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Figure 1: Given a single facial photo (v1 or v2) as a tunable sample, the proposed method can
insert this identity into the trained text-to-image model, e.g., Stable Diffusion [1], where the new
person (v1) can act like the original concept in the trained model and interact with another newly
trained concept (v2). Note that the input images are randomly generated from StyleGAN [2].

Abstract

Exquisite demand exists for customizing the pretrained large text-to-image model,
e.g. Stable Diffusion, to generate innovative concepts, such as the users themselves.
However, the newly-added concept from previous customization methods often
shows weaker combination abilities than the original ones even given several
images during training. We thus propose a new personalization method that allows
for the seamless integration of a unique individual into the pre-trained diffusion
model using just one facial photograph and only 1024 learnable parameters under
3 minutes. So we can effortlessly generate stunning images of this person in any
pose or position, interacting with anyone and doing anything imaginable from text
prompts. To achieve this, we first analyze and build a well-defined celeb basis
from the embedding space of the pre-trained large text encoder. Then, given one
facial photo as the target identity, we generate its own embedding by optimizing the
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weight of this basis and locking all other parameters. Empowered by the proposed
celeb basis, the new identity in our customized model showcases a better concept
combination ability than previous personalization methods. Besides, our model
can also learn several new identities at once and interact with each other where the
previous customization model fails to. Project page is at: http://celeb-basis.
github.io. Code is at: https://github.com/ygtxr1997/CelebBasis.

1 Introduction

Vast image-text pairs [3] during training and the powerful language encoder [4] enable the text-to-
image models [1, 5, 6] to generate diverse and fantastic images from simple text prompts. Though
the generated images are exquisite, they may still fail to satisfy the users’ demands since some
concepts are not easy to be described by the text prompt [7]. For instance, individuals frequently
post self-portraits on social media platforms, where the pre-trained text-to-image models struggle to
produce satisfactory pictures of them despite receiving comprehensive instructions. This shortcoming
makes these models less attractive to general users.

Recent works [8, 9, 10, 7] solve this problem via efficiently tuning the parameters of the model for
personalization usage. For example, these techniques insert the new concepts (e.g. a specific bag,
a dog, or a person) into the model by representing them as rarely-used pseudo-words [10] (or text-
embeddings [9, 7, 8, 11]) and finetuning the text-to-image model with a few of these samples [10, 7].
After training, these pseudo-words or embeddings can be used to represent the desired concept and
can also perform some combination abilities. However, these methods often struggle to generate
the text description-aligned image with the same concept class (e.g. the person identities) [8, 10].
For instance, the original Stable Diffusion [1] model can successfully generate the image of the
text prompt:“ Barack Obama and Anne Hathaway are shaking hands." Nevertheless, in terms of
generating two newly-learned individuals, the previous personalized methods [8, 10, 7] fall short of
producing the desired identities as depicted in our experiments (Fig. 5).

In this work, we focus on injecting the most specific and widely-existing concept, i.e. the human
being, into the diffusion model seamlessly. Drawing inspiration from the remarkable 3DMM [12],
which ingeniously represents novel faces through a combination of mean and weight values derived
from a clearly defined basis, we build a similar basis to the embeddings of the celebrity names in
pretrained Stable Diffusion. In this way, are capable of representing any new person in the trained
diffusion model via the basis coefficients.

We first collect a bunch of celebrity names from the Internet and filter them by the pre-trained
text-to-image models [1]. By doing so, we obtain 691 well-known names and extract the text
embedding by the tokenizer of the CLIP [4]. These celeb names corresponds to over 700K samples
in LAION datasets [3] (see our appendix for detailed statistics), containing powerful priors. Then, we
construct a celeb basis via Principal Component Analysis (PCA [13]). To represent a new person
with PCA coefficients, we use a pre-trained face recognition network [14] as the feature extractor of
the given photo and learn a series of coefficients to re-weight the celeb basis, so that the new face
can be recognized by the pre-trained CLIP transformer encoder. During the process, we only use
a single facial photo and fix the denoising UNet and the text encoder of Stable Diffusion to avoid
overfitting. After training, we only need to store the 1024 coefficients of the celeb basis to represent
the newly-added identity since the basis is shared across the model. Though simple, the concept
composition abilities [1] of the trained new individual is well-preserved, as we only reweight the text
embeddings of the trained CLIP model and freeze the weights in the diffusion process. Remarkably,
the proposed method has the ability to produce a strikingly realistic photo of the injected face in
any given location and pose. Moreover, it opens up some new possibilities such as learning multiple
new individuals simultaneously and facilitating seamless interaction between these newly generated
identities as shown in Fig. 1. The contributions of the paper are listed as follows:

• We propose celeb basis, a basis built from the text embedding space of the celebrities’ names
in the text-to-image model and verify its abilities, such as interpolation.

• Based on the proposed celeb basis, we design a new personalization method for the text-to-
image model, which can remember any new person from a single facial photo using only
1024 learnable coefficients.
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• Extensive experiments show our personalized method has more stable concept composition
abilities than previous works, including generating better identity-preserved images and
interacting with new concepts.

