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Abstract

Subjectivity in NLP tasks, e.g., toxicity classifi-
cation, has emerged as a critical challenge pre-
cipitated by the increased deployment of NLP
systems in content-sensitive domains. Conven-
tional approaches aggregate annotator judge-
ments (labels), ignoring minority perspectives
and overlooking the influence of the sociocul-
tural context behind such annotations. We
propose a framework where subjectivity in bi-
nary labels is modeled as an empirical distribu-
tion accounting for the variation in annotators
through human values extracted from sociocul-
tural descriptors using a language model. The
framework also allows for downstream tasks
such as population and sociocultural group-
level majority label prediction. Experiments on
three toxicity datasets covering human-chatbot
conversations and social media posts annotated
with diverse annotator pools demonstrate that
our approach yields well-calibrated toxicity dis-
tribution predictions across binary toxicity la-
bels, which are further used for majority label
prediction across cultural subgroups, improv-
ing over existing methods.

1 Introduction

Early machine learning models were evaluated us-
ing tasks with clearly defined ground truths, such
as handwritten digit recognition (MNIST), spam
detection (UCL Spambase) and categorical object
recognition (ImageNet). These tasks relied on rela-
tively hard facts, leaving little room for ambiguity.
However, as Al systems are increasingly deployed
in domains that involve higher subjective interpre-
tation, defining the ground truth has become a com-
plex and persistent challenge in tasks such as detec-
tion of toxicity in text (Lebovitz et al., 2021; Jaton,
2021). The ambiguity in labeling subjective tasks
arises from the experience and perspective of anno-
tators, and inherent ambiguities in text (Basile et al.,
2021). For example, Figure 1 shows a text item
that contains arguably offensive content labeled for

Task: Label Toxic Text

USER: mmm i'm gonna have mexican food for my bday dinner,
love the beans just not the beaners hahaha
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Figure 1: Example from the DICES dataset illustrat-
ing how the term “Beaners” is perceived differently by
annotators from India and the US.

Aggregate Label:
Not Toxic

toxicity differently by US and Indian annotators.
This discrepancy can be attributed to varying lev-
els of familiarity with the context of the offensive
term by annotators from different localities and
sociocultural background.

Toxicity detection has emerged as one of the
most critical subjective tasks in natural language
processing (NLP) due to its implications for the
evaluation of conversational artificial intelligence
(Al), safety guardrails in generative Al, and on-
line content moderation (Wulczyn et al., 2017;
Ziegler et al., 2019; Madhyastha et al., 2023; Ji
et al., 2023). These systems often rely on crowd-
sourced annotations, reflecting diverse human per-
spectives shaped by annotators’ sociocultural con-
texts. Conventional approaches typically aggre-
gate these annotations through majority voting or
averaging to produce “ground truth” labels that
marginalize minority perspectives and risk reinforc-
ing biases among the annotators selected for the
construction or evaluation of NLP systems (Prab-
hakaran et al., 2021). Alternatively, a different line
of research attempts to model every annotator be-
havior separately, thus ignoring shared perceptions
among annotators and limiting scalability to more
comprehensive populations (Davani et al., 2022;
Mokhberian et al., 2023).

To address these challenges, recent toxicity
datasets have incorporated detailed sociocultural



information (demographics, beliefs, efc.) of annota-
tors that can act as meaningful descriptors connect-
ing annotators within and across populations, along
with multiple annotations per instance (Aroyo et al.,
2023; Davani et al., 2024a). To the best of our
knowledge, the proposed Learning Subjective La-
bel Distribution (LSLD) is the first work to model
subjectivity in binary labels as distributions over
the sociocultural descriptors of annotators. Our key
contributions are as follows.

* A novel framework for modeling subjectivity in a
binary labeling task from a text item as an empir-
ical probability distribution, incorporating both 7)
language-model-generated human value perspec-
tives derived from the input text and ) annota-
tors’ sociocultural backgrounds.

* Comprehensive evaluation against existing base-
lines using three metrics accounting for indi-
vidual probabilistic predictions for text-item-
annotator pairs, calibration of predicted distri-
butions, and aggregated item-level predictions.

* Demonstration of the framework’s utility in tai-
lored tasks such as population-level and sociocul-
tural subgroup-level majority label prediction.

2 Subjective Label Distribution Learning

Problem Definition Let us define an annotated
dataset D = (X, A, T,)), where: X = {z,})\_,
is a set of N text instances, A = {a,,}}_; isa
set of M annotators, 7 = {t,,,}M_, is the set of
characteristic vectors that describe the sociocul-
tural background of all annotators in A, such that
t; € T represents the sociocultural descriptors for
annotator a; € A. Moreover, ¢; has dimension
k and each mixed-type coordinate (categorical or
continuous) corresponds to a distinct sociocultural
descriptor, e.g., gender, race, age, education and
locality. Finally, ) is an annotation matrix whose
entries y;; € {0, 1} denote the binary decision la-
bel assigned to the text instance x; by the annotator
a;. Notably, annotators a; only annotate subsets
of text instances, leading to high missingness in
Y. In our use case, these labels represent toxicity
Jjudgments (safe vs. unsafe), however, the proposed
methods are generalizable to other tasks involving
subjective judgments with binary calls.

