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ABSTRACT

Improving social welfare is a complex challenge requiring policymakers to op-
timize a welfare objective across multiple time horizons. Examining the impact
of policies across different time scales may lead to differing conclusions about
their efficacy. We study this problem from the perspective of sequential decision
making focusing on the long-term dynamics of two popular policy frameworks:
a Rawlsian policy, which prioritizes individuals at greatest need, and a utilitarian
policy, which maximizes immediate welfare gains. Researchers consider these
policies to be at odds: They assume that Rawlsian polices come at the cost of
reducing the average social welfare, which utilitarian policies directly optimize.
While this tradeoff is apparent in the short run, we ask whether the same holds
over time. In our model the decision maker can intervene on individuals to im-
prove their welfare, which otherwise stochastically decays absent intervention.
Under reasonable assumptions, we show that Rawlsian policies outperform an
idealized utilitarian approach in the long run, even when they are suboptimal in
the short run. We characterize the exact conditions under which Rawlsian policies
can outperform utilitarian policies. We illustrate our theoretical results through
simulations, noting that exclusively looking at the short-term effect of policies
can lead to misleading conclusions about their efficacy; the true effect of even
well-studied policies may only be evident on a long time horizon.

1 INTRODUCTION

An important application of sequential decision making is the problem of promoting long-run social
welfare through a sequence of targeted interventions in a population. Policies for this problem face
a two-fold challenge. On the one hand, they must be effective at optimizing the long-term objective.
On the other hand, they must appeal to the political and normative expectations of policy makers. In
particular, simple policies supported by established moral and political arguments are desirable.

Two families of policies have been particularly influential in the context of Western welfare pro-
grams. One targets individuals of largest immediate welfare gain. The other targets those most
seriously in need. While the former derives from utilitarian moral principles, the latter is associ-
ated with Rawl’s theory of justice. Many scholars, however, have criticized Rawlsian policy for its
presumed failure to maximize social welfare.

Indeed, there is no obvious reason why allocating resources to those of lowest welfare should also
maximize average welfare in the long run. In this work, we study a stochastic dynamic model
of long-term welfare in a population. Surprisingly, under reasonable assumptions on the welfare
dynamics, Rawlsian policy turns out to outperform an idealized utilitarian policy that chooses the
individual of largest treatment effect at each step. This is the case even though the Rawlsian policy
is suboptimal on a short-term horizon.

Although our motivation is social welfare, our results hold a broader lesson for sequential decision
making. Simple policies can be highly effective, but their long-run efficiency may not be apparent
on a short time horizon.
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1.1 OUR CONTRIBUTIONS

We propose a multi-agent stochastic dynamical model to describe long-run welfare in a population
of individuals. Our model draws from classical economic theory of industrial project management,
extending so-called ‘attention allocation policies’ (Radner & Rothschild, 1975) into social policies.

In our model, each individual i has a welfare level Ui(t) at each timestep t. At each timestep,
a social planner allocates an intervention to one of N agents using some policy π. The welfare
values evolve according to a stochastic dynamical system. Absent an intervention, an individual’s
welfare decays in expectation according to a function gi(Ui(t)) > 0. When the social planner
allocates an intervention to an individual, however, the individual’s welfare increases in expectation
by fi(Ui(t)) > 0. We are interested in comparing Rawlsian and utilitarian policies based on the
long-term social welfare they achieve, i.e. the asymptotic individual welfare increase, defined as
lim
t→∞

(Ui(t)− Ui(0))/t, averaged over all individuals.

We make two substantive assumptions about welfare dynamics. The well-known Matthew ef-
fect (Merton, 1968; Rigney, 2010), or “rich-get-richer” while “poor-get-poorer” dynamic, suggests
that inequality amplifies over time. We capture this effect by assuming that the return function fi(·)
is increasing with welfare, while the decay function gi(·) decreases with welfare. The other as-
sumption is a uniform boundedness assumption: the bounds of the return on intervention and decay
functions are the same for all individuals. In other words, no individual can achieve a highest/lowest
possible level of return or decay that is much higher or much lower than anyone else.

Under these assumptions, we find a sufficient condition for comparing policies. This condition states
that a policy can, in principle, avoid the decay of any individual’s welfare below 0. We call this a
survival condition and note that it rests on the functional form and bounds of the return and decay
functions. Informally, our main result shows:

Under the survival condition, Matthew effect, and uniform boundedness, a Rawl-
sian policy will achieve better long-term social welfare than a utilitarian policy
almost surely.

We complement this result by characterizing a condition in which the reverse is true: under a so-
called “ruin condition” (when a policy cannot prevent an individual’s welfare decay unboundedly),
a utilitarian policy will achieve better long-term social welfare than a Rawlsian policy almost surely.

To prove our results, we present a series of theoretical results that characterize in closed form the rate
of growth of individual welfare under Rawlsian and utilitarian policies (Sections 3 and 4). Our proof
extends the elegant argument of Radner & Rothschild (1975), who studied a fully homogeneous case
in which the return and decay functions are constant terms. This generalization in turn requires a
non-trivial departure from the original proof including a variant of Lundberg’s classical inequality
for submartingale processes. The proof may be of independent interest for similar problems arising
in sequential decision making and reinforcement learning.

We illustrate our theoretical results by simulating our model with initial conditions drawn from real
data from the Survey of Income and Program Participation (SIPP) of the U.S. Census Bureau in
Section 5. We see a delayed effect of a Rawlsian policy, noting that it obtains lower social welfare
in the short-term, yet quickly converges to a higher social welfare value than the utilitarian policy.
Even when the functions fi, gi violate the uniform boundedness assumption, we see that a Rawlsian
policy still achieves better long-term social welfare than utilitarian policies in a variety of cases. We
highlight limitations of our work and directions for future study in Section 6.

1.2 RELATED WORK

Welfare-based social policies have a long history in economics research (Sen, 1979; Kaplow &
Shavell, 2000; Adler, 2011). Although Rawlsian principles are based on distributive justice and
egalitarian goals (Harsanyi, 1975; Blau & Abramovitz, 2010), debates remain regarding their effi-
ciency as compared to utilitarian policies (Arrow, 1973; Sen, 1976). The direct comparison between
Rawlsian and utilitarian policies generally remains an open area of research, with some empirical
and model-based comparisons made in the context of optimal taxation policies (Atkinson, 1995) and
income inequality (Mongin & Pivato, 2021).
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We build on the model proposed by Radner & Rothschild (1975) in the context of industrial project
management, which analyzes the behavior of the system under different attention allocation mech-
anisms. We generalize and re-purpose their model by equipping it with various functional forms
of the return and decay functions that capture societal behaviors and analyzing several additional
policies. Our modeling choices include the Matthew effect (Merton, 1968): individuals with higher
level of welfare may benefit the most from interventions (“rich-get-richer”), whereas individuals
with low wealth experience more severe income shocks absent any interventions from the social
planner (“poor-get-poorer”). Such effects have been documented in the context of economic in-
equality (Rigney, 2010; Stiglitz, 2012) and optimal taxation policy for reducing societal inequal-
ity (Atkinson, 2015).

Closely related to our work are recent modeling frameworks for wealth fluctuations and policy de-
sign. Two recent papers develop algorithms for selecting the optimal candidates for intervening,
subject to different objectives: Abebe et al. (2020) analyze two policy objectives in a population
that undergoes income shocks and proposes algorithms for allocating subsidies optimally; their ob-
jectives aim to minimize the probability of ruin for any given individual. Arunachaleswaran et al.
(2022) analyze the theoretical complexity and give approximation algorithms for the optimal selec-
tion of candidates under a social welfare and a Rawlsian objective, considering a transition matrix
of welfare states. In addition, Heidari & Kleinberg (2021) study the optimal policy for allocating
interventions in a population with two welfare states (advantaged and disadvantaged), over a finite
time horizon. Acharya et al. (2023) study the effect interventions in a welfare-based dynamic sys-
tem with feedback loops in societal inequality. Their interventions include allocating subsidies to
those among most in need, without a comparison between different types of policies on the social
welfare. In contrast, we study the effect of different policies in the long-run, formulating a sufficient
condition for a Rawlsian policy to achieve better welfare than a utilitarian policy.

A related line of work focuses on reinforcement learning algorithms for deriving optimal policies. In
particular, Zheng et al. (2020) proposes a framework for a integrating AI into two-level optimization
problem in the context of optimal taxation policy, with subsequent work improving the generality of
the model (Curry et al., 2023). Offline and online algorithms have been proposed for finding optimal
policies with fairness considerations (Zimmer et al., 2021; Zhou, 2024) as well as in contexts with
strategic agents (Liu et al., 2022).

Finally, the problem of allocating resources through objectives such as a maximin rule includes
lines of work in fair division (Procaccia & Wang, 2014) as well as machine learning, often as a
constraint in a larger optimization problem (Binns, 2018; Heidari et al., 2019). Other works have
studied Rawlsian principles under a finite time horizon (Dwork et al., 2012; Zafar et al., 2017; Diana
et al., 2021) or as a static optimization problem (Chen & Hooker, 2020; Stark et al., 2014). Some
works have studied the long-term effect of fair algorithms in the context of hiring (Hu & Chen,
2018) and resource-allocation (Liu et al., 2018). Kube et al. (2019) and Azizi et al. (2018) offer
data-driven approaches for optimal assigning subsidies to individuals who experience homelessness;
their approach uses a prioritization scheme that aims to minimize the probability of an individual to
re-enter homelessness, based on an automated prediction.

2 A MODEL OF WELFARE DYNAMICS AND SOCIAL POLICIES

Preliminaries. Consider N individuals indexed by i = 1, . . . , N . Each individual i has a welfare
value of Ui(t) at each timestep t ≥ 0. The initial welfare values Ui(0) are drawn from a distribution
(e.g. a capped normal distribution; different choices of the initial distribution do not change our
results). Here, welfare may represent the household income level, expenditure, monthly income, or
other variables that define individual welfare.

