharply defined boundaries,647

making their complete representation difficult. For648

example, diaspora cultures often blend multiple649

cultural influences. Our analysis relies solely on650

the sociocultural descriptors provided, and deemed651

relevant, by the original dataset authors. Finally, it652

remains an open question how models trained on653

populations with one cultural mixture generalize to654

populations with distinct cultural compositions.655
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A Appendix930

A.1 Prompt to Generate Contrasting Human931

Values932

Figure 6: Prompt used to generate values from be-
hind DICES conversations. Note that ratings in DICES
datasets were only on final conversation turn.

A.2 LSLD Ablation Study933

Table 3: Performance Metrics Across Scenarios on
DICES-990. LSLD has number of contrasting human
values behind safe and unsafe rating, n=2 and coeffi-
cient of KL divergence term in loss function, α>0.

Scenarios Metrics

Inst.-level Calib. Calib. Item-level
AUC Slope Intercept prop. corr.

LSLD 0.76 1.00 0.00 0.73
α = 0 0.74 0.89 -0.02 0.63
n = 1 0.71 0.95 0.01 0.60
n = 0 0.74 1.00 0.00 0.66

Note that in n=0 scenario, embedding of text-934

item is fed as input to model. From Table 3, it can935

be understood that the KL divergence term in loss936

function plays crucial role in distribution calibra-937

tion while cumulative embedding of n = 2 human938

values behind contrasting bianry ratings improves939

instance level AUC and Item-level proportion cor-940

relation.941

A.3 Dataset Descriptions942

A.3.1 DICES-990943

(Aroyo et al., 2023) curated this dataset of 990944

multi-turn conversations sampled from 8K adver-945

sarial dialogues between humans and generative946

AI chatbots (Thoppilan et al., 2022). Each con-947

versation spans up to five turns, covering diverse948

topics. The final chatbot response in each dialogue 949

was evaluated by 60–70 raters (173 unique raters 950

total) for toxicity across five dimensions: harm- 951

ful content, unfair bias, misinformation, political 952

affiliation, and policy violations. Raters labeled 953

responses as Safe, Unsafe, or Unsure; we focus 954

on the binary Safe/Unsafe labels for compatibility 955

with LSLD framework. The dataset includes anno- 956

tator demographics across five dimensions: gender, 957

race, age, education, and locality. 958

A.3.2 DICES-350 959

Also introduced by (Aroyo et al., 2023), this dataset 960

comprises 350 multi-turn conversations from the 961

same corpus as DICES-990. Each final chatbot 962

response was rated by 104 U.S.-based annotators 963

using the same toxicity criteria. Demographic an- 964

notations span four dimensions: gender, race, age, 965

and education. 966

A.3.3 D3 Dataset 967

(Davani et al., 2024a) collected 4,500 social me- 968

dia posts from Jigsaw-2018 and Jigsaw-2019, an- 969

notated for offensiveness by 4,309 participants 970

across 21 countries and 8 geo-cultural regions. 971

Posts were rated on a 5-point Likert scale, later 972

binarized (scores ≥3 labeled Offensive) by au- 973

thors in (Davani et al., 2024b). Beyond stan- 974

dard demographics (gender, age, country), the 975

dataset includes annotators’ morality foundations— 976

measured via questionnaires—across six dimen- 977

sions: Care, Equality, Proportionality, Authority, 978

Loyalty, and Purity (scored 1–5). 979

Deatailed table of cultural sub groups included 980

in LSLD evaluation is described in Table 4. Only 981

those groups with few annotations in the datasets 982

were excluded. 983

A.4 Evaluation example of MT+Demo Model 984

For example, given an annotator with character- 985

istic vector tj = [Man,Gen X], the model com- 986

putes the toxicity probability p̂ij by averaging 987

dimension-specific probabilities: p̂ij = 1
2(Pr(yi = 988

1|xi,Man) + Pr(yi = 1|xi,Gen X)), where each 989

term derives from predictions of annotators shar- 990

ing that specific demographic feature.(Pr(yi = 991

1|xi,Man) is obtained by aggregating probabilistic 992

predictions from annotator models of males and 993

similarly for Gen X). 994
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A.5 Model and Learning Details995