The task of learning the distribution of judg-
ments in a population of sociocultural descriptors
is formally defined as estimating p(y; = 1|x;, T),
where y; = 1 is the judgment for x; taking a partic-
ular value and the distribution is across the whole

set 7. Thus, by conditioning the predictions on
the sociocultural attributes of the annotator, LSLD
achieves scalability toward a wider population shar-
ing those features.

2.1 Modeling Conflicting Human Perspectives

Subjectivity in toxicity detection arises from the
diverse human values and perspectives that influ-
ence how an individual interprets text items. Di-
rectly modeling text instances without accounting
for these conflicting viewpoints can lead to mod-
els that are agnostic to the underlying diversity of
human judgment. Recent work by Hayati et al.
(2023) demonstrated that large language models
(LLMs) are effective in extracting diverse human
perspectives on subjective topics using criteria-
based prompting.

Inspired by this, we propose generating distinct
human-value perspectives of annotators who rate
each text instance x; € X as safe or unsafe. Specif-
ically:

1. For each z;, we prompt an LLM to generate
n human values of those who rate it as “safe”
and an equal number of those who rate it as
“unsafe”. In our experiments, we keep n = 2 for
simplicity. Thus, we obtain two human values
for those who agree with the safe label (viSl and
v32) and two other values for those who agree
with the unsafe label (v}Jl and V}JQ). The details
of the prompt are presented in Appendix A.1
and an analysis of performance differences due
to variation of n is discussed in Appendix A.2.

2. Each perspective is encoded into an embed-
ding vector (of fixed size) using a pretrained
sentence-BERT embedding model (Reimers
and Gurevych, 2019).

3. The final contextualized embedding f(z;) for
text instance x; is obtained as the element-wise
average of these four perspective embeddings.
This embedding thus captures the diverse per-
spectives surrounding x; and serves as input to
the subsequent prediction module.

Alternative embedding combination methods (e.g.,

concatenation or weighted averaging) were also

explored, but we found element-wise averaging to
be effective in our experiments.

The prediction module is designed to estimate
the probability p;; = p(y; = 1|x;,t;) that a text
instance x; € X is labeled as toxic (i.e., unsafe) by
annotators sharing the same sociocultural descrip-
tors t;. Specifically, all annotators a; € A with
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Figure 2: LSLD Model Architecture. The embeddings
from the human values for “safe” and “unsafe” rating
generated by the LLM using the text item are concate-
nated with sociocultural embedding formed from learn-
able embedding layers for each sociocultural descriptor
of an annotator and are then fed to a dense network that
produces an individual probabilistic prediction for an
annotator and text item pair.

identical characteristic vectors ¢; will be assigned
the same predicted probability p;;, as their socio-
cultural profiles are indistinguishable in the model
(in the absence of additional information about the
annotators). The predictions are made through a
two-step process described below.

Encoding Sociocultural Characteristics Each
element of the characteristic vector t; =
{c1,¢2,...,cr}, which describes the annotator
a; € A is encoded in a fixed-size vector. For
categorical features, this is achieved through an
embedding layer, while for continuous features, a
linear projection layer is used to map the feature
value into a fixed-dimensional space. Let eg4 de-
note the embedding layer (for categorical features)
or the projection layer (for continuous features)
corresponding to the d-th characteristic, where
d € {1,2,...,k}. For a given value ¢y of the
d-th characteristic, the corresponding vector ey is
obtained as:

eq = eq(cq).

Each embedding or projection layer e; maps (or
transforms) the unique values of the d-th character-
istic to a vector of dimension m (e.g., m = 5). This
results in k vectors {e1, es, ..., e} for each anno-
tator a;. We define the concatenated embedding
vector g(t;) as:
g(t;) = [er;ez;. .. ekl

where [; | denotes the concatenation operation and
the dimension of g(t;) is km.

Combining Embeddings to make Predictions
The contextualized text embedding f(z;) is con-
catenated with the sociocultural embedding vector
g(t;) to form a combined input vector v;;:

vij = [f(@i); 9(t5)],

where the concatenated vector v;; is of dimension
dim(f(x;)) + km.

This combined vector is fed through a dense
neural network with trainable parameters. The net-
work consists of multiple fully connected layers
followed by a sigmoid activation function (see Ap-
pendix A.5). The output of the model, denoted
as p;; € (0,1), represents the probability that z;
is labeled as toxic by the annotator a; € A with
characteristic vector t; € 7. The architecture of
the LSLD model is described in Figure 2.

