
SWE-bench Goes Live!

Linghao Zhang1∗ Shilin He1† Chaoyun Zhang1 Yu Kang1 Bowen Li2
Chengxing Xie2 Junhao Wang1 Maoquan Wang1 Yufan Huang1 Shengyu Fu1

Elsie Nallipogu1 Qingwei Lin1 Yingnong Dang1 Saravan Rajmohan1 Dongmei Zhang1

1Microsoft 2Shanghai Artificial Intelligence Laboratory

Abstract

The issue-resolving task, where a model generates patches to fix real-world bugs,
has emerged as a key benchmark for evaluating the capabilities of large language
models (LLMs). While SWE-bench has become the dominant benchmark in this
domain, it suffers from several limitations: it has not been updated since its re-
lease, is restricted to only 12 repositories, and relies heavily on manual effort for
constructing test instances and setting up executable environments, significantly
limiting its scalability. We present SWE-bench-Live3, a live-updatable benchmark
designed to address these limitations. SWE-bench-Live currently includes 1,890
tasks derived from real GitHub issues created since 2024, spanning 223 repositories.
Each task is accompanied by a dedicated Docker image to ensure reproducible
execution. Additionally, we introduce an automated curation pipeline that stream-
lines the entire process from instance creation to environment setup, removing
manual bottlenecks and enabling scalability and continuous updates. We evaluate
a range of state-of-the-art models and agent frameworks on SWE-bench-Live,
offering detailed empirical insights into their real-world bug-fixing capabilities. By
providing a fresh, diverse, and executable benchmark grounded in live repository
activity, SWE-bench-Live supports reliable, large-scale assessment of code LLMs
and code agents in realistic development settings.

1 Introduction

Large language models (LLMs) have fundamentally reshaped the landscape of software engineering
[7], powering tools such as Cursor [4] and GitHub Copilot [5] that are now integral to modern
development workflows. These models have transformed key stages of the software development
lifecycle—automated code generation, bug detection, and issue resolution—leading to substantial
gains in developer productivity. To systematically assess LLM capabilities across these tasks, a variety
of curated benchmarks have been developed, including HumanEval [3], MBPP [2], SWE-bench
[10], DI-Bench [32], and OpenRCA [19]. These benchmarks are instrumental in identifying both the
strengths and limitations of LLMs in diverse programming and maintenance settings.

Among them, SWE-bench [10] and its variants, such as Multimodal SWE-bench [23] and Multi-
SWE-bench [26], have become standard for evaluating LLMs on the issue resolution task, where
models are required to comprehend complex codebases, interact with execution environments, and
generate patches that fix real-world issues. However, as LLMs evolve rapidly, existing benchmarks
exhibit several critical limitations that undermine their continued utility:

∗Work done during the internship at Microsoft
†Shilin He is the corresponding author
3Homepage: https://swe-bench-live.github.io/, Code: https://github.com/microsoft/

SWE-bench-Live, and Dataset: https://huggingface.co/SWE-bench-Live

Preprint.

https://swe-bench-live.github.io/
https://github.com/microsoft/SWE-bench-Live
https://github.com/microsoft/SWE-bench-Live
https://huggingface.co/SWE-bench-Live

Issue #743 opened 5 days ago

When using sh 2.x ...
It should be a kwarg to preserve ...

PR #744 merged 4 days ago

Fixes #743
Added a check for returning obj ...

Popular Repositories

Fixed

Raw Issue-PR Crawling

🤖 REPOLAUNCH

🔎 Find relevant files

 Select base image

README.md

CI/CD configs

python:3.11

Execution Environment

> bash
🤖 Setup

🤖 Verify
 Packaging to image

Automated Env Setup

1. Apply Test Patch

 > pytest
Parser

test_return_cmd

test_space_sep

test_bool_value

2. Apply Fix Patch

 > pytest
Parser

test_return_cmd

test_space_sep

test_bool_value

Validating Task Instances

Valid SWE-Bench-Live Instances

Figure 1: The automatic construction pipeline of SWE-bench-Live.

Table 1: Comparison with existing issue resolving benchmarks.
Dataset Date #Instances #Repository Real/Synthetic Curation

SWE-bench [10] Oct, 2023 2,294 12 Real Manual
SWE-bench-Verified [13] Aug, 2024 500 12 Real Manual

SWE-Gym [14] Dec, 2024 2,438 11 Real Manual
Multi-SWE-bench [26] Apr, 2025 1,632 39 Real Manual

SWE-smith [24] Apr, 2025 50,000 128 Synthetic Semi-manual

SWE-bench-Live (Ours) April, 2025 1,890 (since 2024) 223 Real Automatic

1. Staleness. SWE-bench and its derivatives have not been updated since their initial releases,
making them static benchmarks. Because LLMs are trained on massive inscrutable corpora,
these static datasets are at risk of data contamination, as they could have be been unpurposely
included in model training data. This raises concerns about whether newer models are making
truly generalizable progress or merely memorizing benchmark content, reducing the benchmarks’
effectiveness in distinguishing model capabilities.

2. Limited repository coverage. These benchmarks draw from a small set of repositories, limiting
diversity in codebases, domains, and programming practices (see Table 1 for details). This narrow
scope weakens the generalizability and robustness of evaluations.

3. Heavy reliance on manual effort. Constructing instances for SWE-bench-like task istances
involves substantial human labor: identifying appropriate issue-resolution pairs, locating relevant
tests, configuring runnable environments, composing test commands, and validating the full
workflow.4 This process is resource-intensive and creates scalability bottlenecks.

To address these challenges, we introduce SWE-bench-Live, a live and scalable benchmark built
for evaluating LLMs on real-world issue resolution tasks. In contrast to recent efforts such as
LiveCodeBench [9], which target algorithmic programming problems, SWE-bench-Live is the
first live-updating benchmark designed for complex, repository-level tasks that demand multi-file
reasoning, environment setup, and reproducible execution. Figure 1 illustrates the construction
pipeline of SWE-bench-Live. At the core of our framework is REPOLAUNCH, a fully automated
pipeline that eliminates manual bottlenecks by streamlining the entire process—from issue mining
to environment packaging. More specifically, REPOLAUNCH leverages an agentic and end-to-end
workflow to setup the Docker environment by identifying relevant instruction files, selecting base
images, installing necessary dependencies, building the project, and validating its test suite. This
automation enables continuous updates, broad repository coverage, and large-scale dataset expansion.
To date, REPOLAUNCH has been capable of supporting all major programming languages (including
C, C++, C#, Python, Java, JS/TS, and Go) and is able to build on both Linux and Windows platforms,
making it a versatile environment creation agent.

The initial release of SWE-bench included 1,319 issue-resolution tasks sourced from 93 repositories.
Through continuous monthly updates, our current release contains 1,890 issue-resolution tasks
sourced from real-world GitHub issues created since 2024, spanning 223 repositories. Compared to
existing benchmarks, this represents a significant leap in freshness, diversity, and scale (see Table 1).

We evaluate three leading agent frameworks (i.e., OpenHands [16], SWE-Agent [21], and Agent-
less [17]) in combination with four state-of-the-art LLMs (namely, GPT-4.1, GPT-4o, Claude 3.7

4For instance, it take about one year for Multi-SWE-bench [26] to create 1,632 benchmark instances with 68
expert annotators.

2

Sonnet, and DeepSeek V3). Consistent with performance rankings reported on SWE-bench Verified,5
we observe that OpenHands, when paired with Claude 3.7 Sonnet, achieves the highest performance
on SWE-bench-Live. However, its overall scores are significantly lower compared to those achieved
on SWE-bench Verified. To explore this discrepancy further, we conduct a controlled comparison
and find that the same agent-LLM pair consistently performs worse on SWE-bench-Live than on
SWE-bench. This finding suggests that existing models may be overfitting to static benchmarks
like SWE-bench, underscoring the importance of developing more dynamic and diverse evaluation
settings, such as those provided by SWE-bench-Live.

