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Abstract

Detecting changes is of fundamental importance when analyzing data streams and has many
applications, e.g., in predictive maintenance, fraud detection, or medicine. A principled ap-
proach to detect changes is to compare the distributions of observations within the stream to
each other via hypothesis testing. Maximum mean discrepancy (MMD), a (semi-)metric on
the space of probability distributions, provides powerful non-parametric two-sample tests on
kernel-enriched domains. In particular, MMD is able to detect any disparity between distri-
butions under mild conditions. However, classical MMD estimators suffer from a quadratic
runtime complexity, which renders their direct use for change detection in data streams
impractical. In this article, we propose a new change detection algorithm, called Maxi-
mum Mean Discrepancy on Exponential Windows (MMDEW), that combines the benefits
of MMD with an efficient computation based on exponential windows. We prove that
MMDEW enjoys polylogarithmic runtime and logarithmic memory complexity and show
empirically that it outperforms the state of the art on benchmark data streams.

1 Introduction

Data streams are possibly infinite sequences of observations that arrive over time. They can have different
sources: sensors in industrial settings, online transactions from financial institutions, click monitoring on
websites, online feeds, etc. Quickly detecting when a change takes place can yield useful insights, for example,
about machine failure, malicious financial transactions, changes in customer preferences, and public opinions.

A change occurs if the underlying distribution of the data stream changes at a certain point in time. We
call this moment change point (Gama, 2010); it is sometimes also referred to as concept drift. A principled
and widely-used approach to detect changes is to use two-sample tests. The null hypothesis of such tests is
that the data before and after the potential change point follow the same distribution. If the test rejects the
hypothesis, one assumes that a change occurred.

One way to construct these tests is to use the kernel-based maximum mean discrepancy (MMD; Smola
et al. 2007; Gretton et al. 2012), which one can interpret as a (semi-)metric on the space of probability
distributions.1 In the statistics literature, MMD is also known as energy distance (Székely & Rizzo, 2004;
2005); see Sejdinovic et al. (2013) for the equivalence. MMD relies on the kernel mean embedding (Berlinet
& Thomas-Agnan, 2004, Ch. 4); it uses a kernel function to map a probability distribution to a reproducing
kernel Hilbert space (RKHS; Aronszajn 1950) and quantifies the discrepancy of the two distributions as their
distance in the RKHS. MMD is a metric if the kernel mean embedding is injective; the kernel is then called
characteristic (Fukumizu et al., 2008; Sriperumbudur et al., 2010). When using a characteristic kernel, the
MMD two-sample test allows to distinguish any distributions given that their kernel mean embeddings exist,
which is guaranteed under mild conditions.

Two-sample tests based on MMD are widely applicable, as there exist kernel functions for a multitude of
Euclidean and non-Euclidean domains, for example, strings (Watkins, 1999; Cuturi & Vert, 2005), graphs
(Gärtner et al., 2003; Borgwardt et al., 2020), or time series (Cuturi, 2011; Király & Oberhauser, 2019).

1A function is a semimetric if it is a metric but can be zero for distinct elements.
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Another benefit of kernel-based two-sample tests is their high power. While, for Euclidean data, it has been
shown that the power of such tests generally decreases in the high-dimensional setting (Ramdas et al., 2015),
recent results (Cheng & Xie, 2024) establish that the power rather depends on the intrinsic dimensionality
of the data. The intrinsic dimensionality is typically low in real-world settings so that the kernel-based
two-sample tests there do not suffer the curse of dimensionality.

Despite these benefits, a well-known bottleneck of MMD-based approaches is their computational complexity.
When comparing the distributions of two sets of data of sizes m and n, respectively, the computation of MMD
with classical estimators is in O

(
m2 + n2), with a memory complexity in O (m + n). Naively computing

MMD for each possible change point on a data stream with t = m + n observations has a complexity in
O
(
t3) for each new observation. These properties render the direct application of MMD to change detection

in data streams impractical.

In this paper, we introduce Maximum Mean Discrepancy on Exponential Windows (MMDEW), a change
detection algorithm for data streams that solves the above bottleneck. Specifically, our contributions
include the following.

• Our main contribution is MMDEW, a change detector based on an efficient online approximation of MMD.
When considering the entire history of t observations, the proposed method has a memory requirement
of O (log t) and a runtime complexity of O

(
log2 t

)
for each new observation. Otherwise, the algorithm

has constant runtime and memory requirements.
• To achieve these complexities, we introduce a new data structure, which allows to approximate the

quadratic time MMD in an online setting. We accomplish the speedup by introducing windows that store
summaries of the observations seen so far, and by storing a sample of logarithmic size of the observations
per window.

• Our experiments on standard benchmark data sets show that MMDEW performs better than state-of-the-
art change detectors on four out of the five tested data sets using the F1-score. For the more challenging
setting of short detection delays, the proposed algorithm is better on three out of six data sets.2

Outline. Section 2 summarizes related work. Section 3 introduces the definitions and Section 4 presents the
proposed algorithm. We detail the experiments in Section 5. Section 6 concludes. We include illustrative
proofs in the main text but defer technical proofs and additional details to the appendices.

2 Related work

Change detection is an unsupervised task that has received and still is receiving a lot of interest. The earliest
approaches, for example, Shewhart (1925); Page (1954), originated from quality control and require strong
parametric assumptions on the pre and post-change distributions. More recent work in the parametric regime
weakens these assumptions by allowing post-change distributions from a parametric family with an unknown
parameter (Lorden, 1970; Siegmund & Venkatraman, 1995) or by allowing any post-change distribution
(Sparks, 2000; Lorden & Pollak, 2005; Abbasi & Haq, 2019; Xie et al., 2023).

In our setting, both the pre and post-change distribution are assumed to be unknown, which is a challenging
setting that can be tackled with non-parametric approaches. We detail the approaches most related to our
proposed method in the following and refer to Wang & Xie (2024) for a recent more extensive survey on
parametric and non-parametric change detection methods.

A principled approach for comparing distributions in a stream in a non-parametric fashion is to use a
corresponding statistical test. ADWIN (Bifet & Gavaldà, 2007) is a classic example but it is limited to
univariate data and only detects changes in mean. ADWINK (Faithfull et al., 2019) alleviates the former
by running one instance of ADWIN per feature and issues a change if a predefined number of the instances
agree that a change occurred. Hence, the approach can only detect changes in the means of the marginal
distributions and changes in higher moments or the covariance structure can not be detected. Still, the

2We make our code available on https://anonymous.4open.science/r/mmdew-change-detector-5FE7 during review and will
make it publicly available after acceptance.
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Table 1: Comparison of change detectors. Complexity — runtime complexity per new observation, ARL /
MTD — type of known results, domain — data types, t — total number of observations, d — dimensionality
(for Euclidean spaces), k — parameter, W — window length / block size, N — number of windows.

Algorithm Complexity ARL / MTD Domain
ADWINK O (dk log W ) empirical Rd

WATCH unknowna empirical Rd

Scan B O
(
NW 2) analytical topological

NEWMA O (md)b analytical Rd

D3 O
(
W 3)c none Rd

IBDD O (pq)d none Rd

MMDEW O
(
log2 t

)
empirical topological

authors find that such an ensemble of univariate change detectors often outperforms multivariate detectors.
WATCH (Faber et al., 2021) is a recent approach that uses a two-sample test based on the Wasserstein
distance. However, the estimation of the Wasserstein distance requires density estimation, which is difficult
for high-dimensional data (Scott, 1991). The method Dasu et al. (2009) is conceptually similar to our
method, as it also relies on two-sample tests and is non-parametric, but it also requires density estimation.