2.2 Loss Function

Our training objective is twofold: ¢) to ensure
that predicted toxicity probabilities align with the
ground truth labels provided by annotators with
respect to their sociocultural descriptors, and i7)
to ensure that the empirical distribution () of pre-
dicted probabilities for each text instance reflects
the overall distribution P behind ground truth la-
bels on the instance. To achieve this, we employ a
composite loss function consisting of three terms:
cross-entropy, Kullback-Leibler (KL) divergence,
and L2 regularization. The loss L is defined as:

L=32> Lcr(Yijs Pij) (D
+ M KL(P | Q) + X2 352, llg(8)]13,

where:

* Lce(yij, pij) is the binary cross-entropy loss be-
tween the ground truth label y;; and the predicted
toxicity probability p;; for the text item x; and
the annotator a;.

* KL(P || Q) is the Kullback-Leibler (KL) diver-
gence between two (empirical) binomial distri-
butions, P formed by ground-truth ratings for
text instance x; and () formed from ratings from
probabilistic predictions on the same instance.
Specifically,

P Yi ~ Bin(nia g’b)? Q LY~ Bll’l(n“ﬁ;),
where n; is the number of annotations for in-
stance x;, and ¥; and p) are aggregates for



{yi};2, and {p;;}7L,, respectively, defined be-
low. Then, the KL divergence is given by:

KL(P || Q) = nigi - In <i) ?)

1 -y
+ni(1—y_¢)-ln< y).

Although we have discrete realizations (0/1) from
P as ground truth labels to obtain g; = Z;”:l Yij»
we only have predicted probabilities for the real-
izations of (). To obtain p which is the mean of
the realizations from (), we calculate the mean
after converting each predicted probability of an
instance into approximately binary labels using
the ground-truth item-level mean rating 3; as a
reference using:

Z;l;l (1 + tanh(k . (ﬁw — g,))

I

A~/
K3

1
N 2 . n;

where the hyperbolic tangent (tanh) activation
function, with a large constant k = 10* (see Ap-
pendix A.5), serves as a relaxation to using hard-
thresholded predictions while allowing smooth
gradient flow during training.

* A1 and Ao are hyperparameters controlling the
contribution of the KL divergence and L2 reg-
ularization terms, respectively. In the experi-
ments { A1, A2} are set by grid search using cross-
validation (see Appendix A.5).

3 Related Work

Subjectivity in NLP The study of subjectivity in
NLP tasks has a long history, with early work by
Wiebe et al. (2004); Alm (2011); Pang et al. (2008).
Researchers have since differentiated between two
main sources of disagreement in annotations: ran-
dom variation and systematic disagreement (Krip-
pendorff, 2011). Systematic disagreement has been
shown to influence tasks such as part-of-speech
tagging (Plank et al., 2014), word sense disam-
biguation (Passonneau et al., 2012; Jurgens, 2013),
and co-reference resolution (Poesio and Artstein,
2005; Recasens et al., 2011). However, its impact is
particularly pronounced in controversial tasks such
as hate speech detection (Akhtar et al., 2019, 2020;
Warner and Hirschberg, 2012) and sentiment anal-
ysis (Liu et al., 2010; Kenyon-Dean et al., 2018).
Systematic disagreements among annotators
have been attributed to several factors: 72) sociocul-
tural differences, where annotators’ backgrounds,

including gender, race, age, and beliefs signifi-
cantly influence their judgments (Larimore et al.,
2021; Sap et al., 2021; Basile et al., 2021); 12) in-
stance semantic ambiguity, where ambiguity in
the text itself can lead to divergent interpretations
(Aroyo and Welty, 2013; Dumitrache, 2015; Basile
et al., 2021); and #47) annotator experience, where
prior experience with annotation tasks can shape
annotators’ perspectives (Waseem, 2016).

Recent studies have increasingly recognized the
crucial role of sociocultural contexts in subjective
tasks such as toxicity detection. For example, dis-
agreements in toxicity judgments have been ob-
served between ethnic groups (Prabhakaran et al.,
2021), genders (Homan et al., 2023), and age
groups (Luo et al., 2020). The grouping of an-
notators by demographic attributes has revealed
that judgements are often related to age, education
level, and first language (Prabhakaran et al., 2021;
Al Kuwatly et al., 2020). Furthermore, studies have
found significant differences in the annotations of
feminists, antiracist activists, and politically affili-
ated individuals from other crowd-sourced annota-
tors (Waseem, 2016; Luo et al., 2020). Perceptions
of race, in particular, vary significantly with the eth-
nicity of the annotator (Larimore et al., 2021; Sap
et al., 2021). However, it is important to note that
sociocultural descriptors alone do not fully explain
annotation behavior (Orlikowski et al., 2023).
Modeling Systematic Subjectivity We use the
term systematic subjectivity to describe subjective
disagreements that arise primarily from two com-
mon sources: %) diverse lived experiences based
on sociocultural descriptors of annotators, and i7)
the inherent ambiguity of the text or task at hand.
Although some approaches treat all disagreements
as noise and attempt to filter them out (Mokhbe-
rian et al., 2022; Hovy et al., 2013), recent research
advocates methods that explicitly incorporate sub-
jectivity into model design and evaluation criteria
(Weerasooriya et al., 2023; Davani et al., 2022;
Hayat et al., 2022; Gordon et al., 2022; Deng et al.,
2023; Gordon et al., 2021; Dumitrache et al., 2019).