2 Related Work
Image Generation and Editing. Given a huge number of images as the training set, deep generative
models target to model the distribution of training data and synthesize new realistic images through
sampling. Various techniques have been widely explored, including GAN [15, 2], VAE [16, 17],
Autoregressive [6, 18, 19, 20], flow [21, 22]. Recently, diffusion models [23, 24] gain increasing
popularity for their stronger abilities of text-to-image generation [5, 6, 1]. Conditioned on the text
embedding of pre-trained large language models [4], these diffusion models are iterative optimized
using a simple denoising loss. During inference, a new image can be generated from sampled
Gaussian noise and a text prompt. Although these diffusion models can synthesize high-fidelity
images, they have difficulties in generating less common concepts [25] or controlling the identity
of generated objects [7]. Current editing methods are still hard to solve this problem, e.g. directly
blending the latent of objects [26, 27] to the generated background will show the obvious artifacts
and bring difficulties in understanding the scenes correctly [28]. On the other hand, attention-based
editing works [29, 30, 31, 32] only change the appearance or motion of local objects, which can
not generate diverse new images with the same concept (e.g. human and animal identity) from the
referred image.

Model Personalization. Different from text-driven image editing, tuning the model for the specific
unseen concept, i.e. personalized model, remembers the new concepts of the reference images and can
synthesize totally unseen images of them, e.g. appearance in a new environment, interaction with other
concepts in the original stable diffusion. For generative adversarial neworks [2, 33], personalization
through GAN inversion has been extensively studied. This progress typically involves finetuning of
the generator [34, 35], test-time optimization of the latents [36], or a pre-trained encoder [37]. Given
the recent diffusion generative model [1, 5], it is straightforward to adopt previous GAN inversion
techniques for the personalization of diffusion models. Dreambooth [10] finetunes all weight of
the diffusion model on a set of images with the same identity and marks it as the specific token.
Meanwhile, another line of works [7, 9, 38] optimizes the text embedding of special tokens (e.g.
V ∗) to map the input image while freezing the diffusion model. Later on, several works [8, 39, 40]
combine these two strategies for multi-concept interaction and efficient finetuning taking less storage
and time. These methods focus on general concepts in the open domain while struggling to generate
interactions between fine-grained concepts, i.e.human beings with specific identities. Since most of
the previous works require the tuning in the test time, training inversion encoders are also proposed
to generate textual embedding from a single image in the open domain (e.g. UMM [41], ELITE [42],
and SuTI [43]), or in human and animal domain (e.g. Taming-Encoder [44], Instant-Booth [45],
E4T [11]). However, a general human identity-oriented embedding is difficult to be obtained from a
naively optimized encoder, and tuning the Stable Diffusion on larger-scale images often causes the
concept forget. In contrast, our method focuses on a better representation of identity embedding in
the diffusion model (celeb basis in Sec. 3.1), which significantly eases the process of optimization
such that we only need 1024 parameters to represent an identity more correctly as in Sec. 3.2 and
stronger concept combination abilities, which can converge in only 3 minutes.

Identity Basis. Representing the human identity via basis is not new in traditional computer vision
tasks. e.g. in human face modeling, 3D Morphable Models [12] and its following models [46, 47]
scans several humans and represent the shape, expression, identity, and pose as the PCA coeffi-
cients [13], so that the new person can be modeled or optimized via the coefficients of the face basis.
Similar ideas are also used for face recognition [48], where the faces in the dataset are collected and
built on the basis of the decision bound. Inspired by these methods, our approach takes advantage of
the learned celebrity names in the pre-trained text-to-image diffusion model, where we build a basis
on this celebrity space and generate the new person via a series of learned coefficients.

3 Method
Our method aims to introduce a new identity to the pre-trained text-to-image model, i.e. Stable
Diffusion [1], from a single photo via the optimized coefficients of our self-built celeb basis. So that
it can memorize this identity and generate new images of this person in any new pose and interact
with other identities via text prompts. To achieve this, we first analyze and build a celeb basis on
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Figure 2: The building process of the proposed Celeb Basis. First, we collect about 1,500 celebrity
names as the initial collection. Then, we manually filter the initial one to m = 691 names, based on
the synthesis quality of text-to-image diffusion model [1] with corresponding name prompt. Later,
each filtered name is tokenized and encoded into a celeb embedding group gi. Finally, we conduct
Principle Component Analysis to build a compact orthogonal basis, which is visualized on the right.

the embedding space of the text encoder through the names of the celebrities (Sec. 3.1). Then, we
design a face encoder-based method to optimize the coefficients of the celeb basis for text-to-image
diffusion model customization (Sec. 3.2).