Our main contributions are summarized as follows:

• We introduce SWE-bench-Live, a contamination-resistant, reproducible, and continuously updat-
able benchmark tailored to real-world issue resolution tasks. It reflects the dynamic nature of
software development and offers broader repository coverage compared to prior benchmarks.

• We propose REPOLAUNCH, a fully automated pipeline for benchmark construction that seamlessly
integrates data curation, environment setup, and test validation into a cohesive and scalable system.

• Through experimental evaluation, we observe the suboptimal performance of leading agent
frameworks on SWE-bench-Live, highlighting significant opportunities for improvement on the
contamination-free benchmark.

2 Related Work

Coding Benchmarks. Early benchmarks for program synthesis and bug fixing focused on single-file,
synthetic tasks such as HumanEval [3] and MBPP [2], which do not reflect the complexity of real
repositories. To move closer to practice, SWE-bench [10] introduced the issue-resolving task,
requiring a model to generate a validated patch for a GitHub repositories issue. Numerous extensions
have since appeared—including Multimodal SWE-bench for JavaScript and UI screenshots [23],
Multi-SWE-bench for multiple languages such as Java and Rust [26]. Despite their impact, all of
these datasets are static: they are collected once, cover at most a few dozen repositories, and depend
on labor-intensive environment construction. These yield two limitations. First, models can overfit to
the fixed test set, inflating apparent progress. Second, public tasks may lead to data contamination,
where benchmark instances leak into pre-training corpora [31, 8]. Recent “live” datasets such as
LiveCodeBench [9] mitigate contamination by streaming algorithmic problems after their release
dates, yet they do not address the harder repository-level setting that demands multi-file reasoning
and execution inside a faithful environment. SWE-bench-Live is the first open, continuously updating
benchmark that fulfills these requirements.

Coding Agents. On top of the above benchmarks, a recent line of work has been working creating
autonomous code agents that search, edit, and test large codebases. Representative systems include
SWE-Agent [22], OpenHands [16], Agentless [17], and training frameworks that synthesize thousands
of SWE-bench-like instances [15, 24, 18]. These agents report remarkable headline numbers, yet
their evaluations rely almost exclusively on static offline datasets. As a consequence, improvements
may partially stem from memorisation of leaked solutions or configuration quirks, rather than genuine
advances. SWE-bench-Live closes this gap by pushing agents to fix previously unseen, continuously
arriving real-world bugs under fully reproducible Docker images, it reveals failure modes hidden by
stale test suites and provides a trustworthy yard-stick for code agents and LLMs.

3 SWE-bench-Live

Targeting the issue resolution task on real-world GitHub repositories, SWE-bench serves as a practical
proxy for evaluating the coding capabilities of LLM-based systems. The issue resolving task is
defined as follows: given a code repository and an associated issue, an approach (e.g., LLM agent)
is required to generate a patch that resolves the issue and passes the test cases (see Appendix B for
details).

5https://www.swebench.com/

3

https://www.swebench.com/

While SWE-bench-Live adopts the same task definition as SWE-bench, it introduces a novel, fully
automated pipeline that enables scalable and continuously updatable benchmark construction. This
automation allows for a larger number of up-to-date instances and broader repository coverage.

Pipeline Overview. As shown in Figure 1, the construction of SWE-bench-Live follows a three-
stage pipeline. First, starting from popular repositories, we identify GitHub issues that are resolved
by a pull request (PR). Next, we apply the proposed REPOLAUNCH—an agentic approach that
automatically sets up an container-based execution environment for each candidate instance. Finally,
we perform multiple rounds of test execution for each instance to validate whether it consistently
exhibits the expected issue-resolving testing behavior, and finalize the valid instances.

Thanks to its fully automated pipeline, SWE-bench-Live can be maintained with minimal–ideally
zero–manual effort. We plan to update SWE-bench-Live on a monthly basis, continually providing
the community with an up-to-date evaluation dataset. This enables contamination-free, rigorous
assessment of AI systems’ issue-resolving capabilities in a constantly evolving real-world setting.

3.1 Raw Issue–PR Crawling

The first phase of the SWE-bench-Live pipeline involves collecting real-world issue–pull request
(PR) pairs from popular open-source GitHub repositories.

Repository Selection. We focus on Python repositories for the initial release of SWE-bench-Live,
aligning with SWE-bench and other prior benchmarks due to its popularity. The selection process
includes three filtering stages: (i) We first queried GitHub API for repositories with over 1,000 stars
and Python set as the primary language. This initial query yielded 8,577 repositories as of April
2025. (ii) We then refined this set by requiring each repository to have more than 200 issues and pull
requests, over 200 forks, and at least 60% of its codebase written in Python. This reduced the pool to
3,316 repositories. (iii) Finally, to comply with licensing requirements, we retained only repositories
containing a valid open-source license, resulting in a final selection of 2,609 repositories.

Issue–PR Pair Extraction. From the selected repositories, we adopt the collection script from
SWE-bench to extract issue and its associated PR. Meanwhile, the pull request must modify the
repository’s test suite–i.e., a “test patch”, which will serve as the evaluation targets. We also
incorporate improvements from SWE-Fixer [18], which introduces more robust heuristics to improve
the effectiveness of issue–PR pair identification and reduce reliance on the brittle string-matching
method. To reduce the risk of data leakage, SWE-bench-Live prioritizes recency by including only
issues created after January 2024 in our initial release.

3.2 REPOLAUNCH: Automated Execution Environment Setup

The “raw” issue–PR pairs remain at the textual and plain code level. To support subsequent test-
based evaluation, it is required to provide an execution environment capable of running tests locally
and producing execution feedback. In the context of issue-resolving benchmarks, the execution
environment is critical for test-based evaluation.

However, preparing such execution environments is widely recognized as the most labour-intensive
step in constructing issue-resolving datasets. In prior work, including SWE-bench [10] and SWE-
Gym [14], environment setup has been performed entirely by humans. For example, SWE-Gym
reports that building execution environments required over 200 hours of manual effort, underscoring
a significant scalability bottleneck. Notably, even repository-level environments are insufficient:
different commits within the same repository may depend on different libraries or configurations,
necessitating environment construction at the snapshot level. SWE-bench partially mitigates this by
building environments per version tag, but the granularity remains coarse and relies on manual labor.

To address this bottleneck, we introduce an agent-based framework REPOLAUNCH, which auto-
matically creates a fully functional execution environment for each issue instance. For any given
repository snapshot, REPOLAUNCH produces a Docker container that installs all required depen-
dencies, builds the project, and validates its test suite. This containerized instance serves as the
foundation for running and evaluating model-generated patches.

4

Repository Snapshots and Environment Definition. A repository snapshot corresponds to the
codebase at the base commit associated with an issue. The goal is to recreate an environment faithful
to that moment in time. We define a valid execution environment as a Docker container where (i)
the codebase is correctly installed from source, and (ii) the repository’s test suite passes with zero or
tolerable failures. This environment is essential for test-based evaluation, providing the ground truth
mechanism to verify whether the issue has been resolved.

REPOLAUNCH follows an LLM-driven, agentic workflow [28, 27] inspired by how human developers
set up unfamiliar projects, as shown in Figure 1. The process proceeds in five steps:

• Relevant Files Identification. The first step is to identify relevant files in the repository–such as
CI/CD pipelines and README files that are likely to contain useful information for setting up the
environment (a detailed list is provided in the Appendix H).

• Base Image Selection. Given the full content of the relevant files, this step is to select a suitable
base Docker image based on the information provided in the repository. This involves correctly
identifying the programming language and SDK version used in the repository (e.g., python:3.11).
A container is instantiated from the chosen image, and a persistent bash session is launched.

• Interactive Environment Setup. The setup process is carried out by an agent whose goal is
to successfully execute and pass all test cases in the repository’s test suite within the container.
The agent interacts with the bash session by issuing commands and receiving feedback such as
exit codes and outputs. It follows the ReAct design [25], iterating over Thought → Action →
Observation [30, 29], mimicking a developer’s reasoning and trial process. The agent can also
search the web or query the issue tracker for troubleshooting.