Multi-label classification, an extension of single-
label classification, has been used in tasks such
as emotion and sentiment analysis (Alhuzali and
Ananiadou, 2021; Liu et al., 2023) where the text in-
stance can have more than one label. Label distribu-
tion learning, which models the distribution across
categories of labels for each text instance, has also
been applied to subjective tasks (Geng, 2016; Zhou
et al., 2016; Cheng et al., 2024). Annotator-centric



approaches have also been explored to model sub-
jectivity, e.g., Davani et al. (2022) propose a multi-
task model that predicts ratings from individual an-
notators and aggregates them to produce a final de-
cision. Similarly, Mokhberian et al. (2023) model
each annotator separately by learning annotator-
specific embeddings, which are concatenated with
text embeddings for label prediction. Although
these methods capture different aspects of subjec-
tivity, they remain agnostic to the sociocultural
backgrounds that influence annotations, limiting
their scalability to broader populations.

With the availability of toxicity datasets, which
have sociocultural annotator descriptors, recent
studies have begun incorporating them into model-
ing approaches, e.g., Fleisig et al. (2023) propose a
two-step method: first, predict individual annotator
ratings by adding demographic information from
the annotator with a text instance as input, and then
use these predictions to model toxicity perceptions
in target groups in the text item identified by the lan-
guage model. Similarly, Wan et al. (2023) predict
overall disagreement for a text instance by incor-
porating the demographic background of the entire
annotator set with text instance as input. How-
ever, these approaches do not account for learning
the toxicity distribution for all sociodemographic
groups and each text item.

The proposed subjective label distribution learn-
ing (LSLD) introduced above addresses these lim-
itations by building calibrated empirical toxicity
distributions for each text instance over the pre-
dicted probabilities of each annotator in a binary
labeling task while conditioning the predictions on
1) different perspectives of the text instance, gener-
ated by an LLM to capture semantic variation, and
1) the sociocultural descriptors of the annotator
rating the instance.

4 [Experiments

Experimental Setup Our experiments were per-
formed in server with a single NVIDIA RTX
A6000 48GB GPU. We used the DeepSeek-R1 API
as the LLM to generate human values for “safe”
and “unsafe” groups. All text encodings were done
using a pretrained sentence-BERT (all-MiniLM-
L6-v2) (Reimers and Gurevych, 2019). Model eval-
uation was performed by 5-fold cross-validation,
where each fold (20% of text items) was selected by
keeping the order of the original datasets, to avoid
performance bias and improve reproducibility.

Dataset Text Raters Feature Cultural
items peritem dim. (n) sub-groups

DICES-990 990 66 5 14

DICES-350 350 104 9 12

D3 4500 30 3 13

Table 1: Summary of dataset characteristics.

Datasets We benchmark our approach using three
datasets that are annotated for subjective tasks:
DICES-350 and DICES-990 (Aroyo et al., 2023),
which assesses toxicity in human-chatbot conver-
sations, and the D3 dataset (Davani et al., 2024a),
which evaluates offensiveness in social media posts.
These datasets were selected for their high per-item
annotator count, along with comprehensive socio-
cultural information about the annotators. Table 1
shows the number of text instances, average ratings
per item, dimensionality of the annotator feature
vectors, and the number of cultural or sociodemo-
graphic subgroups represented in all three datasets.
See Appendix A.3 for detailed descriptions of the
datasets.

4.1 Evaluation Metrics

Instance-Level AUC To evaluate the overall qual-
ity of probabilistic predictions for annotator and
text-item pairs, we use the macro-AUC score. This
metric assesses the model’s ability to discriminate
between predicted probabilities p;; on text item
x; € X by annotator a; € A relative to their bi-
nary ground-truth labels (safe vs. unsafe).

An important characteristic of our approach is

that all annotators a; € A sharing identical charac-
teristic vectors ¢; receive identical predicted prob-
abilities p;; on a text item x; € X. This design
choice inherently limits the maximum achievable
AUC in cases where annotators with identical so-
ciocultural profiles exhibit divergent labeling be-
havior. Although perfect discrimination may not
be attainable under our modeling framework, the
macro-AUC assess relative performance in proba-
bilistic predictions against alternative approaches
with or without the same limitation.
Model Calibration We introduce a rigorous cal-
ibration metric to assess the statistical alignment
between predicted empirical distributions and the
true rating distributions inspired by Kuleshov et al.
(2018). For each text instance x;, we treat the mean
of ground truth labels ¢; as an estimator of the true
probability of toxicity.