In contrast, the computation of MMD-based two-sample tests does not become more difficult on high-
dimensional data, which renders their usage for change detection on such data promising. We refer to
Muandet et al. (2017) for a general overview of kernel mean embeddings and MMD.

There exist methods to compute MMD in the streaming setting, for example, linear time tests (Gretton
et al., 2012), but their statistical power is low. Zaremba et al. (2013) introduce B-tests, which have higher
power. However, both can not directly be used for change detection. Li et al. (2019) enable the estimation of
MMD on data streams for change detection by introducing Scan B-statistics. Wei & Xie (2022) extend upon
their work by considering multiple Scan B-statistics in parallel and introduce online kernel CUSUM. Another
method enabling the computation of MMD on data streams is NEWMA (Keriven et al., 2020), which is based
on random Fourier features (Rahimi & Recht, 2007; Sriperumbudur & Szabó, 2015), a well-known kernel
approximation. NEWMA also allows detecting changes on streaming data. Harchaoui & Cappé (2007) apply
kernel-based tests for offline change point detection on audio and brain-computer-interface data.

A conceptually different approach to find changes is using classifiers. D3 (Gözüaçik et al., 2019) maintains
two consecutive sliding windows and trains a classifier to distinguish their elements. It reports a change
if the classifier performance, measured by AUC, drops below a threshold. Another recent algorithm is
IBDD (de Souza et al., 2021), which scales well with the number of features.

In our experiments, we compare MMDEW to ADWINK, WATCH, Scan B-Statistics, NEWMA, D3, and
IBDD as these allow change detection on multivariate streams (in Rd). These algorithms differ w.r.t. their
runtime complexity, their theoretical properties, the data types that they can handle, and the types of changes
that they can detect. We summarize their main properties in Table 1.3 We consider the dimensionality d
as constant for the complexities where its influence is dominated by other terms and for approaches not
restricted to Euclidean domains.

3 Definitions and background

This section defines our problem and recalls kernels, the mean embedding, maximum mean discrepancy, and
two-sample testing.

Problem definition. Let (X , τX ) be a topological space, B(τX ) the Borel sigma-algebra induced by τX ,
andM+

1 (X ) the set of probability measures on X that are measurable w.r.t. (X ,B(τX )). We consider a data
3aWe refer to their used implementation of the Wasserstein distance computation and the discussion therein (Mérigot, 2011,

Ch. 6). bm is the number of random Fourier features and m ≪ d. cThe complexity results from the matrix inversion of the
logistic regression model, which has cubic runtime cost. dSize of the constructed q × p image.
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stream, that is, a possibly infinite sequence of observations, x1, x2, . . . , xt, . . . for t = 1, 2, . . . , and xt ∈ X .
Each xt is generated independently following some distribution Dt ∈ M+

1 (X ). If there exists t∗ such that
for i < t∗ and j ≥ t∗ we have Di ̸= Dj , then t∗ is a change point, and our task is to detect it; in practice,
a Dt typically generates a range of i.i.d. observations. We note that these definitions place few assumptions
on the type of data, that is, we only require the data to reside in a topological space.

Kernel mean embedding. Let H be a reproducing kernel Hilbert space (RKHS) on X , which means
that the linear evaluation functional δx : H → R defined by δx(f) = f(x) is bounded for all x ∈ X and
f ∈ H. By the Riesz representation theorem (Reed & Simon, 1972), there exists for each x ∈ X a unique
vector ϕ(x) ∈ H such that for every f ∈ H it holds that f(x) = δx(f) = ⟨f, ϕ(x)⟩. The function ϕ(x)
is the reproducing kernel for x and also called feature map; it has the canonical form x 7→ k(·, x), with
the function k : X × X → R the reproducing kernel associated to H. With this kernel, it holds that
k(x1, x2) = ⟨ϕ(x1), ϕ(x2)⟩ = ⟨k(·, x1), k(·, x2)⟩ for all x1, x2 ∈ X (Steinwart & Christmann, 2008). The mean
embedding of a probability measure P ∈M+

1 (X ) is the element µ(P) ∈ H such that EX∼P [f(X)] = ⟨f, µ(P)⟩
for all f ∈ H. The mean embedding µ(P) exists if k is measurable and bounded (Sriperumbudur et al., 2010,
Prop. 2), which we assume throughout the article.

Maximum mean discrepancy. MMD is defined by MMD(P,Q) = ∥µ(P)− µ(Q)∥, where µ(P), µ(Q) ∈ H
are the mean embeddings of P,Q ∈M+

1 (X ), respectively.

Let X ∼ P, Y ∼ Q and X ′, Y ′ independent copies of X, Y , respectively. The squared population MMD
(Gretton et al., 2012, Lemma 6) then takes the form

MMD2(P,Q) = E [k(X, X ′)] + E [k(Y, Y ′)]− 2E [k(X, Y )] ,

where the expectations are taken w.r.t. to all sources of randomness. For observations P̂m = {x1, . . . , xm}
i.i.d.∼

P and Q̂n = {y1, . . . , yn}
i.i.d.∼ Q, a biased estimator is obtained by replacing the population means with their

empirical counterparts

MMD2
(
P̂m, Q̂n

)
= 1

m2

m∑
i,j=1

k(xi, xj) + 1
n2

n∑
i,j=1

k(yi, yj)− 2
mn

m,n∑
i,j=1

k(xi, yj). (1)

The runtime complexity of (1) is in O
(
m2 + n2). We will base our proposed approximation on (1).

Two-sample testing. To decide whether the value of MMD
(
P̂m, Q̂n

)
indicates a significant difference

between P and Q, one tests the null hypothesis H0 : P = Q versus its alternative H1 : P ̸= Q by defining an
acceptance region for a given level α ∈ (0, 1), which takes the form MMD

(
P̂m, Q̂n

)
< ϵα. One rejects H0

if the test statistic exceeds the threshold. The level α is a bound for the probability that the tests rejects
H0 incorrectly (Casella & Berger, 1990). Assuming that k is nonnegative and bounded by K > 0, that is,
0 ≤ k(x, y) ≤ K for all x, y ∈ X , Gretton et al. (2012, Corollary 9) provides the distribution-free threshold
ϵα for the case that both samples P̂m and Q̂m have the same size (m = n) as

MMD
(
P̂m, Q̂m

)
<

√
2K

m

(
1 +

√
2 log 1

α

)
. (2)

Computing (2) costs O(1). As the change detection setting requires the case that m ̸= n, we extend their
threshold accordingly in what follows.

4 Our proposed algorithm

We introduce MMDEW in three steps. We first extend the threshold for the MMD two-sample test (2)
to samples of unequal sizes (Section 4.1). We then introduce our data structure that enables the efficient
computation of MMD on data streams (Section 4.2). Last, we describe the complete algorithm in Section 4.3.

