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Abstract

Stochastic partial differential equations (SPDEs) are the mathematical tool of
choice for modelling spatiotemporal PDE-dynamics under the influence of random-
ness. Based on the notion of mild solution of an SPDE, we introduce a novel neural
architecture to learn solution operators of PDEs with (possibly stochastic) forcing
from partially observed data. The proposed Neural SPDE model provides an exten-
sion to two popular classes of physics-inspired architectures. On the one hand, it
extends Neural CDEs and variants — continuous-time analogues of RNNs — in that
it is capable of processing incoming sequential information arriving at arbitrary
spatial resolutions. On the other hand, it extends Neural Operators — generalizations
of neural networks to model mappings between spaces of functions — in that it can
parameterize solution operators of SPDEs depending simultaneously on the initial
condition and a realization of the driving noise. By performing operations in the
spectral domain, we show how a Neural SPDE can be evaluated in two ways, either
by calling an ODE solver (emulating a spectral Galerkin scheme), or by solving
a fixed point problem. Experiments on various semilinear SPDEs, including the
stochastic Navier-Stokes equations, demonstrate how the Neural SPDE model is
capable of learning complex spatiotemporal dynamics in a resolution-invariant way,
with better accuracy and lighter training data requirements compared to alternative
models, and up to 3 orders of magnitude faster than traditional solvers.

1 Introduction

Stochastic partial differential equations (SPDEs) are the mathematical formalism used to model many
physical, biological and economic systems subject to the influence of randomness, be it intrinsic
(e.g. quantifying uncertainty) or extrinsic (e.g. modelling environmental random perturbations).
Notable examples of SPDEs include the Kardar—Parisi-Zhang (KPZ) equation for modelling random
interface growth such as the propagation of a forest fire from a burnt region to an unburnt region [12],
the Ginzburg-Landau equation describing phase transitions of ferromagnets and superconductors
near critical temperature [34], or the stochastic Navier-Stokes equations modelling the dynamics of a
turbulent fluid flow under the presence of local random fluctuations [31]. For an introduction to the
theory of SPDEs see Hairer [11]; a comprehensive textbook is Holden et al. [15].

Classical numerical approaches for solving SPDEs include finite difference methods and spectral
Galerkin methods [27] among others. To ensure accuracy and stability of numerical solutions of
complex SPDEs, computations must be carried out at high resolution using fine discretization grids,
rendering the resulting schemes computationally intractable. This limitation motivates the study of
data-driven methods that can learn solutions to differential equations from partially observed data.
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Related work There has been an increased interest in recent years to combine neural networks and
differential equations into a hybrid approach [5, 17, 37].

Neural controlled differential equations (Neural CDEs), as popularised by [3, 18, 32], are continuous-
time analogues to recurrent neural networks (RNN, GRU, LSTM etc.). The input to a Neural CDE
model is a multivariate time series interpolated into a continuous path X : [0, 7] — R%; the model
consists of a matrix-valued feedforward neural network fy : R% — R *d¢ parameterizing the
vector field of the following dynamical system (and satisfying some minimal Lipschitz regularity to
ensure existence and uniqueness of solutions)

t
2o = Lo (uo), Zt:ZO+/ fo(zs)dXs, uy = mp(2), ()
0

where £y : R% — R and 7y : R% — R% are feedforward neural networks. The output response
u : [0, T] — R% is then fed to a (possibly pathwise) loss function (mean squared, cross entropy etc.)
and trained via stochastic gradient descent in the usual way. In practice, the term “d.X;” means that
the solution z; of the equation (e.g. attention required from a doctor) can change in response to a
change of an external stream of information X} (e.g. heart rate of a patient).