A well-calibrated model satisfies the following



property: for any confidence interval [p;, po], the
true proportion y; should fall within the associ-
ated predicted quantile interval with probability
(p2 — p1)- Specifically, a 90% confidence interval
should contain g; approximately 90% of the time.
Let F; *(p) denote the p-th quantile of the pre-
dicted distribution for the text item x;. The model
is calibrated when:

N

1 _ _ _

NZH[Fi Yp1) <5 < F7H(p2)] = p2 — prs
i=1

where: N is the total number of text items, I{-} is
the indicator function, and p; and ps are symmetric
percentiles around the median (e.g., 5% and 95%).
We evaluated calibration by: ¢) computing cover-
age rates in multiple symmetric percentile intervals
around the median (13 intervals in total starting
from 5% to 95%), ii) plotting observed vs. ex-
pected coverage, and %) estimating the slope «
and intercept § of the calibration curve using a
linear model. Note that perfect calibration occurs
when o« = 1 and 8 = 0, which indicate that pre-
dicted intervals exactly match the percentage of
empirical frequencies. Deviations in the calibra-
tion slope and intercept reveal miscalibration and
bias, respectively.
Item-level Proportion Correlation To evaluate
the alignment between predicted and true toxicity
per-item probabilities, we introduce an item-level
proportion correlation metric. For each text in-
stance z; € X, we compute:
* Predicted toxicity probability: averaging all pre-

dicted probabilities p;; for annotators a; € A
using p; = o Z‘é‘ Dii-
A =1
» Empirical toxicity probability: ground-truth pro-
portion of toxicity labels via y; = ﬁ Zg“iil Yij-
We then calculate the Pearson correlation coeffi-
cient p between {p;}Y, and {g;}, for all text
items. This metric quantifies the association be-
tween the predicted and observed probabilities of

toxicity at the text item level.

4.2 Baseline Models

Single-task This approach represents the most
common method for toxicity classification, where a
classifier is trained to predict the label for each text
instance x; € X. The model trained with binary
cross-entropy loss takes the embedding of a text
item as input and returns p(y; = 1|z;).

Multi-task (MT) The approach proposed by Da-
vani et al. (2022), addresses annotator disagreement

by training individual classifiers for each annotator
a; € A, while sharing the base text representa-
tion layers across all annotators. In this setting, the
shared representation layers are fine-tuned using all
available annotations, while the annotator-specific
classification heads are trained only on the corre-
sponding annotator’s labels. Probabilistic predic-
tions for a text item x; € X from all heads (one
per human rater), are collected for evaluation.

MT+DEMO We further extend this model by
incorporating the sociocultural information of the
annotators to account for the influence of this in-
formation on the annotation labels. For each of the
k dimensions in the feature vector of an annotator,
we find separate toxicity probabilities by aggregat-
ing the probabilistic predictions of all annotators
sharing the same feature along that dimension. For
an annotator a; with features t; = [c1, ..., cj], the
final probability is obtained as the composite of al-
ready aggregated probabilities for each dimension.
See Appendix A.4 for a detailed explanation.

IRPM The individual rating prediction module
introduced by Fleisig et al. (2023) uses both the
sociocultural information of annotator and the con-
tent of the text item through a pretrained RoOBERTa-
based module (Liu et al., 2019). This approach
combines demographic descriptors of an annotator
with the target text instance using a template-based
input format: "[¢;] [SEP] x;". The model is trained
using mean squared error loss to predict continuous
individual ratings, which in our case of binary tox-
icity prediction task can be treated as the toxicity
probability.

4.3 Results

We seek to quantify how well LSLD can predict
calibrated and accurate subjective label distribu-
tions. Table 2 presents the results based on the
metrics described in Section 4.1. The foundation
of our predicted empirical subjective distributions
lies in the probabilistic predictions p;; for each text
item x; € X and annotator a; with characteristic
vector t;, hence we start with the instance-level
AUC metric. On all datasets, LSLD either out-
performs or performs comparably to the baselines,
underscoring the effectiveness of LSLD in predict-
ing individual probabilities. Since DICES-350 is
limited in terms of the number of text items and
is a complete dataset, in the sense that all anno-
tators labeled all text items, it gives an advantage
to MT models because classification heads can be
trained with data from all annotators. ROC curves



Table 2: Performance comparison for all models and
datasets. We report means and standard deviations for
5-fold cross-validation.