• Verification. Once the setup agent determines that the environment has reached a satisfactory state
or a step limit is reached, control is transferred to a verifying agent. The agent attempts to generate
the appropriate test command and execute it. The execution results are evaluated with the agent to
check if all test cases passed. If test failures occur, the results are fed back to the setup agent for
further refinement. If all tests pass, the environment is considered valid.

• Finalization. Upon successful validation, the container is committed as a Docker image, producing
a instance-level execution environment for reuse.

Challenges of Version Incompatibility. A major challenge when setting up out-of-date repositories
is the “dependency version drift” issue. When dependencies are not pinned to specific versions,
tools like pip by default will resolve to the latest package versions, which often introduce backward-
incompatible issues and make the environment setup fail. To address this, we implement an time-
machine mechanism by forcing the package installation tool to only look at valid versions released no
later than the current base commit timestamp. Specifically, we modified the pip default index server
to a proxy which fetches those valid package versions. This simple but effective strategy prevents the
“future” version incompatibilities and significantly improves setup success rates.

We open-source REPOLAUNCH to benefit the community. While designed for automated benchmark
construction, REPOLAUNCH can also assist developers in quickly setting up environments for
unfamiliar codebases. Its ability to replicate historical setups and automatically resolve environment
dependencies positions it as a practical tool with broader applicability beyond benchmarking.

To date, REPOLAUNCH has been capable of supporting all major programming languages (including
C, C++, C#, Python, Java, JS/TS, and Go) and is able to build on both Linux and Windows platforms,
making it a versatile environment creation agent.

3.3 Validating Task Instances

To ensure the quality of the benchmark, each task instance is validated to confirm that the associated
PR effectively resolves the issue it is intended to fix. The validation is based on analyzing changes in
the test suite results before and after applying the PR’s patch. Specifically, we focuses on identifying
two key behaviors in the test outcomes:

• FAIL_TO_PASS transitions: Tests that were initially failing (FAILED or ERROR) and later passing
(PASSED) after the patch is applied. These yield that the patch addresses the issue effectively.

• PASS_TO_PASS transitions: Tests that were both passing before and after the patch is applied.
These transitions demonstrate that the patch does not break unrelated functionality.

5

2024-0
1

2024-0
2

2024-0
3

2024-0
4

2024-0
5

2024-0
6

2024-0
7

2024-0
8

2024-0
9

2024-1
0

2024-1
1

2024-1
2

2025-0
1

2025-0
2

2025-0
3

2025-0
4

Month

0

20

40

60

80

100

N
u

m
b

er
 o

f I
n

st
an

ce
s

Figure 2: Temporal distribution of issue creation times in SWE-bench-Live.

To identify these transitions, the test results (as logs) are collected both before and after applying the
PR’s patch. By comparing individual test outcomes between the two runs, we determine how the
patch affected specific tests. We designed framework-specific (e.g., tox, pytest) parsers to interpret
test outputs reliably, as different testing tools may produce logs in various formats. For a task instance
to be included in the benchmark, it must exhibit at least one FAIL_TO_PASS transition. Instances
lacking such a transition are excluded because they do not demonstrate effective bug resolution.
Additionally, to ensure reproducibility and avoid issues caused by test flakiness, the validation process
is repeated multiple times. Only instances with consistent results across all runs are retained. This
approach ensures that all task instances are grounded in evidence of real-world bug fixes and preserves
stable behaviors, resulting in a robust benchmark for evaluating automated bug-fixing solutions.

3.4 SWE-bench-Live Statistics

The initial release of the SWE-bench-Live dataset consists of 1,319 task instances collected from
real-world issues and pull requests across 93 open-source Python repositories. To ensure freshness
and reduce the risk of data contamination from pretraining, we restrict the dataset to issues created
between January 1, 2024, and April 20, 2025. As shown in Figure 2, the temporal distribution is
generally uniform, indicating consistent coverage of issues over time. We plan to update the dataset
on a monthly basis to reflect the evolving software landscape and continuously provide new instances.

Table 2 summarizes key statistics at both the repository and instance levels. At the repository level,
projects vary in size, with an average of 85k lines of Python code and 423 files. At the instance
level, we report metrics of the gold patches—including the number of edited files, hunks, and
lines—as heuristic indicators of task complexity. These statistics suggest that SWE-bench-Live tasks
reflect realistic, non-trivial bug fixes that challenge code understanding, reasoning, and manipulation
capabilities of LLMs. Additionally, we record the number of test cases that transition from failure to
pass (F2P) and those that consistently pass (P2P), which form the basis of test-based evaluation.

Repository Diversity. To ensure broad applicability, SWE-bench-Live includes repositories from
diverse application domains. As shown in Figure 3, we manually categorized each repository based
on its primary functionality—such as AI/ML, DevOps, Web development, and others. This diversity
helps evaluate LLMs across varied software stacks and bug types, enhancing the benchmark’s
representativeness of real-world usage scenarios.

Lite Subset. To support lightweight experimentation, we construct a lite subset of SWE-bench-Live
by sampling 50 instances per month from issues created between October 2024 and March 2025. This
results in a compact set of 300 instances that balances recency, diversity, and evaluation efficiency.

Comparison with Existing Benchmarks. Table 1 compares SWE-bench-Live with several existing
issue-resolution benchmarks. Unlike SWE-bench and its variants, which require extensive manual
curation and cover a limited set of repositories, SWE-bench-Live is the first to offer an automatically
constructed, continuously updatable benchmark. It covers a broader set of repositories (93 in total),
while preserving the use of real issues and test-based evaluation. Compared to synthetic datasets
like SWE-smith, which may not fully capture the complexity of human-written code and bugs,

6

AI/ML (26)

DevOps (23)

Web (17)

Database (8)

Scientific (8)

CLI (4)

Misc (3)

Cloud (2)

Desktop (2)

Figure 3: Repository classifications.

Table 2: Statistics of SWE-bench-Live

Level #Item Average Median

R
ep

o Repositories 93
LoC* 85k 52k
Files* 423 222

In
st

an
ce

Instances 1319
Files† 3.3 2

Hunks† 9.0 3
Lines† 102.6 24

F2P test cases 5.4 1
P2P test cases 2953.4 1865

*Only count Python code. †Stats of gold patch.

SWE-bench-Live maintains fidelity to real-world development workflows. Its unique combination of
automation, realism, and diversity fills a critical gap of the LLM evaluation for software engineering.

4 Experiments

4.1 Setups

Agents and Model Selection. To evaluate the effectiveness of our proposed SWE-bench-Live,
we conduct experiments using three representative agent frameworks. These include the general-
purpose coding agent OpenHands [16] (paired with CodeAct), as well as two agents specifically
designed for issue-resolving tasks: SWE-Agent [21] and Agentless [17]. For OpenHands, we set a
maximum of 60 iterations per instance. For SWE-Agent, we limit the number of LLM calls to 100 per
instance to maintain computational efficiency. For Agentless, we largely follow the original pipeline,
which consists of two main stages: issue localization and patch generation. However, we omit the
reranking stage based on regression testing, as supporting this step on SWE-bench-Live would require
substantial infrastructure adaptation and is beyond the scope of this study. Consequently, both the
localization and repair stages in our Agentless evaluation produce a single sample without reranking
and patch selection. We refer to this simplified evaluation protocol as s-Agentless throughout the
paper. We test these agents using four recent state-of-the-art LLMs, covering both proprietary
and open-source models: GPT-4o [11] (gpt-4o-2024-11-20), GPT-4.1 [12] (gpt-4.1-2025-04-14),
Claude 3.7 Sonnet [1] (claude-3-7-sonnet-20250219), DeepSeek V3 [6] (DeepSeek-V3-0324), and
Qwen3-Coder-480B-A35B6 [20].