An intervention at time t is defined through a vector aaa(t) := (ai(t))i, where an amount of ai(t)
budget is allocated to individual i by the social planner. The exact decision of who receives an
amount of budget and how much they receive is decided by the social planner through a social
policy. We normalize allocations to sum up to 1 at every timestep,

∑
i ai(t) = 1,∀t ≥ 0. In this

first analysis, we consider the case when the social planner can allocate an intervention to a single
individual, and thus ai(t) = 1 for exactly one index i at every timestep t, while aj(t) = 0,∀j ̸= i.

3
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2.1 A DYNAMIC MODEL OF WELFARE FLUCTUATIONS.

Absent any intervention, we assume that the welfare of individuals fluctuates at every timestep
according to a function gi : R → R+, defined for all individuals i. We denote the function gi(·) as
the decay function, capturing the welfare decrease in natural conditions (e.g. income shocks due to
accidents, economic conditions, natural disasters).

In contrast, we model the impact of interventions on individuals’ welfare at each timestep through
a function fi : R → R+, defined for all individuals i. We refer to fi(·) as the intervention return
function, capturing the effect of intervening on an individual (e.g. a new job through an employment
program, social benefits, cash transfers). We model the rate of change of individual welfare between
different timesteps under interventions as:

E[Ui(t+ 1)− Ui(t) | Ft] = ai(t) · fi(Ui(t))− (1− ai(t)) · gi(Ui(t)) (1)

Treatment (ai(t) = 1) in our model has two effects. On the one hand, the treated individual realizes
the return fi(Ui(t)). On the other hand, the treated individual avoids the decay −gi(Ui(t)). The
individual treatment effect of allocating an intervention to individual i at time t therefore corresponds
to the expression

fi(Ui(t)) + gi(Ui(t)) .

Note that this quantity varies both in time and by individual. Conceptually, targeted individuals have
a positive return, whereas non-targeted individuals suffer a decay in their welfare.

2.2 SOCIAL POLICIES

A policy π selects an individual for treatment at each step. This corresponds to setting the coef-
ficients {ai(t)} at each timestep t. We restrict our attention to policies that allocate one unit of
resources to exactly one individual at each time step.

A natural utilitarian policy is the one that chooses the individual of largest treatment effect. We call
this the max-fg policy:

ai(t) =

{
1, i = argmax

j
{fj(Uj(t)) + gj(Uj(t))} ,

0, otherwise.
(max-fg)

Note that this policy requires full information about individual treatment effects at each time step.
This may be an unrealistic requirement in many applications. However, in cases where the func-
tion fi+ gi are increasing with welfare, the policy corresponds to choosing the individual of highest
welfare. We call this the max-U policy:

ai(t) =

{
1, i = argmax

j
{Uj(t)} ,

0, otherwise.
(max-U)

The max-U policy is welfare-based and requires only welfare measurements for its implementation.
This utilitarian welfare-based policy directly contrasts with the Rawlsian policy that chooses the
individual of minimum welfare at each step. We call this the min-U policy:

ai(t) =

{
1, i = argmin

j
{Uj(t)} ,

0, otherwise.
(min-U)

Radner & Rothschild (1975) studied these policies under the names “putting out fires” for min-U
and “staying with a winner” for max-U.

We explore a variation of the utilitarian policy that only uses knowledge of the intervention return
functions fi(·), i.e., the policy will allocate a unit of effort to the individual with the highest inter-
vention return:

ai(t) =

{
1, i = argmax

j
{fj(Uj(t))} ,

0, otherwise.
(max-f)

4
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We call this max-f. In contrast to max-fg, the max-f policy requires only partial information about
the interventions, only measured through the return on interventions which may be less costly to
measure. By analogy, we consider a variant of the Rawlsian policy here that only use knowledge of
the decay functions gi(·). That is, the max-g policy will allocate a unit of effort to the individual
with the highest decay:

ai(t) =

{
1, i = argmax

j
{gj(Uj(t))} ,

0, otherwise.
(max-g)

Tie-breaking rule: Among individuals with the same welfare, we favor the one with the lowest
index i ∈ [N ]. This applies to all policies. For the policies that use the treatment effect information,
max-f and max-fg, we break the tie in favor of the individual with the lowest index. For the max-g
policy, among individuals with the same gi value, we break the tie in favor of the individual with the
lowest welfare value, arguing that this best captures a Rawlsian principle. When max-g prioritizes
the lowest index individual, results do not qualitatively change (see Appendix F, Figure 4).

Policy goal. The goal of a policy is to promote long-term social welfare. Our main results focus on
the long-term social welfare comparison of Rawlsian and utilitarian policies. We capture long-term
social welfare as the average asymptotic welfare gain among individuals, defined as follows.
Definition 1 (Long-term social welfare). The long-term average social welfare induced by policy π
on a population of N individuals is defined as

R̄π :=
1

N

N∑
i=1

Ri , Ri := lim
t→∞

Ui(t)− Ui(0)

t
. (2)

where Ri defines the rate of growth of individual i, asymptotically.

Note the welfare level Ui(t) depends on the policy π, as π determines aaa(t) at every timestep, and
therefore the subsequent Ui(t+ 1) through the model described in Equation 1.

2.3 MODELING CHOICES

The comparison between Rawlsian and utilitarian policies depends on an important condition,
called a ‘survival’ condition. Survival means that no individual in a population will obtain negative
welfare. The survival condition is necessary and sufficient to obtain a positive probability of
survival for all individuals under some policy, as noted by Radner & Rothschild (1975). Such a
policy only exists under the survival condition, and in fact, Rawlsian policies are examples as we
will show later in Section 3. This is a sufficient condition for comparing policies in the long run.
Formally, the survival condition can be stated in terms of a weighted sum of the fi(·) and gi(·)
function bounds (assuming those exist):
Assumption 1 (Survival condition). We assume ζ̄((f−1 , . . . , f

−
N ), (g+1 , . . . , g

+
N )) > 0 where ζ̄ :

R2N → R is defined as

ζ̄((x1, . . . , xN ), (y1, . . . , yN )) :=

(
1−

N∑
i=1

yi
xi + yi

) N∑
j=1

1

xj + yj

−1

, (3)

and f+i := sup fi(x) > 0 , f−i := inf fi(x) > 0 , g+i := sup gi(x) > 0 , g−i := inf gi(x) > 0 .

Next, we formally state the modeling conditions that capture a Matthew effect, as motivated in the
introduction, as well as a uniform boundedness condition.
Assumption 2 (Modeling conditions). (a). (Rich-get-richer) For i = 1, . . . , N , we assume

that the function fi(x) is non-decreasing.

(b). (Poor-get-poorer) For i = 1, . . . , N , we assume that the function gi(x) is non-increasing.

(c). (Uniform boundedness) For i = 1, . . . , N , we assume f−i ≡ f−, f+i ≡ f+, g−i ≡
g−, g+i ≡ g+ for constants f−, f+, g−, g+ .

5
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We discuss the regime in which such limits are not uniform but with bounded variance in Section 5.
We note that this assumption does not require that the functions fi, gi be the exact same for all
individuals, but rather just their limits.

Finally, in addition to the two assumptions described above, our results require some standard regu-
larity conditions, formalized below. Denote the welfare variation between two consecutive timesteps
by Zi(t + 1) := Ui(t + 1) − Ui(t),∀i ∈ [N ]. We note that Ui(t) and Zi(t) are random variables
with respect to a stochastic process of income fluctuations over time (e.g., income shocks).
Assumption 3 (Regularity conditions). Consider a probability space (Ω,F ,P), where Ω is the
space of possible outcomes of income levels, F is a σ−algebra denoting the space of events, and
P : F → [0, 1] is a probability measure function. We assume the following properties:

(a). The welfare random variable Ui(t) is Ft-measurable for ∀i ∈ [I] , t ∈ N∗, for F0 ⊂ F1 ⊂
· · · an increasing sub σ-field of F .

(b). The variation random variable Zi(t + 1) is integer-valued, mutually independent (given
aaa(t)), and uniformly bounded, i.e. , |Zi(t + 1)| ≤ b, ∀i ∈ [I], t ∈ N for some constant
b > 0 .

(c). There exist constants z∗, l > 0 with 0 < l < 1 s.t. P(Zi(t + 1) ≥ z∗ | Ft) ≥ l,
P(Zi(t+ 1) ≤ −z∗ | Ft) ≥ l for any i ∈ [N ], any Ft, ∀t ≥ 0.

3 POLICY COMPARISONS IN TERMS OF LONG-TERM SOCIAL WELFARE

Our main result compares the long-term social welfare of Rawlsian and utilitarian policies, under
the natural behavioral model of welfare fluctuations described in Section 2.1.
Theorem 1 (Main result). For a population of N individuals whose welfare (Ui(t))i fluctuates
according to the model in equation 1, under regularity, modeling, and survival conditions (Assump-
tions 1, 2, 3), a Rawlsian policy will achieve better long-term social welfare than a utilitarian policy
in any informational context:

R̄Rawlsian ≥ R̄utilitarian a.s.

where the Rawlsian and utilitarian policies are defined in the same informational contexts, i.e.
(min-U,max-U), (max-g,max-f), (max-g,max-fg).

Proof sketch. The proof of Theorem 1 includes a series of results on the individual rates of growth
for different policies. First, we compute the individual rate of growth under the Rawlsian pol-
icy to be equal for all individuals (Theorem 3). The survival condition implies the existence of
a policy that prevents any individual’s welfare from decaying below 0. In fact, it implies some-
thing even stronger: under survival, a Rawlsian policy can ‘lift’ everyone’s welfare unboundedly:
limt→∞ mini Ui(t) = ∞ almost surely. This helps us show that the welfare gap between any two
individuals vanishes asymptotically, obtaining the same individual rates of growth for all individu-
als. In contrast, a utilitarian policy tends to fixate on a single individual and repeatedly allocate an
intervention to him, while ignoring the rest of the population. We show this formally in Theorem 4:
we leverage a generalization of Lundberg’s inequality for submartingale processes to lowerbound
the probability that a utilitarian policy repeatedly allocates interventions to the same high-welfare
individuals. Finally, the individual rates of growth and uniform boundedness allow us to compute
and compare the long-term social welfare under different policies, see Corollaries 1, 2. Essentially,
a Rawlsian policy obtains better social welfare in the long-run than utilitarian policies as long as
limx→+∞ gi(x) ≤ limx→−∞ gi(x), which is true by our “poor-get-poorer” modeling condition. It
is noteworthy that the result holds regardless of the variation of our policies: whether the social
planner has knowledge of (fi)i, (gi)i or not, the policy comparison remains the same under our
modeling conditions. Detailed proofs for all results can be found in Appendix A.

