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Abstract

Motorized two-wheelers are a prevalent and economical
means of transportation, particularly in the Asia-Pacific re-
gion. However, hazardous driving practices such as triple
riding and non-compliance with helmet regulations con-
tribute significantly to accident rates. Addressing these vi-
olations through automated enforcement mechanisms can
enhance traffic safety. In this paper, we propose DashCop,
an end-to-end system for automated E-ticket generation.
The system processes vehicle-mounted dashcam videos to
detect two-wheeler traffic violations. Our contributions
include: (1) a novel Segmentation and Cross-Association
(SAC) module to accurately associate riders with their mo-
torcycles, (2) a robust cross-association-based tracking al-
gorithm optimized for the simultaneous presence of riders
and motorcycles, and (3) the RideSafe-400 dataset, a com-
prehensive annotated dashcam video dataset for triple rid-
ing and helmet rule violations. Our system demonstrates
significant improvements in violation detection, validated
through extensive evaluations on the RideSafe-400 dataset.
Project page: https://dash-cop.github.io/

1. Introduction
Motorized two-wheelers have been widely used as an af-

fordable and effective commuting choice, especially in the
Asia-Pacific region [3, 24, 26, 27]. However, hazardous
driving habits, such as not wearing helmets, exceeding pas-
senger limits, and wrong-side driving, often pose signifi-
cant safety risks. Annually, more than half a million two-
wheeler accidents are reported in this region [39]. This
alarming statistic underscores the need for promoting hel-
met compliance and deterring triple riding by imposing
penalties. Such measures aim to curb dangerous driving
practices, ensure rider safety, and maximize overall traffic
safety goals [6, 48].

*Authors contributed equally to this work.

To address these safety concerns, there is a critical need
for efficient enforcement mechanisms. Automated elec-
tronic traffic ticket (E-ticket) systems offer a promising so-
lution by automating the detection of specific violations
and using automatic number plate recognition (ANPR) to
generate E-tickets [6, 36, 52]. This automation reduces re-
liance on manual enforcement, which is particularly bene-
ficial in countries with a low ratio of traffic police to vehi-
cles [10, 20, 41].

Detecting the violation of interest is an essential compo-
nent of these E-ticket generation systems. Many works have
individually addressed automating the detection of triple
riding and helmet rule violations [2,15,17,21,50,53,54,57].
These works process video frames from statically mounted
cameras (e.g. CCTV). Despite the advantage of continuous
monitoring, their scope is limited in terms of coverage over
the road network and high installation costs. Moreover, the
fixed and predictable positions of the cameras lack the el-
ement of unpredictability that is crucial for effective deter-
rence.

Vehicle-mounted dashcams offer a complementary so-
lution to this challenge. They provide a broader range of
road network coverage for traffic enforcement. Unlike static
cameras, they have the advantage of unpredictability which
is essential for effective deterrence. With the growing ubiq-
uity of vehicle-mounted dashcams [19, 25, 43], it is essen-
tial to develop systems that can effectively utilize dashcam
videos for automated detection of traffic violations.

Detecting two-wheeler traffic violations via dashcam
footage presents numerous challenges. These include rel-
ative motion between the dashcam-equipped vehicle and
other vehicles, the unpredictable dynamics of dense and un-
structured traffic environments, occlusions caused by ve-
hicles, riders, other road elements, and the small spa-
tial footprint of objects of interest (e.g. motorcycles, rid-
ers, license plates). The current body of work addressing
dashcam-based detection of two-wheeler traffic violations
is extremely limited [21, 42], and no solution extends to the
automated ticket generation stage.
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Figure 1. Instances of triple riding and helmet rule violations from our RideSafe-400 dataset.

To bridge this gap, we propose an end-to-end system for
automating the generation of E-tickets for two-wheeler traf-
fic violations, utilizing dashcam videos as input. Our con-
tributions include:

• Segmentation and Cross-Association (SAC): A
novel segmentation module for associating riders with
their corresponding two-wheeler.