Depending on the level of roughness of the control path X, the integral in eq. (1) can be interpreted
in different ways. In [18], X is assumed differentiable and is obtained in practice via cubic splines
interpolation of the original time series. In this way, the term “d.X,” can be interpreted as “X ds”
so that eq. (1) becomes an ODE of the form 2; = fy(z:)X; that can be evaluated numerically via
a call to an ODE solver of choice (Euler, Runge-Kutta, implicit, adaptive stepsize schemes etc.).
More generally, if X is of bounded variation then the integral above can be seen as a classical
Riemann-Stieltjes or Young integral [38]. Neural SDEs [19, 20, 22, 26] are a special subclass of
Neural CDEs where the control is a sample path from a d¢-dimensional Brownian motion (which is
not of bounded variation), and eq. (1) is understood via stochastic integration (It6, Stratonovich etc.).
Neural RDEs [32] allow to relax even further the regularity assumptions on X by treating the integral
using rough integration [10, 30]. In practice, Neural RDEs are particularly well suited for long time
series. This is due to the fact that the model can be evaluated via a numerical scheme from stochastic
analysis (called the log-ODE method [32]) over intervals much larger than what would be expected
given the sampling rate of the time series. However, the space complexity of the numerical solver
increases exponentially in the number of channels d, thus model complexity becomes intractable for
high dimensional time series. Despite offering many advantages for modelling temporal dynamics,
these models are not designed to process signals varying both in space and in time such as physical
fields described by SPDEs. In particular, although these models are time-resolution invariant, they
are not space-resolution invariant, and are not well suited to capture nonlinear interactions between
the various space-time points typically observed in SPDE-dynamics. Similar to CDEs, the solution
to an SPDE is characterized by an initial condition u¢ and a driving noise X. However, in the case of
CDEs, (ug, X, u;) are vectors, while in the case of SPDEs they are functions.

Neural Operators [21, 23, 24, 28] are generalizations of neural networks capable of modelling
mappings between spaces of functions and offer an attractive option for learning with spatiotemporal
data [21]. Among all kinds of Neural Operators, Fourier Neural Operators (FNOs) [25] stand out
because of their easier parametrization while demonstrating similar learning performance compared
to other Neural Operator models. However, Neural Operators generally fail to incorporate the effect
that an external (possibly random) spatiotemporal signal might have on the system they describe. In
the case of SPDEs, the external signal is indeed random (e.g. sample from a Wiener process) and its
presence leads to new phenomena, both at the mathematical and the physical level, often describing
more complex and realistic dynamics than the ones arising from deterministic PDEs.

Contributions To overcome the above limitations faced by Neural CDEs and Neural Operators,
we introduce the neural stochastic partial differential equation (Neural SPDE) model, capable of
learning solution operators of SPDEs from partially observed data by processing, continuously in
time and space, incoming sequential information arriving at an arbitrary resolution. We propose
two separate algorithms to evaluate our model: the first reduces the Neural SPDE to a system of
ODEs in Fourier space, which can then be solved numerically by means of any ODE solver of
choice (emulating a spectral Galerkin scheme); the second rewrites the Neural SPDE as a fixed point
problem, which is solved via classical root-finding schemes. For both choices of evaluation, the
Neural SPDE model inherits memory-efficient backpropagation capabilities provided by existing



adjoint-based and implicit-differentiation-based methods respectively. Finally, we perform extensive
experiments on various semilinear SPDEs, including the stochastic Ginzburg-Landau, Korteweg-De
Vries, Navier-Stokes equations. The empirical results illustrate several useful aspects of our model:
1) it is space and time resolution-invariant, meaning that even if trained on a lower resolution it can
be directly evaluated on a higher resolution; 2) it requires a lower amount of training data to achieve
similar or better performance compared to alternative models; 3) its evaluation is up to 3 orders of
magnitude faster than traditional numerical solvers.

The outline of the paper is as follows: in Sec. 2 we provide a brief introduction to SPDEs which will
help us to define our Neural SPDE model in Sec. 3, followed by numerical experiments in Sec. 4.
In Appendix A, we provide an overview of the computational aspects of SPDEs used to design the
model and solve SPDEs numerically. Additional experiments can be found in Appendix B.