In cases where the survival condition does not hold, we find a natural complement for our theory:
we define a “ruin condition” as a state of the model in which no policy can prevent all individuals
from decaying below 0. Our theory under survival naturally extends for this ruin condition, showing
that a utilitarian policy will achieve better long-term social welfare (see Appendix B for the formal
theory).
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Theorem 2 (Policy comparison under a ruin condition). For a population of N individuals whose
welfare (Ui(t))i fluctuates according to the model in equation 1, under regularity (Assumption 3),
modeling (Assumption 2), and ruin condition (which makes everyone’s survival impossible), a
utilitarian policy will achieve better long-term social welfare than a Rawlsian policy in any
informational context:

R̄Rawlsian ≤ R̄utilitarian a.s.

where the Rawlsian and utilitarian policies are defined in the same informational contexts, i.e.
(min-U,max-U), (max-g,max-f), (max-g,max-fg).

4 INDIVIDUAL WELFARE RATE OF GROWTH UNDER DIFFERENT POLICIES

In this section, we characterize in closed form the rate of growth of welfare under different policies
for all individuals, that is, proving that Ri = limt→∞(Ui(t) − Ui(0))/t converges to closed form
solutions for all i ∈ [N ]. We then compute the long-term average social welfare achieved by all
policies and compare them against a baseline defined by a random allocation policy.

4.1 INDIVIDUAL WELFARE UNDER THE RAWLSIAN POLICY

Theorem 3. Under regularity (Assumption 3), modeling conditions (Assumption 2.(a),(b)), and the
survival condition (Assumption 1), a Rawlsian policy π ∈ {min-U,max-g} leads to the following
closed form solution of the individual rates of growth, both in the welfare-based and effect-based
informational contexts:

Ri = ζ̄((f+1 , . . . , f
+
N ), (g−1 , . . . , g

−
N )), i = 1, . . . , N , a.s.

Corollary 1. With the addition of the uniform boundedness condition from Assumption 2.(c), we
can simplify the individual rates of growth, obtaining the long-term social welfare value for the
Rawlsian policy:

R̄min−U = R̄max−g =
1

N
f+ − N − 1

N
g− a.s.

Proof sketch. Under the survival condition, we prove that the minimum welfare level will be lift
unboundedly over time. We model the welfare gap between the treated and untreated individuals
and show that this gap vanishes almost surely by applying the law of large numbers. We conclude by
adapting a convergence argument first introduced by Radner & Rothschild (1975), obtaining that a
Rawlsian policy achieves the same long-run welfare of everyone under our modeling conditions.

4.2 INDIVIDUAL WELFARE UNDER THE UTILITARIAN POLICIES

Theorem 4. Under regularity (Assumption 3) and modeling conditions (Assumption 2.(a),(b)) and
as long as fi(·)+gi(·) is increasing for all i ∈ [N ],1 a utilitarian policy π ∈ {max-U,max-fg,max-f}
leads to the following closed form solution of the individual rates of growth, both in the welfare-
based and effect-based informational contexts:

Ri =

{
f+i , i = J ,

−g+i , i ̸= J ,
a.s.

where J is a random variable with values in [N ] whose exact value depends on U(0), (fi(·))i, and
(gi(·))i. In other words, exactly one individual achieves an asymptotic rate of growth equal to f+i ,
whereas all others achieve −g+i .
Corollary 2. With the addition of the uniform boundedness condition from Assumption 2.(c), we
can simplify the individual rates of growth, obtaining the social welfare value

R̄max−U = R̄max−f = R̄max−fg =
1

N
f+ − N − 1

N
g+ a.s.

1This assumption states that the return from an intervention should, in principle, be higher than the shock
experienced by an individual absent intervention. It is only needed for the max-fg policy, since it is the only
one using knowledge of both the return and decay functions.
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Proof sketch. For the individual chosen by the utilitarian policy at a time t0, we upperbound the
probability of an individual obtaining negative welfare at a finite point in time (a variable that we
model as a submartingale), for any Ft and individual i. We make use of a generalized Lundberg’s
inequality (Lundberg, 1903; Cramér, 1959; Moriconi, 1986) for submartingales, for which we pro-
vide an adapted version for our model and a new proof. We then use it to show that the probability
that it will be chosen again afterwards (ai(t) ≡ 1, t ≥ t0) is lower-bounded by some positive con-
stant. Asymptotically, the probability of a single individual being targeted by a utilitarian policy
approaches 1, and hence we obtain the asymptotic convergence of the individual rates of growth
under our modeling condition.

Random policy. Finally, we compare our policies with a baseline policy that randomly chooses
an individual to allocate an intervention at every timestep.

Theorem 5. Under regularity, modeling, and survival conditions (Assumptions 1, 2, 3), the random
policy leads to the following closed form solution of the individual rates of growth and long-term
social welfare:

R̄random = Ri =
1

N
f+ − N − 1

N
g−, i = 1, . . . , N , a.s.

Proof sketch: Under the assumption of uniform boundedness, we may lowerbound the rate of wel-
fare increase at every timestep by a positive quantity, E[Ui(t + 1) − Ui(t) | Ft] ≥ 1

N f
−
i − (1 −

1
N )g+i > 0 under the random policy. This allows us to show that, in the limit, the welfare value
of every individual will increase unboundedly. At the same time, since individuals are chosen ran-
domly at each time, the welfare gap between individuals converges to 0, just like in the proof of
Theorem 3. We follow a similar proof structure henceforth, detailed in Appendix A.

Policy comparison: Our results show that Rawlsian and random policies will achieve better long-
term social welfare than utilitarian policies under the aforementioned conditions. This concludes
our argument for the main result in Theorem 1. Furthermore, our subsequent results show that
the comparison holds no matter the informational context (whether the social planner uses only
welfare information in defining policies, or also has access to the treatment effect through fi, gi).
Furthermore, when the survival condition is not satisfied, we find a complementary condition under
which a policy reversal occurs. We provide a formal theory for this result in Appendix B. We extend
our results to include different functional forms for the treatment effect function (Appendix D and
allocating multiple interventions at each timestep (Appendix E).

5 ILLUSTRATION OF THEORETICAL RESULTS

We illustrate the complexity of our theoretical results with simulations. Our simulations serve two
purposes: (i) we perform simulations on a real-world dataset and compare the average social welfare
under a finite time horizon for all proposed policies to validate our theoretical findings (Section 5.1);
(ii) we showcase the complexity of evaluating policies in heterogeneous cases (i.e., where the bounds
of the return and decay functions fi, gi are non-uniform) and provide evidence that a Rawlsian policy
still prevails over a utilitarian policy when the heterogeneity of the population is bounded below
some threshold (Section 5.2).

5.1 SIMULATIONS OF POLICIES ON REAL DATA UNDER FINITE TIME HORIZON

We use data collected from the Survey of Income and Program Participation (SIPP) (Bureau, 2023),
which is a longitudinal survey of households in the U.S. containing variables related to economic
well-being such as income, employment, etc. Among numerous indices, we use the income variable
as a proxy for the initial individual welfare level, (Ui(0))i. We group the whole population (39, 720)
into 13 bins and treat every 200 samples as one individual, and every $1, 000 as one welfare unit in
our model. In the end, we obtain a population of 206 individuals.

We simulate an instance of the general model from equation 1 with Gaussian noise, specified as

Ui(t+ 1)− Ui(t) = ai(t) · fi(Ui(t))− (1− ai(t)) · gi(Ui(t)) + ξi(t), ∀t ≥ 0, i ∈ [N ]. (4)

8
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where {ξi(t)}i,t ∼ N (0, σ2) and capped within uniform bounds, for some noise parameter σ. We
generate homogeneous bounds f−, f+, g−, g+, and then generate the functions fi(·), gi(·) as
segment linear functions. Our results are averaged over 50 draws, reporting standard deviation in
the error bands. See Appendix C for further experimental details.

We measure social welfare at each timestep t as the individual growth rate up to time t averaged
over all individuals (equation 2 up to time t).

The average social welfare (solid lines) converges to the theoretical expected welfare (dashed lines)
for all policies (Figure 1a). Furthermore, Rawlsian policies (min-U and max-g) have a lower short-
term social welfare than utilitarian policies (max-U, max-f, max-fg). After a few hundreds timesteps,
this trend is reversed, showing convergence to the theoretical social welfare value. Rawlsian policies
achieve better welfare than utilitarian policies in the long-run, which is implied by Theorem 1. The
random policy behaves similarly to the Rawlsian policy (as Theorem 5 would suggest), yet with a
slower convergence rate. Figure 2 in Appendix B illustrates the finite time horizon under the ruin
condition, showcasing a reversal of the Theorem 1 result (for a formal statement, see Theorem 2).
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Figure 1: (a) Social welfare as the finite-time growth rate averaged over all individuals, for all
policies (solid lines), as well as theoretical expected growth rate, asymptotically (dashed lines). (b)
Percentage of iterations where min-U obtains better long-term social welfare than max-U, as the
bounds f−, f+, g−, g+ vary according to parameters b and σ.

5.2 POLICY COMPARISON FOR HETEROGENEOUS POPULATIONS

When the uniform boundedness condition may not hold, a direct comparison between Rawlsian and
utilitarian policies becomes more intricate. We explore this case by simulating the long-term social
welfare values when the limits of the intervention return and decay functions fi, gi are different. We
compare the long-term social welfare averaged over 50 iterations, numerically sampled from our
theoretical stationary distribution provided by Theorems 3 and 4.