• Association-based Tracker: A novel instance track-
ing module with a formulation optimized for joint
tracking of riders and associated two-wheelers.

• RideSafe-400 Dataset: An annotated dashcam video
dataset containing triple riding and helmet rule vi-
olations. The dataset includes extensive track-
level mask and bounding box annotations for six
object classes: rider-motorcycle, rider,
motorcycle, helmet, no-helmet, license
plate.

We use our dataset to evaluate the E-ticket generation
system and to benchmark its various components. Please
refer to the https://dash-cop.github.io/ for
videos and additional media related to our work.

2. Related Works
Helmet Detection: Previous research on helmet detec-

tion predominantly utilizes static cameras [13,15,47,55,56,
61]. While some methods process the entire frame [13, 17,
47, 55, 56], others utilize cropped images of the riding in-
stance as input [51, 61]. State-of-the-art detection frame-
works such as YOLO [28] and DETR [9,64] are commonly
employed. In our approach, we perform detection using the
full frame and leverage YOLO-v8x [28] as the base detec-
tor.

Triple Riding Detection: Similar to helmet detection,
triple riding detection is typically performed using static

cameras and established detection architectures [12, 14, 29,
31, 32, 38, 40]. Determining triple riders is done either by
counting the number of riders belonging to a driving in-
stance [12,14,21,31,38] or holistically, as a detection prob-
lem [11,40]. Our approach treats the task as a classification
problem.

Rider-Motorcycle Association: Determining the asso-
ciation between riders and their motorcycle is crucial for
multiple downstream modules in the context of the vio-
lation detection task. Current methods often rely on the
overlap between rider and motorcycle bounding boxes for
rider-motorcycle (R-M) association [12, 14, 38]. Goyal et
al. [21] introduce a learnable trapezium-based represen-
tation with IoU-threshold-based suppression for compact
modeling. However, these methods treat rider and motor-
cycle detections independently, which can degrade associ-
ation performance in dense traffic scenarios. Our approach
explicitly models the spatial relationship between a motor-
cycle and its riders, resulting in more robust associations.

Tracking: In most works, trackers based on the SORT [8]
family such as DeepSORT [58] are employed [14, 17, 21,
55]. However, tracking is typically done at the individual
rider or motorcycle level. We introduce a unique extension
of the basic SORT tracker to enable collective tracking of
riders and their corresponding motorcycles as a single asso-
ciated entity.

End-to-end systems: Dashcam footage has been used in
various contexts [5, 30, 45, 46, 60], but its application for
traffic violation detection is limited [21, 42, 51]. Automatic
or semi-automatic systems for end-to-end E-ticket genera-
tion are usually based on static cameras [11, 38]. However,
these approaches often rely on image processing heuristics
and are prone to fixed viewpoint bias. Also, the datasets
tend to be fairly small and end-to-end evaluation (i.e. E-
ticket performance metrics) is absent. To the best of our
knowledge, our work is the first to introduce an end-to-end
E-ticket generation system for two-wheelers using dashcam
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videos.

3. RideSafe-400 Dataset

Our dataset, RideSafe-400, comprises 400 driving
videos specifically curated for identifying triple riding and
helmet rule violators on the road. The traffic scenarios are
captured using a DDPAI X2S Pro dashcam, with a resolu-
tion of 1920× 1080 pixels and a frame rate of 25 fps. Each
video spans between 60 to 72 seconds, culminating in ap-
proximately 600K frames. These videos contain multiple
instances of triple riding or helmet rule violations, captured
in a diverse range of traffic conditions, including varying
traffic types, street types, illumination, weather, and other
challenging scenarios (see Fig. 1).