2 Background on SPDEs

LetT > 0 and d,d,,ds € N. Let D C R? be a bounded domain. Let H,, = {f : D — R%} and
He = {f : D — R} be two Hilbert spaces of functions from D to R+ and R respectively. We
consider a large class of SPDEs of the following type

dut = ([:Uf + F(ut)) dt + G(Ut)th, (2)

where W is either an infinite dimensional QQ-Wiener process [27, Def. 10.6] or a cylindrical Wiener
process [11, Def. 3.54] with values in H¢, F' : H, — H, and G : H, — L(H¢, H,,) are two
continuous operators, L(H¢, ,,) is the space of bounded linear operators from H¢ to H,, and L is a
linear differential operator generating a semigroup' e** : H,, — H,,. For further details on Wiener
processes see Appendix A.2, and for a primer on semigroup theory see Hairer [11, Section 4]. A
function w : [0, 7] — H,, is said to be a mild solution of the SPDE (2) if for any ¢ € [0, T it satisfies

t t
up = eFug + / e(tfs)cF(us)ds + / e(tfs)LG(us)dVVS,
0 0

where the second integral is a stochastic integral interpreted in the 1t6 sense [11, Def. 3.57]. Thus, an
SPDE can be informally thought of as an SDE with values in the functional space H,, and driven by
an infinite dimensional Brownian motion W. Assuming global Lipschitz regularity on F' and G, a
mild solution u to (2) exists and is unique [11, Thm. 6.4], at least for short times.

We follow Friz and Hairer [9] and consider a regularization W€ = ¢ « W of the driving noise W
with a mollifier?, where * means convolution. As done in Kidger et al. [18] for Neural CDEs, we can
rewrite the mild solution of the mollified version of eq. (2) as the following randomly forced PDE

t
up = eFuyg —|—/ e(tfs)ﬁHg(us)ds, He(w) == F(uw) + G(u)éy, 3)
0

where ¢ = W€, H,, = L*(D,R%) and H¢ = L?(D,R%). We will refer to & as white noise if W is
a cylindrical Wiener process and as coloured noise if W is a ()-Wiener process.

In view of machine learning applications, one should think of W as a continuous space-time embed-
ding of an underlying spatiotemporal data stream. In this paper we are only going to consider W to
be a sample path from a Wiener process, but we emphasise that the Neural SPDE model extends, in
principle, beyond the scope of SPDEs and could be used for example to process videos in computer
vision applications, which we leave as future work. Next we introduce the Neural SPDE model.

'A strongly continuous semigroup S on H, is a family of bounded linear operators S =
{8t : Hu = Hu},~o With the properties that: 1) So = Id, the identity operator on H., 2) St 0 S5 = S, for
any s,¢ > 0, and 3) the function ¢ — S;u is continuous from [0,T] to Hu, for any u € H..

2 A mollifier ¢ is a smooth function on R%*! that is: 1) compactly supported, 2) fRd+1 p(z)dz =1, and
3) lime—s0 () = lime0 Y p(x/€) = §(x), where § is the Diract delta function and the limit must be
understood in the space of Schwartz distributions.
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Figure 1: A signal £ and an initial condition ug are observed on a, possibly irregular, spatiotemporal grid. ug is
lifted to 2o living in a latent space. The solution of an SPDE in latent space driven by the signal £ and with initial
condition 2o is obtained using either a fixed point solver or an ODE solver. The solution z is then projected back
to the physical space by a linear readout. The output signal u is then fed to a pathwise loss function.

3 Neural SPDEs

For a large class of differential operators £, the action of the semigroup e** can be written as an
integral against a kernel function K; : D x D — R%*%u such that

(¢£h)(x) = /D Ko(z, y)h(y) e (dy),

for any h € H,, any x € D and t € [0, T, and where 1, is a Borel measure on D. As in Kovachki
et al. [21], here we take p; to be the Lebesgue measure on R? but other choices can be made, for
example to incorporate prior information. We assume that /C is stationary so that eq. (3) can be
rewritten in terms of the spatial convolution *

t
uy = Ky * ug +/ Ki—s * He(us)ds.
0

For a large class of SPDEs of the form (2), both F' and G are local operators acting on a function
h € H,. In other words, the evaluations F'(h)(z) and G(h)(x) at any point 2 € D only depend h(x),
and not on the evaluation h(y) at some other point y € D in the neighbourhood of z.