Model DICES-990 DICES-350 D3
Instance level AUC
LSLD 0.74¢.01 0.65¢.01 0.680 .02
IRPM 0.710.01 0.640.01 0.620.01
MT + Demographics 0.680_01 0.650_03 0.62(]‘03
MT 0.660.01 0.610.03 0.600.00
Single Task 0.650.01 0.600.01 0.590.01
Calibration Slope
LSLD 0.990.03 1.00¢ 2 1.000.01
IRPM 0.740_07 0-500.18 0.310,10
MT + Demographics  0.32.04 0.300.06 0.160.05
MT 1.049.03 1.030.01 1.080.09
Single Task NA NA NA
Calibration Intercept
LSLD 0.000.00 0.00¢.01 0.000.01
IRPM —0.060.01 —0.030.03 0.010.00
MT + Demographics  0.000.01 —0.01p.00 —0.010.01
MT 0.080.04 0.010.02 0.020.08
Single Task NA NA NA
Item-level Proportion Correlation

LSLD 0.700.04 0.519.02 0.530.03
IRPM 0.600,07 0.39001 0.51()‘05
MT + Demographics 0.590.05 0.470.13 0.480.02
MT 0.580.02 0.430.10 0.46¢.02
Single Task 0.560,03 0.38000 0.43()‘04

for all methods on each dataset are presented in
Appendix A.6.

The calibration slope and intercept measures the
reliability of predicted toxicity distributions. While
slope larger than or less than one indicate direction
of deviations from ideal coverage, the intercept
value measures consistent bias in coverages across
percentile intervals. A calibration slope close to
one and intercept close to zero is a desirable be-
havior of well-calibrated model. Figure 3 shows
the coverage across quantiles for all models on the
DICES-990 dataset. Calibration plots for DICES-
350 and D3 datasets are shown in Appendix A.7.
Although the MT method has close to ideal cali-
bration slope, it suffers from high bias as indicated
by its calibration intercept. The variation in cali-
bration scores among methods using embeddings
for the sociocultural information about annotators
such as IRPM and MT+Demo, explain the need for
the LSLD method.

The item-level proportion correlation measures
the ability of the methods to accurately estimate the
proportion of toxicity for each text item x; € X.
This metric complements calibration by character-
izing the overall quality of predicted distribution.
While LSLD outperforms all baselines, indicating
consistent performance, MT+DEMO outperforms
others on DICES-350, which can be due to the
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Figure 3: Calibration plots for the evaluated methods on
DICES-990. Plotted points are aggregates of coverage
and shades indicate standard deviations over test folds.

advantage of fully trained classification head of
MT+DEMO on this dataset. Boxplots visualiz-
ing the predicted distributions with respect to item-
level proportions are presented in Appendix A.9.

The superior performance of MT+DEMO com-
pared to MT indicates the need for modeling the
sociocultural information about the annotators. The
weaker performance for all metrics on the D3
dataset relative to DICES-990, likely stems from its
limited annotator demographic information, which
emphasizes the need for attributes such as educa-
tion level and racial background of annotators as in
DICES-990 and DICES-350.

5 Sociocultural subgroup level Majority
Label prediction

We now examine the ability of LSLD and baselines
to predict toxicity at the sociocultural subgroup
level, with particular focus on majority-label pre-
diction for one-dimensional groups in the DICES-
990 dataset. We introduce a two-step method for
deriving majority labels from predicted empirical
distributions: 7) Interquartile Range Filtering: To
mitigate the influence of extreme predictions, we
obtain the interquartile range (IQR) of the predicted
toxicity distribution for each text item. 47) Major-
ity Label Determination: We define the aggregate
toxicity rating across text items as the decision
threshold when label judgments are evenly split
(resulting in no majority). If most probabilistic pre-
dictions within the IQR exceed this threshold, we
classify the majority label as unsafe; otherwise, it
is classified as safe.

We evaluate the performance of majority label
prediction using two metrics, the F1 score to evalu-
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Figure 4: Sociocultural subgroup level majority label prediction performance by (Left) F1 score and (Right)
Correlation. Dotted lines on both plots indicate average performance of each model across subgroups.

ate the agreement between predicted and true ma-
jority labels and Pearson correlation to quantify the
(linear) alignment between the predicted probabil-
ity of the majority label and the true proportion
of annotators selecting that label. The predicted
probability of the majority label corresponds to the
proportion of the IQR representing the predicted
majority class with respect to the threshold value.
The true proportion is computed as the fraction of
annotators who actually selected the majority label
for a given item. Figure 5 shows the F1 and corre-
lation scores for majority label prediction for the
entire annotator population, respectively.

We finally predict the majority label with respect
to each one-dimensional sociocultural group by the
same method but by taking probabilistic predic-
tions of only that one group, e.g., US (locale), with
the aggregate toxicity rating of the group now as
the threshold. Figure 4 shows the F1 score and
correlation scores for each sociocultural subgroup
described in the DICES-990 dataset. Our findings
underscore the superiority of the LSLD method in
majority label prediction at the group level.