We draw the bounds g−i , g
+
i , f

−
i , f

+
i from normal distributions in the following way:

• The variance of the normal distribution is modeled by a parameter σ2 that controls the
heterogeneity of the bounds: larger σ means more heterogenous bounds.

• The mean of the normal distribution is chosen differently for fi and gi: first of all, we
choose means for the fi and gi functions that makes survival condition possible. Second,
we introduce a parameter b that models the strength of the decay functions: larger b means
that g−i and g+i are closer, and therefore, the decay effect is bounded. A smaller b means
that the decay effect can get quite large for individuals with lower welfare, i.e., we expect
a stronger “poor-get-poorer” effect.

Based on this set-up, we simulate the following model: let N = 1, 000, for each individual i ∈ [N ],
g−i ∼ N (100b, b2σ2), g+i ∼ N (100, σ2), f−i ∼ N (200N, 4N2σ2), f+i ∼ N (300N, 9N2σ2)
where b ∈ (0, 1], σ2 > 0 . We average the long-term social welfare obtained over all individuals

9
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(noting that the initial conditions do not play a role here since we are in the asymptotic regime),
averaging over 50 iterations of the generation process of the intervention and decay function bounds.
We can theoretically compare min-U and max-U under survival in a fair way, which is possible in
our model. In cases where survival is not satisfied, we assume the worst about min-U and assume
that it achieves lower welfare.

Figure 1b illustrates a heatmap of the percentage of times when the min-U Rawlsian policy has better
long-term welfare than the max-U utilitarian policy, for each value of b and σ (1 meaning that the
min-U Rawlsian policy is better in all iterations). For a range of σ values (in a sense, for bounded
heterogeneity), a Rawlsian policy is still able to achieve better social welfare than a utilitarian policy.
As b decreases (and therefore the decay functions gi have a stronger effect), a Rawlsian policy starts
performing better by preventing stronger loss caused by the decay of low-welfare individuals.
Remark 1. An alternative method to grouping individuals is to allow for an intervention that con-
tains several units of budget at each timestep. Our simulation results will be qualitatively main-
tained, see Appendix E for further details about multi-budget extension.

All simulations are ran on commodity hardware, using Python 3.8. All code and data used in our
simulations is available anonymously in this repository.

6 DISCUSSION

The problem of optimal policy design remains highly relevant, as several countries continue to
implement changes in their social benefits allocation schemes. A prominent example is Austria,
which has shifted from a welfare state approach that targeted those most in need to an “inactivity
trap” approach that targets those most likely to (re)enter the labor market (Allhutter et al., 2020;
Christl & De Poli, 2021; International). In 2019, Austria introduced the New Social Assistance
policy that reduced benefits to individuals with low language skills or larger number of dependents.
In 2020, it introduced algorithmic profiling by first predicting individuals’ probability of re-entering
the labor market, and second by offering most support to those with intermediate chances. Both such
policies have the purpose of shifting support from the most in need to those with the highest chance
of benefiting from such support, measured through their integration in the labor market in the near
future. In essence, such policies have shifted from a Rawlsian approach to social welfare (Bufacchi
& Garmise, 1995) to a more utilitarian view of social benefits (Christl & De Poli, 2021).

Our work demonstrates that choosing the right policy framework is subtle. In particular, our results
motivate the necessity of long-run welfare comparisons of policies that a short-term analysis will
necessarily miss. Whereas on the short-term horizon a utilitarian policy prevails, it can result in
lower social welfare than a Rawlsian approach in the long-run, under reasonable conditions. We
characterize such conditions in closed-form, allowing a long-term policy comparison. In particular,
the survival condition is a sufficient condition for a Rawlsian policy to achieve better social welfare
in the long-run when the population of individuals satisfies homogeneous bounds on the intervention
return or welfare decay.

Our theoretical framework provides versatile tools for exploring different modeling conditions as
well as policy variations, whereas our experimental analysis shows the potential of Rawlsian policies
even in heterogeneous conditions. These contributions open new directions for future work in the
context of sequential decision-making and optimal policy design.
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A COMPLETE PROOFS

This section contains complete proofs to all results stated in the main paper. First of all, we introduce
two bounds that will be repeatedly used in the following proofs:

First, consider a weighted sum of utilities:

Ū(t) :=
∑
i

wi · Ui(t) , wi :=

(
1

f−i + g+i

) N∑
j=1

1

f−j + g+j

−1

. (5)

The increment in the weighted utility can be computed in expectation as:

E
[
Ū(t+ 1)− Ū(t) | Ft

]
=
∑
i

E[Z̄(t+ 1) | Ft]

=
∑
i

wi · (ai(t) · fi(Ui(t))− (1− ai(t)) · gi(Ui(t)))

≥
∑
i

wi ·
(
ai(t) · f−i − (1− ai(t))g

+
i

)
(6)

where Z̄(t + 1) :=
∑

i wi · Zi(t + 1). We note that the last term of equation 6 is solely a function
of
(
f−i
)
i

and
(
g+i
)
i
. Thus, we obtain

E
[
Ū(t+ 1)− Ū(t) | Ft

]
≥ ζ̄

(
(f−1 , . . . , f

−
N ), (g+1 , . . . , g

+
N )
)
. (7)

Similarly, we define a weighted sum of utilities using slightly different weights:

Ũ(t) :=
∑
i

w̃i · Ui(t), w̃i :=

(
1

f+i + g−i

) N∑
j=1

1

f+j + g−j

−1

(8)

Similarly, we obtain the following upper bound for Ũ(t):

E
[
Ũ(t+ 1)− Ũ(t) | Ft

]
=

N∑
i=1

w̃i · (ai(t) · fi(Ui(t))− (1− ai(t)) · gi(Ui(t)))

≤
N∑
i=1

w̃i ·
(
ai(t) · f+i − (1− ai(t))g

−
i

)
. (9)

We observe that the last term of equation 9 can be written as the function ζ̄ with switched parameters
as compared to equation 7:

E
[
Ũ(t+ 1)− Ũ(t) | Ft

]
≤ ζ̄((f+1 , . . . , f

+
N ), (g−1 , . . . , g

−
N )). (10)

Note that both bounds from equations equation 7 and equation 10 only use the assumption on the
bounds of fi(·) and gi(·) in Assumption 1, and hence hold under any of the aforementioned social
policies and they will be crucial for the asymptotic behavior of the system.

Proof of Theorem 3. We first prove the theorem for the welfare-based policy min-U, and then adapt
the proof for the effect-based policy max-g.

We note that the limit conditions from Assumption 1 allow us to follow the conditions stated in Roth-
schild (1975b): f+i := sup fi(x) > 0 , f−i := inf fi(x) > 0 , g+i := sup gi(x) > 0 , g−i :=
inf gi(x) > 0 . Remember that Zi(t + 1) := Ui(t + 1) − Ui(t),∀i ∈ [N ]. Thus, conditioning
on individual i getting or not getting an intervention and using the monotonicity assumptions, we
obtain from the model in equation 1

E[Zi(t+ 1)|ai(t) = 1,Ft] = fi(Ui(t)) ≥ f−i ,

−g−i ≥ E[Zi(t+ 1)|ai(t) = 0,Ft] = −gi(Ui(t)) ≥ −g+i ,∀t.
(11)
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With these conditions, together with the regularity and survival conditions, we substitute Ū(t)
in Rothschild (1975a) with Ū(t) defined in equation 5 and apply Theorem 1 from Rothschild
(1975a). The lower bound on equation 5 obtains the first part of the result in Theorem 1
(Rothschild, 1975a): lim inf

t→∞
Ui(t)/t ≥ ζ̄ a.s. for i ∈ [N ], which immediately implies that

lim inft→∞ mini Ui(t) → +∞ a.s. for i ∈ [N ].

Then, we need the following lemma.

Lemma 1. Suppose {Yt}t∈[T ] are random variables and FT -measurable, for any T ≥ 1. Suppose
|Yt| ≤ B and E[Yt | Ft−1] = µt with −B < µ ≤ µt ≤ λ < B for ∀t ∈ [T ] where B > 0, µ, λ are
constants. Then

lim inf
T→∞

∑T
t=0 Yt
T

= lim inf
T→∞

∑T
t=0 µt

T
≥ µ , a.s.

lim sup
n→∞

∑T
t=0 Yt
T

= lim sup
n→∞

∑T
t=0 µt

T
≤ λ , a.s.

Proof of Lemma 1. The first inequality is immediate from Theorem 40 in (Freedman, 1973) with
Xt = Yt + B , Mt = µt + B ≥ µ + B and the second inequality is obtained similarly by setting
Xt = B − Yt , Mt = B − µt ≥ B − λ instead.

Now we continue with the proof for Theorem 3. We apply Lemma 1 with Yt = Ũ(t+1)−Ũ(t), B =
b, where b is the upperbound on Zi(t+ 1) from the regularity conditions (Assumption 3), and

µt = E

[∑
i

w̃i(ai(t)(fi(Ui(t)) + gi(Ui(t)))− gi(Ui(t))) | Ft

]
.

Since limt→∞ mini Ui(t) = ∞, we obtain limt→∞ Ui(t) = +∞ for all i ∈ [N ]. Hence, we get
limt→∞ fi(Ui(t)) = f+i , limt→∞ gi(Ui(t)) = g−i . A simple calculation finds that

lim
t→∞

µt = ζ̄((f+1 , . . . , f
+
N ), (g−1 , . . . , g

−
N )) a.s. (12)

Since µt is uniformly bounded for ∀t ≥ 0, we know that limt→∞ µt = limT→∞

∑T
t=0 µt

T , and
therefore

lim
T→∞

∑T
t=0 µt

T
= ζ̄((f+1 , . . . , f

+
N ), (g−1 , . . . , g

−
N )) a.s. (13)

Hence we obtain:

lim
T→∞

∑T
t=0 Yt
T

= lim
T→∞

Ũ(T + 1)

T
= ζ̄((f+1 , . . . , f

+
N ), (g−1 , . . . , g

−
N )) (14)

Next, apply Lemma 1 from Rothschild (1975b) and for ∀j ∈ [N ], we have

lim
T→∞

Ũ(T + 1)

T
= lim

T→∞

∑
i

w̃i ·
(
Ui(T )

T
− Uj(T )

T
+
Uj(T )

T

)
= lim

T→∞

Uj(T )

T
,

finalizing the proof of Theorem 3 for the welfare-based Rawlsian policy min-U. Note that Lemma
1 from Rothschild (1975b) essentially shows that the welfare gap between any two individuals con-
verges to 0 over time, so we have used that lim

T→∞

∑
i

(
Ui(T )

T − Uj(T )
T

)
= 0,∀i, j. Intuitively, this is

natural under a Rawlsian policy that always ‘lifts’ the lowest welfare individual, under our bounded
welfare conditions. Finally, we also used that

∑
i w̃i = 1, by definition.