3.1 Celeb Basis
Preliminary: Text Embeddings in Text-to-Image Diffusion Models. In the text-to-image model,
given any text prompts u, the tokenizer of typical text encoder model etext, e.g. BERT [49] and
CLIP [4], divides and encodes u into l integer tokens by order. Correspondingly, by looking up the
dictionary, an embedding group g = [v1, ..., vl] consisting of l word embeddings can be obtained,
where each embedding vi ∈ Rd. Then the text transformer τtext in etext encodes g and generates
text condition τtext(g). The condition τtext(g) is fed to the conditional denoising diffusion model
ϵθ(zt, t, τtext(g)) and synthesize the output image following an iterative denoising process [23], where
t is the timestamp, zt is a noised image or latent at t. Previous text-to-image model personalization
methods [7, 10, 9] have shown the importance of text embedding g in personalizing semantic
concepts. However, in text-to-image models’ personalization, they only consider it as an optimization
goal [9, 7, 8], instead of improving its representation.

Interpolating Abilities of Text Embeddings. Previous works have shown that text embedding
mixups [50] benefit text classification. To verify the interpolation abilities in text-to-image generation,
we randomly pick two celebrity names embeddings v1 and v2, and linearly combine them as v̂ =
λv1 + (1− λ)v2, where 0 < λ < 1. Interestingly, the generated image of the interpolated embedding
v̂ also contains a human face as shown in Fig. 3, and all the generated images perform well in acting
and interacting with other celebrities. Motivated by the above finding, we build a celeb basis so that
each new identity can lie in the space formed by celebrity embeddings.

𝑣! = Robert Downey

𝑣" = Barack Obama

#𝑣 = 0.6𝑣! + 0.4𝑣"

#𝑣 is playing 
the guitar

#𝑣 is playing a 
basketball

#𝑣 is eating 
breads in front of 
the Eiffel Tower

#𝑣 is talking with 
Anne Hathaway

A photo of #𝑣 A photo of #𝑣 A photo of #𝑣 A photo of #𝑣

Figure 3: The interpolated text-embedding of two celebrities is still a human (top row) and it also can
perform strong concept combination abilities in the pretrained Stable Diffusion [1] (bottom row).

Build Celeb Basis from Embeddings of the Collected Celebrities. As shown in Fig. 2, we first
crawl about 1,500 celebrity names from Wikipedia as the initial collection. Then, we build a manual
filter based on the trained text-to-image diffusion model [1] by constructing the prompts of each name
and synthesizing images. A satisfied celeb name should have the ability to generate human images
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Figure 4: During training (left), we optimize the coefficients of the celeb basis with the help of a
fixed face encoder. During inference (right), we combine the learned personalized weights and shared
celeb basis to generate images with the input identity.

with prompt-consistent identity and interact with other celebs in synthesized results. Overall, we get
m = 691 satisfied celeb names where each name ui, i ∈ {1, ...,m} can be tokenized and encoded
into a celeb embedding group gi = [vi1, ..., v

i
ki
], notice that the length ki of each celeb embedding

group gi might not the same since each name may contain multiple words (or the tokenizer will
divide the word into sub-words). To simplify the formula, we compose the nonrepetitive embeddings
so that each gi only contains the first two embeddings (i.e. ki = 2 for all m celebrities). Using C1

and C2, i.e. Ck = [v1k, ..., v
m
k ], to denote the first and second embeddings of each gi respectively, we

can roughly understand them as the first name and last name embedding sets.

To further build a compact search space, inspired by 3DMM [12] which uses PCA [13] to map
high-dimensional scanned 3D face coordinates into a compact lower-dimensional space, for each
embedding set Ck, we calculate its mean Ck = 1

m

∑m
i=1 v

i
k and PCA mapping matrix Bk =

PCA(Ck, p), where Ck ∈ Rd and PCA(X, p) indicates the PCA operation that reduces the second
dimension of matrix X ∈ Rm×d into p (p < d) principal components, i.e. Bk = [b1k, ..., b

p
k]. As

shown in Fig. 2, the mean embedding Ck still represents a face and we can get the new face via some
coefficients applied to Bk.

Overall, our celeb basis is defined on two basis [C1, B1] and [C2, B2] working like the first and last
name. We use the corresponding principle components A1 and A2 (where Ak = [α1

k, ..., α
p
k]) to

represent new identities. Formally, for each new person ĝ, we use two p-dimensional coefficients of
the celeb basis and can be written by:

ĝ = [v̂1, v̂2], v̂k = Ck +

p∑
x=1

αx
kb

x
k, (1)

In practice, p equals 512 as discussed in the ablation experiments.

To control the generated identities, we optimize the coefficients with the help of a face encoder as the
personalization method. We introduce it in the below section.