Annotations in RideSafe-400 cover six object classes:
‘R-M instance’, ‘rider’, ‘motorcycle’, ‘helmet’, ‘no-
helmet’, and ‘license plate’ (see Fig. 2- 1 ). For each video
frame, riders are associated with their respective motorcy-
cles (termed an R-M instance) using rectangular bound-
ing boxes. Each R-M instance is further annotated with
the classes rider and motorcycle (see Fig. 2- 2 (a)). For
each rider, the presence or absence of a helmet is annotated
(Fig. 2- 2 (b)). Each motorcycle object is assigned an at-
tribute ‘license plate’ or ‘no license plate’, depending on the
visibility of the license plate, and the corresponding license
plate bounding box is annotated along with its plate num-
ber (Fig. 2- 2 (c)). To uniquely identify an R-M instance
across video frames, a track id is provided (see Fig. 2- 1 ).
Additionally, each R-M instance and its corresponding ob-
jects (rider, motorcycle, helmet, no-helmet, license plate)
are assigned a common group id attribute (see Fig. 2- 3 ).

Our dataset includes 354K R-M annotations and 23K
R-M tracks, 356K motorcycle annotations and 24K motor-
cycle tracks, 311K rider annotations and 19K rider tracks,
194K helmet annotations and 10K helmet tracks, 149K no-
helmet annotations and 8K no-helmet tracks. Additionally,
there are 27K annotated license plates, each labelled with
its corresponding license plate number.

4. Methodology

Figure 3 provides an overview of our proposed end-to-
end E-ticket generation method for detecting triple riding
and helmet rule violations. As the first step, each frame
from the dashcam video is processed by our novel Seg-
mentation and Cross-Association (SAC) module (Sec. 4.1).
This module generates segmentation masks of riders and
motorcycles using a YOLO-v8 framework [28]. We in-
troduce novel extensions to the standard YOLO-v8 frame-
work, which predicts the association of rider and motorcy-
cle masks. The aggregation of all the riders on the same
motorcycle comprises an R-M instance (see R-M1, R-M2,
. . . in Fig. 3 (a)).

R-M ID: 1

R-M ID: 2

R-M ID: 2

R-M ID: 1

R-M ID: 2

R-M ID: 2

Rider-2

Motorcycle

Helmet

R-M ID: 1

No-Helmet

R-M ID: 1

R-M ID: 2

Frame t

Track 2

TS12ER4783

P
e
r
-
F
r
a
m
e

 
A
n
n
o
t
a
t
i
o
n

Frame t+2

Frame t+1

Frame t

Frame t+3

Frame t

Frame t+1

Frame t+2

Frame t+3

(a)

(b)

Track 1

Motorcycle Rider-1

License

Plate

Helmet

License Plate

Number

No-

Helmet

R-M ID

Helmet

No-

Helmet

OR

Rider-N

3

2

1

Rider-1

attribute

(c)

License

Plate

OR

R-M ID: 1

R-M ID: 1

Figure 2. Annotation schema for our RideSafe-400 dataset. Refer
to Sec. 3 for details.

Next, our novel cross-association-based tracker module
(Sec. 4.2) operates across video frames and assigns unique
track IDs to R-M instances (Fig. 3 (b)). Each tracked R-M
instance is then processed to detect potential traffic viola-
tions. For this, the region-of-interest (ROI) image crop of
each R-M instance is fed into the violation module (Fig. 3
(c)), which includes a helmet detection module (Sec. 4.3.1)
and a triple rider classification module (Sec. 4.3.2). The
per-frame predictions of these modules are consolidated to
indicate the presence of a potential triple riding violation or
a helmet rule violation for each track.

The tracks with detected traffic violations are further pro-
cessed by the ANPR module. This module first detects the
license plates within the R-M instance and then recognizes
the license plate characters (Sec. 4.4, Fig. 3 (e)). Finally, the
generated E-ticket (license plate data, along with the corre-
sponding violation information and the R-M track frames)
is made available to traffic authorities for verification and
E-ticket generation (Fig. 3 (f)).

4.1. Segmentation and Cross-Association (SAC)

Given a frame I ∈ R3×H×W from a video sequence,
we first use a CNN backbone [28] to obtain multi-scale fea-
tures Fi, i = 1, 2, 3, . . . (Fig. 4 (i)), where i denotes the
scale index. The extracted feature maps are fed to the de-
tection head and mask coefficient head (Fig. 4 (ii)). For
each Fi, the detection head outputs Di = [Bi,Ki], where
Bi is the bounding box coordinate prediction map of shape
(4, Hi,Wi), and Ki is the class scores prediction map of
shape (2, Hi,Wi), representing the object classes ‘motor-
cycle’ and ‘rider’.