For the effect-based Rawlsian policy max-g, we note that if gi is strictly decreasing for all i, then
the individual targeted at each timestep t will be the exact same individual in min-U and max-
g. Our modeling conditions only require that gi is decreasing, but not strictly. Therefore, if the
function gi is constant for a set of individuals with welfare values under some threshold τ , as long
as the targeted individual will be the one with the actual lowest welfare, min-U and max-g still
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coincide. Under the tie-breaking rule of choosing the individual with the lowest welfare, the proof
for computing Ri’s under max-g reduces to our proof for min-U. Under different tie-breaking rules
(e.g., choosing the individual with the smallest index) for max-g, the policies might actually differ
in the asymptotic rates of growth. We argue that a tie-breaking rule targeting the individual with
lowest welfare under max-g policy is most natural, since it naturally applies Rawlsian principles
when information gathered from gi does not help differentiate individuals.

Finally, the corollary follows immediately under the uniform boundedness assumptions on the
bounds of fi, gi:

Ri = ζ̄((f+1 , . . . , f
+
N ), (g−1 , . . . , g

−
N )) =

(
1−

∑
i

g−i
f+i + g−i

)
·

(∑
i

1

f+i + g−i

)−1

(15)

=

(
1−N · g−

f+ + g−

)
·
(

N

f+ + g−

)−1

(16)

=
1

N
· f+ − N − 1

N
· g− (17)

Proof of Theorem 4. We first note the intuition behind the proof, followed by the detailed technical
details. We note that while max-U is also known as the ‘staying with a winner’ policy in Radner
& Rothschild (1975), the proof technique does not generalize under non-constant functions fi, gi.
To this end, we introduce a novel proof that can characterize the individual rates of growth under
any informational contexts and for any functions that follow our regularity and modeling conditions
(Assumption 3, 2.(a),(b)).

Intuition: The main proof idea is the following: a utilitarian policy tends to choose the same
individuals to whom it initially allocated interventions. While the initial conditions do not change
the convergence results, whoever was the first individual to obtain an intervetion at t = 0 has gained
an advantage (a positive drift in the random process), whereas everyone else has a disadvantage (a
negative drive in the random process). We bound the probability of a policy to reinforce its earlier
preferred choices by the probability that an individual never drop below its initial welfare level while
the other individuals never grow below their initial welfare level. Then, asymptotically, the rates of
growth will converge in the following way: some fixed subpopulation converges to the maximum
welfare f+, whereas everyone else converges to the minimum decay g−.

First, consider the max-fg policy. Without loss of generality, consider the individual i being chosen
at timestep 0 (ai(0) = 1). We will apply Lemma 3 for the welfare process {Xi(t)} under an
intervention, i.e., Xi(t) = Ui(t)|ai(t) = 1 for all t, by showing that Xi(t) is a submartingale and
lower-bounding the probability of the welfare level decaying beyond its initial level, Xi(0) (equal
to the welfare initial level Ui(0). This defines a random process given that the individual i will be
chosen over and over again (the process is conditioned on ai(t) = 1). First, the process {Xi(t)} is
a submartingale since, conditioned on ai(t) = 1,

E[Xi(t+ 1)|Ft] = E[Ui(t+ 1)|Ft, ai(t) = 1] = Ui(t) + fi(Ui(t)) > Ui(t) = Xi(t), (18)

and note the uniform bound for (Zi(t))i,t in regularity conditions (Assumption 3.(c)) By an easy
induction on t, we get that |Xi(t)| ≤ ∞,∀t, noting that Xi(0) = Ui(0) < ∞ by definition of the
initial conditions.

Given our regularity conditions (Assumption 3), we may now apply Lemma 3 in a particular way:
we consider Ui(0) = u for some u ∈ R, and we start the welfare process at t = 1. Note that
{Xi(t)}t≥1 is also a submartingale. Then, instead of bounding the probability of ruin, we bound the
probability ofXi(t) falling under the threshold u (where u := Ui(0)). We do that by the substitution
Wt = Xi(t)− u,∀t ≥ 1, and Wt is still a submartingale. Thus, we can apply Lemma 3 to obtain

ψ(Xi(1)) ≤ exp(−r∗ · (Xi(1)− u)), (19)

where ψ(Xi(1)) = P(T (Xi(1)) <∞), T (Xi(1)) = min{t ≥ 1 : Xi(t) ≤ u}.

In a similar fashion, we now consider all other individuals j ̸= i who were not intervened on at
the first timestep t = 0. For each of these, the process {Yj(t)}, where Yj(t) := Uj(t)|aj(t) = 0

16
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(conditioned on j not chosen again) is a supermartingale:

E[Yi(t+ 1)|Ft] = E[Ui(t+ 1)|Ft, ai(t) = 0] = Ui(t)− gi(Ui(t)) < Ui(t) = Yi(t) (20)

by applying equation 1 and noting the all functions gi(·) are positive by definition. In ad-
dition, again we know |Yi(t)| < ∞ by uniform boundedness of |Zi(t)| in regularity condi-
tions(Assumption 3.(b)), and noting that Yi(0) = Ui(0) <∞ by definition of the initial conditions.

Again, we can apply Lemma 3 for the process {−Yj(t)}t≥1 (which are now submartingales) and
ruin threshold −u to obtain

ψ(−Yj(1)) ≤ exp(−r∗ · (u− Yj(1))), (21)

where ψ(−Yj(1)) = P(T (Yj(1)) <∞), T (Yj(1)) = min{t ≥ 1 : −Yj(t) ≤ −u}.

Next, we lower bound the probabability that the individual i who was chosen at timestep 0 will
continue to be chosen at every timestep. To do so, we note that this probability is equal to the
probability that i is chosen at every subsequent t ≥ 1 and all other j ̸= i are not chosen at every
t ≥ 1. Among all events that comprise this probability, one of them is the event in which Xi(t) ≥ u
and Xj(t) ≤ u,∀j ̸= i (remember here that Xi(t) = Ui(t)|ai(t) = 1 and Yj(t) = Uj(t)|aj(t) = 0,
for j ̸= i). Thus,

P(ai(t) = 1 and aj(t) = 0,∀j ̸= i,∀t ≥ 1) ≥ P(Xi(t) ≥ u and Yj(t) ≤ u,∀j ̸= i,∀t ≥ 1) (22)

The righthandside consists of independent events w.r.t. t, since we have conditioned already on the
intervention, so we can further compute it as

P(Xi(t) > u,∀t ≥ 1) ·
∏
j ̸=i

P(Yj(t) < u,∀t ≥ 1)

= (1− P(∃T <∞ s.t. Xi(T ) ≤ u)) ·
∏
j ̸=i

(1− P(∃T <∞ s.t. Yj(T ) ≥ u))
(23)

Finally, we lowerbound equation 23 by the bound we obtained by our Lundberg-type inequality for
the welfare process:

(1− P(∃T <∞ s.t. Xi(T ) ≤ u)) ·
∏
j ̸=i

(1− P(∃T <∞ s.t. Yj(T ) ≥ u)) (24)

≥ (1− ψ(Xi(1))) ·
∏
j ̸=i

(1− ψ(−Yj(1))) (25)

≥ (1− exp(−r∗ · (Xi(1)− u))) ·
∏
j ̸=i

(1− exp(−r∗ · (u− Yj(1)))) (26)

Our regularity conditions ensure that equation 26 is lowerbounded by some positive constant p∗i > 0:
Assumption 3 states that ∃z∗, l > 0 s.t. P(Zi(t+1) ≥ z∗|Ft) ≥ l and P(Zi(t+1) ≤ −z∗|Ft) ≥ l.
Since l > 0, this offers a strictly positive lower bound on equation 26. Furthermore, p∗i does not
depend on F0 but it may depend on the initial individual i that was intervened on at timestep 0.
We take the minimum of p∗i among all individuals i ∈ [N ] (since any of them could have been
intervened on at timestep 0), and obtain p∗ := min{p∗i } > 0. Then, note that the probability
of individual i being chosen for all t ≥ 0 also depends the rule of max-fg and the tie-breaking
rule of choosing the smallest index, which will ensure the individual being constantly chosen once
the fi(Ui(t)) + gi(Ui(t)) ≥ fj(Uj(t)) + gj(Uj(t)) won’t be violated for all t ≥ 0. This is true
since in addition to the modeling condition that states that gi(·) is decreasing, we also assumed that
fi(·) + gi(·) is increasing.

As time grows, the probability of the utilitarian policy fixating on one single individual is lower-
bounded by 1 − (1 − p∗)m where m denotes the number of times the individual who receives the
intervention changes, which converges to 1 as m→ ∞.

Lastly, we prove that for an individual i with ai(t) = 1 for all t ≥ 0 a.s., we have Ri = f+ a.s., and
for individuals with aj(t) = 0 for all t ≥ 0 a.s., j ̸= i, we have Rj = −g+ a.s.

In doing so, we apply Lemma 1 repeatedly:
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• First, for individual i that gets chosen at the first timestep, we set Yi = Ui(t+1)−Ui(t), µ =
f− and obtain from Lemma 1 that limt→∞ Ui(t) = +∞. For the same individual, we can
apply Lemma 1 again with µ = λ = f+, which shows convergence of (Ui(t) − Ui(0))/t
to f+. We then note that limt→∞(Ui(t)− Ui(0))/t = Ri = f+.