3.1 The model

Let H;, = L?(D,R%) for some latent space dimension dj, > d,,. Let
Ly :R% s R Fp:R& 5 R Gy: R — RI¥de I, : R — R
be four feedforward neural networks. For any differentiable control £ : [0, 7] — H, define the map
Hy ¢ : H, — My so that forany h € H,, x € D, t € [0,T]
Hy¢(h)(x) = Fy(h(x)) + Go(h(x))&e,
A Neural SPDE is defined as follows

zo(x) = Lo(up(x)), 2zt =Ki* 2o +/0 Ki—sx Hoe(zs)ds, ui(zr) =p(ze(x)). (4

We note that globally Lipschitz conditions can be imposed by using ReLU or tanh activation functions
in the neural networks Fy and Gy. In secs. 3.2 and 3.3 we propose two distinct algorithms to evaluate
the Neural SPDE model (4) which are based on two different parameterization of the kernel /.



3.2 Evaluating the model by solving a system of ODEs

Levereraging the convolution theorem, we can rewrite the integral in eq. (4) as follows
t
2t = ‘/.'.71 (f(Kt)f(Zo) + / f(,ct_g)f(H07£(Zg))d5> ,
0

where F, F~! are the d-dimensional Fourier transform (FT) and its inverse (see Def. A.1). If one
further assumes that £ is a polynomial differential operator, it can be shown that there exists a map
A C4 — Ca>¥dn such that F(K;)(y) = et (see appendix B.1 for a derivation). It follows that

¢

2= F 1 (etA}'(zo) + / e(t_S)A]-'(Hgyg(zs))ds) = ]—'_1(1),5),
0

where v; : C? — C?* is the solution of the following ODE

v =0+ / Avg + F(Hye(F~ (v,)))-

Hence, z; can be obtained by applying the inverse FT to the output of an ODE solver on [0, ¢] with
initial condition F (o), vector field Wy ¢ := A+ Fo Hge o F 1, ie.
z ~ F ' (ODESolve(F(20), ¥, [0, ]))

This approach can naturally be seen as a “neural version” of the classical spectral Galerkin method
for SPDEs as described in Appendix A.3.

We note that this numerical evaluation of the Neural SPDE model (4) allows to inherit memory-
efficient adjoint-based backpropagation capabilities as in the evaluation of a Neural CDE. For further
details on adjoint-based backpropagation we refer the reader to Chen et al. [5], Kidger [17].

3.3 Evaluating the model by solving a fixed point problem

In our second approach of model evaluation, we make use of three different versions of the FT: the
time-only FT F; and its inverse F; ! the space-only FT F and its inverse F; !, and the space-time
FT Fg41 and its inverse F +11 (see Def. A.1 for details). Denoting by * the space-time convolution,
the integral in eq. (4) can be rewritten as

2 = Ky % zo + (]C * 120H9,5(2~))t R

where 1> is the indicator function restricting the temporal domain to the positive real line. Using
again the convolution theorem we obtain

2 = F; (Fa(Ki)Fa(z0)) + Frly (Farr (K) Fagr (1s0Hpe(2.)),

where all multiplications are matrix-vector multiplications. Using the trick introduced in [25], one
can parameterize F411 (KC)(y) directly in Fourier space as a complex tensor B, so that the solution of
eq. (4) can be obtained by solving the fixed point problem z = ®g ¢(z) with

O e(2) = Fy ' (FrH(B)iFa(20)) + Fuiy (BFas1(1x0Hoe(2)) ),

and where we used the fact that 74 (K;) = F; *(F441(K));. This can be solved numerically using
classical root-finding schemes (e.g. by Picard’s iteration)

z = FixedPointSolve(zo, Py ¢).

Analogously to adjoint-based backpropagation for the evaluation approach mentioned in Sec. 3.2,
there is a mechanism that leverages the implicit function theorem allowing to backpropagate through
the operations of a fixed point solver in a memory-efficient way. See Bai et al. [2] for further details.

We note that the FTs are numerically approximated using the discrete Fourier transform (DFT) and
selecting a maximum number of frequency modes * (see Appendix A.1 for details).

3The DFT approximates the Fourier series expansion truncated at a maximum number of modes. This
allows to specify the shape of the two complex tensors A (bl x ... x k&, x dy x dp) in Sec. 3.2 and B
(kL % ... x k%Y x dj x dp) in Sec. 3.3. The ki, are treated as hyperparameters of the model.