3.2 Stable Diffusion Personalization via Celeb Basis

Fast Coefficients Optimization for Specific Identity. Given a single facial photo, we use the
proposed celeb basis to embed the given face image x of the target identity into the pretrained
text-to-image diffusion model as shown in Fig. 4. Since direct optimization is hard to find the
optimized weight, we consider using the pre-trained state-of-the-art face recognition models F , i.e.
ArcFace [14], to capture the identity-discriminative patterns. In detail, we adopt the F to extract 512
dimension face embedding as priors. Then a single-layer MLP followed by an L2-normalization is
used to map the face priors into the modulating coefficients A1 and A2. Following the Eq. 1, we can
obtain the embedding group ĝ of the x using the pre-defined basis. By representing the text prompt
of ĝ as V ∗, we can involve V ∗ to build the training pairs between the text prompt of input face and
“A photo of V ∗”, “A depiction of V ∗”, etc.. Similar to previous works [10, 7, 8], we only use simple
diffusion denoising loss [23]:

Eϵ∼N(0,1),x,t,g[∥ϵ− ϵθ(zt, t, τtext(g))∥], (2)

where ϵ is the unscaled noise sample, g denotes the text embeddings containing ĝ. During training,
only the weights of MLP need to be optimized, while other modules, including the celeb basis, face
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encoder F , CLIP transformer τtext, and UNet ϵθ are fixed. Thus, the original composition abilities of
the trained text-to-image network are well-preserved, avoiding the forgetting problem. Since we only
have a single photo, we use color jitter, random resize, and random shift as data augmentations on the
supervision to avoid overfitting. Notice that, we find our augmentation method can work well even
though there are no regularization datasets which is important in previous methods [10, 7, 8], showing
the strong learning abilities of the proposed methods. Since the proposed method only involves a few
parameters, it only takes almost 3 minutes for each individual on an NVIDIA A100 GPU, which is
also much faster than previous methods.

Testing. After training, only two groups of coefficients A1 and A2 applied to the principal celeb
basis components need to be saved. In practice, the number of principal components of each group
is p = 512, coming to only 1024 parameters and 2-3KB storage consumption for half-precision
floatings. Then, users can build the prompt with multiple action description prompts (e.g. “A photo of
V ∗ is playing guitar”) to synthesize the satisfied images as described in Fig. 4.

Multiple Identities Joint Optimization. Most previous methods only work on a single new con-
cept [9, 10], Custom Diffusion [8] claim their method can generate the images of multiple new
concepts (e.g. the sofa and cat). However, for similar concepts, e.g. the different person, their method
might not work well as in our experiments. Besides, their method is still struggling to learn multi-
ple (> 3) concepts altogether as in their limitation. Differently, we can learn multiple identities (e.g.
10) at once using a shared MLP mapping layer as in Fig. 4. In detail, we simply extend our training
images to 10 and jointly train these images using a similar process as single identities. Without a
specific design, the proposed method can successfully generate the weight of each identity. After
training, our method can perform interactions between each new identity while the previous methods
fail to as shown in the experiments. More implementation details are in the appendix.

4 Experiments
4.1 Datasets and Metrics
Datasets. We conduct experiments on the self-collected 2K synthetic facial images generated by
StyleGAN [2]. Using synthetic faces as input for assessing the effectiveness of generative models,
one can ease the reliance on the dataset foundation of the initial pre-trained text-to-image model. We
also perform some experiments on the real photo of the individual, more results and comparisons are
shown in the supplemental materials.

Metrics. First, we assess the performance of the generated images by utilizing objective metrics.
For instance, we calculate the consistency between the prompt and generated image through CLIP
score [4], which is denoted as “Prompt" in tables. Additionally, ensuring identity consistency and
clarity of facial features are crucial aspects of our task. Therefore, we evaluate identity similarity using
a pretrained face recognition encoder [14] and mark it as “Identity". Furthermore, to demonstrate the
rationality behind generation, we also calculate the rate of successful face detection (“Detect") via
a pretrained face detector [14]. Lastly, user studies are conducted to evaluate text-image alignment
along with identity and photo qualities. The images having the highest text-alignment scores from a
single inference batch are used compare the peak qualitative performance of all the methods.

4.2 Comparing with State-of-the-Art Methods
We compare the proposed method with several well-known state-of-the-art personalization methods
for Stable Diffusion [1], including DreamBooth [10], Textual-Inversion [7] and Custom Diffusion [8].
As shown in Fig. 5, given one single image as input, we evaluate the performance of several different
types of generation, including the simple stylization, concept combination abilities, and two new
concept interactions. Textual inversion tends to overfit the input image so most of the concepts are

Table 1: Quantitative comparisons.

Methods Objective Metrics↑ User Study↑ #Params↓ Time↓
Prompt Identity Detect Quality Text Identity (min)

Textual Inversion [7] 0.1635 0.2958 92.86% 2.23 1.88 2.55 1,536 24
Dreambooth [10] 0.2002 0.0512 54.76% 3.32 3.70 2.75 9.83× 108 16
Custom Diffusion [8] 0.2608 0.1385 80.39% 3.31 3.55 2.96 5.71× 107 12

Ours 0.2545 0.2072 84.78% 3.47 4.01 3.37 1,024 3
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Target Image Textural Inversion DreamBooth Custom Diffusion Ours

a photo of

eating bread in front of the Eiffel Tower
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and Barack Obama cooking together in a kitchen
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shakes hands with
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a sand sculpture of

Funko Pop

Figure 5: We compare several different abilities between our method and baselines (Textural Inver-
sion [7], Dreambooth [10], and Custom Diffusion [8]).
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Figure 6: Numerical analysis in terms of the prompt
and identity similarity on four prompt types.