Instance segmentation: The mask coefficient head out-
puts an intermediate mask coefficient embedding map Ei

of shape (C,Hi,Wi), where each Exy
i is a vector along
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Figure 3. Our Method: (a) Dashcam video frames are input to our Segmentation and Cross-Association (SAC) module, which associates
riders with their motorcycles to form rider-motorcycle (R-M) instances. (b) These R-M instances are then fed into a cross-association-
based tracker, which robustly tracks them across frames and outputs track information T_i for each R-M instance R-M_i. (c) This track
information is used by the violation module to predict triple riding and helmet rule violations. (d) In the illustration, R-M instance R-M_1

is flagged for both triple riding (red flag) and helmet rule violations, while R-M_4 is flagged for a helmet rule violation (blue flag). (e) The
track information T_1 and T_4, corresponding to R-M_1 and R-M_4 respectively, are fed into the ANPR module, which detects and reads the
license plates. (f) Finally, the generated E-ticket, with supporting evidence, is shared with traffic authorities for authorization.

the channel that encodes an instance’s representation at cell
(x, y) on ith scale. A parallel branch processes the high-
resolution feature map F1 to output M of shape (C, H

4 ,
W
4 ).

To predict the instance segmentation mask for each spatial
location (x, y) in the Fi, we take the dot product between
M and Exy

i

  S_{i}^{xy} = M\cdot E^{xy}_i \label {eq:sixth} 
   

 (1)

where Sxy
i is of shape (H4 ,

W
4 ).

Intuitively, Exy
i represents a query embedding, whereas

M represents the key embeddings. Exy
i attends strongly to

spatial locations where the corresponding object is present
in M . Consequently, the key locations which have a high
similarity with Exy

i become a part of the final segmentation
mask Sxy

i .
Cross-Association: Traditional instance segmentation

treats riders and motorcycles as independent entities. To
model the association between riders and their correspond-

ing motorcycles, we introduce a novel cross-object seg-
mentation mask prediction head. This head follows the
same segmentation mechanism as that of instance segmen-
tation described above, but with a key modification. The
query Exy

i for a rider instance is now encouraged to attend
to location(s) where the rider’s motorcycle is present (see
M crossmask in Fig. 4). Conversely, the query for the motor-
cycle is encouraged to attend to all locations corresponding
to all the riders on the motorcycle (Rcrossmask in Fig. 4).
The cross-object segmentation mask is predicted as

  A_{i}^{xy} = M' \cdot E^{xy}_i \label {eq:eighth} 
    

 (2)

where Axy
i is of shape (H4 ,

W
4 ).

During inference, Non-Maximum Suppression (NMS) is
applied to identify spatial locations in Fi where the class
scores exceed a predefined threshold. Segmentation and
cross-object segmentation masks are then retrieved for these
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spatial locations using Eqs. (1) and (2), resulting in a set of
masks and cross-object masks for both riders and motorcy-
cles. The resulting set of bounding boxes, Bk, segmentation
masks, Sk, and cross-object segmentation masks, Ak, are
expressed as [(B1

r , S
1
r , A

1
r), . . . , (B

N
r , SN

r , AN
r )] for riders

and [(B1
m, S1

m, A1
m), . . . , (BM

m , SM
m , AM

m )] for motorcycles.
The association score ak,l between the k-th rider and l-th
motorcycle detections is computed as

  \makebox [0.9\columnwidth ]{\resizebox {0.9\columnwidth }{!}{$ a_{k, l} = \frac {1}{2}( \text {IoU}(A_r^k, S_m^l) + \text {IoU}(S_r^k, A_m^l \cdot \text {mask}(B_r^k)) ) $} } \label {eq:assoc-score} 



 

 

 

 

  (3)

where mask(B) is a function that takes in a bounding
box and returns a binary mask with values inside the box
set to 1 and outside set to 0.