3.4 Space-time resolution-invariance

As depicted in Fig. 1, the input to a Neural SPDE corresponds to a (possibly irregularly sampled)
time-indexed sequence of (possibly partially-observed) spatial observations recorded on a space-time
grid. The data is then interpolated into a continuous spatiotemporal signal £ and initial condition
ug. By construction, a Neural SPDE operates in continuous time and space on the tuple of functions
(up, &) and produces a spatiotemporal response u, which is also continuous in space and time; the
function u can then be evaluated at an arbitrary space-time resolution, possibly different from the
one used during training. In the next section we will demonstrate empirically that even if trained
on a coarser resolution, a Neural SPDE can be evaluated on a finer resolution without sacrificing
performance, a property known as zero-shot super-resolution.

3.5 Comparison of the two evaluation methods

Number of parameters For a fixed dimension d;, of the latent space, the majority of trainable
parameters in the ODE parameterization lies in the complex tensor A, which consists of kL, ...k&, d?
parameters, where each k¢ is the maximum number of selected frequencies in the Fourier domain.
Regarding the Fixed Point parameterization, the bulk of the parameters is in the complex tensor B,
which consists of kL,,...k&E1d2, where the additional frequency is due to the fact that we are taking
the FFT in space-time rather than just in space as done in the ODE Solver approach. Hence, the
latter would in principle have the advantage of using a lower number of parameters than the former;
however, to achieve similar performance, we found that the dimensionality of the latent space has to

be roughly 20 times higher, which offsets the aforementioned advantage.

Time complexities The time complexity of the ODE Solver approach is O(N N, log(N,.)), where
N is the number of time steps taken by the ODE solver and [V, is the number of points on the spatial
grid, while the complexity of the Fixed Point approach is O(I N, N¢(log(N,) + log(N¢))) where
I is the number of Picard iterations and /V; is the number of points on the temporal grid. In our
experiments we choose N; =~ N, and I N; =~ N, making the two complexities comparable.

Speed of computation We found that the ODE approach is approximately 10 times slower than
the Fixed Point approach. We believe this is largely an implementation issue of the torchdiffeq
library, while the FFT is a highly optimised transform in Pytorch.

3.6 Considerations about convergence

We follow Friz and Hairer [9] and consider a regularization W€ = ¢+ W of the driving noise W with
a compactly supported smooth mollifier ¢°. It is a classical result (Wong-Zakai [35]) from rough path
theory [10, 30] that, for the case of SDEs, the sequence of random ODEs driven by the mollification
of Brownian motion converges in probability to a limiting process that does not depend on the choice
of mollifier and agrees with the Stratonovich solution of the SDE. Furthermore, the solution map
(up, W) — w is continuous in an appropriate rough path topology. This result nicely extends to
the setting of SPDEs driven by a finite dimensional noise [9, Thm. 1.3]: if ¢ denotes the random
PDE solutions driven by W€dt (instead of odW}), then u¢ converges in probability to a limiting
process corresponding to the Stratonovich solution of the SPDE. In our setting though, the driving
noise is infinite dimensional and the resulting integral cannot be interpreted in the Stratonovich sense
because otherwise the corresponding Itd-Stratonovich correction would be infinite. Nonetheless,
Hairer and Pardoux [14, Thm. 1.1] show that, in the case of the heat operator and under appropriate
renormalization and drift correction, the random PDE solution u¢ converges in probability to the 1t6
solution of the SPDE, and that the solution map is continuous in an appropriate regularity structures
topology. We note that extending this result to a generic differential operators would require a
similarly rigorous proof, which goes beyond the scope of this article and that we leave as future work.

4 Experiments

In this section, we run experiments on three semilinear SPDEs: the stochastic Ginzburg-Landau
equation in 4.1, the stochastic Korteweg-De Vries equation in 4.2, and the stochastic Navier-Stokes
equations in 4.3. We note that although the assumption of globally Lipschitz vector fields might be



violated for the following SPDEs, well-posedness (i.e. existence of global solutions) can be shown
using equation-specific arguments. We consider three supervised operator-learning settings:

* ug — u, assuming the noise & is not observed;
* ¢ — u, assuming the noise ¢ is observed, but the initial condition uy is fixed across samples;

* (up, &) — u, assuming the noise & is observed and ug changes across samples.