4



Under review as submission to TMLR

4.1 Threshold for the hypothesis test

Given a sequence of observations {x1, . . . , xt} up until time t our goal is to test the null hypothesis P = Q
for any two neighboring windows X · Y = {x1, . . . , xi} · {xi+1, . . . , xt}, with i = 1, . . . , t − 1. Our following
proposition extends Gretton et al. (2012, Theorem 8), which considers the case m = n, giving the distribution-
free acceptance region for m ̸= n (corresponding to the setting that one generally encounters in change
detection). The proof is deferred to Appendix A.1.

Proposition 1. Let P,Q ∈ M+
1 (X ), P̂m = {x1, . . . , xm}

i.i.d.∼ P, Q̂n = {y1, . . . , yn}
i.i.d.∼ Q. Assume that

0 ≤ k(x, y) ≤ K for all x, y ∈ X and t > 0. Then a hypothesis test of level α > 0 for P = Q has the
acceptance region

MMD
(
P̂m, Q̂n

)
<

√
K

m
+ K

n

(
1 +

√
2 log α−1

)
=: ϵα.

Note that, when considering multiple possible change points, one needs to account for multiple testing in order
to achieve a level of size α. For example, one may adjust ϵα through Bonferroni correction (ϵ′

α = ϵα/(t− 1))
by dividing by the total number of tests.

We now introduce our novel data structure that allows considering multiple possible change points efficiently.

4.2 Proposed data structure

One common method to obtain a good runtime complexity in change detection algorithms is to slice the data
into windows of exponentially increasing sizes (Bifet & Gavaldà, 2007). Recent observations are collected
in smaller windows, and older observations are grouped into larger windows. This leads to a fine-grained
change detection in the recent past and more coarse-grained change detection in the distant past.

Our new data structure adopts this concept and, at the same time, facilitates the computation of MMD. In
what follows, we first describe the properties of the proposed data structure. Then, we show how to update
the data structure and explain its use for change detection.

4.2.1 Properties

We use 2 as the basis for the exponential slicing. Then, after observing t elements, the number of windows
stored in the data structure corresponds to the number of ones in the binary representation of t. We may
thus index the windows as Bl, . . . , B0 (in decreasing order), with the largest position being l = ⌊log2 t⌋. A
window does not exist if the binary representation of t at this position is zero.

If it exists, a window Bs = (Xs, XXs, XYs) at position s = 0, . . . , l stores 2s observations

Xs =
{

x
(s)
1 , . . . , x

(s)
2s

}
, (3)

together with the summaries

XXs =
2s∑

i,j=1
k
(

x
(s)
i , x

(s)
j

)
, (4)

XYs =
{ 2s∑

i=1

2s+1∑
j=1

k
(

x
(s)
i , x

(s+1)
j

)
︸ ︷︷ ︸

=:XYs+1
s

, . . . ,

2s∑
i=1

2l∑
j=1

k
(

x
(s)
i , x

(l)
j

)
︸ ︷︷ ︸

=:XYl
s

}
, (5)

where XXs ∈ R is the sum of the kernel k evaluated on all pairs of the window’s own observations, and
XYs stores a list of sums of the kernel evaluated on the window’s own observations and the observations in
windows coming before it.4 Storing a list enables the efficient merging of windows, elaborated in Lemma 2.

4Note that the superscript (s) of the x
(s)
i -s indicates the corresponding window Bs.
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The length of the list XYs equals the number of windows having observations older than window Bs and is
at most ⌊log2 t⌋. We use XYj

i to represent the entry in XYi that refers to the window Bj . Specifically, in
(5), XYs+1

s stores the interaction of Bs with Bs+1; similarly, XYl
s stores its interaction with Bl.

Remark 1. Given a stream of data x1, x2, . . . , xt, (3) corresponds to the mapping x
(s)
i = xℓ, with ℓ =∑⌊log t⌋

j=s+1 2j [Bj exists]+ i, where the bracket is one if the argument is true and zero otherwise (using Iverson’s
convention; Graham et al. 1994). A bucket Bj exists if the j-th right-most digit in the binary expansion of
t is 1.

We summarize two of the main properties of the data structure as lemmas. Lemma 1 establishes that one
can compute the value of MMD between two windows with constant complexity. The proof follows from
comparing (4) and (5) with (1). Lemma 2 shows that windows can be merged with logarithmic runtime
complexity. These results provide our first steps towards efficiently computing MMD in a data stream.

Lemma 1. Let Bs+1 and Bs be any two neighboring windows with elements Xs+1 =
{

x
(s+1)
1 , . . . , x

(s+1)
2s+1

}
and Xs =

{
x

(s)
1 , . . . , x

(s)
2s

}
, and sums as defined by (4) and (5), respectively. Then

MMD2 (Xs+1, Xs) = 1
(2s+1)2 XXs+1 + 1

(2s)2 XXs −
2

(2s+1)(2s)XYs+1
s ,

with a computational complexity of O(1).
Lemma 2. Merging two windows Bs+1 and Bs into a new window B′, such that B′ stores (3), (4), and (5)
costs O (log t).

Besides showing the result, the proof of Lemma 2 illustrates the steps that allow merging windows efficiently.

Proof. For computing XX′, we use the symmetry of k to obtain

XX′ =
2s+1∑
i,j=1

k
(

x
(s+1)
i , x

(s+1)
j

)
+

2s∑
i,j=1

k
(

x
(s)
i , x

(s)
j

)
+

2s+1∑
i=1

2s∑
j=1

k
(

x
(s+1)
i , x

(s)
j

)
+

2s∑
i=1

2s+1∑
j=1

k
(

x
(s)
i , x

(s+1)
j

)

=
2s+1∑
i,j=1

k
(

x
(s+1)
i , x

(s+1)
j

)
+

2s∑
i,j=1

k
(

x
(s)
i , x

(s)
j

)
+ 2

2s+1∑
i=1

2s∑
j=1

k
(

x
(s+1)
i , x

(s)
j

)
= XXs+1 + XXs + 2XYs+1

s ,

(6)

which has a runtime complexity in O(1).

To compute XY′, we note that Bs+1 stores the list XYs+1 of kernel evaluations corresponding to all windows
coming before it. The same holds for Bs, for which the list has one more element, XYs+1

s , which was used
in (6). All the elements in XYs and XYs+1 are sums and thus additive; it suffices to merge both lists by
adding their values element-wise, omitting XYs+1

s , and storing the result in XY′. As each list has at most
log t elements, merging them is in O (log t).

Specifically, the scheme facilitates the merging of windows of equal size, enabling us to establish the expo-
nential structure outlined in the next section.

4.2.2 Insertion of observations

The structure is set up recursively. For each new observation, we create a new window B0, with XX0 as
defined by (4) and XY0 computed w.r.t. the already existing windows. If two windows have the same size, we
merge them by Lemma 2, which costs O (log t). This yields ⌊log t⌋ windows of exponentially increasing sizes.