Methods Prompt↑ Identity↑ Detect↑
w/o celeb basis 0.1386 0.2528 69.28%
w/ 350 names 0.2214 0.2023 69.28%
w/o filter 0.1939 0.2037 80.62%
w flatten 0.2026 0.1873 80.39%
p = 64 0.2247 0.1061 76.47%
p = 256 0.1812 0.0656 60.13%
p = 768 0.1380 0.0836 47.06%
w/o F 0.1914 0.1896 55.56%
w/o aug. 0.2083 0.1931 75.16%

Ours (single) 0.2234 0.2186 81.05%
Ours (joint) 0.2545 0.2072 84.78%

Table 2: Ablation studies.

reconstruction playing basketball as an astronaut reconstruction age+ pose

age- age-, gender pose

age-, pose age-, gender, pose poseage-, pose pose pose

age- age-, gender gender

Figure 7: Our method is not only robust to large age, gender, head pose, and light variants in the
inputs, but also has good ability of controlling age, gender, and head pose in the outputs.

forgotten. Although dreambooth [10] and custom diffusion [8] can successfully generate the human
and the concept, the generated identities are not the same as the target image.

Besides visual quality, we also perform the numerical comparison between the proposed method
and baselines in Tab. 1. From the table, regardless of the over-fitted Textual-Inversion (highest
identity and detect scores but lowest prompt score), our method shows a much better performance in
terms of identity similarity and the face detection rate and achieves similar text-prompt alignment as
Custom Diffsuion [8]. We also plot the generated results on four detailed types in Fig. 6, where the
proposed method shows the best trade-off. Notice that, the proposed method only contains very few
learning-able parameters and optimizes faster.

Moreover, since identity similarity is very subjective, we generate 200 images from different identities
to form a user study. In detail, we invite 100 users to rank the generated images from one (worst) to
five (best) in terms of visual quality, prompt alignment, and identities, getting 60k opinions in total.
The results are also shown in Tab. 1, where the users favor our proposed method.

4.3 Results on Age, Gender, Head Pose, and Expression
We qualitatively evaluate the robustness of our method to input age, gender, head pose, and light
variants in Fig. 7. Besides, modifying the text prompts can edit the age, gender, and pose of the results.
We further provide the expression controlling results in the appendix, along with the comparisons
with Face Composer [51]. Thanks to the identity disentangling ability of the face recognition [14]
network, the learned representations are highly relevant to the input identities while irrelevant and
insensitive to other attributes like age, pose, expression, etc. Furthermore, the learned representation
as an interpolation of celeb basis inherits the good characteristic of those "recognized" celeb names,
which corresponds to large amount of image-text paired samples [3] used for pretraining Stable
Diffusion [1].
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4.4 Ablation Studies
To further evaluate the sub-modules of our proposed method in both building celeb basis (Sec. 4.4.1)
and the proposed new personalization method (Sec. 4.4.2), we start from the default settings (
‘Ours (single)’ in Tab. 2) of our method, conducting the ablation study by separately removing each
submodule or using a different setting as follows. Due to the space limitation, we give more visual
results in the appendix.

4.4.1 Ablation Studies on Celeb Basis
# of names in celeb basis. We evaluate the influence of the names to build a celeb basis. In extreme
cases, if there is no name and we directly learn the embedding from the face encoder F (w/o celeb
basis), the model is overfitted to the input image and can not perform the concept combination. With
fewer celeb names (w/ 350 names), the generated quality is not good as ours baseline (single) as in
Fig. 8a. Besides, the quality of the celeb basis is also important, if we do not filter the names (w/o
filter), the performance will also decrease as in Tab. 2.

Flatten basis v.s. first and last name basis. In the main method, we introduce our celeb basis as the
first and last name basis since each name embedding does not have the same length. We thus involve
a more naive way by flattening all the embeddings to build the basis (w/ flatten). As shown in Fig. 8b
and Tab. 2, the generated images of our first and last name basis understand prompts better.

Choice of reduction dimension p. We also evaluate the influence of the number of coefficients p. Con-
sidering the 768 dimensions of the CLIP text embedding, we vary p ranging in {64, 256, 512, 768}.
Note that p = 768 can be also considered as ‘w/o PCA’ since the dimension of text embedding is
768. As shown in Tab. 2, the best result is obtained from the baseline choice (p = 512) and we show
the differences in the generated images in the appendix.

4.4.2 Ablation Studies on Coefficients Optimization
W/o face recognition encoder F . Naively, we can optimize the coefficients A1, A2 of the celeb
embeddings from back-propagation directly. However, we find the search space is still large to get
satisfied results as shown in Fig. 9a and Tab. 2 (w/o F ). So we seek help from the pretrained face
encoder, which has more discriminative features on the face.