Evaluation Metrics. Following the evaluation protocol of SWE-bench [10], we adopt the Resolved
Rate (%) as our primary metric. This measures the proportion of issues successfully resolved by
the agent across all task instances. We also report the Patch Apply Rate (%), which indicates the
percentage of generated patches that are syntactically correct and can be successfully applied to the
codebase without errors. Additionally, we measure the Localization Success Rate (%) at the file
level. This reflects whether the set of files modified by the generated patch matches the gold patch.

4.2 Performance on SWE-bench-Live

We report the performance of all agent–model combinations on the Lite subset of SWE-bench-Live
in Table 3. Meanwhile, Table 4 presents the results of the top three combinations selected based on
Lite performance, evaluated on the full version of SWE-bench-Live.

We observe that the same methods achieve substantially higher scores on SWE-bench compared to
their performance on SWE-bench-Live, despite both benchmarks targeting the same issue-resolving
task with identical settings. For example, recent state-of-the-art agents and models report a resolved
rate exceeding 70% on the SWE-bench Verified subset7. In contrast, the highest resolved rate on

6Thanks to the Qwen team for evaluating and reporting the results.
7https://www.swebench.com/

7

https://www.swebench.com/

Table 3: Performance on SWE-bench-Live (Lite subset).
Models Resolved (%) Apply (%) Loc. Suc. (%)

OpenHands
GPT-4o 7.00 72.00 30.33
GPT-4.1 11.33 59.33 28.67
Claude 3.7 Sonnet 17.67 84.00 48.00
DeepSeek V3 13.00 81.00 38.33
Qwen3-Coder-480B-A35B 24.67 97.00 30.00

SWE-agent
GPT-4o 10.00 93.33 40.33
GPT-4.1 16.33 95.00 47.33
Claude 3.7 Sonnet 17.67 84.67 46.33
DeepSeek V3 15.33 92.00 44.00

s-Agentless
GPT-4o 11.67 91.67 37.67
GPT-4.1 12.00 84.33 39.00
Claude 3.7 Sonnet 11.33 68.00 30.00
DeepSeek V3 13.33 83.33 40.67

Table 4: Performance of top-3 performing Agent + Model combinations on SWE-bench-Live.
Agent / Model Subset Resolved (%) Apply (%) Loc. Suc. (%)

OpenHands / Claude 3.7 Sonnet Lite 17.67 84.00 48.00
Full 19.25 85.89 48.29

SWE-agent / GPT-4.1 Lite 16.33 95.00 47.33
Full 18.57 94.54 49.50

SWE-agent / Claude 3.7 Sonnet Lite 17.67 84.67 46.33
Full 17.13 89.15 45.86

SWE-bench-Live is only 24.67%. Considering that the experimental setups on the SWE-bench
leaderboard often involve dramatically high rollout numbers or iteration efforts, we specifically
re-ran the best performing combination, OpenHands with Claude 3.7 Sonnet, on the SWE-bench
verified subset using the exact same setups as in our experiments. The resulting resolved rate reached
43.20%, more than twice the score achieved on SWE-bench-Live. This is a particularly interesting
phenomenon, as it highlights the challenges of constructing a benchmark that can objectively measure
an AI system’s ability to resolve arbitrary and previously unseen issues. It also raises concerns
about potential overfitting to SWE-bench. Similar phenomena are also observed in other existing
issue-resolving datasets: the best-performing method in Multi-SWE-bench achieves a resolved rate
of only 19.32%, while the highest score reported in OmniGIRL is as low as 8.6%.

To investigate this, we further categorize the instances in SWE-bench-Live based on their repository
origin. Specifically, 216 instances are derived from 8 repositories that were originally included in
SWE-bench, which we refer to as From SWE-bench Repos. The remaining 1,103 instances are sourced
from repositories not previously used in SWE-bench and are denoted as From Non-SWE-bench Repos.
As shown in Table 5, although the Non-SWE-bench repositories are generally simpler with fewer
files and lower code volume, the best-performing agent–model pair achieves a higher resolved rate
of 22.96% on SWE-bench Instances, compared to only 18.89% on the Non-SWE-bench ones. This
reinforces the hypothesis that existing agents may be overfit or implicitly optimized for the SWE-
bench repositories, further motivating the need for continuously updated, contamination-resistant
benchmarks like SWE-bench-Live.

Table 5: SWE-bench vs. Non-SWE-bench.
Instances Avg. repo files Avg. repo loc Resolved (%)

From SWE-bench Repos 744 223k 22.96
From Non-SWE-bench Repos 383 68k 18.89

8

2024Q1 2024Q2 2024Q3 2024Q4 2025Q1
Quarter

0

50

100

150

200

250

300

In
st

an
ce

 C
o

u
n

t

Total

Resolved

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

R
es

o
lv

ed
 R

at
e

Figure 4: Resolved rate in relation to the creation date of
instances. (OpenHands / Claude 3.7 Sonnet on full set)

[1
, 3

)
[3

, 5
)

[5
, 7

)
[7

, 9
)

[9
, 1

1)

[1
1, 1

3)

[1
3, 1

6)
> 16

Hunks

[1
, 2

)

[2
, 3

)

[3
, 4

)

[4
, 5

)

[5
, 6

)

[6
, 7

)

> 7

F
ile

s

0.32 0.14 0.08 0.20 0.00 0.33 0.00 0.50

0.33 0.23 0.14 0.10 0.00 0.00 0.00 0.20

0.21 0.07 0.17 0.00 0.00 0.00 0.18

0.00 0.00 0.31 0.14 0.00 0.00 0.00

0.00 0.17 0.09 0.20 0.25 0.00

0.00 0.17 0.00 0.00 0.00 0.09

0.00 0.00 0.20 0.00 0.02

[1
, 5

)

[5
, 2

0)

[2
0, 5

0)

[5
0, 8

0)

[8
0, 1

10)

[1
10, 1

40)

[1
40, 1

70)

> 170

Lines

[1
, 2

)

[2
, 3

)

[3
, 4

)

[4
, 5

)

[5
, 6

)

[6
, 7

)

> 7

F
ile

s

0.48 0.23 0.17 0.07 0.00 0.00 0.00 0.23

0.43 0.31 0.16 0.00 0.00 0.00 0.25 0.00

0.00 0.16 0.12 0.23 0.10 0.00 0.12 0.00

0.00 0.24 0.04 0.00 0.00 0.00 0.00

0.00 0.22 0.17 0.00 0.00 0.00 0.00

0.10 0.33 0.00 0.00 0.00 0.00

0.00 0.10 0.00 0.00 0.11 0.00 0.03

[1
, 5

)

[5
, 2

0)

[2
0, 5

0)

[5
0, 8

0)

[8
0, 1

10)

[1
10, 1

40)

[1
40, 1

70)

> 170

Lines

[1
, 3

)

[3
, 5

)

[5
, 7

)

[7
, 9

)

[9
, 1

1)

[1
1, 1

3)

[1
3, 1

6)

> 16

H
u

n
ks

0.47 0.28 0.13 0.00 0.00 0.00 0.00 0.25

0.00 0.20 0.22 0.14 0.07 0.00 0.00 0.00

0.17 0.07 0.08 0.00 0.00 0.00 0.00

1.00 0.24 0.17 0.00 0.00 0.17 0.00

0.00 0.15 0.00 0.00 0.00 0.00 0.00

0.00 0.14 0.07 0.00 0.00 0.00 0.20

0.20 0.00 0.00 0.00 0.00 0.00

0.00 0.14 0.06 0.08 0.10 0.03

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Resolved rate in relation to
the difficulty of instances. (OpenHands /
Claude 3.7 Sonnet on full set)

Multi-run evaluation. To further assess the stability and potential of existing agents under repeated
trials, we conduct a multi-run evaluation on the subset. Specifically, we re-run SWE-agent paired
with GPT-4.1 for three independent runs under identical configurations (temperature = 0.6). As
shown in Table 6, the resolved rates across the three runs are 15.33%, 16.67%, and 16.67%, yielding
an average of 16.22%. When allowing up to three attempts per instance (Pass@3), the success rate
increases to 21.67%. This suggests that sampling diversity (as reflected by Pass@k) can lead to
certain performance gains, while the average Pass@1 remains relatively stable. In the following
sections, we primarily discuss and compare methods based on their Pass@1 scores.