We illustrate the scheme in the following Example 1 and the corresponding Figure 1.
Example 1. To set up the structure, we start with the first observation x1 and create the first window B0,
with XX0 as defined by (4) and XY0 = ∅. When observing x2, we similarly create a new window B′

0, now

6
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x1

X0 = {x1}

XX0 = k(x1, x1)

XY0 = ∅
B0

x2

X0 = {x1}

XX0 = k(x1, x1)

XY0 = ∅
B0

X0′ = {x2}

XX0′ = k(x2, x2)

XY0′ = {k(x1, x2)}
B′

0

X1 = {x1, x2}

XX1 =
∑2

i,j=1
k(xi, xj)

XY1 = ∅
B1

x3

X1 = {x1, x2}

XX1 =
∑2

i,j=1
k(xi, xj)

XY1 = ∅
B1

X0 = {x3}

XX0 = k(x3, x3)

XY0 = {
∑2

i=1
k(xi, x3)}

B0

Merge

Figure 1: Schematic representation of Example 1. For a given step, the proposed scheme stores the windows
in bold face.

also computing XY0
0′ = {XY0

0′}. As B0 and B′
0 have the same size, we merge them into B1, computing

XX1 with (6). No previous window exists so that XY1 = ∅. We repeat this for all new observations, for
example, for x3, one creates (a new) B0, computing XX0 and XY0 = {XY1

0}, which results in two windows,
B1 and B0.

4.2.3 MMD computation and change detection

We now show that we can compute the MMD statistic (1) at positions between windows with a runtime
complexity of O(log t).
Proposition 2. Let Bl, . . . , Bs+1, Bs, . . . , B0 be a given list of windows with corresponding elements Xi,
i = 0, . . . , l, as defined in (3). For any split s ∈ {1, . . . , l − 1}, the computation of

MMD2

(
l⋃

i=s+1
Xi,

s⋃
i=0

Xi

)
, (7)

that is, the computation of MMD between the elements in windows coming before window Bs and the elements
in windows coming after (and including) Bs, has a runtime complexity of O (log t) for 0 < s < l, with s, l ∈ N.

Proof. To obtain (7), one recursively merges Bs, . . . , B0 to B′
s using Lemma 2, starting from the right, and

similarly Bl, . . . , Bs+1 to B′
l. One then obtains the statistic with Lemma 1, and by setting XYl′

s′ =
∑l−s

i=1 XYi
s′ ,

that is, by summing all elements in the XY′
s-list of B′

s. This concludes the proof as the logarithmic complexity
was already established.

The application of the presented data structure for change detection is as follows. For each new observation,
we estimate MMD at any position between windows and compare it to the threshold ϵ′

α = ϵα

l (with Bonferroni
correction) from Proposition 1. We report a change when the value of MMD exceeds the threshold. As there
are at most log t windows, we have at most log t−1 positions. Computing MMD for a position is in O (log t)
by Proposition 2, and so the procedure has a total runtime complexity of O

(
log2 t + t

)
per insert operation,

where the term linear in t results from computing XY0 when inserting a new observation.

While the data structure in its current form allows to obtain the precise values of (1) in an incremental
fashion, its runtime and memory complexity are O (t) for each new observation; these complexities are
unsuitable for deploying the algorithm in the streaming setting. We reduce the runtime by subsampling
within the windows, which we present together with the complete algorithm in the following section.
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4.3 MMDEW Algorithm

Our algorithm builds upon the data structure discussed previously. But, we suggest that each window of
size 2s, s = 0, . . . , l, samples s observations (of the total 2s), that is, a logarithmic amount, while keeping
everything else as before.

In this section, we first analyze such subsampling and discuss its benefits. Afterwards, we present the
complete algorithm. We refer to Appendix A.2 for the proof of the following statement.
Proposition 3. With subsampling, the number of terms in the sum XXl for a window at position l, 1 ≤ l,
l ∈ N is

nXXl
= 2l−1 (l2 − l + 4

)
= t

2
(
log2

2 t− log2 t + 4
)

,

with t = 2l the number of observations of Bl. The number of terms of XYl
l for windows of the same size,

which occur prior to merging, is

nXYl
l

= 2ll = t log2 t.

Remark 2. The number of terms in the sums of (1) acts as a proxy for the quality of the estimate. It is
optimal when no subsampling takes place; this number is O

(
t2). When subsampling a logarithmic number of

observations per window with our data structure (as we propose), one achieves polylogarithmic runtime and
logarithmic memory complexity. At the same time, one achieves a better approximation quality than naively
sampling a logarithmic number of observations without the summary data structure. While such sampling
would also yield a memory complexity of O (log t) when using the naive approach for change detection—that
is, splitting the sample into two neighboring windows and computing MMD2—the number of terms in (1)
would be O

(
log2 t

)
. Proposition 3 shows that the summary data structure improves upon this by a factor of

approximately t/2 for nXXl
and a factor of t/ log2 t for nXYl

l
(we neglect logarithmic and constant terms in

the former due to their small contribution).

Algorithm 2 now summarizes the complete algorithm, with MMD in Line 10 referring to the computation of
MMD as in Proposition 2. MMDEW stores only a uniform sample of size l + 1, that is, of size logarithmic in
the number of observations, while keeping the respective XXs and XYs, s = 0, . . . , l, computed before. With
this approach, the number of samples in a window increases by one each time the window is merged, and
the memory complexity is logarithmic in the number of observations. Note that one recovers the previous
algorithm (Section 4.2.3) and therefore the precise value of (7) if one omits Line 15. Further, changes in
Line 15 allow to adjust the subsampling, for example, the user may defer the sampling until windows contain
a minimum number of observations, or choose a different function to control the sample size.

The following example illustrates the procedure. Figure 3 expands upon Example 2 and shows the evolution
of the data structure upon observing x1, . . . , x6 and when merging windows.
Example 2. We assume that there is a stream of i.i.d. observations x1, x2, . . . . Note that the i.i.d. assump-
tion implies that there are no changes. MMDEW receives the first observation, x1 and creates a window
B0 storing x1, XX0 = k(x1, x1), and XY0 = ∅. For the next observation, x2, it creates a new window B0′ ,
storing x2, XX0′ = k(x2, x2), and XY0′ = {k(x1, x2)} and detects no change. As B0 and B0′ have the
same size, MMDEW merges them into window B1, storing a sample of size log2 2 = 1, say, it stores x1 and
discards x2, and computes XX1 = k(x1, x1) + k(x2, x2) + 2k(x1, x2), following (4). As no previous window
exists, the computation of XY1 is not required. We see that the number of terms in XX1 equals four, while
B1 stores only one observation (established in Proposition 3). Next, the algorithm observes x3 and creates
a new window, B0, storing x3, XX0 = k(x3, x3), and computing XY0 to the window coming before, that
is, B1, so that XY0 = {XY1

0}. In the next step, MMDEW receives x4, again creating a new window B0′ .
The algorithm now recursively merges the windows, that is, B0 and B0′ become B1′ , and B1 and B1′ then
become B2. Upon receiving x5, the algorithm creates a new window B0, storing x5, the kernel evaluation
k(x5, x5), and the interaction of x5 with {x1, x4} from B3. We conclude the example with x6, which leads to
the creation of a new window B′

0. As in steps 2 and 4, B0 and B′
0 will now be merged to obtain B1.
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Input: Data stream x1, x2, . . . , level α
Output: Change points in x1, x2, . . . ; detection times

1: windows ← ∅ ▷ List of windows
2: for each xi ∈ {x1, x2, . . . } do
3: X0 ← xi ▷ Initialize B0
4: XX0 ← k(xi, xi)
5: for each Bj ∈ windows do
6: XYj

0 ←
∑

x
(j)
k

∈Bj
k(xi, x

(j)
k )

7: B0 = (X0, XX0, XY0)
8: windows ← windows ∪B0
9: for each split s in windows = {Bl, . . . , Bs+1, Bs, . . . , B0}) do ▷ Detect changes

10: if MMD
(⋃l

j=s+1 Xj ,
⋃s

j=0 Xj

)
≥ ϵ′

α then
11: print “Change at s detected at time i”
12: windows ← Bs, . . . , B0 ▷ Drop windows
13: while two windows have the same size 2l do ▷ Maintain exponential structure
14: Merge windows following Lemma 2 into Bl+1
15: Store a uniform sample of size l + 1 in Xl+1 of Bl+1

Algorithm 2: Proposed MMDEW change detection algorithm.