4.2. Rider-Motorcycle Association-based Tracking

SORT is a popular, efficient, and robust family of track-
ers [4, 8, 37, 58, 59, 62]. Tracking is performed via a bi-
partite matching between the existing tracks and current
detections. This is done using a score matrix that repre-
sents the likelihood of assigning the ith track to the jth

detection. This is modeled by assigning a binary variable
aij ∈ {0, 1} to each combination of the current tracks
and the detections. If sij denotes the score of assigning
the ith track to the jth detection, the goal is to maximize
a∗ = argmax

aij∈{0,1}

∑i=N
i=1

∑j=M
j=1 aij · sij subject to the con-

straints

  \sum _{i=1}^{i=N} a_{ij} \leqslant 1 \; \forall \; j \in \{1 â•¦ M\} \label {eq:constraint0} \\ \sum _{j=1}^{j=M} a_{ij} \leqslant 1 \; \forall \; i \in \{1 â•¦ N\} \label {eq:constraint1}


        




         (5)

These constraints ensure that each detection can be
matched to only one track, and vice versa. The score sij
is a function of a motion model (e.g. a Kalman filter) and an
appearance model (e.g. object re-identification).

Cross-AssociationSORT: In contrast to tracking object
classes independently, our method aims to track both ‘rider’
and ‘motorcycle’ instances jointly, while keeping track of
the evolving associations between members of these object
classes. This approach offers two key advantages: firstly, it
improves tracking accuracy for each object, and secondly, it
establishes robust associations among R-M instances over
time.

To implement cross-association-based tracking, we uti-
lize R-M association scores defined earlier (see Eq. (3)).
Let the rider tracks up to time t be represented by T r

t =
{r1, r2, . . . rNt

r
} and the motorcycle tracks by Tm

t =
{m1,m2, . . .mNt

m
}, where N t

r and N t
m denote the number

of rider and motorcycle tracks at time t, respectively. The



observations/detections at time t+ 1 are denoted by the set
Dr

t+1 and Dm
t+1. Let the set of all possible assignments for

the rider and motorcycle class be represented by

  C^r = \{(r_i, d_j) \; | \; r_i \in T^r_t \; \& \; d_j \in D^r_{t+1}\} \\ C^m = \{(m_i, d_j) \; | \; m_i \in T^m_t \; \& \; d_j \in D^m_{t+1}\}       
   


      

   
 (7)

We define a binary variable tri , for the ith element in Cr,
represented by Cr

i denoting its possibility of being a rider
track at time t + 1. Similarly tmj is another binary variable
defined for Cm

j . Additionally, we define a likelihood score
based on R-M association alone for every pair of combi-
nations, one from Cr and the other from Cm. For the ith

rider hypothesis in Cr and the jth motorcycle hypothesis
in Cm, we define a binary variable eij with an associated
score of aij , which reflects the likelihood of association of
these two hypotheses. If and only if both Cr

i and Cm
j are

chosen, only then there is a possibility of eij = 1, implying
the association of the two tracks. This can be represented as

  e_{ij}(1 - t^r_i \cdot t^m_j) = 0 \; \forall \; i,j \label {eq:constrain2}          (8)

Additionally, to ensure that a rider can only be associated
with one motorcycle, we impose the constraint

  \sum _{j=1}^{j=|C^m|} e_{ij} \leqslant 1 \; \forall \; i \label {eq:constrain3}


     (9)

In our modified formulation, we maximize

  \begin {aligned} (t^{r*}, t^{m*}, e^{*}) = \underset {\{t^r_i, t^m_j, e_{ij}\} \in \{0, 1\}}{\arg \max } \; &\left ( \lambda _1 \sum _{i=1}^{|C_r|} t_{i}^{r} s_i^r + \lambda _2 \sum _{j=1}^{|C_m|} t_{j}^{m} s_j^m \right . \\ &\left . + \lambda _3 \sum _{i=1}^{|C_r|} \sum _{j=1}^{|C_m|} e_{ij} a_{ij} \right ) \end {aligned}    












 

















(10)

subject to the aforementioned (Eq. (8), Eq. (9)) and the
original (Eq. (4), Eq. (5)) constraints. Here, sri is the score
for ith rider hypothesis and smj is the score for jth motorcy-
cle hypothesis. The values obtained by the variables, tri and
tmj after the optimization will reflect the next set of tracks at
time t+ 1, and will be associated based on the value of eij .