Table 6: Multi-run performance of SWE-agent + GPT-4.1
Run 1 Run 2 Run 3 Average Pass3

Resolved (%) 15.33 16.67 16.67 16.22 21.67

4.3 Performance vs. Creation Date.

To investigate whether the recency of an issue affects its difficulty, we analyze the resolved rate across
different creation periods. As shown in Figure 4, SWE-bench-Live includes a balanced distribution
of instances across quarters from 2024Q1 to 2025Q1. The resolved rate, based on OpenHands
with Claude 3.7 Sonnet on the full benchmark, remains relatively stable over time, fluctuating only
modestly across quarters.

While there is a slight dip in resolved rate during 2024Q4, followed by a recovery in 2025Q1, the
trend does not indicate a clear correlation between task recency and success rate. This suggests that
newer issues are not inherently harder for current agents to solve, and that SWE-bench-Live maintains
a consistent level of challenge across time. These results reinforce the benchmark’s ability to deliver a
steady and reliable evaluation signal, even as it continuously evolves with newly introduced instances.

4.4 Performance vs. Difficulty

We approximate the difficulty of a bug–fixing instance along two complementary axes. Patch
difficulty is captured by the scope of the gold fix—the number of files it touches and the total lines
modified—while repository difficulty is approximated by the overall size of the project in files and
lines of code (LOC).

Patch difficulty. Figure 5 visualises resolved rate as a heat-map over patch scope. Success is high
when the fix is local: a single-file patch that changes fewer than five lines is solved almost one time
in two (48%). Performance degrades quickly as either dimension grows. Once the patch edits three
or more files, or spans more than one hundred lines, the success rate falls below ten per-cent; patches
that touch seven or more files are never solved. The sharp drop beyond the one-file / few-lines corner
highlights a key limitation of current agents: they struggle to coordinate coherent edits across multiple
files or to reason about large, intra-file changes.

9

Repository difficulty. Figure 7 in Appendix C plots resolved rate for every repository against its size
(Python files on the x-axis, LOC on the y-axis). Bubble area reflects the number of instances drawn
from each project, and red outlines mark the original SWE-bench repositories. A clear negative trend
emerges: repositories with fewer than one hundred files and under twenty-thousand LOC often yield
success rates above twenty per-cent, whereas projects exceeding five-hundred files rarely exceed five
per-cent. Nevertheless, notable variance remains—some small-to-mid-size projects are still hard
to fix, likely due to atypical build systems or complex domain logic—emphasising that size is an
informative but imperfect proxy for difficulty.

Together, the two figures show that difficulty increases along both local (patch) and global (repos-
itory) dimensions, and that current code agents falter once fixes spill beyond a handful of lines or
involve cross-file reasoning. Because SWE-bench-Live spans the full spectrum of these difficulty
factors—while continuously adding fresh, unseen instances—it provides a stringent and up-to-date
testbed for future advances in large-scale program repair.

5 Conclusion

We present SWE-bench-Live, the first continuously updating benchmark for evaluating large language
models on real-world issue resolution tasks at the repository level for fresh issue fixing. By addressing
key limitations of prior benchmarks such as dataset staleness, limited repository diversity, and manual
curation cost, SWE-bench-Live provides a scalable, contamination resistant, and fully automated
evaluation framework. At its core is REPOLAUNCH, an agent based pipeline that builds reproducible
Docker environments and validates issue and pull request pairs through test execution, removing the
need for manual intervention. Our empirical results across multiple agent and model combinations
show that SWE-bench-Live presents significantly greater challenges than static datasets. The low
resolution rates, especially on multi file patches and large codebases, highlight the limitations of
current systems and the importance of live benchmarks in measuring true model generalization.

Acknowledgment

We thank the reviewers for their invaluable feedback. We further thank Kenan Li and Rongzhi Li
for extending RepoLaunch to multi-language and cross-platform support, and for their open-source
contributions.

References
[1] Anthropic. Claude 3.7 sonnet and claude code, 2025. Accessed: 2025-05-14.

[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

[3] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[4] Cursor. Cursor – the ai-powered code editor, 2025. Accessed: 2025-05-14.

[5] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh, Michel C
Desmarais, and Zhen Ming Jack Jiang. Github copilot ai pair programmer: Asset or liability?
Journal of Systems and Software, 203:111734, 2023.

[6] DeepSeek-AI. Deepseek-v3 technical report, 2025.

[7] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo,
and Jie M Zhang. Large language models for software engineering: Survey and open problems.
In 2023 IEEE/ACM International Conference on Software Engineering: Future of Software
Engineering (ICSE-FoSE), pages 31–53. IEEE, 2023.

[8] Shahriar Golchin and Mihai Surdeanu. Time travel in llms: Tracing data contamination in large
language models. arXiv preprint arXiv:2308.08493, 2023.

10

[9] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
free evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

[10] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R Narasimhan. Swe-bench: Can language models resolve real-world github issues? In
The Twelfth International Conference on Learning Representations.

[11] OpenAI. Hello gpt-4o, 2025. Accessed: 2025-05-14.

[12] OpenAI. Introducing gpt-4.1 in the api, 2025. Accessed: 2025-05-14.

[13] OpenAI. Introducing swe-bench verified, 2025. Accessed: 2025-05-05.

[14] Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym. arXiv preprint
arXiv:2412.21139, 2024.

[15] Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym, 2024.

[16] Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi
Pan, Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang
Zheng, Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin,
Robert Brennan, Hao Peng, Heng Ji, and Graham Neubig. OpenHands: An Open Platform for
AI Software Developers as Generalist Agents, 2024.

[17] Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint arXiv:2407.01489, 2024.

[18] Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai Lam, Difan Zou, and Kai Chen. Swe-fixer:
Training open-source llms for effective and efficient github issue resolution. arXiv preprint
arXiv:2501.05040, 2025.

[19] Junjielong Xu, Qinan Zhang, Zhiqing Zhong, Shilin He, Chaoyun Zhang, Qingwei Lin, Dan
Pei, Pinjia He, Dongmei Zhang, and Qi Zhang. Openrca: Can large language models locate
the root cause of software failures? In The Thirteenth International Conference on Learning
Representations.

[20] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

[21] John Yang, Carlos Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

[22] John Yang, Carlos Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

[23] John Yang, Carlos E. Jimenez, Alex L. Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press,
Niklas Muennighoff, Gabriel Synnaeve, Karthik R. Narasimhan, Diyi Yang, Sida I. Wang, and
Ofir Press. Swe-bench multimodal: Do ai systems generalize to visual software domains?, 2024.

[24] John Yang, Kilian Leret, Carlos E. Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents, 2025.

[25] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations (ICLR), 2023.

11

[26] Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen,
Qi Liu, Xiaojian Zhong, Aoyan Li, et al. Multi-swe-bench: A multilingual benchmark for issue
resolving. arXiv preprint arXiv:2504.02605, 2025.

[27] Chaoyun Zhang, Shilin He, Liqun Li, Si Qin, Yu Kang, Qingwei Lin, and Dongmei Zhang. Api
agents vs. gui agents: Divergence and convergence. arXiv preprint arXiv:2503.11069, 2025.

[28] Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, Liqun Li, Si Qin, Yu Kang, Minghua Ma,
Guyue Liu, Qingwei Lin, et al. Large language model-brained gui agents: A survey. arXiv
preprint arXiv:2411.18279, 2024.