Algorithm 2 has a runtime cost of O
(
log2 t

)
per insert operation and a total memory complexity of O (log t).

This allows it to scale to very large data streams. Nevertheless, if one strictly requires constant time and
memory, one can simply limit the number of windows at the expense of detecting changes only up to a certain
time in the past. In the latter configuration, MMDEW fulfills the requirements for streaming algorithms
laid out by Domingos & Hulten (2003).

5 Experiments

This section showcases our approach on synthetic data (Section 5.1) and on streams derived from real-world
classification tasks (Section 5.2). We ran all experiments on a server running Ubuntu 20.04 with 124GB
RAM, and 32 cores with 2GHz each.

5.1 Synthetic data

To evaluate the average run length (ARL) and the mean time to detection (MTD) in a controlled environment,
we first conduct experiments on synthetic data, comparing MMDEW to the MMD estimate (1) as baseline.5
We also compare the runtime of MMDEW to that of existing change detectors.

ARL and MTD. The ARL quantifies the false positive rate of a change detector, that is, H0 holds, and
we want to know how often the change detector reports a change when no change happened. In the static
setting, this corresponds to the type I error.

The error under the alternative (H1 holds) is captured by the expected detection delay (EDD), also called
“mean time to detection (MTD)”. Specifically, a change detector processes a stream that contains a change
at a known observation and we want to know the delay until the change is reported, that is, how many
samples of the post-change distribution need to be processed. In a static setting, this corresponds to the
type II error.

We simulate 5-dimensional data distributed according to the multivariate normal N (0, I5), the uniform
U [−15, 15], the Laplace (0, σI5), and a mixed distribution. The mixed distribution is taken to be N (0, I5)

5For computational reasons, we compute MMD as described in the discussion following Proposition 1. To obtain a fair
comparison, we use the distribution-free bound of Proposition 1 for both algorithms.
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. . .
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Figure 3: Set up of data structure with subsampling upon inserting x1, . . . , x6. MMDEW stores the windows
in bold face at the end of the merge operations. Observations x2 and x3 are not stored explicitly due to the
sampling applied. x4 is split into two lines for readability. See Example 2 for a detailed discussion.

with probability 0.3 and N
(
0, σ2I5

)
with probability 0.7, where 1d denotes a vector of d ones and Id is the

d-dimensional identity matrix. We set σ = 3.

To compute ARL, we consider 10,000 observations distributed according to either the uniform, the Laplace,
or the mixed distribution. Hence, the data does not contain any changes. For MTD, we first run both
algorithms on 512 (= 29) and 1024 (= 210) observations, respectively, leading to MMDEW summarizing
the data in one window in both cases. These observations are distributed according to N (0, I5) and then
followed by either the uniform, Laplace, or mixed distribution. That is, we induce a change point, and then
count the number of observations processed from the new distribution until the algorithms reports a change.

Figure 4 collects the average results over 20 repetitions. The left plot shows that an increase in the level
α ∈ (0, 1) leads to a decrease in ARL. This is expected as the test becomes more sensitive, leading to more
false positives. The baseline achieves a higher ARL but at the cost of an increased runtime. The MTD plots
(center and r.h.s.) mirror the ARL observation: The MTD decreases with increasing α. We further observe
that the detection delay depends on the post-change distribution. The delay is comparably large when
changing from the multivariate standard normal to the mixed distribution. This matches our intuition: the
mixed distribution is relatively similar to the pre-change distribution, rendering it difficult to detect a change
between them. For larger values of α, that is, α ≥ 0.2, MMDEW performs similarly to the baseline in all
cases. Comparing the MTD when the change happens after 512 observations to the MTD when the change
happens after 1024 observations, the results show that more pre-change samples render the algorithms more
sensitive to detecting changes, due to more samples improving the approximation of the mean embedding.

10



Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0

Level α

0

5000

10000

A
R

L

0.0 0.2 0.4 0.6 0.8 1.0

Level α

0

200

400

M
T

D
(5

12
)

0.0 0.2 0.4 0.6 0.8 1.0

Level α

0

200

400

M
T

D
(1

02
4)

MMDEW Uniform MMDEW Mixed MMDEW Laplace MMD Uniform MMD Mixed MMD Laplace

Figure 4: Average run length (ARL) and expected detection delay / mean time to detection (EDD / MTD)
of MMDEW on synthetically generated data.
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Figure 5: Comparison of runtimes per insert operation (l.h.s.) and least squares fit validating the theoretical
runtime complexity of MMDEW w.r.t. the runtime observed in practice (r.h.s.).

Overall, the results on these synthetic streams indicate that MMDEW is (i) robust to the choice of α and
(ii) that α has the expected influence on the behavior of the algorithm.

Runtime. We now compare the runtime of MMDEW to that of its contenders and additionally validate
the runtime guarantees that we derived analytically in Section 4.3.

To this end, we generate a constant stream of 106 one-dimensional observations, that is, the observed stream
contains no change. Note that, while the dimensionality of the data affects the runtime depending on the
used kernel, its influence is the same across all kernel-based algorithms, hence we limit our considerations to
the univariate case.

Figure 5 shows the average results over 10 runs. The left plot reveals that the fixed cost per insert of
MMDEW is relatively large, as processing a small number of observations requires comparably much time.
However, the runtime does not increase by much with the number of observations. The figure also shows that
the proposed algorithm’s runtime is better than that of an alternate kernel-based method, Scan B-statistics,
where we use a window size of ω = 100 in the runtime experiments. For t > 0.05 · 106, MMDEW also
outperforms IBDD. Still, the other algorithms run faster than MMDEW but achieve a lower F1 score in our
later experiments.

The right plot of Figure 5 verifies the analytically derived runtime of O
(
log2 t

)
by fitting the corresponding

curve (t 7→ c log2 t) to the measured data with the least squares method. The resulting mean squared error
is approximately 10−6, which confirms the preceding asymptotic runtime analysis.

5.2 Real-world classification data

To obtain our change detection quality estimates, we use well-known classification data sets and interpret
them as streaming data.6 This is common in the literature, for example, Faithfull et al. (2019); Faber et al.
(2021), as only few high-dimensional annotated change detection data sets are publicly available.