We determined the optimal hyperparameters996

through an exhaustive grid search, with the best-997

performing values being:998

i. λ1 = 1
n×7.6 , where n represents the number999

of text items in the training set1000

ii. λ2 = 10−41001

The hyperbolic tangent (tanh) activation function1002

employed a large constant k that produced extreme1003

output values (e.g., ≤ 10−9 or ≥ 1− 10−9), which1004

led to numerical instability during training. To1005

mitigate this issue, we implemented value clamp-1006

ing using torch.clamp, restricting outputs to the1007

range [10−4, 1− 10−4].1008

In the LSLD model architecture, the dense net-1009

work accepts an input of size 384 + k ×m, where1010

m = 10 and k corresponds to the feature dimen-1011

sion of the dataset. The network comprises a hid-1012

den layer with 20 units, followed by a single-unit1013

output layer with sigmoid activation.1014

A.6 ROC Curves1015

Figure 7: ROC Curves for the evaluated methods on
DICES-990

Figure 8: Calibration plots for the evaluated methods
on DICES-350

Figure 9: ROC Curves for the evaluated methods on D3

A.7 Calibration Plots 1016

Figure 10: Calibration plots for the evaluated methods
on DICES-990
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Figure 11: Calibration plots for the evaluated methods
on DICES-350

Figure 12: Calibration plots for the evaluated methods
on D3

A.8 Matrix Completion Problem1017

While LSLD method is to predict subjective distri-1018

bution across binary labels on unseen text items,1019

we also analyzed its performance when annotations1020

of dataset is randomly hidden and asked to predict1021

its probability of being one among the binary label.1022

This is the matrix completion / imputation problem.1023

Table 5: AUC Score analysis

Method AUC Score

LSLD 0.76
IRPM 0.72
MT+DEMO 0.74
MT 0.71

1024

Table 4: Sociocultural Subgroups Coverage in LSLD
evaluation

Dataset Attribute Sociocultural
Subgroups

DICES-990

rater_gender Man, Woman
rater_race Asian/Asian sub-,

continent, Black/
African American,
LatinX/ Latino/
Hispanic or Spanish
Origin, White, Other

rater_education College degree,
High school

rater_locality US, India
rater_age Millenial, Gen z,

Gen x+

DICES-350

rater_gender Man, Woman
rater_race Asian/Asian sub-,

continent, Black/
African American,
LatinX/ Latino/
Hispanic or Spanish
Origin, White,
Multiracial

rater_age Millenial, Gen z,
Gen x+

rater_education High school,
College, Other

D3

rater_gender Man, Woman
rater_age 18-30, 30-50, 50+
rater_region Arab Culture

Indian cultural sphere
Latin America
North America
Oceania, Sinosphere
Sub Saharan Africa
Western Europe

rater_morale Equality, Care
(measured from proportionality, purity
questionnaires) authority, loyalty
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A.9 Boxplot Visualizations of1025

LSLD-Predicted Text Item Distributions1026

Figure 13: DICES-990 Predicted Distributions. Text items are labelled by item id as in the dataset.

Figure 14: DICES-350 Predicted Distributions. Text items are labelled by item id as in the dataset.
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Figure 15: D3 Predicted Distributions. Text items are labelled by item id as in the dataset.

This section presents the toxicity distributions1027

predicted by LSLM for text items across all three1028

datasets (DICES-990 in Figure 13, DICES-350 in1029

Figure 14, and D3 in Figure 15). For each dataset,1030

we visualize the model’s prediction distributions1031

through boxplots, where each text item is identified1032

by its original dataset ID.1033

The items are sorted by the absolute difference1034

between the median predicted toxicity and the true1035

toxicity proportion (derived from human annota-1036

tions). For each dataset, we display:1037

• Left panel: The 15 best-performing distribu-1038

tion predictions (smallest median-proportion1039

difference)1040

• Right panel: The 15 worst-performing distri-1041

bution predictions (largest median-proportion1042

difference)1043

The text items corresponding to these displayed1044

item ids are attached with supplement mateial for1045

reference.1046
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