4.3. Traffic Violation Detection

4.3.1 Helmet Detection Module

Each video frame is processed by a helmet detection mod-
ule, trained to classify ‘helmet’ and ‘no-helmet’. The mod-
ule outputs detections for each frame. These detection
boxes are then matched with corresponding rider tracks. For
each rider track, we determine the predominant class (‘hel-
met’ or ‘no-helmet’) across multiple frames using majority
voting.

4.3.2 Triple Rider Classification Module

The input to the triple riding classification model consists
of R-M instance ROI crops output by the cross-association-
based tracking module. The classifier is designed as a learn-
able convolutional layer on the frozen mask coefficient head
of the SAC module (Sec. 4.1), followed by a learnable lin-
ear layer. The model classifies the rider count as ‘single’,
‘double’, ‘triple’ or ‘none’. During training, the backbone
of SAC is frozen. An R-M track is flagged as a triple riding
violation if at least one instance ROI in the track is classified
as ‘triple riding’.

4.4. License Plate Recognition and E-ticket Gener-
ation

The license plate detection model is trained to identify
license plate regions within the R-M instance crops. For
tracks with detected violations, the ROIs from all frames are
passed through the license plate detector. Detected license
plate crops are then input to an OCR model. A lightweight
OCR architecture [49] is trained on a dataset of real-world,
augmented, and synthetic license plates. The license plate
numbers detected across multiple frames for a given R-M
instance track are consolidated using a majority vote, where
the most frequently detected license plate number is se-
lected and linked to the corresponding R-M instance track
for E-ticket generation.

5. Training and Implementation Details
5.1. Segmentation and Cross-Association (SAC)

The bounding box and class predictions are matched to
the ground truth using the Task-Alignment Learning (TAL)
approach [18]. The matched boxes are evaluated against
the ground truth boxes using the Complete IoU (CIOU)
loss [63] and the Distribution Focal Loss (DFL) [34]. For
classification, Binary Cross-Entropy (BCE) loss is used.
For segmentation and cross-object segmentation, a per-pixel
BCE loss is used. The overall loss function is formulated
as LSAC = λ1LCIOU + λ2LDFL + λ3Lcls + λ4Lseg +
λ5Lcrossseg where λ1 = 7.5, λ2 = 1.5, λ3 = 0.5, λ4 =
7, λ5 = 7 are hyperparameters for balancing multi-task
learning objectives. The model is trained for 200 epochs
with a learning rate of 0.01, using the Adam optimizer on 4
NVIDIA GeForce RTX 3080 Ti GPUs over 4 days.

5.2. Rider-Motorcycle Association-based Tracking

We use the pre-trained Re-Identification (ReID) model
SBS-R50 [23] for appearance modeling and a Kalman filter
for motion modeling. The optimization process is handled
using the Gurobi solver [22]. Segmentation masks from
SAC module are stored for a fixed sized buffer of k = 3
time steps. Using these, for computing aij , we calculate the



sum of association scores for the rider and motorcycle de-
tection for the k time steps, i.e.

∑T
t=T−k A(Cr

it , C
m
jt ) − θ,

where Cr
it and Cm

jt represent the rider and motorcycle de-
tections at the tth time step, and θ is a threshold set to 0.5.
The function A is implemented using Eq. (3). If there is no
detection for either Cr

it or Cm
jt , then function A returns a

value of 0. If the association IDs of the tracks is already es-
tablished and the association ID of the ith rider hypothesis
is not equal to the association ID of the jth motorcycle hy-
pothesis, then aij is set to -∞. We use the validation set of
RideSafe-400 dataset for tuning the tracker’s hyperparame-
ters.