For each data set, we first order the observations by their classes; a change occurs if the class changes. To
introduce variation into the order of change points, we randomly permute the order of the classes before

6While MMDEW is not limited to Euclidean data, Euclidean data is the type of data most frequently encountered in practice,
and our experiments target at this setting.
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Table 2: Overview of data sets.
Data set n d #CPs
CIFAR10 (Krizhevsky et al., 2009) 60,000 1,024 9
FashionMNIST (Xiao et al., 2017) 70,000 784 9
Gas (Vergara et al., 2012) 13,910 128 5
HAR (Anguita et al., 2013) 10,299 561 5
MNIST (Deng, 2012) 70,000 784 9

each run but use the same permutation across all algorithms. For preprocessing, we apply min-max scaling
to all data sets. Table 2 summarizes the data sets, where n is the number of observations, d is the data
dimensionality, and #CP is the number of change points.

We run a grid parameter optimization per data set and algorithm and report the best result w.r.t. the
F1-score. We note that such an optimization is difficult to perform in practice—here one typically prefers
approaches with fewer or easy-to-set parameters—but allows a fair comparison. Table 3 in Appendix C lists
all the parameters we tested. We note that the grid parameter optimization allowed us to obtain better
F1-scores than the heuristics proposed in Keriven et al. (2020) for NEWMA and Scan B-statistics.

We exclude the squared time estimator of MMD due to its prohibitive runtime. For kernel-based algorithms
(MMDEW, NEWMA, and Scan B-statistics) we use the Gaussian kernel k(x, y) = exp

(
−γ∥x− y∥2) (γ > 0)

and set γ using the median heuristic (Garreau et al., 2018) on the first 100 observations. The Gaussian kernel
is universal (Steinwart & Christmann, 2008; Szabó & Sriperumbudur, 2017) and allows, given enough data,
to detect any change in distribution as a universal kernel on a compact domain is characteristic (Gretton
et al., 2012, Theorem 5). We also supply the first 100 observations to competitors requiring data to estimate
further parameters (IBDD, WATCH) upfront.

F1-score, precision, and recall. We compute the precision, the recall, and the F1-score, which are
common to evaluate change detection algorithms (Li et al., 2019; Keriven et al., 2020; van den Burg &
Williams, 2020; Faber et al., 2021). Specifically, for a fixed ∆T ∈ N>0, we proceed as follows. If a change
is detected, and there is an actual change point within the ∆T previous time steps, we consider it a true
positive (tp). If a change is detected, and there is no change point within the ∆T previous steps, we consider
it a false positive (fp). If no change is detected within ∆T steps of a change point, we consider it a false
negative (fn). We count at most one true positive for each actual change point. With these definitions, the
precision is Prec = tp/(tp + fp), the recall is Rec = tp/(tp + fn), and the F1-score is their harmonic mean
F1 = 2 · (Prec · Rec) / (Prec + Rec). Note that, while some algorithms allow to infer where in the data a
change happens, including the proposed MMDEW, we only evaluate the time at which they report a change,
as all tested approaches allow reporting this value.

Figure 6 shows our results. As ∆T is an evaluation-specific parameter, we vary it relative to the average
distance between change points by a factor β > 0: Given a data set of length N with n changes, we set
∆T = β · N/(n + 1). For β = 1 (∆T is equal to the average number of steps between change points per
respective data set), MMDEW achieves a higher F1-score than all competitors on all data sets except for
Gas, where it still obtains a competitive result. Throughout, the proposed algorithm obtains a good balance
between precision and recall. Other approaches either have very low precision (for example, less than 20%),
or an inferior recall and precision, down to a few exceptions. With a reduced β, that is, we allow only a
shorter detection delay, the performance of all algorithms decreases on average. For β = 1/2, MMDEW
achieves the best F1 score also on four data sets, and, for β = 1/4 (the most challenging setting) on three of
the tested data sets.

We conclude that the proposed method achieves very good results across all these experiments—especially
when taking into account the fewer hyperparameters compared to the other approaches that we tested.

Percentage of changes detected and detection delay. To obtain a complete picture of the performance
of MMDEW, we also report the “percentage of changes detected” (PCD), that is, the ratio of the number of
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Figure 6: Average F1-score, precision and recall. The bars show the standard deviation over 10 permutations
of the data.
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Figure 7: Average of percentage of changes detected (PCD) and of mean time to detection (MTD). The
dashed line indicates the optimum for PCD. For MTD lower values are better.

reported changes and the number of actual change points, and its MTD on the data streams derived from
real-world data. In our context, MTD coincides with the expected detection delay.

Figure 7 collects our results. For PCD, results closer to 100% are better. Here, MMDEW is on par with the
closest competitors and consistently, that is, across all data sets, detects an approximately correct number
of change points. D3, NEWMA, Scan B-statistics, and WATCH detect too many change points in all cases.
This behavior is also reflected in their comparably large recall in Figure 6.

For MTD, lower values are better. Here, the classification-based D3 performs best in most of the cases.
MMDEW performs a bit worse than D3 but better than the other algorithms on most data sets, with the
Gas data set the major exception. As the experiments in Figure 6 show, a lower ∆T tends to lead to a lower
F1-score of MMDEW. In other words, MMDEW tends to detect changes with some delay, but it detects
them consistently.

6 Conclusions

We introduced a novel change detection algorithm, MMDEW, that builds upon two-sample testing with
MMD, which is known to yield powerful tests on many domains. To facilitate the efficient computation of
MMD, we presented a new data structure, which allows to estimate MMD with polylogarithmic runtime
and logarithmic memory complexity. Our experiments on standard benchmark data show that MMDEW
obtains the best F1-score on most data sets. At the same time, MMDEW only has two parameters—the
level of the statistical test and the choice of kernel. This simplifies the proposed algorithm’s application in
real-world use cases.

13



Under review as submission to TMLR

References
Saba Abbasi and Abdul Haq. Optimal CUSUM and adaptive CUSUM charts with auxiliary information for

process mean. Journal of Statistical Computation and Simulation, 89(2):337–361, 2019.

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis Reyes-Ortiz. A public domain
dataset for human activity recognition using smartphones. In European Symposium on Artificial Neural
Networks (ESANN), 2013.

Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society,
68:337–404, 1950.

Alain Berlinet and Christine Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability and Statistics.
Kluwer, 2004.

Albert Bifet and Ricard Gavaldà. Learning from time-changing data with adaptive windowing. In SIAM
International Conference on Data Mining (SDM), pp. 443–448, 2007.

Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-López, Leslie O’Bray, and Bastian Riec. Graph kernels:
State-of-the-art and future challenges. Foundations and Trends in Machine Learning, 13(5-6):531–712,
2020.

George Casella and Roger L. Berger. Statistical inference. Wadsworth & Brooks/Cole, 1990.

Xiuyuan Cheng and Yao Xie. Kernel two-sample tests for manifold data. Bernoulli, 30(4):2572–2597, 2024.

Marco Cuturi. Fast global alignment kernels. In International Conference on Machine Learning (ICML),
pp. 929–936, 2011.

Marco Cuturi and Jean-Philippe Vert. The context-tree kernel for strings. Neural Networks, 18(8):1111–1123,
2005.

Tamraparni Dasu, Shankar Krishnan, Dongyu Lin, Suresh Venkatasubramanian, and Kevin Yi. Change
(detection) you can believe in: Finding distributional shifts in data streams. In International Symposium
on Intelligent Data Analysis (IDA), volume 5772, pp. 21–34, 2009.