We note that learning the operator ug — u of an SPDE without observing the driving noise &
unavoidably yields poor results for all considered models as only partial information about the
system is provided as input. However, we find it informative to include the performances obtained
in this setting, as this provides a sanity check that emphasizes the importance of the noise in all the
experiments we consider in this paper. Moreover, the ability to process the initial condition ug on its
own (in absence of noise) testifies that Neural SPDEs can also be used to learn deterministic PDEs.
We provide an example on the deterministic Navier-Stokes equations in Appendix B.5.

Neural CDE, Neural RDE, FNO and DeepONet [28, 29] will be the main benchmark models.
In addition, we also propose an additional baseline Neural CDE-FNO, which is a hybrid model
consisting of a Neural CDE where the drift is modelled by an FNO and the diffusion by a feedforward
neural network. The motivation for using a FNO to represent the drift comes from the universal
approximation properties of FNOs studied in Kovachki et al. [21, Thm. 4].

An interesting line of work to tackle SPDE-learning is provided in [7, 16]. The authors construct a
set of features from the pair (ug, &) following the definition of a model from the theory of regularity
structures [13]. They then perform linear [7] and nonlinear [16] regression from these features to
the solution of the SPDE at a single time point. Therefore, these models would have to be retrained
for any new prediction. In addition, both [7, 16] assume knowledge of the differential operator £
governing the dynamics, while Neural SPDE learns a representation of £ via the parametrization of
the associated kernel. For these reasons these recent models are not included in our benchmark.

For all the experiments, the loss function is the relative pathwise L? error. The hyper-parameters
for all the models are selected by grid-search (see Appendix B.2 for further experimental details).
Experiments are run on a Tesla P100 NVIDIA GPU. The code for the experiments is provided in the
supplementary material. Additional experiments may be found in Appendix B.

4.1 Stochastic Ginzburg-Landau equation
We start with the stochastic Ginzburg-Landau equation, a reaction diffusion equation in 1D given by
Opu — Au = 3u7u3+§7 u(t,0) =u(t, 1), u(0,z) =wuo(z), (t,z)€[0,T]x][0,1].

This equation is also known as the Allen-Cahn equation in 1-dimension and is used for modeling
various physical phenomena like superconductivity [34]. Here £ denotes space-time white noise with
sample paths generated using classical sampling schemes for Wiener processes detailed in A.2.

Table 1: Ginzburg-Landau. Relative L2 error on the test set. x indicates that the model is not applicable.

N =1000 N = 10000
Model
upr—u E—u (u,é)—u|u—u E—=u (u,f) —u

NCDE X 0.112 0.127 X 0.056 0.072
NRDE X 0.129 0.150 X 0.070 0.083
NCDE-FNO X 0.071 0.066 X 0.066 0.069
DeepONet 0.130 0.126 X 0.126 0.061 X
FNO 0.128 0.032 X 0.126 0.027 X
NSPDE (Ours) 0.128 0.009 0.012 ‘ 0.126 0.006 0.006

We consider two data-regimes: a low data regime where the total number of training observations
is N = 1000, and a large data regime where N = 10000. In both cases, the response paths are
generated by solving the SPDE along each sample path of the noise ¢ using a finite difference



scheme described in Appendix A.3 using 128 evenly distanced points in space and time and step size
At = 1073, Following the same setup as in Chevyreyv et al. [7, eq. (3.6)], we solve the SPDE until
T = 0.05 resulting in 50 time points . We choose as initial condition ug(z) = z(1 —z) + kn(x), with
n(x) = ag + 22217010 ar/(1 + |k|?) sin (kwz) where a, ~ N(0,1). We take £ = 0 and k = 0.1 to
generate a dataset where the initial data is either fixed or varies across samples. We provide extra
experiments on this SPDE for larger time horizons 7" and multiplicative forcing in Appendix B.3. We
report the results in Table 1. The Neural SPDE model (NSPDE) yields the lowest relative error for
all tasks, reaching one order of magnitude improvement on the main task (ug, £) — wu in the large
data regime compared to all the applicable benchmark models (NCDE, NRDE, NCDE-FNO). In all
settings, even with a limited amount of training samples (N = 1000), NSPDE achieves ~ 1% error
rate, and marginally improves to < 1% error when N = 10 000.