6 Conclusion

This paper addressed the challenge posed by sys-
tematic annotator differences caused by different
sociocultural experiences and inherent text item
ambiguity in subjective labeling tasks. We pro-
pose the Learning Subjective Labeling distribution
(LSLD) model, which combines distinct human
values on a text item under consideration along

LSLD

IRPM

MT+DEMO

Multi-Task

Single Task

LSLD

IRPM

MT+DEMO

Multi-Task

Single Task

00 0l 02 03 04 05 06 07

Figure 5: F1 (Top) and correlation score (Bottom) for
majority label predictions.

with sociocultural information of a rater to get in-
dividual label probabilities, which when grouped
to those of other annotators on the same item, re-
veals the empirical distribution of the subjective
label. The predicted distributions achieve close to
ideal calibration while also improving the predic-
tions of individual label probabilities over recent
methods modeling annotator subjectivity. Through
experiments, we also show excellent performance
of LSLD when used to predict labels aggregated at
the sociocultural-group level.



7 Limitations

The proposed method is restricted to binary sub-
jective labels. While LSLD incorporates human
values underlying text items and annotators’ so-
ciocultural information, subjective judgments may
arise from factors beyond gender, race, age, ed-
ucation, or locality (e.g., unique personal experi-
ences). Consequently, fully quantifying subjectiv-
ity remains an open challenge. Moreover, socio-
cultural identities lack sharply defined boundaries,
making their complete representation difficult. For
example, diaspora cultures often blend multiple
cultural influences. Our analysis relies solely on
the sociocultural descriptors provided, and deemed
relevant, by the original dataset authors. Finally, it
remains an open question how models trained on
populations with one cultural mixture generalize to
populations with distinct cultural compositions.
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A Appendix

A.1 Prompt to Generate Contrasting Human
Values

prompt = "

You are an expert trained to analyze conversations and infer human

values. For the following conversation, provide:

1. Exactly twe human values (<5 words each) of people who would
rate the bot's final response as “safe.”

2. Exactly two human values (<5 words each) of people who would
rate the bot's final response as “unsafe.”

3. Keep each human value concise and no longer than 5 words.

Conversation:
{conversation}

Human values for "safe™ rating:
1.
2.

Human values for "unsafe" rating:
1.
2.

Figure 6: Prompt used to generate values from be-
hind DICES conversations. Note that ratings in DICES
datasets were only on final conversation turn.

A.2 LSLD Ablation Study

Table 3: Performance Metrics Across Scenarios on
DICES-990. LSLD has number of contrasting human
values behind safe and unsafe rating, n=2 and coeffi-
cient of KL divergence term in loss function, a>0.

Scenarios Metrics
Inst.-level Calib. Calib. Item-level
AUC  Slope Intercept prop. corr.
LSLD 0.76 1.00 0.00 0.73
a=0 0.74 0.89 -0.02 0.63
n=1 0.71 0.95 0.01 0.60
n=2~0 0.74 1.00 0.00 0.66

Note that in n=0 scenario, embedding of text-
item is fed as input to model. From Table 3, it can
be understood that the KL divergence term in loss
function plays crucial role in distribution calibra-
tion while cumulative embedding of n = 2 human
values behind contrasting bianry ratings improves
instance level AUC and Item-level proportion cor-
relation.

A.3 Dataset Descriptions

A3.1 DICES-990

(Aroyo et al., 2023) curated this dataset of 990
multi-turn conversations sampled from 8K adver-
sarial dialogues between humans and generative
Al chatbots (Thoppilan et al., 2022). Each con-
versation spans up to five turns, covering diverse
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topics. The final chatbot response in each dialogue
was evaluated by 60-70 raters (173 unique raters
total) for toxicity across five dimensions: harm-
ful content, unfair bias, misinformation, political
affiliation, and policy violations. Raters labeled
responses as Safe, Unsafe, or Unsure; we focus
on the binary Safe/Unsafe labels for compatibility
with LSLD framework. The dataset includes anno-
tator demographics across five dimensions: gender,
race, age, education, and locality.

A3.2 DICES-350

Also introduced by (Aroyo et al., 2023), this dataset
comprises 350 multi-turn conversations from the
same corpus as DICES-990. Each final chatbot
response was rated by 104 U.S.-based annotators
using the same toxicity criteria. Demographic an-
notations span four dimensions: gender, race, age,
and education.