[29] Chaoyun Zhang, He Huang, Chiming Ni, Jian Mu, Si Qin, Shilin He, Lu Wang, Fangkai Yang,
Pu Zhao, Chao Du, et al. Ufo2: The desktop agentos. arXiv preprint arXiv:2504.14603, 2025.

[30] Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang,
Qingwei Lin, Saravan Rajmohan, et al. Ufo: A ui-focused agent for windows os interaction.
arXiv preprint arXiv:2402.07939, 2024.

[31] Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson, Catherine Wu, William Song, Tiffany Zhao,
Pranav Raja, Charlotte Zhuang, Dylan Slack, et al. A careful examination of large language
model performance on grade school arithmetic. Advances in Neural Information Processing
Systems, 37:46819–46836, 2024.

[32] Linghao Zhang, Junhao Wang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Jiaheng
Wen, Chengxing Xie, Maoquan Wang, Yufan Huang, et al. Di-bench: Benchmarking large
language models on dependency inference with testable repositories at scale. arXiv preprint
arXiv:2501.13699, 2025.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: For detailed contributions and scope, please see Section 3 and Section 4

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: For details about the limitation, please see Section G

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

13

Justification: Not applicable as the paper is about dataset and experimental analysis rather
than a theory paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We present all the step-wise details in Section 3 and experimental settings in
Section 4. Besides, we release all the code, data, and Docker environment for researchers to
easily reproduce the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All the code and data are open accessible with proper README instructions.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer:[Yes]
Justification: We presented the experimental details in Appendix E
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not report the experiment statistical significance due to the limited
budget for repeat experiments. We have controlled the experimental randomness by setting
temperature to 0.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details about the experimental settings in Section 4 and Ap-
pendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have followed all the necessary code of ethics to conduct the research

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper mainly focuses on issue fixing, a specific software engineering task,
which has no relation with societal issues.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

16

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release models. The benchmark are about real-world issue resolving
and we provided Docker containers as the isolated environment, thereby eliminating the
safety risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the code, data or models used in this work are properly cited as References.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

17

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The benchmark, datasets and code are well-documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

18

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLMs are core part in the paper, we have listed all the LLM models used in
our experiments in Section 4.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Full Repositories List

Type Repository License #Instances #Files LoC

AI/ML

deepset-ai/haystack Apache-2.0 64 433 84.8k
instructlab/instructlab Apache-2.0 52 142 28.2k
keras-team/keras Apache-2.0 48 900 249.7k
kedro-org/kedro Apache-2.0 27 179 40.4k
pytorch/torchtune BSD-3-Clause 14 448 92.4k
jupyterlab/jupyter-ai BSD-3-Clause 13 81 9.0k
run-llama/llama_deploy MIT 12 216 15.1k
stanfordnlp/dspy MIT 10 222 30.6k
projectmesa/mesa Apache-2.0 9 109 20.3k
huggingface/smolagents Apache-2.0 5 65 21.4k
theOehrly/Fast-F1 MIT 4 92 20.7k
cyclotruc/gitingest MIT 3 39 4.7k
modelcontextprotocol/python-sdk MIT 2 114 13.4k
camel-ai/camel Apache-2.0 2 799 130.1k
hiyouga/LLaMA-Factory Apache-2.0 2 170 31.2k
feast-dev/feast Apache-2.0 2 673 103.3k
openai/openai-agents-python MIT 1 212 29.8k
huggingface/datasets Apache-2.0 1 207 69.6k
stanford-crfm/helm Apache-2.0 1 891 122.1k
freqtrade/freqtrade GPL-3.0 1 458 130.1k
lss233/kirara-ai AGPL-3.0 1 261 25.5k
arviz-devs/arviz Apache-2.0 1 259 50.6k
qubvel-org/segmentation_models.pytorch MIT 1 130 18.6k
scikit-learn-contrib/category_encoders BSD-3-Clause 1 71 12.9k
huggingface/open-r1 Apache-2.0 1 29 4.0k
gptme/gptme MIT 1 124 23.3k

DevOps

conan-io/conan MIT 136 1056 162.5k
pylint-dev/pylint GPL-2.0 57 2301 116.8k
sphinx-doc/sphinx N/A 39 718 140.3k
pdm-project/pdm MIT 34 221 32.3k
beeware/briefcase BSD-3-Clause 24 508 89.3k
bridgecrewio/checkov Apache-2.0 21 4551 234.9k
joke2k/faker MIT 20 754 351.4k
python-attrs/attrs MIT 10 52 18.6k
ipython/ipython BSD-3-Clause 10 293 79.8k
koxudaxi/datamodel-code-generator MIT 10 599 60.3k
tox-dev/tox MIT 7 225 23.8k
dynaconf/dynaconf MIT 6 463 55.1k
pypa/twine Apache-2.0 6 34 6.6k
wemake-services/wemake-python-styleguide MIT 6 396 52.5k
Delgan/loguru MIT 6 168 19.2k
kubernetes-client/python Apache-2.0 3 783 267.2k
olofk/fusesoc BSD-2-Clause 2 45 8.8k
amoffat/sh MIT 2 5 7.4k
facebookresearch/hydra MIT 2 439 41.4k
home-assistant/supervisor Apache-2.0 2 541 82.3k
FreeOpcUa/opcua-asyncio LGPL-3.0 1 168 344.4k
pytest-dev/pytest MIT 1 260 99.5k
iterative/dvc Apache-2.0 1 554 85.3k

Web

reflex-dev/reflex Apache-2.0 44 376 89.8k
sissbruecker/linkding MIT 29 193 26.4k
Kozea/WeasyPrint BSD-3-Clause 19 144 70.0k
python-telegram-bot/python-telegram-bot GPL-3.0 16 464 140.8k
python-babel/babel BSD-3-Clause 11 75 23.1k
falconry/falcon Apache-2.0 11 262 58.5k
aiogram/aiogram MIT 11 861 69.8k
privacyidea/privacyidea AGPL-3.0 10 483 167.5k
urllib3/urllib3 MIT 10 81 31.3k
ag2ai/faststream Apache-2.0 6 1267 85.1k
encode/starlette BSD-3-Clause 5 66 17.2k
scrapinghub/dateparser BSD-3-Clause 2 274 67.1k

20

https://github.com/deepset-ai/haystack
https://github.com/instructlab/instructlab
https://github.com/keras-team/keras
https://github.com/kedro-org/kedro
https://github.com/pytorch/torchtune
https://github.com/jupyterlab/jupyter-ai
https://github.com/run-llama/llama_deploy
https://github.com/stanfordnlp/dspy
https://github.com/projectmesa/mesa
https://github.com/huggingface/smolagents
https://github.com/theOehrly/Fast-F1
https://github.com/cyclotruc/gitingest
https://github.com/modelcontextprotocol/python-sdk
https://github.com/camel-ai/camel
https://github.com/hiyouga/LLaMA-Factory
https://github.com/feast-dev/feast
https://github.com/openai/openai-agents-python
https://github.com/huggingface/datasets
https://github.com/stanford-crfm/helm
https://github.com/freqtrade/freqtrade
https://github.com/lss233/kirara-ai
https://github.com/arviz-devs/arviz
https://github.com/qubvel-org/segmentation_models.pytorch
https://github.com/scikit-learn-contrib/category_encoders
https://github.com/huggingface/open-r1
https://github.com/gptme/gptme
https://github.com/conan-io/conan
https://github.com/pylint-dev/pylint
https://github.com/sphinx-doc/sphinx
https://github.com/pdm-project/pdm
https://github.com/beeware/briefcase
https://github.com/bridgecrewio/checkov
https://github.com/joke2k/faker
https://github.com/python-attrs/attrs
https://github.com/ipython/ipython
https://github.com/koxudaxi/datamodel-code-generator
https://github.com/tox-dev/tox
https://github.com/dynaconf/dynaconf
https://github.com/pypa/twine
https://github.com/wemake-services/wemake-python-styleguide
https://github.com/Delgan/loguru
https://github.com/kubernetes-client/python
https://github.com/olofk/fusesoc
https://github.com/amoffat/sh
https://github.com/facebookresearch/hydra
https://github.com/home-assistant/supervisor
https://github.com/FreeOpcUa/opcua-asyncio
https://github.com/pytest-dev/pytest
https://github.com/iterative/dvc
https://github.com/reflex-dev/reflex
https://github.com/sissbruecker/linkding
https://github.com/Kozea/WeasyPrint
https://github.com/python-telegram-bot/python-telegram-bot
https://github.com/python-babel/babel
https://github.com/falconry/falcon
https://github.com/aiogram/aiogram
https://github.com/privacyidea/privacyidea
https://github.com/urllib3/urllib3
https://github.com/ag2ai/faststream
https://github.com/encode/starlette
https://github.com/scrapinghub/dateparser