Vinícius M. A. de Souza, Antonio Rafael Sabino Parmezan, Farhan Asif Chowdhury, and Abdullah Mueen.
Efficient unsupervised drift detector for fast and high-dimensional data streams. Knowledge and Informa-
tion Systems, 63(6):1497–1527, 2021.

Li Deng. The MNIST database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, pp. 141–142, 2012.

Pedro Domingos and Geoff Hulten. A general framework for mining massive data streams. Journal of
Computational and Graphical Statistics, 12(4):945–949, 2003.

Kamil Faber, Roberto Corizzo, Bartlomiej Sniezynski, Michael Baron, and Nathalie Japkowicz. WATCH:
Wasserstein change point detection for high-dimensional time series data. In IEEE International Confer-
ence on Big Data, pp. 4450–4459, 2021.

William J. Faithfull, Juan José Rodríguez Diez, and Ludmila I. Kuncheva. Combining univariate approaches
for ensemble change detection in multivariate data. Information Fusion, 45:202–214, 2019.

Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, and Bernhard Schölkopf. Kernel measures of conditional
dependence. In Advances in Neural Information Processing Systems (NeurIPS), pp. 498–496, 2008.

João Gama. Knowledge discovery from data streams. CRC Press, 2010.

Damien Garreau, Wittawat Jitkrittum, and Motonobu Kanagawa. Large sample analysis of the median
heuristic. Technical report, 2018. https://arxiv.org/abs/1707.07269.

14

https://arxiv.org/abs/1707.07269


Under review as submission to TMLR

Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient alterna-
tives. Computational Learning Theory and Kernel Machines (COLT), 2777:129–143, 2003.

Ömer Gözüaçik, Alican Büyükçakir, Hamed R. Bonab, and Fazli Can. Unsupervised concept drift detection
with a discriminative classifier. In International Conference on Information and Knowledge Management
(CIKM), pp. 2365–2368, 2019.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics. Addison-Wesley, 1994.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. Journal of Machine Learning Research, 13:723–773, 2012.

Zaïd Harchaoui and Olivier Cappé. Retrospective multiple change-point estimation with kernels. In IEEE/SP
Workshop on Statistical Signal Processing, pp. 768–772, 2007.

Nicolas Keriven, Damien Garreau, and Iacopo Poli. NEWMA: A new method for scalable model-free online
change-point detection. IEEE Transactions on Signal Processing, 68:3515–3528, 2020.

Franz J. Király and Harald Oberhauser. Kernels for sequentially ordered data. Journal of Machine Learning
Research, 20:1–45, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical
report, 2009. https://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf.

Shuang Li, Yao Xie, Hanjun Dai, and Le Song. Scan B-statistic for kernel change-point detection. Sequential
Analysis, 38(4):503–544, 2019.

Gary Lorden. On excess over the boundary. Annals of Mathematical Statistics, 41:520–527, 1970.

Gary Lorden and Moshe Pollak. Nonanticipating estimation applied to sequential analysis and changepoint
detection. The Annals of Statistics, 33(3):1422–1454, 2005.

Quentin Mérigot. A multiscale approach to optimal transport. In Computer Graphics Forum, volume 30,
pp. 1583–1592, 2011.

Krikamol Muandet, Kenji Fukumizu, Bharath K. Sriperumbudur, and Bernhard Schölkopf. Kernel mean
embedding of distributions: A review and beyond. Foundations and Trends in Machine Learning, 10(1-2):
1–141, 2017.

E. S. Page. Continuous inspection schemes. Biometrika, 41:100–115, 1954.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in Neural
Information Processing Systems (NeurIPS), pp. 1177–1184, 2007.

Aaditya Ramdas, Sashank Jakkam Reddi, Barnabás Póczos, Aarti Singh, and Larry A. Wasserman. On
the decreasing power of kernel and distance based nonparametric hypothesis tests in high dimensions. In
Conference on Artificial Intelligence (AAAI), pp. 3571–3577, 2015.

Michael Reed and Barry Simon. Methods of modern mathematical physics. I. Functional analysis. Academic
Press, 1972.

David W Scott. Feasibility of multivariate density estimates. Biometrika, 78(1):197–205, 1991.

Dino Sejdinovic, Bharath Sriperumbudur, Arthur Gretton, and Kenji Fukumizu. Equivalence of distance-
based and RKHS-based statistics in hypothesis testing. Annals of Statistics, 41:2263–2291, 2013.

Walter A. Shewhart. The application of statistics as an aid in maintaining quality of a manufactured product.
Journal of the American Statistical Association, 20(152):546–548, 1925.

D. Siegmund and E. S. Venkatraman. Using the generalized likelihood ratio statistic for sequential detection
of a change-point. The Annals of Statistics, 23(1):255–271, 1995.

15

https://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf


Under review as submission to TMLR

Neil James Alexander Sloane. Entry A001788 in The On-Line Encyclopedia of Integer Sequences, 1999a.
https://oeis.org/A001788.

Neil James Alexander Sloane. Entry A036289 in The On-Line Encyclopedia of Integer Sequences, 1999b.
https://oeis.org/A036289.

Alexander Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf. A Hilbert space embedding for distri-
butions. In Algorithmic Learning Theory (ALT), volume 4754, pp. 13–31, 2007.

Ross S. Sparks. CUSUM charts for signalling varying location shifts. Journal of Quality Technology, 32(2):
157–171, 2000.

Bharath Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and Gert Lanckriet. Hilbert
space embeddings and metrics on probability measures. Journal of Machine Learning Research, 11:1517–
1561, 2010.

Bharath K. Sriperumbudur and Zoltán Szabó. Optimal rates for random Fourier features. In Advances in
Neural Information Processing Systems (NeurIPS), pp. 1144–1152, 2015.

Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer, 2008.

Zoltán Szabó and Bharath K. Sriperumbudur. Characteristic and universal tensor product kernels. Journal
of Machine Learning Research, pp. 233:1–233:29, 2017.

Gábor Székely and Maria Rizzo. Testing for equal distributions in high dimension. InterStat, 5:1249–1272,
2004.

Gábor Székely and Maria Rizzo. A new test for multivariate normality. Journal of Multivariate Analysis,
93:58–80, 2005.

Gerrit J. J. van den Burg and Christopher K. I. Williams. An evaluation of change point detection algorithms.
Technical report, 2020. https://arxiv.org/abs/2003.06222.

Alexander Vergara, Shankar Vembu, Tuba Ayhan, Margaret A Ryan, Margie L Homer, and Ramón Huerta.
Chemical gas sensor drift compensation using classifier ensembles. Sensors and Actuators B: Chemical,
166:320–329, 2012.

Roman Vershynin. High-dimensional probability. Cambridge University Press, 2018.

Haoyun Wang and Yao Xie. Sequential change-point detection: Computation versus statistical performance.
Wiley Interdisciplinary Reviews: Computational Statistics, 16(1):e1628, 2024.

Chris Watkins. Dynamic alignment kernels. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 39–50, 1999.

Song Wei and Yao Xie. Online kernel CUSUM for change-point detection. Technical report, 2022. https:
//arxiv.org/abs/2211.15070.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms. Technical report, 2017. https://arxiv.org/abs/1708.07747.

Liyan Xie, George V Moustakides, and Yao Xie. Window-limited CUSUM for sequential change detection.
IEEE Transactions on Information Theory, 69(9):5990–6005, 2023.