4.2 Stochastic Korteweg—De Vries equation

Next, we consider the stochastic Korteweg—De Vries (KdV) equation, a higher order SPDE given by
Opu + y03u = 6udyu + &, u(t,0) =u(t,1), u(0,z)=wuo(z), (¢tx)€](0,T]x][0,1].

This equation is used to describe the propagation of nonlinear waves at the surface of a fluid subject
to random perturbations (another wave equation is studied in Appendix B.4). We refer the reader
to Wazwaz [36] for an overview on the KdV equation and its relations to solitary waves. The
stochastic forcing is given by £ = W for W being a partial sum approximation of a Q-Wiener process
as per Example 10.8 in Lord et al. [27] with A\; ~ j=57¢ and ¢;(z) = sin (j7z) (see eq. (6) in
Appendix A.2). Taking small ¢ > 0 guarantees that W, is twice differentiable in space for every
t > 0. To generate the datasets, we solve the SPDE with v = 0.1 until 7' = 0.5.

Table 2: Stochastic KdV. Relative L2 error on the test set. 1he stochastic forcing is simulated using

The symbol x indicates that the model is not applicable. 128 evenly distanced points in space and a
time step Ats = 1073, We then approxi-

(@ N =1000and T = 0.5. mate realizations of the solution of the KAV

equation using a time step At = 10~2 un-

Model upu Eu (uw,§) = u T = 0.5, Here, the initial condition
NCDE X 0.464 0.466 is given by uo(z) = sin(2mz) + rn(),
NRDE X 0.497 0.503 where 7) is defined as in Sec. 4.1. Similarly
NCDE-FNO X 0.126 0.259 to Sec. 4.1 we either take xk =0 orx =1
DeepONet 0.874 0.235 X to generate datasets where the initial condi-
FNO 0.835 0.079 X tion is either fixed or varies across samples.

Each dataset consists of NV = 1000 train-
ing observations. As reported in Table 2a,
Neural SPDEs outperforms the second best

NSPDE (Ours)  0.832 0.004 0.008

(b) N=1000and T = 1. model FNO by a full order of magnitude in

the task £ — u and the second best model

Model u—u E—=u (ug,é)—u NCDE-FNO by almost two orders of mag-
ENO 0913 0.112 N nitude in the task (ug,&) — u. We also
perform the same tasks for a larger time

NSPDE (Ours)  0.904  0.009 0.012 horizon T' = 1 and report the results of a

comparison against FNO in Table 2b.

(c) Subsampling (N = 1000 and 7" = 0.5).

Partial observations Neural SPDEs are
Subsampling rates E—u (up,§) — u  able to process signals that are irregularly

Time 0% Space: 0% 0004 0008 L R O ations, Vet the

Time : 10% Space : 0%  0.076 0.059 C o

. : ability of a model to process irregular data
Time : 0%  Space: 50% 0.005 0.008 does not guarantee its robustness when

some observations are dropped. Robust-
ness can only be guaranteed if the signal is regular enough so that replacing dropped observations by
interpolation results in a new signal that is close, in some suitable norm, to the original signal. To
illustrate this point, we run two additional experiments where we drop uniformly at random 1) 10% of
the data in time and 2) 50% of the data in space. As it can be observed in Table 2c, the performance
of Neural SPDE remains roughly unchanged when data is dropped in space but decreases when data




is dropped in time, which is to be expected since the driving signal is a Q-Wiener process, which is
rough in time, but smoother in space. We also note that to ensure a good approximation of the FT by
the FFT, the interpolation must translate the irregular data to a (possibly finer) regular grid.