Type Repository License #Instances #Files LoC

Web

pallets/flask BSD-3-Clause 2 83 17.8k
scrapy-plugins/scrapy-splash BSD-3-Clause 1 25 3.4k
psf/requests Apache-2.0 1 36 11.2k
jpadilla/pyjwt MIT 1 26 6.9k
slackapi/bolt-python MIT 1 562 60.8k

Database

pydata/xarray Apache-2.0 29 226 179.2k
geopandas/geopandas BSD-3-Clause 21 87 47.3k
reata/sqllineage MIT 18 103 9.7k
patroni/patroni MIT 17 117 45.9k
piskvorky/smart_open MIT 6 64 12.4k
wireservice/csvkit MIT 3 48 6.6k
jazzband/tablib MIT 2 32 6.6k
Flexget/Flexget MIT 2 657 108.6k

Scientific

pvlib/pvlib-python BSD-3-Clause 29 178 59.9k
python-control/python-control BSD-3-Clause 15 155 70.7k
mikedh/trimesh MIT 14 248 74.8k
PyPSA/PyPSA MIT 10 129 32.3k
shapely/shapely BSD-3-Clause 9 158 34.0k
pybamm-team/PyBaMM BSD-3-Clause 6 581 113.4k
beancount/beancount GPL-2.0 2 194 48.0k
sympy/sympy N/A 2 1574 760.5k

CLI

streamlink/streamlink BSD-2-Clause 39 510 84.0k
beetbox/beets MIT 9 193 69.3k
yt-dlp/yt-dlp Unlicense 5 1177 244.6k
jarun/buku GPL-3.0 2 27 7.1k

Misc
matplotlib/matplotlib N/A 85 904 263.6k
fonttools/fonttools MIT 12 512 192.6k
pytransitions/transitions MIT 2 39 12.4k

Cloud aws-cloudformation/cfn-lint MIT-0 102 2422 160.2k
icloud-photos-downloader/icloud_photos_downloader MIT 4 73 15.5k

Desktop qtile/qtile MIT 6 405 81.6k
pwr-Solaar/Solaar GPL-2.0 3 94 33.7k

B Task Formulation

Generating patch

docs
src/sh.py
tests
README.rst
...

Issue #744 opened 5 days ago

When using sh 2.x ...
It should be a kwarg to preserve ...

① Repo content

② Problem statement

LLM x Agent
😺

amoffat / sh

diff --git a/sh.py b/sh.py

Patch

Execution Environment

> git apply patch
> pytest -rA

Test Item Pre Post
test_async_return_cmd
test_space_sep
test_bool_values
...

Parse test log

Evaluating patch

Figure 6: The issue-resolving task requires the model to generate a patch that addresses a given issue,
with its correctness evaluated through test execution.

Issue resolving is the task that introduced by SWE-bench [10] for benchmarking AI coding capabili-
ties. In simple terms, it simulates the process of a developer submitting a pull request to address an
issue. The formulation of the issue-resolving task is illustrated in Figure 6.

Generating Patch. The task input includes the problem statement of the issue, which is the
description written by the issue reporter, as well as a snapshot of the codebase at the time the issue
was filed (obtained by resetting to the base_commit). The model has access to full content of the
codebase, after then it is tasked with generating a patch that fixes the given issue, analogous to the
file changes submitted in a pull request. In practice, the expected output is in the .diff format.

21

https://github.com/pallets/flask
https://github.com/scrapy-plugins/scrapy-splash
https://github.com/psf/requests
https://github.com/jpadilla/pyjwt
https://github.com/slackapi/bolt-python
https://github.com/pydata/xarray
https://github.com/geopandas/geopandas
https://github.com/reata/sqllineage
https://github.com/patroni/patroni
https://github.com/piskvorky/smart_open
https://github.com/wireservice/csvkit
https://github.com/jazzband/tablib
https://github.com/Flexget/Flexget
https://github.com/pvlib/pvlib-python
https://github.com/python-control/python-control
https://github.com/mikedh/trimesh
https://github.com/PyPSA/PyPSA
https://github.com/shapely/shapely
https://github.com/pybamm-team/PyBaMM
https://github.com/beancount/beancount
https://github.com/sympy/sympy
https://github.com/streamlink/streamlink
https://github.com/beetbox/beets
https://github.com/yt-dlp/yt-dlp
https://github.com/jarun/buku
https://github.com/matplotlib/matplotlib
https://github.com/fonttools/fonttools
https://github.com/pytransitions/transitions
https://github.com/aws-cloudformation/cfn-lint
https://github.com/icloud-photos-downloader/icloud_photos_downloader
https://github.com/qtile/qtile
https://github.com/pwr-Solaar/Solaar

Evaluating Patch. Once a patch is proposed by the model, we assess its correctness by applying it
to the target codebase and executing the repository’s test suite. The output of the test execution are
parsed using a log parser function, which extracts the status of each individual test case. These results
are then compared against the expected test case transitions pre-defined for the issue, specifically
FAIL_TO_PASS and PASS_TO_PASS. FAIL_TO_PASS refers to test cases that originally failed prior
to patch application—typically those introduced in the corresponding pull request—and are expected
to pass if the proposed solution is correct. A correct patch should successfully cause these failing
tests to pass, without causing regressions in the already passing tests.

C Performance vs Repository difficulty

The following Figure 7 plots resolved rate for every repository against its size (Python files on the
x-axis, LOC on the y-axis). For detailed interpreatation of the figure, please see Section 4.4.

0
100

200
300

400
500

600
700

>1000

>1500

>2000

>2500

>3000

Files

0k

20k

40k

60k

80k

100k
>150k
>200k

>300k

>400k

Li
n

es
 o

f C
o

d
e

Resolved Rate / Count
SWE-bench Repo

resolved_rate

0.0

0.2

0.4

0.6

0.8

1.0

count

25

50

75

100

125

Figure 7: Resolved rate in relation to the number of files and lines of code of a repository.

D Dataset Fields

Table 7 provides a detailed description of the fields included in the SWE-bench-Live dataset, along
with how they are obtained during the curation process.

E Experimental Setup Details

In this section, we present additional details of the experimental setup to facilitate reproducibility.

Hyperparameters used in the experiments. For OpenHands, we set a maximum of 60 iterations
per instance, with the LLM configured to use a temperature of 0.0 and a top-p value of 1.0 as default.
For SWE-agent, we limit the number of LLM calls to 100 per instance, with the temperature set to
0.0 and top-p to 1.0. For Agentless, both the number of localization samples and repair samples are
set to 1, corresponding to a single rollout. The LLM temperature is set to 0.8 during the localization
phase, as defined by the agent’s default, and 0.0 for all other phases. In our experiments, we omit the
regression test-based reranking stage of Agentless, retaining only the localization and repair stages.
The LLM calls within REPOLAUNCH are configured with a temperature of 0.0.

Random seed in subset splitting. The only stochastic component in this work arises during the
sampling of the lite subset, where we set the random seed to 42.

22

Table 7: The required fields for a typical issue-solving task instance. Fields marked with * are newly
added in SWE-bench-Live compared to SWE-bench.