• Second, for any individual j ̸= i, we set Yt = Uj(t+ 1)− Uj(t) and λ = −g− and obtain
from Lemma 1 that limt→∞ Uj(t) = −∞. Finally, we apply Lemma 1 again for all such
j with µ = λ = −g+, which shows convergence of (Uj(t) − Uj(0))/t to −g+. We then
note that limt→∞(Uj(t)− Uj(0))/t = Rj = −g+.

We note that the proof goes through in the exact same way for the max-U and max-f policies, since
the only place the functions fi and gi play a role is in the tie-breaking rule: when fi is increasing and
the tie-breaking rule always chooses the individual with the lowest index, the probability of a policy
continuing to choose the first individual chosen at timestep 0, ai(0) = 1, converges to 1, whereas
the probability of every choosing another individual j converges to 0.

Proof of Theorem 5. By the weak homogeneity condition (Assumption 3c) and the survival con-
dition (Assumption 1), we have f− > (N − 1)g+ . Then, we apply Lemma 1 by setting
Yt = Ui(t+1)−Ui(t) and µt =

1
N fi(Ui(t))−(1− 1

N )gi(Ui(t)). We note that µt actually evaluates
in expectation the rate of welfare increase under the random policy, where E[ai(t) | Ft] =

1
N for any

t ≥ 0, i ∈ [N ] and Ft. Thus, we obtain that E[Ui(t+ 1)− Ui(t) | Ft] ≥ 1
N f

−
i − (1− 1

N )g+i > 0
under the random policy. From this we conclude that limt→∞ mini Ui(t) = ∞, and thus every
individual’s welfare will increase unboundedly over time. Since limT→∞ Ui(T ) → +∞, we
have limT→∞ µT = 1

N f
+ −

(
1− 1

N

)
g− and since µT is bounded, we apply Lemma 1 with

Yt = Ui(t+ 1)− Ui(t), λ = µ = 1
N f

− − (1− 1
N )g+. Finally we conclude

Ri = lim
t→∞

Ui(t)− Ui(0)

t
=

1

N
f− −

(
1− 1

N

)
g+ > 0 , a.s. (27)

A.1 LUNDBERG’S INEQUALITY FOR SUBMARTINGALES

In this subsection, we present technical details used in the proof of Theorem 4.

In (Moriconi, 1986) (page 179), the author briefly mentioned the Lundberg’s inequality also holds
for submartingales, here we provide the proof for completeness. Firstly, we define the adjustment
coefficient for submartingales:

Definition 2. Let {Xt} be a submartingale, the adjustment coefficient, denoted by r∗, is the positive
value such that {exp(−r∗Xt)} is a martingale, i.e., E[exp(−r∗Zt+1)] = 1 where Zt+1 := Xt+1 −
Xt.

Lemma 2. (Lundberg’s inequality for submartingales) Let {Xt} be a submartingale with X0 =
u > 0, r∗ be the adjustment coefficient of {Xt} and assume {Zt} are i.i.d. . The probability of
ultimate ruin is bounded as follows

ψ(u) ≤ exp(−r∗u)

where ψ(u) := P(T (u) <∞), T (u) := min{t ≥ 1 : Xt ≤ 0, X0 = u}.

Proof. The proof is similar to the one for analyzing the surplus of an insurance portfolio (refer to
Theorem 5.2 in Tse (2023)). We prove the result by induction on t, for ψ(t;u) := P(T (u) ≤ t) and
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denoting

ψ(1;u) =

∫ −u

−∞
P(Z2 = x)dx

≤
∫ −u

−∞
exp(r∗(−u− Z2))P(Z2 = x)dx

= exp(−r∗u) ·
∫ −u

−∞
exp(−r∗Z2)P(Z2 = x)dx

(a)
= exp(−r∗u).

Assume Lundberg inequality holds for any time step less than t and u > 0, now consider ψ(t+1, u),

ψ(t+ 1;u) = ψ(1, u) +

∫ ∞

0

ψ(t, x)P(Z2 = x− u)dx

(b)

≤
∫ −u

−∞
P(Z2 = x)dx+

∫ ∞

0

exp(−r∗x)P(Z2 = x− u)dx

≤
∫ −u

−∞
exp(−r∗(x+ u))P(Z2 = x)dx+

∫ ∞

−u

exp(−r∗(x+ u))P(Z2 = x)dx

= exp(−r∗u)E[exp(−r∗Z2)]
(c)
= exp(−r∗u).

where inequality (b) holds by Lundberg inequality for time step t.

Remark 2. Note in the proof of Lemma 2, using condition E[exp(−r∗Z2)] ≤ 1 in equality (a),(c)
is enough, which is a weaker condition than Z2 is adjustable.

The following corollary is an immediate result of the above lemma.

Corollary 3. Let {Xt} be a submartingale with E[Xt+1 | Xt] = Xt + c where c > 0. Denote
Zt+1 := Xt+1 − Xt and {Zt} are i.i.d. Assume there ∃z∗ > 0 s.t. P(Zt+1 ≥ z∗) > 0 and
P(Zt+1 ≤ −z∗) > 0 . There exists a positive constant r∗ such that

ψ(u) ≤ exp(−r∗u) .

Proof. The proof is immediate by noticing

E[exp(−rXt+1) | Ft] = exp(−rXt) · E[exp(−r(Xt+1 −Xt)) | Ft] .

Denote ϕ(r) := E[exp(−r∗(Xt+1 − Xt)) | Ft], which is continuously differentiable, and we
obtain ϕ(0) = 1, ϕ′(0) = −c by computing the closed-form derivative. Since P(Zt+1 ≥ z∗) > 0,
P(Zt+1 ≤ −z∗) > 0, and hence we have limr→+∞ ϕ(r) = +∞. Hence there exists r∗ > 0 such
that ϕ(r∗) = 1. Moreover, since Zt are i.i.d. and {Xt} is adjustable (i.e., there exists an adjustment
coefficient as defined in Definition 2 that does not depend on {Xt}), we can apply Lemma 2 and we
conclude the proof.

The following lemma is an adapted version of Lemma 2 and will become useful in the proof of the
main result.

Lemma 3. (Lundberg’s inequality for a welfare process) Consider a random process {Xi(t)} de-
fined as Xi(t) = Ui(t)|ai(t) = 1, with Ui(0) = u and {Ui(t)} defined as the welfare process
in model 1, for i = 1, . . . , N . As such, {Xi(t)} defines a welfare process under an intervention,
i.e., ai(t) ≡ 1. Assume there exists z∗ > 0, 0 < l < 1 s.t. P(Zi(t + 1) ≥ z∗ | Ft) ≥ l,
P(Zi(t + 1) ≤ −z∗) ≥ l for any Ft and any i. Then, for an individual i, there exists a positive
constant r∗, such that the probability of ultimate ruin is bounded as follows

ψ(u) ≤ exp(−r∗u) (28)

where, by an abuse of notation, ψ(u) := P(T (u) < ∞), T (u) := min{t ≥ 1 : Xi(t) ≤ 0, Xi(0) =
u}.
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Proof. For an individual i and a timestep t, denote ϕ(r) := E[exp(−r(Xi(t + 1) −Xi(t))) | Ft],
for any r. We observe

ϕ(r) =

b∑
k=−b

P(Zi(t+ 1) = k) exp(−rk),

ϕ′(r) =

b∑
k=−b

−kP(Zi(t+ 1) = k) exp(−rk),

ϕ′′(r) =

b∑
k=−b

k2P(Zi(t+ 1) = k) exp(−rk).

Notice that ϕ(0) = 1, ϕ′(0) = −E[Zi(t + 1) | Ft] ≤ −g−, and 0 < ϕ′′(r) ≤ 2bk2 exp(rb)
for any Ft. First of all, we know that there exists a small interval for r near zero, (0, a] for some
r(Ft) > 0, such that ϕ(x) ≤ 1 for x ∈ (0, r(Ft)] by applying Rolle’s theorem. Next, we claim
there exists r∗ > 0 s.t. ϕ(r∗) ≤ 1, that is independent of any Ft. This claim can be easily proved by
contradiction: assume for any ϵ > 0, there exists rϵ ≤ ϵ, Ft(ϵ) such that ϕ(rϵ) > 1 . Note that under
Ft(ϵ) and since ϕ(0) = 1, there must be an x ∈ (0, rϵ] such that ϕ′(rϵ) > 0. Making ϵ arbitrarily
small, we get that rϵ → 0 and since ϕ(0) = 1 and ϕ′(0) < 0, there must exist x ∈ (0, rϵ] such
that ϕ′′(x) → +∞. This contradicts with the fact that ϕ′′(r) ≤ 2bk2 exp(rb) for any Ft. Hence
for our welfare process Zi(t), which is not i.i.d. for different t, and not adjustable, but it satisfies
E[exp(−r∗Zi(t))] ≤ 1 for some positive constant r∗ that is independent of Ft and all i ∈ [N ].

Finally, we conclude the proof by pointing out that the proof of Lemma 2 still applies under condition
E[exp(−r∗Zi(t))] ≤ 1 (see Remark 2).

B POLICY COMPARISON UNDER A RUIN CONDITION

Our survival condition, Assumption 1, defined a parameter condition in which there exists a policy
that can ‘lift’ every individual unboundedly, as time grows. We show that different versions of the
Rawlsian policy achieve this property (in addition, the constant proportions policy from Radner &
Rothschild (1975) will also achieve this property). Under the survival condition, our main result
shows that the Rawlsian policy will achieve better long-term social welfare.

In this section, we introduce a complementary condition to the survival condition, called a ruin
condition. Intuitively, under this condition, even a Rawlsian policy will not be able to ensure that
every individual will have positive welfare, asymptotically. As such, the lowest welfare will decay
indefinitely almost surely.