W/o data augmentation. Since there is only one single image as the tuning-able sample, we perform
some data augmentations as introduced in Sec. 3.2. However, if we remove these augmentations, the
generated face becomes vague and unnatural as shown in Fig. 9b, and the identity of the generated
samples is also decreased as shown in Tab. 2.
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Input Car

Input Cat jumping down Manga drawing on the beach Pointlism painting in Christmas

traveling through space in a comic book on the beach the trunk in snow

Figure 10: Through a simple replacement on the encoder and text basis, our method can be extended
to more general classes, e.g. car and cat.

Single v.s. joint training. Our method supports joint training of multiple identities using a single
MLP, we evaluate the differences between single training/joint testing and joint training/joint testing.
As shown in Tab. 2 and Fig. 9c, although training individually can also perform some interactions
between the two-person, training the images jointly improve the robustness and reduces the over-
fitting risk compared with single training, resulting in slightly better results.

5 Conclusion & Discussion
We propose a new method to personalize the pre-trained text-to-image model on a specific kind of
concept, i.e. the human being, with simply single-shot tuning. Our approach is enabled by defining
a basis in the domain of the known celebrity names’ embeddings. Then, we can map the facial
features from the pre-trained face recognition encoder to reconstruct the coefficients of the new
identity. Compared with the previous concept injection method, our method shows stronger concept
combination abilities, e.g. better identity preservation, can be trained on various identities at once, and
can produce results where the newly-added humans interact with each other. Besides, the proposed
method only requires 1024 parameters for each person and can be optimized in under 3 minutes,
which is also much more efficient than previous methods.

Limitations. Although our method can successfully generate the images of new identities, it still
occurs some limitations. First, the human faces generated by original stable diffusion [1] intrinsically
contain some artifacts, causing somewhat unnatural performance of the proposed method (see our
appendix). It might be solved by a more powerful pre-trained text-to-image model (e.g. Imagen [5],
IF [52]) since they can generate better facial details. Second, we only focus on human beings
currently. It is also interesting to build the basis of other species, e.g. cars, and cats. To this end, we
provide some rough experiments (whose implementation details are introduced in the appendix) of
extending our method to cars and cats, as shown in Fig. 10. The results show that our method can
also generate text-aligned images with good quality without bells and whistles. But the simple try
could be improved through using a stronger encoder or crawling more text to construct basis. Third,
although the text alignment scores evaluate the quantitative performance, for the editing ability of age,
expression, and pose, we do not have a metric result yet. As supplement, we will use facial feature
extractors to quantitatively compare the human identity personalized tasks in the future. Fourth,
similar to the inference-only method FastComposer [51], we have also tried to train a model on 50k
identities (20 faces per identity without text labels) as an encoder-based method. However, it is
hard to converge in a short GPU time within a batch size of eight. We think it might be because we
need much more data and computing resources to train a unified or general facial model and we will
explore it in the future.

Ethics Consideration and Broader Impacts. We propose a new method for model personalization
on the human face, which might be used as a tool for deepfake generation since we can generate
not only the human face but also interactions between people. However, this prevalent issue is not
limited to this approach alone, as it also exists in other generative models and content manipulation
techniques. Besides, our personalization person generation method can also ablate the abilities of the
erasing concept methods [53] and other deep fake detection methods [54].
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A More Qualitative Results

A.1 Evaluation on Faces in a Wider Range

Besides evaluating the results on StyleGAN synthetic faces as in the main paper, we compare our
method with state-of-the-art methods on a wide range of human face images, including the real word
faces, the faces from different races, and the interactions of the same gender. These face images are
from VGGFace2 [55] and collected from the Web.

Single Person in an Image. Fig. 11 shows the evaluation results on a single person’s personalization
for real identities. Concretely, Row 1-2 shows the ability to generate diverse images of different
methods. The baselines Textual Inversion [7], DreamBooth [10], and Custom Diffusion [8] can
generate identity-consistent results with the single prompt ‘A photo of V ∗’, but the light condition and
skin texture seem not natural. DreamBooth and Custom Diffusion fail to disentangle the background
of the target inputs. The stylization results are shown in Row 3-4, where Textual Inversion preserves
the target identities but fails to change the style, DreamBooth, and Custom Diffusion generate the
images of the corresponding style but lose the identity information, and our method preserves the
identity and completes the stylization as given prompts.

Multiple Persons in an Image. We give the comparison of generating multiple-person interaction in
Fig. 12. Similar to the single-person results, the proposed method shows a good concept combination
ability among different persons (including the newly added and the original celebrities) and can serve
as a novel concept to communicate with other humans.

A.2 Additional Results Comparing with Concurrently Work: FastComposer

Different from the methods [7, 10, 8] that the finetuning time cost for each identity is below 30
minutes, FastComposer [51] needs to be pre-trained on a large human dataset, requiring 150k steps
with batch size 128 on 8 NVIDIA A6000 (48GB) GPUs. So as its performance is restricted by the
dataset as in their limitation. Differently, our method requires only 400 steps with batch size 2 on a
single NVIDIA A100 (40GB) GPU. After the pre-training stage, FastComposer can generate images
based on the given single image and prompt like other personalized methods.