4.3 Stochastic Navier-Stokes equations in 2D

Finally, we consider the vorticity form of the Navier-Stokes equations for an incompressible flow
0w —vAw = —u - Vw + f + 0§, ’IU(O,{E) = ’LUo(x), (t,l‘) € [07T] X [07 1]27 )

where u is the unique divergence free (V - u = 0) velocity field such that w = V x u. These
equations describe the motion of an incompressible fluid with viscosity v subject to external forces
[34]. The deterministic forcing f, defined as in Li et al. [25], is a function of space only. The
stochastic forcing ¢ is given by ¢ = W for W being a Q-Wiener process which is colored in
space and rescaled by o = 0.05 (see Appendix A.2). The initial condition is generated according to
wo ~ N(0,3%/2(—A+491)~3) with periodic boundary conditions. The viscosity is set to v = 1072,

t=500 t=1625 t=2750 t=3875 t=5000

.
)

ot
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Figure 2: Top panel: Solution of the vorticity equation for one realisation of the stochastic forcing between
the 500" and the 5 000" time steps. Bottom panel: Predictions with the Neural SPDE model given the initial
condition at the 500" time step and the forcing between the 500" and the 5 000™ time steps. The model is
trained on a 16 x 16 mesh and evaluated on a 64 x 64 mesh.

For each realization of the Q-Wiener process (sampled according to the scheme in Appendix A.2)
we solve eq. (5) with a pseudo-spectral solver described in Appendix A.3, where time is advanced
with a Crank—Nicolson update. We solve the SPDE on a 64 x 64 mesh in space and use a time
step of size 1073, For the tasks 1 — v and ¢ — u, we generate the datasets by solving the SPDE
up to time 7" = 1 and downsample the trajectories by a factor of 10 in time (resulting in 100 time
steps) and 4 in space (resulting in a 16 X 16 spatial resolution). The number of training samples is
N = 1000. To generate the training set for the task (ug, &) — u, we generate 10 long trajectories of
15000 steps each up to time 1" = 15. We partition each trajectory into consecutive sub-trajectories of
500 time-steps using a rolling window. This yields a total of 2 000 input-output pairs. We split the
data into shorter sequences of 500 time steps so that one batch fits in memory of the used GPU.

As shown in Table 3, Neural SPDEs

Table 3: Stochastic Navier-Stokes. Relative L2 error on the ~Marginally outperforms FNO on the task
test set. The symbol x indicates that the model is not applica- & = , but with a significantly larger gap

ble, and - indicates that the model does not fit in memory. on the task (uo,§) ~— u from the sec-
ond best model NCDE-FNO. Fig. 2 indi-

Model ugr—u E—u (ug, &) = u cates that our model is capable of zero-shot
super-resolution in space-time, achieving

NCDE X 0.366 0.843 good performance even when evaluated on
NRDE X N ) a larger time horizon and on an upsam-
NCDE-FNO X 0.326 0.178 pled spatial grid. Finally, we report in
DeepONet 0.432 0.348 X Table 4 some run time statistics indicat-
FNO 0.188 0.039 X ing that NSPDEs can be up to 3 orders of
NSPDE (Ours)  0.155 0.034 0.049 magnitude faster than traditional numerical

solvers.



5 Conclusion

We introduced Neural SPDEs, a model capable of learning solu- Tgaple 4: Ratio of the inference time of
tion operators of PDEs with (possibly stochastic) forcing from  (he trained NSPDE over the runtime of
partially observed data. Our model provides an extension to  (he numerical solver. We use the same
two classes of physics-inspired models. It extends Neural CDEs  gpatiotemporal discretization for both
in that it is resolution-invariant both in space and in time, and  NSPDE and the numerical solver.

it extends Neural Operators as it can be used to learn solution
operators of SPDEs depending simultaneously on the initial  Dataset Speedup
condition and driving noise. We performed extensive experi-

ments illustrating how the model achieves superior performance ~ Cinzburg-Landau S9x
while requiring a lower amount of training data compared to ~ Korteweg-De Vries  80x
Navier-Stokes 300x

other models, and its evaluation is up to 3 orders of magnitude
faster than traditional numerical solvers.

Limitations and future work Similarly to other neural operator models, parameterising the kernel
in Fourier space is by no means the only available option; other parameterisations could mitigate
some of the disadvantages of the FFT (irregular grids, aliasing effect ...), see for example [23]. A
question we leave to future work is how to construct a discrepancy between probability measures
supported on spatiotemporal signals, generalizing for example the signature kernel MMD in [33].
Neural SPDEs paired with such discrepancy would allow the design of new generative models for
spatiotemporal signals. Another research direction will be to assess whether Neural SPDEs can be
used in computer vision to process videos at arbitrary resolution.
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