Wojciech Zaremba, Arthur Gretton, and Matthew B. Blaschko. B-test: A non-parametric, low variance
kernel two-sample test. In Advances in Neural Information Processing Systems (NeurIPS), pp. 755–763,
2013.

16

https://oeis.org/A001788
https://oeis.org/A036289
https://arxiv.org/abs/2003.06222
https://arxiv.org/abs/2211.15070
https://arxiv.org/abs/2211.15070
https://arxiv.org/abs/1708.07747


Under review as submission to TMLR

A Proofs

This section contains additional proofs. The proof of Proposition 1 is in Section A.1. Proposition 3 is proved
in Section A.2.

A.1 Proof of Proposition 1

Proposition 1 follows from the more general result that we state below. The statement and proof are similar
to Gretton et al. (2012, Theorem 8) but do not assume m = n. Note that we recover Gretton et al. (2012,
Theorem 8) in the case that m = n. We prove Proposition 1 afterwards.
Proposition 4. Let P, Q, P̂m, Q̂n be defined as in the main text, assume 0 ≤ k(x, y) ≤ K for all x, y ∈ X ,
P = Q, and t > 0. Then

P

(
MMD

(
P̂m, Q̂n

)
−
(

K

m
+ K

n

) 1
2

≥ t

)
≤ e− t2mn

2K(m+n) .

Proof. First, we bound the difference of MMD
(
P̂m, Q̂n

)
to its expected value. Changing a single one of

either xi or yj in this function results in changes of at most 2
√

K/m, and 2
√

K/n, giving

n+m∑
i=1

c2
i = 4K

n + m

nm
.

We now apply the bounded differences inequality (recalled in Theorem 1) to obtain

P
(

MMD
(
P̂m, Q̂n

)
−EMMD

(
P̂m, Q̂n

)
≥ t
)
≤e− t2mn

2K(m+n) .

The last step is to bound the expectation, which yields

EMMD
(
P̂m, Q̂n

)
= E

(
1

m2

m∑
i,j=1

k(xi, xj) + 1
n2

n∑
i,j=1

k(yi, yj)− 1
mn

m,n∑
i,j=1

k(xi, yj)− 1
mn

n,m∑
j,i=1

k(yj , xi)
) 1

2

≤

(
1
m
Ek(X, X) + 1

n
Ek(Y, Y ) + 1

m
(m− 1)Ek(X, Y ) + 1

n
(n− 1)Ek(Y, X)− 2Ek(X, Y )

) 1
2

=
(

1
m
Ek(X, X) + 1

n
Ek(Y, Y )− 1

m
Ek(X, Y )− 1

n
Ek(X, Y )

) 1
2

=
(

1
m
E [k(X, X)− k(X, Y )] + 1

n
E [k(X, X)− k(X, Y )]

) 1
2

≤
(

K

m
+ K

n

) 1
2

.

Inserting this into the previous inequality, we obtain the stated result.

Proposition 1 is now a corollary of Proposition 4, which follows by setting α = e− t2mn
2K(m+n) and solving for t

to obtain a test of level α.

A.2 Proof of Proposition 3

To find nXYl
l
, we use our implementation of MMDEW and the On-Line Encyclopedia of Integer Sequences

(OEIS) to discover that nXYl
l

follows the sequence 1, 2, 8, 24, 64, 160, . . . for l = 0, 1, 2, . . . . Thus

nXYl
l

= 2ll, for l > 0 (8)
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and nXY0
0

= 1 (Sloane, 1999b).

To find nXXl
, notice that nXXl

only changes when one merges two windows, which happens for windows of
the same size nXXl−1 . The algorithm adds to this 2 · nXYl−1

l−1
terms, see (6), and, for l = 0, 1, 2, . . ., we obtain

the recurrence relation

nXXl
=


1 if l = 0,
4 if l = 1,
2 · nXXl−1 + 2 · nXYl−1

l−1
if l > 1,

with nXX−1 := 0. Now write

nXXl
= 2 · nXXl−1 + l · 2l − 2l + 2 · [l = 0] + 2 · [l = 1], (9)

where the brackets are equal to one if their argument is true and zero otherwise (using Iverson’s convention;
Graham et al. 1994). To find a closed-form expression for (9), we define the ordinary generating function
A(z) =

∑
l alz

l. Now, we multiply (9) by zl and sum on l, to obtain

A(z) = −8z3 + 2z − 1
(2z − 1)3

after some algebra, so that

nXXl
= [zl]−8z3 + 2z − 1

(2z − 1)3 ,

where [zl] is the coefficient of zl in the series expansion of the generating function A(z). To extract coefficients,
we first decompose A(z) as

A(z) = 3
1− 2z

− 2
(1− 2z)2 + 1

(1− 2z)3 − 1,

which allows us to then find the coefficients as

[zl] 3
1− 2z

(a)= 3 · 2l, [zl]− 2
(2z − 1)2

(b)= −(l + 1)2l+1, [zl] 1
(1− 2z)3

(c)= (l + 1)(l + 2)2l−1,

where Graham et al. (1994, Table 335) implies (a), (b) is (8) shifted, and (c) is Sloane (1999a) shifted.
We omit the last term as it corresponds to [z0], which we do not need. Now, adding all terms gives
3 · 2l − (l + 1)2l+1 + (l + 1)(l + 2)2l−1 = 2l−1(l2 − l + 4), concluding the proof.

B External results

To proof Proposition 1, we recall McDiarmid’s concentration inequality (Vershynin, 2018).
Theorem 1 (Bounded differences inequality). Let X = (X1, . . . , Xn) be a random vector with independent
components. Let f : Rn → R be a measurable function. Assume that the value of f(x) can change by at most
ci > 0 under an arbitrary change of a single coordinate of x = (c1, . . . , cn) ∈ Rn. Then, for any t > 0, we
have

P{f(X)− Ef(X) ≥ t} ≤ exp
(
− 2t2∑n

i=1 c2
i

)
.
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C Hyperparameter optimization settings

We collect the hyperparameter choices that we tested in our experiments on real-world classification data
(Section 5.2) in Table 3 and refer to the respective original publications for additional information on the
parameter settings.

Table 3: Values chosen for the parameter optimization.
Algorithm Parameters Parameter values
MMDEW α α ∈ {0.001, 0.01, 0.1, 0.2}
ADWINK δ, k δ ∈ {0.05, 0.1, 0.2, 0.9, 0.99}, k ∈ {0.01, 0.02, 0.05, 0.1, 0.2}
D3 ω, ρ, τ, d ω ∈ {100, 200, 500}, ρ ∈ {0.1, 0.3, 0.5}, τ ∈ {0.7, 0.8, 0.9}, d = 1
IBDD m, w m ∈ {10, 20, 50, 100}, w ∈ {20, 100, 200, 300}
NEWMA ω, α ω ∈ {20, 50, 100}, α ∈ {0.01, 0.02, 0.05, 0.1}
Scan B B, ω, α B ∈ {2, 3}, ω ∈ {100, 200, 300}, α ∈ {0.01, 0.05}
WATCH ϵ, κ, µ, ω ϵ ∈ {1, 2, 3}, κ ∈ {25, 50, 100}, µ ∈ {10, 20, 50, 100, 1000, 2000},

ω ∈ {100, 250, 500, 1000}
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