5.3. Traffic Violation Detection

The Helmet Detection module is based on the YOLOv8-
x [28], trained to classify two categories: ‘helmet’ and ‘no-
helmet’. The model is trained using full-resolution frames,
with a dataset consisting of 37K helmet and 23K no-helmet
bounding boxes. The training process spans 70 epochs, us-
ing an Adam optimizer with a learning rate of 0.01, on four
NVIDIA GeForce RTX 3080 Ti GPUs for one day.

5.4. License Plate Detection and Recognition

A YOLOv8-x model [28] is trained for license plate de-
tection. To improve performance during both training and
inference, multi-line license plates of motorcycles are con-
verted into a single-line format. License plate recognition
is performed using an OCR model [49], which is trained on
real-world, augmented, and synthetic license plate data.

6. Experiments and Results
We conducted experiments using a dataset of 400 videos,

divided into 200 videos for training, 100 videos for valida-
tion, and 100 videos for final evaluation (test).

6.1. System-Level Performance (E-ticket Genera-
tion)

We evaluate the system using correctly tracked R-M in-
stances. An R-M track is considered a true positive for E-
Ticket generation if the system accurately predicts the traf-
fic violation (e.g. no-helmet or triple riding) and correctly
detects and recognizes the license plate. False positives
and false negatives are calculated similarly (see Tab. 1).
As shown in Tab. 2, the automated system achieves an
F1-score of 72.18%, reflecting good overall performance.
In practice, traffic enforcement personnel review E-Tickets
and corresponding evidence before issuance. This human-
in-the-loop approach eliminates false positives, raising the
F1-score to 82.05%, improving system reliability. Some
examples of system performance can be seen in Fig. 5.
Empirical observations indicate that the system struggles
with detecting triple riders in scenarios involving signifi-
cant glare or motion blur, and helmet detection suffers from

Traffic Violation LP Detection LP Recognition E-ticket
TP FP FN TP FP FN Correct Incorrect TP FP FN
✓ ✓ ✓ ✓
✓ ✓ ✓ ✓

✓ ✓ ✓ ✓
✓ ✓ ✓ ✓

✓ ✓ ✓ ✓
✓ ✓ ✓ ✓

✓ ✓
✓ ✓ ✓

Table 1. Evaluation criteria for E-ticket generation: For a given
R-M track, the labelling (TP, FP, FN) at various stages of system
pipeline is used to determine the final E-ticket level label of the
track. For e.g., a True Positive (TP) prediction at all stages of the
pipeline is considered a TP for E-ticket generation system. Correct
means that all the characters of the license plate number match the
ground-truth. Refer to Sec. 6.1 for details.

E-ticket System Output Level Precision % Recall % F1-score %
Automatic 84.21 63.16 72.18
Human-In-The-Loop 100.00 69.57 82.05

Table 2. Overall E-ticket system performance (Sec. 6.1).

Method ROI Extraction Approach Precision % Recall % F1-score %
Goyal et al. [21] R-M Instance 51.42 32.34 39.71
Cui et al. [16] Frame 76.34 39.11 51.72

YOLOv8-x [28]
Rider Instance 67.15 53.57 59.60
R-M Upper Instance 67.98 58.11 62.66
R-M Instance 73.48 57.85 64.73

Ours Frame 68.75 62.78 65.63

Table 3. Comparative evaluation of helmet violation detection.

occlusions due to objects or vehicles, leading to false nega-
tives. Furthermore, the triple riding classifier misclassified
distant occluded R-M instances, contributing to false posi-
tives. License plate recognition is most accurate when R-
M instances move in the same direction as the ego vehicle.
However, the recognition rate drops for R-M instances ap-
proaching from the opposite lane.