Note: we borrow the ‘ruin’ terminology from ruin theory, but the definition of a ‘ruin condition’ is
specific to our setting, as defined below. Our proofs make use of ruin theory in applying Lundberg’s
inequality, as seen in Appendix A.
Assumption 4 (Ruin condition). We assume ζ̄((f+1 , . . . , f

+
N ), (g−1 , . . . , g

−
N )) < 0 where ζ̄ : R2N →

R is defined in equation 3. and f+i := sup fi(x) > 0 , f−i := inf fi(x) > 0 , g+i := sup gi(x) >
0 , g−i := inf gi(x) > 0 .
Theorem 6 (Theorem 2, formal). If the ruin condition is met, under regularity, modeling conditions,
and as long as fi(·) + gi(·) is increasing for all i ∈ [N ], the result in Theorem 1 is reversed:

R̄utilitarian ≥ R̄Rawlsian a.s.

where the Rawlsian and utilitarian policies are defined in the same informational contexts, i.e.
(min-U,max-U), (max-g,max-f), (max-g,max-fg).

Proof of Theorem 6. We prove this result similarly as in Theorem 1, by computing in closed-form
the individual rates of growth under every policies, and then computing the long-term social welfare
as an average of these rates. First, we note that we can compute the individual rates of growth
under utilitarian policies just like in Theorem 4 by noting that the proof does not make use of the
survival condition (the survival condition is only necessary to compute the individual rates of growth
under Rawlsian policies). Next, we compute the individual rates of growth for Rawlsian policies
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under the ruin condition in Theorem 7 (Corollary 4). We then use uniform boundedness to compute
the long-term social welfare for Rawlsian and utilitarian policies, noting that a utilitarian policy is
better than a Rawlsian policy as long as f+ ≥ f−, which is true by the “rich-get-richer” modeling
condition.

We present a visualization of Theorem 6 in Figure 2 where we can observe the utilitarian poli-
cies (max-U, max-f, max-fg) converge to a higher growth rate while Rawlsian policies (min-U,
max-g) converges to a suboptimal average growth rate. The experiment setting here is as same as
Section 5.1. Keep the uniform boundedness, the parameters for the shape of (fi(·))i, (gi(t))i are
randomly sampled within the same interval, which is weaker than the assumption in Theorem 6.
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Figure 2: Social welfare as the finite-time growth rate averaged over all individuals, for all policies
(solid lines), as well as theoretical expected growth rate (dashed lines) under the ruin condition.

Theorem 7. Under modeling, regularity, and ruin conditions (Assumption 2, 3, 4), min-U policy
leads to the following closed form solution of the individual rates of growth, both in the welfare-
based and effect-based informational contexts:

Ri = ζ̄((f−1 , . . . , f
−
N ), (g+1 , . . . , g

+
N )), i = 1, · · ·N, a.s.

Corollary 4. With the addition of the uniform boundedness condition from Assumption 2.(c), we
can simplify the individual rates of growth, obtaining the long-term social welfare value for the
Rawlsian policy under the ruin condition

R̄min−U = R̄max−g =
1

N
f− − N − 1

N
g+ < 0 a.s.

Proof of Theorem 7. Under the ruin condition, consider the upper bound in inequality 10 and we
obtain

E[Ũ(t+ 1)− Ũ(t) | Ft] ≤ ζ̄((f+1 , . . . , f
+
N ), (g−1 , . . . , g

−
N )) < 0.

Applying Lemma 1 with Yt = Ũ(t + 1) − Ũ(t), µ = ζ̄((f+1 , . . . , f
+
N ), (g−1 , . . . , g

−
N )), we obtain

Ũ(t + 1) → −∞ a.s. and hence mini∈[N ] Ui(t) → −∞. Here we use the same intuition as
(Rothschild, 1975a) where we prove there exists T ∗ such that

lim
t→∞

maxi Ui(T
∗)−minj Uj(T

∗)

t
= 0 . (29)

We prove equation 29 by applying Proposition 1 and Lemma 1 in (Rothschild, 1975a). Now with
equation 29, we know everyone has the same growth rate and hence Ui(t) → −∞ a.s. for all
i ∈ [N ]. Then by the uniform boundedness from our modeling condition and the monotonicity of
(fi(·))i, (gi(·))i, we have

lim
t→∞

E

[∑N
i=1(Ui(t+ 1)− Ui(t))

Nt

]
=

1

N
f− − N − 1

N
g+
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Apply Lemma 1 with Yt =
∑N

i=1(Ui(t+1)−Ui(t))

N , λ = µ = 1
N f

− − N−1
N g+, we conclude

Ri =
1

N
f− − N − 1

N
g+, i = 1, · · · , N.

Then since every individual has the same growth rate, we conclude our proof and our corollary
follows immediately. We note that the same result easily follows for the max-g policy, given the
tie-breaking rule that favors the individual with the lowest welfare.

Remark 3. To show convergence of the individual rates of growth under the ruin condition, uniform
boundedness is needed to obtain the same growth rate for every individual. In contrast, Theorem 3
does not require uniform boundedness for obtaining the same individual growth rate, asymptotically.

The following proposition is a counterpart for Proposition 2 in (Rothschild, 1975a) under the ruin
conditions. In the proof below, we emphasize the differences while keeping the other steps concise.
Proposition 1. Under the conditions of Theorem 7, let D(t) := maxi∈[N ] Ui(t)−minj∈[N ] Uj(t),
there exists a constantG such that ifD(s) ≥ G and T ∗ is the first integer such thatD(s+T ∗) < G,
then there exist H and K such that P(T ∗ > n) ≤ He−nK .

Proof of Proposition 1. Suppose K is any proper subset of [N ], and K′ is the complement of K
in [N ]. We take the case where the min-U policy only considers individuals in K while ignoring
individuals in K′. We prove the following inequality by induction: there exists a constant TK such
that

E[max
j∈K′

Uj(t)−min
i∈K

Ui(t) | F0] ≤ max
j∈K′

Uj(0)−min
i∈K

Ui(0)− 2, ∀t ≥ TK. (30)

The inequality in equation 30 allows us to satisfy the conditions in Proposition 2 from Rothschild
(1975a) and easily adapt the proof of Theorem 7. The base case N = 2 is trivial since we know
everything about the behavior of an individual i with ai(t) = 0 for all t ≥ 0. Now assume that for
N = N0, Proposition 1 holds, and consider N = N0 + 1. Consider the set K, since |K| ≤ N0 and
by induction, we have

lim
t→∞

Ui(t)

t
= ζ̄((f−i )i∈K, (g

+
i )i∈K), ∀i ∈ K, a.s.

where ζ̄K((xi)i∈K, (yj)j∈K) :=
(
1−

∑
k∈K

yi

xi+yi

)(∑
i∈K

1
xi+yi

)−1

. As for the set K′, apply
the monotonicity of (gi(·))i∈K′ and the uniform boundedness condition, obtaining

lim
t→∞

Ui(t+ 1)

t
= −g+, ∀i ∈ K′, a.s.

Hence we know that

lim
t→∞

maxj∈K′ Uj(t)−mini∈K Ui(t)

t
= −g+ − ζ̄((f−i )i∈K, (g

+
i )i∈K) < 0, a.s.

By applying the Fatou-Lebesque theorem, we have

lim
t→∞

E
[
maxj∈K′ Uj(t)−mini∈K Ui(t)

t
| F0

]
= −g+ − ζ̄((f−i )i∈K, (g

+
i )i∈K) < 0,

Then there exists TK > 0 such that for all t > TK and

E
[
max
j∈K′

Uj(t)−min
i∈K

Ui(t) | F0

]
≤ max

j∈K′
Uj(0)−min

i∈K
Ui(0)− 2.

At this point, we may apply Lemma 4 and Lemma 5 from Rothschild (1975a) and conclude our
proof.

Remark 4. The intuition for Proposition 1 is the following: when the ruin condition holds, indi-
viduals receiving an allocation will still decay in welfare, due to the strong decay functions effects
that the ruin condition models. However, this happens at a slower rate compared to individuals
whose welfare decays absent any intervention. As such, the welfare gap between the individuals
with the maximum welfare level and those with minimum welfare will be bounded, asymptotically,
and therefore everyone will decay, yet at a slower rate given the intervention of the social planner
than without any intervention.
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Remark 5. The survival and ruin conditions characterize two model states in which we can make
a definite comparison between Rawlsian policies and utilitarian policies in terms of the long-term
social welfare they achieve. There is a middle ground, in which neither survival nor ruin may hold, in
which the direct comparison between policies becomes much more difficult. We leave this direction
for future studies.

C EXPERIMENTAL DETAILS

This section contains detailed simulation notes for Section 5 and Appendix figures. For the simula-
tions in which the return and decay function bounds are uniform, we choose threshold parameters
F−
i , F

+
i , G

−
i , G

+
i s.t. fi(x) = f−, gi(x) = g− for x ≤ F−

i , x ≤ G−
i , respectively, and fi(x) = f+,

gi(x) = g+ for x ≥ F+
i , x ≥ G+

i , respectively, and we linearly interpolate between these thresh-
olds. Choosing F−

i < F+
i and G−

i > G+
i ensures that fi is increasing and gi is decreasing on

the non-constant segments. We generate F−
i , F

+
i , G

−
i , G

+
i randomly in the interval (0,∆] for some

∆ > 0. For Figures 1a, 2, and 4, we filter to ensure that fi(·) + gi(·) is increasing. For Figure 3,
we filter to ensure that fi(·) + gi(·) is increasing under some threshold τ , and decreasing above
threshold τ . For all Figures, we average over 50 iterations and report the social welfare obtained at
every timestep. Our results are qualitatively the same for other functional forms of fi, gi, such as
sigmoid functions.

All code and data used in our simulations is available anonymously in this repository.