To further demonstrate the efficacy of our method, we evaluate the qualitative performance of our
method compared with FastComposer. Our method outperforms FastComposer on single action con-
trolling, the interaction between two persons, and expression controlling. The detailed comparisons
are as follows.

Action of Single Person. We first evaluate the performance of single persons’ personalization. As
illustrated in Fig. 13 and Fig. 14, we show the synthesized results under six scenarios in each figure.

In Fig. 13, given the prompt ‘A photo of V ∗
1 ’, FastComposer generates an unnatural result. In the

remaining scenarios, the light seems very disharmonious in the images synthesized by FastComposer.
Besides, in these results, only the upper chest and head can be generated, where the human body and
limbs fail to appear, revealing an over-fitting issue of FastComposer.

In Fig. 14, FastComposer meets the same issue. Although the key objects and face identity are almost
consistent with the input prompts, e.g. LEGO toys, fighter jet, and yellow jacket, the results from
FastComposer seem to be a rude combination of the objects and face. Besides, their methods have a
huge issue with concept forget. Some important prompts like ‘sweater’ and ‘motorbike’ are ignored
by FastComposer.

We also highlight the faces generated by FastComposer share very similar expressions from the
original input image, i.e. dilated pupils, wrinkles on the forehead, and mouth shape, which means
this method is overfitted on the input image. Differently, our method generates identity- and prompt-
consistent results, appearing natural and realistic.

Interaction between Two Persons. Fig. 15 illustrates the interaction and common action of two
persons in a single image. Sharing the similar aforementioned over-fitting problem, FastComposer
only generates the face part of the human. As for the actions including ‘shaking’, ‘playing’, ‘sitting’,
and ‘baking’, FastComposer fails to generate the correct behaviors, where the faces usually occupy
the most part of the images. The problem of invariant expression also occurs in FastComposer.
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Figure 11: Single person’s personalization result for real identities.

Expression Controlling. Considering that the above FastComposer results struggle to generate the
different expressions, we conduct a face expression controlling experiment to validate the abilities of
our method and FastComposer. We use the following prompts to change the expression of the target
input image:

• V ∗ is smiling with happiness
• V ∗ is crying with sadness
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• V ∗ has an anger expression
• V ∗ looks very surprised, looking at a gift box
• V ∗ is shaking with fear scared by a candle lighting, scared expression
• V ∗ has a tired expression, headache, uncomfortable, a frown creased her forehead

As shown in Fig. 16, the proposed method can successfully generate different expressions under the
text prompts, which shows the advantage of the proposed method.

A.3 Uncurated Results

We show the uncurated results of our method in Fig. 17, which demonstrate that our method can
generate stable and text-aligned images without being cherry-picked.

B Implementation Details

B.1 Celeb Images Generated by Stable Diffusion

In general, the celeb images generated by Stable Diffusion [1] and those realistic ones collected from
Google Images seem very similar, but with a little difference on facial details. As seen in Fig. 18, we
compare the real celeb images collected from Google Images with the fake ones synthesized by Stable
Diffusion. Overall, the real and fake images closely resemble the same individual. However, certain
facial features in the fake images may be exaggerated, which can constrain our method’s performance
and explain why the celebrity profiles in the outcomes generated by both baseline models and our
approach do not precisely match their real counterparts.

B.2 Collecting and Filtering Celeb Names

After crawling about 1,500 celebrity names, to filter out the names that have the ability to generate
prompt-consistent identities and interacting with other celebs, we feed three types of prompts, i.e. ‘A
photo of Vc’, ‘Vc is playing the guitar’, and ‘Vc talks with Barack Obama’, to the Stable Diffusion [1]
for synthesizing image results, where Vc indicates the celeb name (e.g. ‘Anne Hathaway’). Fig. 19
shows the examples that satisfy the filtering condition and the ones that fail to generate reasonable
results. Consequently, 691 names pass the checking, which can be tokenized and encoded into
m = 691 celeb embedding groups.

The statistics of these 691 names are shown in Fig. 20. Specifically, we count the frequency of each
celeb name in the LAION-2B dataset text samples. LAION-2B is a subset of LAION-5B [3] where
Stable Diffusion [1] is pretrained. After sorting the celeb names according their frequency, we obtain
Fig. 20, where the x-axis is the index of the name, the y-axis is the appearing time of this name in the
dataset. This plot indicates that our collected celeb names correspond to thousands image-text paired
samples in average. There are only 25 names whose frequencies are less than 100 and 173 names
whose frequencies are larger than 10000. This frequency distribution shows that the distribution of
the celeb names is relatively fair.

B.3 Building Celeb Basis based on PCA

We only keep the first and second embeddings of each celeb embedding group, resulting in the first
name embedding set C1 and the second name embedding set C2, where C1, C2 ∈ Rm×d. Then, for
simplicity, we omit the subscript of Ck, using C to indicate any one of C1 and C2.

Calculation of Mean. Considering C may have repetitive embeddings (each row corresponds an
embedding vector), for each C, we first remove the duplicate rows that come from the same token
to make sure each token only occurs once at most. Then we calculate the mean C ∈ Rd across the
second dimension of C as mentioned in the main paper.