Field Type Description

base_commit str The commit on which the pull request is based, representing the reposi-
tory state before the issue is resolved.

patch str Gold patch proposed by the pull request, in .diff format.
test_patch str Modifications to the test suite proposed by the pull request that are

typically used to check whether the issue has been resolved.
problem_statement str Issue description text, typically describing the bug or requested feature,

used as the task problem statement.
FAIL_TO_PASS List[str] Test cases that are expected to successfully transition from failing to

passing are used to evaluate the correctness of the patch.
PASS_TO_PASS List[str] Test cases that are already passing prior to applying the gold patch. A

correct patch shouldn’t introduce regression failures in these tests.
*image_key str Instance-level docker image that provides an execution environment.
*test_cmds List[str] The command(s) used to run the test suite is identified by the verify

agent in REPOLAUNCH. It is required to enable detailed logging of each
test item’s status (e.g., by using the pytest -rA option).

*log_parser str The type of log parser required for the instance—by default, pytest.

Computational resources. All LLM calls in this work are made through official APIs. The
experiments involve parallel execution of multiple Docker containers for test execution. We conduct
all the experiments on a CPU server equipped with an Intel Xeon Gold 6338 @ 2.00GHz (128 cores)
and 2TB of RAM.

F SWE-bench-Live Verified: Automatic Quality Filtering

We introduce SWE-bench-Live-Verified, a high-quality subset of SWE-bench-Live automatically
constructed via LLM-based filtering to ensure task validity and evaluation reliability.

Method. Each instance from SWE-bench-Live is assessed by an LLM given its issue description,
gold patch, and FAIL_TO_PASS tests. The model classifies instances into eight categories reflecting
common quality issues, including vague or misleading issues, underspecified tests, trivial fixes, and
environmental failures. Only those judged as well-posed and evaluable are retained.

Filtering Accuracy. Applying o3 to 1,699 SWE-bench-Full instances, we obtain 72% precision
and 40% recall against human-labeled SWE-bench-Verified, or 92% precision and 35% recall when
excluding trivial cases. GPT-4.1 yields lower recall (10%) and slightly lower precision (76–86%),
showing that reasoning-specialized models better identify valid debugging tasks. The initial SWE-
bench-Live Verified release contains 500 instances (38% of full set) from July 2024 – April 2025.

Agent Evaluation. Table 8 summarizes model performance on this verified subset. Compared with
the unfiltered set, these methods achieve slightly higher scores on the verified set, suggesting that
the filtering process removes a certain amount of invalid or ill-posed tasks, thereby improving the
robustness of the evaluation.

Table 8: Performance (%) on SWE-bench-Live Verified.
Agent GPT-4o GPT-4.1 Claude 3.7 Sonnet DeepSeek-V3
SWE-agent 14.94 16.09 19.54 13.22
s-Agentless 13.22 11.49 12.07 13.79
OpenHands 6.32 12.07 20.69 13.22

G Limitations

Randomness caused by LLMs: We use the LLMs as the core engine to conduct all the experiments,
which might lead to potential randomness caused by different LLM calls. Since the experiments

23

require extensive LLM calls while the overall budget is limited, we do not repeat the experiments for
multiple times. To reduce the randomness, we control the execution environment to be the same and
set the temperature and top_p to zero.

Language limitation: Our benchmark SWE-bench-Live primarily focuses on the Python language
only, which might be limited. Since our key contribution is to propose a live benchmark with an
automated and scalable method, we follow the same language choice as existing benchmarks like
SWE-bench. In the future, we plan to extend SWE-bench-Live to multiple languages such as Java,
Go, and etc.

H Prompts in REPOLAUNCH

Prompt for Relevant Files Identification

Given this repository structure:
––– BEGIN REPOSITORY STRUCTURE –––
{structure}
––– END REPOSITORY STRUCTURE –––
List the most relevant files for setting up a development environment,
including:
0. CI/CD configuration files
1. README files
2. Documentation
3. Installation guides
4. Development setup guides
Format each file with its relative path (relative to project root) to
be wrapped with tag <file> </file>, one per line.

Prompt for Base Image Selection

Based on related file:
{related_files}
Please recommend a suitable base Docker image. Consider:

1. The programming language and version requirements
2. Common system dependencies
3. Use official images when possible

Select a base image from the following candidate list:
{candidate_images}
Wrap the image name in a block like  to
indicate your choice.

24

Prompt for Setup Agent

You are a developer. Your task is to install dependencies and set up
a environment that is able to run the tests of the project.

- You start with an initial Docker container based on {base_image}.
- You interact with a Bash session inside this container.
- Project files are located in /testbed within the container, and your
current working directory of bash is already set to /testbed.
- No need to clone the project again.

The final objective is to successfully run the tests of the project.
Attention:
- For Python project, you should make sure the package is installed
from source in the editable mode before running tests (for example
’pip install -e .’) to have a development environment.
- For Python project, avoid use tox to run test if possible as it is
designed specifically for CI. Read tox.ini file to find how to setup
and run the test.
You run in a loop of Thought, Action, Observation. At the end of the
loop you should use Action to stop the loop.
Use Thought to describe your thoughts about the question you have
been asked.
Use Action to run one of the actions available to you.
Observation will be the result of running those actions.
> Important Note: Each step, reply with only **one** (Thought,
Action) pair.
> Important Note: Do not reply **Observation**, it will be provided
by the system.
Your available actions are:
{tools}
Observation will be the result of running those actions.

Project Structure: the structure of the project, including files and
directories.
Related Files: the content of related files of the project that may
help you understand the project.
Thought: you should always think about what to do
Action: decide an action to take
Observation: the result of the action

... (this Thought/Action/Observation can repeat N times) ...

Thought: I think the setup should be fine
Action: stop the setup
Answer: the final result

Begin
Project Structure: {project_structure}
Related Files: {docs}

25

Prompt for Verify Agent

You are a developer. Your task is to verify whether the environment
for the given project is set up correctly. Your colleague has set up
a Docker environment for the project. You need to verify if it can
successfully run the tests of the project.

- You interact with a Bash session inside this container.
- The container is based on {base_image}.
- The setup commands that your colleague has run are {setup_commands}
- Project files are located in /testbed within the container, and your
current working directory of bash is already set to /testbed.
- Use the same test framework as your colleague, because that aligns
with the setup stage.
- Only test commands, skip linting/packaging/publishing commands.
- Do not change the state of the environment, your task is to verify
not to fix it. If you see issues, report it not fix it.
- You can tolerate a few test cases failures—as long as most tests
pass, it’s good enough.

Important Note:

Your test command must output detailed pass/fail status for each
test item. This is mandatory. For example, with pytest, use the
-rA option to get output like:

“‘
PASSED tests/test_resources.py::test_fetch_centromeres
PASSED tests/test_vis.py::test_to_ucsc_colorstring
“‘

Since we need to parse the test output to extract a test item →
status mapping, **this requirement is mandatory**. If you observed
that your test command does not produce such detailed output, you
must adjust it accordingly.

In summary, your goal is:
1. Write the test commands that could output detailed pass/fail
status for each test item, you can iterate until it does. (this is
mandatory, DO NOT ignore this requirement!!! This is your obligation
to correctly identify the test commands to run the test suite of the
project, and find a way to output detailed pass/fail status)
2. Run the test command to verify if the environment is set up
correctly. If not, report any observed issues. If you think the
setup is correct, report none issue.

26

	Introduction
	Related Work
	SWE-bench-Live
	Raw Issue–PR Crawling
	RepoLaunch: Automated Execution Environment Setup
	Validating Task Instances
	SWE-bench-Live Statistics

	Experiments
	Setups
	Performance on SWE-bench-Live
	Performance vs. Creation Date.
	Performance vs. Difficulty

	Conclusion
	Full Repositories List
	Task Formulation
	Performance vs Repository difficulty
	Dataset Fields
	Experimental Setup Details
	SWE-bench-Live Verified: Automatic Quality Filtering
	Limitations
	Prompts in RepoLaunch