D BEYOND A MATTHEW EFFECT: MODELING VARIATIONS OF THE
TREATMENT EFFECT FUNCTION

In the main text, we modeled a Matthew effect through the “rich-get-richer” and “poor-get-poorer”
behaviors induced by an increasing intervention return function fi(·) and a decreasing decay
function gi(·), under the assumption that the treatment effect fi(·) + gi(·) is also increasing. This
assumption suggests that interventions at higher level of welfare have a higher impact. We explore
a variation of this assumption in this section, assuming that there exists a threshold τ above which
the treatment effect is in fact decreasing. In doing so, we capture a diminishing return effect,
where individuals with the highest or lowest levels of welfare benefit less from an intervention
than individuals with moderate levels of welfare. This is motivated by recent policies that target
people with moderate welfare values: the algorithmic profiling policy introduced by Austria in
2020 (Allhutter et al., 2020) predicts a probability of an individual to re-enter the job market
based on an intervention (in a sense, a prediction of the treatment effect). The policy allocates an
intervention to those “in-the-middle”, suggesting that moderate welfare values are predictive of the
highest treatment effect. In addition, optimal taxation policy and redistributive taxation (Mankiw
et al., 2009; Benabou, 2000) often argue for an increasing tax scale or a decreasing benefit scheme
as a function of income. We provide a theoretical extension from our results in Theorem 1 under
stricter homogeneity assumptions, capturing a diminishing return on interventions.
Corollary 5 (Diminishing returns). Assume the conditions of Theorem 1, but with a threshold
τ > 0 s.t. fi(x), fi(x) + gi(x) are decreasing for x ≥ τ . Furthermore, assume that the functions
fi, gi are uniform for all individuals (fi(x) = fj(x), gi(x) = gj(x) for ∀i ̸= j ∈ [N ]). Finally,
limx→−∞(fi(x) + gi(x)) < limx→+∞(fi(x) + gi(x)). Then with positive probability, a Rawlsian
policy achieves a higher long-term social welfare than a utilitarian policy, in any informational
context:

P(R̄Rawlsian ≥ R̄utilitarian) > 0,

where the Rawlsian and utilitarian policies are defined in the same informational contexts, i.e.
{min-U,max-U}, {max-g,max-f}, {max-g,max-fg}. Note here that all policies break the tie by
choosing the individual with the lowest welfare level.
Remark 6. Corollary 5 shows that our analysis under the simple assumptions on the monotonicies
of intervention return function and the decay function can be applied to more complicated cases.
When fi(·) + gi(·) (fi(·)) is increasing, the choices of max-fg (max-f) policy and min-U policy
diverge. The tendency of max-fg (max-f) policy of focusing on the better-off population can cause
long-term loss by accumulating the decay of the ignored population. Furthermore, the ignored
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population enters a low-welfare trap, since they will likely not be targeted again. See Figure 3 for
an illustration of Corollary 5 where we can observe utilitarian policies (max-U, max-f, max-fg) show
inferior finite-horizon growth rate to the Rawlsian policies (min-U, max-g).

Proof. First of all, since the asymptotic behavior of individuals under the min-U policy (i.e., being
lifted unboundedly) does not depend on the simple monotonicity property of the return functions,
we have Ui(t) → +∞ for ∀i ∈ [N ] under a Rawlsian policy with survival, regularity conditions
and existence of limx→−∞(fi(x) + gi(x)) from Theorem 3. Hence we conclude R̄Rawlsian =
1
N f

+ − N−1
N g−. However, before the turning point of the monotonicity of fi(·) + gi(·), the max-fg

policy tends to focus on the better-off individuals by applying the rule of max-fg policy. Hence
with positive probability, some individuals will be left behind (with fi(Ui(t)) + gi(Ui(t)) less than
limx→+∞(fi(x) + gi(x))); then if these individuals will not receive budget for all t afterwards, the
probability of them never crossing the turning point (i.e., where the mononicity of the treatment
effect function changes) is lowerbounded by a positive constant independent of Ft by applying
Lemma 3.

And after the turning point, the max-fg policy coincides with the min-U policy and lifts every in-
dividual to infinity, asymptotically, with positive probability (not almost surely anymore since the
individuals can drop below the turning point of fi(·) + gi(·)). Hence we conclude that with positive
probability, R̄max-fg ∈

{
f+−(k−1)g−−(N−k)g+

N , k = 1, . . . , N.
}

. With positive probability, we have

R̄max−fg ≤ R̄min−U.

A similar argument applies to the max-f policy by substituting fi(·) + gi(·) with fi(·) and hence
omitted here. For the max-U policy, Theorem 4 still applies and we have R̄max−fg ≤ R̄min−U with
positive probability.
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Figure 3: Social welfare as the finite-time growth rate averaged over all individuals, for all policies
(solid lines), as well as theoretical growth rate for min-U and max-U policies (dashed lines) under
diminishing returns.

E EXTENSION TO MULTI-BUDGET MODEL

We introduce the adapted version of survival condition for a multi-budget model where∑N
i=1 ai(t) = M with ai(t) ∈ [0, 1] for all t ≥ 0 where M ≥ 1 is the amount of budget allo-

cated (i.e., the number of individuals to which a social planner can allocate an intervention).

We define an adapted survival condition under the multi-budget setup:
Assumption 5. We assume ζ̄M ((f−1 , . . . , f

−
N ), (g+1 , . . . , g

+
N )) > 0 where ζ̄M : R2N → R is defined

as

ζ̄M ((f−1 , . . . , f
−
N ), (g+1 , . . . , g

+
N )) :=

(
M −

N∑
i=1

g+i
f−i + g+i

) N∑
j=1

1

f−j + g+j

−1

> 0,
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and f+i := sup fi(x) > 0 , f−i := inf fi(x) > 0 , g+i := sup gi(x) > 0 , g−i := inf gi(x) > 0 .

For the multi-budget model, the similar results of Rawlsian and utilitarian policies to Theorem 1, 3,
4, 5, hold by simply substituting the survival condition (Assumption 1) with Assumption 5, function
ζ̄ with ζ̄M , “fixating on a single individual” with “fixating on M individuals”. The proofs apply
with minor modifications by noticing the following bounds (similar to inequality 7, 10). We use the
definitions of Ū(t), Ũ(t) from equation 5, equation 8.

E[Ū(t+ 1)− Ū(t) | Ft] =
∑
i

wi · (ai(t) · fi(Ui(t))− (1− ai(t)) · gi(Ui(t)))

≥
∑
i

wi ·
(
ai(t) · f−i − (1− ai(t))g

+
i

)

=

∑
j=1

1

f−i + g+i

−1

·

(∑
i

ai(t)− g+i

)
= ζ̄M ((f−1 , . . . , f

−
N ), (g+1 , . . . , g

+
N )).

Similarly, we obtain the upper bound for Ũ(t):

E
[
Ũ(t+ 1)− Ũ(t) | Ft

]
=

N∑
i=1

w̃i · (ai(t) · fi(Ui(t))− (1− ai(t)) · gi(Ui(t)))

≤
N∑
i=1

w̃i ·
(
ai(t) · f+i − (1− ai(t))g

−
i

)
= ζ̄M ((f+1 , . . . , f

+
N ), (g−1 , . . . , g

−
N )).

We formulate the following results for multi-budget model. The proofs follow easily from our
complete proofs in the unit budget model.

Theorem 8. For a population of N individuals whose welfare (Ui(t))i fluctuates according to the
model in equation 1 with

∑N
i=1 ai(t) = M with ai(t) ∈ [0, 1], under regularity, modeling, and

survival conditions (Assumptions 5, 2, 3), a Rawlsian policy will achieve better long-term social
welfare than a utilitarian policy in any informational context:

R̄Rawlsian ≥ R̄utilitarian a.s.

where the Rawlsian and utilitarian policies are defined in the same informational contexts, i.e.
(min-U,max-U), (max-g,max-f), (max-g,max-fg).

Theorem 9. Under regularity (Assumption 3), modeling conditions (Assumption 2.(a),(b)), and the
survival condition (Assumption 5), a Rawlsian policy π ∈ {min-U,max-g} leads to the following
closed form solution of the individual rates of growth, both in the welfare-based and effect-based
informational contexts:

Ri = ζ̄M ((f+1 , . . . , f
+
N ), (g−1 , . . . , g

−
N )), i = 1, . . . , N , a.s.

Corollary 6. With the addition of the uniform boundedness condition from Assumption 2.(c), we
can simplify the individual rates of growth, obtaining the long-term social welfare value for the
Rawlsian policy

R̄min−U = R̄max−g =
M

N
f+ − N −M

N
g− a.s.

Theorem 10. Under regularity (Assumption 3) and modeling conditions (Assumption 2.(a),(b)) and
as long as fi(·)+gi(·) is increasing for all i ∈ [N ],2 a utilitarian policy π ∈ {max-U,max-fg,max-f}

2This assumption states that the return from an intervention should, in principle, be higher than the shock
experienced by an individual absent intervention. It is only needed for the max-fg policy, since it is the only
one using knowledge of both the return and decay functions.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

leads to the following closed form solution of the individual rates of growth, both in the welfare-
based and effect-based informational contexts:

Ri =

{
f+i , i ∈ J ,

−g+i , i /∈ J ,
a.s.

where J is a set of random variable with |J | =M whose exact value depends on U(0), (fi(·))i, and
(gi(·))i. In other words, exactly one individual achieves an asymptotic rate of growth equal to f+i ,
whereas all others achieve −g+i .

Corollary 7. With the addition of the uniform boundedness condition from Assumption 2.(c), we
can simplify the individual rates of growth, obtaining the social welfare value

R̄max−U = R̄max−f = R̄max−fg =
M

N
f+ − N −M

N
g+ a.s.

Theorem 11. Under regularity (Assumption 3), modeling (Assumption 2), and survival conditions
(Assumption 5), the random policy leads to the following closed form solution of the individual rates
of growth and average growth rate:

R̄random = Ri =
M

N
f+ − N −M

N
g−, i = 1, . . . , N , a.s.

F DIFFERENT TIE-BREAKING RULE FOR THE MAX-G POLICY

In Section 2 we introduced a rule that breaks the tie in favor of individuals with the smallest index,
when they have the same welfare values. Additionally, when the decay function values are the
same, the max-g policy chooses the individual with the lowest welfare. We explore a variation
where the max-g policy breaks the tie by also choosing the individual with the lowest welfare in
Figure 4, noting a slightly convergence rate than the min-U policy. All simulations details are the
same as in Section 5.
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Figure 4: Social welfare as the finite-time growth rate averaged over all individuals, for all policies
(solid lines), as well as theoretical expected growth rate, asymptotically (dashed lines). The tie-
breaking rule favors the individual with the lowest index for all policies.
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