PCA. The PCA algorithm has many different coding implementations in practice. In our method, we
use Singular Value Decomposition (SVD) to skip the calculation of covariance matrix in PCA. Please
refer to [13, 56] for more detailed theoretical demonstration and coding techniques. Due to the built
celeb basis is not optimized, the PCA process only needs to be computed once during the training
stage.
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B.4 Training Recipe

We train the MLP with a learning rate of 0.005 and batch size of 2 on a single NVIDIA A100
GPU. The training augmentation includes horizontal flip, color jitter, and random scaling ranging in
0.1 ∼ 1.0. For single identity training, the optimization costs 400 steps, taking ∼ 3 minutes. For 10
identities joint training, we found that training 2,500 steps is enough, taking ∼ 18 minutes (averaged
about 250 steps and 108 seconds for each identity). The text prompts for training include:

• A photo of a face of V ∗ person
• A rendering of a face of V ∗ person
• The photo of a face of V ∗ person
• A rendition of a face of V ∗ person
• A illustration of a face of V ∗ person
• A depiction of a face of V ∗ person

C More Ablation Studies

W/o filtering celebrity names. As mentioned in Section B.2, Stable Diffusion fails to generate
correct images from some celeb names. In our method, we manually drop these bad samples. If this
filtering process canceled, the interaction ability of the learned identities drops a lot, as shown in
Fig. 21a.

Variants of reduction dimension p. In our method, the PCA reduction dimension p (p < k) controls
the degrees of freedom for modulating the variance applied to the celeb basis mean. Considering
that k = 768 in the CLIP [4] text encoder, we conduct a series experiments to study the choice of
p. Four values of p are chosen, including 64, 256, 512, 768. Note that p = 768 means PCA is not
used. Larger p costs more memory storage. As shown in Fig. 21b, chosing p = 512 comes to the best
identity similarity, which is consistent with the quantitative results in our main paper.

Variants training images per identity N . Our method focuses on one-shot identity personalization
problem (i.e. training from a single photo to represent a newconcept). To verify the influence of
training images count per identity, we provide the results in Fig. 22, where the inputs varies in view
and lighting condition. It shows that when we use more images, the face quality can also be slightly
improved, and the synthesized results are already pretty good when N = 1.

D Extending to More General Classes

Our method have potentials to be extended to non-face classes. Here, we provide some rough
experimental results in Fig. 10. For non-face samples, we trivially replace the face recognition
encoder with a pre-trained ResNet50 (trained on ImageNet-1K) and construct the "car" (or "cat")
basis by collecting typical types of cars (or breeds of cats) in phrases, e.g. ‘Volkswagen Passat’ and
‘Mercedes-Benz A-Class’ (or ‘Scottish Fold’ and ‘Abyssinian’ for cats). Without other bells and
whistles, our method generates text-aligned images with good quality of cars and cats. In the future,
we would try a better general encoder (to replace ResNet50) and crawl a larger basis for non-face
classes, extending our method for more general subjects using our well-collected basis names.
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Figure 12: Multiple persons’ personalization result for real identities.
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Figure 13: Additional single person’s personalization results comparing with FastComposer [51].
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Figure 14: Additional single person’s personalization results comparing with FastComposer [51].
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Figure 15: Additional multiple persons’ interaction personalization results comparing with FastCom-
poser [51].
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Figure 16: Comparing with FastComposer [51], our method has a better ability of controlling face
expression.
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Figure 17: Uncurated results in a testing batch.
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Figure 18: Stable Diffusion has the ability to generate identity-consistent celeb images. But in the
aspect of facial details, the celeb images synthesized by Stable Diffusion may exaggerate some facial
features compared with the real ones collected from Google Images.
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Figure 19: We filter out the celeb names that can generate prompt- and identity-consistent images
through Stable Diffusion [1]. Left: the satisfied names that can generate images share the same
identity with Google Images results. Furthermore, these names have the ability to interact with
objects or other satisfied celebs (e.g. ‘Barack Obama’). Right: Stable Diffusion confuses the face of
‘Rowan Atkinson’ and ‘Barack Obama’ in row four. The gender of ‘Sheeran’ is mistaken as a girl in
row four. The identity of ‘Stephen Chow’ has a large gap with that of Google Images results.
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Figure 20: The frequency statistics of our used celeb names in LAION-2B [3] (a subset where Stable
Diffusion trained).
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Input Prompt

∗ is playing 
basketball.

∗ (Input Image) Ours w/o filter

(a) The influence of filtering the useless celeb names or not.
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𝑉∗ (Input Image)

Input Prompt

𝑽∗ wearing a scifi 
spacesuit in space.

(b) The ablation on the values of p.

Figure 21: Additional ablation studies on building celeb basis and the choice of reduction dimension
p. Note that in our method, the text embeddings are 768-dimensions, which means p = 768 is
equivalent to the method without PCA.

...

...

Training Samples

Figure 22: Additional ablation studies on the number of training images per identity N .
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