A.3.3 D3 Dataset

(Davani et al., 2024a) collected 4,500 social me-
dia posts from Jigsaw-2018 and Jigsaw-2019, an-
notated for offensiveness by 4,309 participants
across 21 countries and 8 geo-cultural regions.
Posts were rated on a 5-point Likert scale, later
binarized (scores >3 labeled Offensive) by au-
thors in (Davani et al., 2024b). Beyond stan-
dard demographics (gender, age, country), the
dataset includes annotators’ morality foundations—
measured via questionnaires—across six dimen-
sions: Care, Equality, Proportionality, Authority,
Loyalty, and Purity (scored 1-5).

Deatailed table of cultural sub groups included
in LSLD evaluation is described in Table 4. Only
those groups with few annotations in the datasets
were excluded.

A.4 Evaluation example of MT+Demo Model

For example, given an annotator with character-
istic vector t; = [Man, Gen X], the model com-
putes the toxicity probability p;; by averaging
dimension-specific probabilities: p;; = %(Pr(yi =
1|z;, Man) + Pr(y; = 1|z;, Gen X)), where each
term derives from predictions of annotators shar-
ing that specific demographic feature.(Pr(y; =
1]x;, Man) is obtained by aggregating probabilistic
predictions from annotator models of males and
similarly for Gen X).



A.5 Model and Learning Details

We determined the optimal hyperparameters
through an exhaustive grid search, with the best-
performing values being:

i A= ﬁ, where n represents the number

of text items in the training set

ii. Ay = 107%

The hyperbolic tangent (tanh) activation function
employed a large constant k that produced extreme
output values (e.g., < 10 %0r>1— 10_9), which
led to numerical instability during training. To
mitigate this issue, we implemented value clamp-
ing using torch.clamp, restricting outputs to the
range [1074,1 — 1074].

In the LSLD model architecture, the dense net-
work accepts an input of size 384 + k£ X m, where
m = 10 and k corresponds to the feature dimen-
sion of the dataset. The network comprises a hid-
den layer with 20 units, followed by a single-unit
output layer with sigmoid activation.

A.6 ROC Curves
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Figure 7: ROC Curves for the evaluated methods on
DICES-990
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Figure 12: Calibration plots for the evaluated methods
on D3

A.8 Matrix Completion Problem

While LSLD method is to predict subjective distri-
bution across binary labels on unseen text items,
we also analyzed its performance when annotations
of dataset is randomly hidden and asked to predict
its probability of being one among the binary label.
This is the matrix completion / imputation problem.

Table 5: AUC Score analysis

Method AUC Score
LSLD 0.76
IRPM 0.72
MT+DEMO 0.74
MT 0.71
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Table 4: Sociocultural Subgroups Coverage in LSLD

evaluation

Dataset

Sociocultural
Subgroups

Attribute

DICES-990

Man, Woman
Asian/Asian sub-,
continent, Black/
African American,
LatinX/ Latino/
Hispanic or Spanish
Origin, White, Other
College degree,
High school

US, India

Millenial, Gen z,
Gen x+

rater_gender
rater_race

rater_education

rater_locality
rater_age

DICES-350

rater_gender
rater_race

Man, Woman
Asian/Asian sub-,
continent, Black/
African American,
LatinX/ Latino/
Hispanic or Spanish
Origin, White,
Multiracial
Millenial, Gen z,
Gen x+

High school,
College, Other

rater_age

rater_education

D3

Man, Woman

18-30, 30-50, 50+
Arab Culture

Indian cultural sphere
Latin America

North America
Oceania, Sinosphere
Sub Saharan Africa
Western Europe
rater_morale Equality, Care
(measured from proportionality, purity
questionnaires) authority, loyalty

rater_gender
rater_age
rater_region




A.9 Boxplot Visualizations of
LSLD-Predicted Text Item Distributions
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Figure 13: DICES-990 Predicted Distributions. Text items are labelled by item id as in the dataset.
10
.
L]
o [+]
o © -]
[+]
. . . °
08 o e . .
L]
i L
i .
- ~ f N
1 .
06 i
o
z i
:
€ o
04 .
L]
02 |
. ; ] I
0.0
“ s % @ R &5 gz 33§ R g5 9 AR GRS g R EE R K

Figure 14: DICES-350 Predicted Distributions. Text items are labelled by item id as in the dataset.
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This section presents the toxicity distributions
predicted by LSLM for text items across all three
datasets (DICES-990 in Figure 13, DICES-350 in
Figure 14, and D3 in Figure 15). For each dataset,
we visualize the model’s prediction distributions
through boxplots, where each text item is identified
by its original dataset ID.

The items are sorted by the absolute difference
between the median predicted toxicity and the true
toxicity proportion (derived from human annota-
tions). For each dataset, we display:

* Left panel: The 15 best-performing distribu-
tion predictions (smallest median-proportion
difference)

* Right panel: The 15 worst-performing distri-
bution predictions (largest median-proportion
difference)

The text items corresponding to these displayed
item ids are attached with supplement mateial for
reference.
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Figure 15: D3 Predicted Distributions. Text items are labelled by item id as in the dataset.
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