6.2. Violation Detection

Helmet Violation: Tab. 3 presents comparative evaluation
results for helmet violation detection at the rider track level
are. Our YOLOv8-x-based frame-level approach achieves
the best F1-score, striking a good balance between pre-
cision and recall. The results show that frame-level con-
text is marginally more effective compared to detecting hel-
met violations at R-M instance crop level. Compared to
prior works, YOLOv8-x based methods show better balance
across different ROI extraction methods.
Triple Riding Violation: The results in Tab. 4 indicate that
our R-M instance-based classification approach yields the
best performance. Methods based on counting rider or hel-
met detections are less robust to occlusions. Combining
our classifier with rider-counting greatly reduces false neg-
atives. However, it increases the false positive rate.



Method Precision % Recall % F1-score %
Goyal et al. [21] 32.30 01.46 02.79
Rider-Count 54.86 14.60 23.07
Helmet Detector 65.92 59.55 62.57
TR Classifier + Rider-Count 59.51 75.28 66.40
TR Classifier + Helmet Detector 57.88 43.82 49.88
TR Classifier 69.22 66.29 67.72

Table 4. Comparative evaluation of triple riding violation.

Detection Method R-M Association Association Score %

Goyal et al. [21] IOU 58.50
Trapezium Regressor 59.32

Ours
IOU 80.93
Trapezium Regressor [21] 81.71
SAC Module 84.04

Table 5. Evaluation of rider-motorcycle association.

Tracker HOTA MOTA IDF1
ByteTrack [62] 56.86 48.60 60.04
DeepOCSORT [37] 58.21 50.78 62.57
BotSORT [4] 58.12 50.72 63.09
HybridSORT [59] 58.10 50.66 62.29
Cross-AssociationSORT (Ours) 60.41 51.96 64.58

Table 6. Evaluation of tracking rider-motorcycle instances.

6.3. Rider-Motorcycle Detection and Association

We define the association score as the percentage of cor-
rectly associated R-M instances. Our SAC module outper-
forms association methods involving geometric heuristics
based on bounding box overlapping (Tab. 5). The trapez-
ium regressor [21] does not take into account the visual in-
formation, and directly operates on the coordinates of the
bounding boxes present. In contrast, our approach operates
directly in the image space and learns a more robust associ-
ation between the classes.

6.4. Rider-Motorcycle Instance Tracking

To evaluate the tracking of R-M instances, we use the
widely accepted HOTA [35], MOTA [7], and IDF1 [44]
metrics. We compare with various SORT trackers. From
Tab. 6, we see that joint tracking of R-M instances results
in better tracking performance across all metrics than inde-
pendently tracking component objects (riders, motorcycles)
and post-hoc aggregation.

6.5. License Plate OCR

For license plates, the metrics are Character Error
Rate (CER) and accuracy (percentage of plates recognized
correctly in their entirety). From Tab. 7, we see that
CRNN [49] trained on a combination of synthetic and real
data provides the best results. We found CNN-based ap-
proach to outperform more recent transformer-based ap-
proaches [33] and commercial OCR [1].

Method Real Synth Aug CER (↓) Accuracy %
TrOCR [33] ✓ ✓ ✓ 0.1691 16.41

GoogleOCR [1] 0.2698 33.34

CRNN [49]

✓ 0.0507 71.42
✓ ✓ 0.0602 71.43
✓ ✓ ✓ 0.0503 80.95
✓ ✓ 0.0400 85.71

Table 7. Evaluation of license plate recognition methods.
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Figure 5. Qualitative results of our system and failure cases. R-M
instances are indicated by pink bounding boxes. Yellow indicates
a No-Helmet detection.

7. Conclusion

DashCop is a comprehensive end-to-end dashcam-video
based system for automated E-ticket generation targeting
traffic violations in motorized two-wheelers. The key
innovations include the SAC module for precise rider-
motorcycle (R-M) association, Cross-AssociationSORT for
robust R-M instance tracking, and system-level perfor-
mance evaluation criteria. The large-scale RideSafe-400
video dataset, featuring multi-level and multi-label annota-
tions, is another key contribution. Validated on this dataset,
DashCop shows reliable E-ticket generation capabilities,
presenting a promising solution for enhancing traffic safety
through automated enforcement and deterrence.
Societal concerns: While enhancing road safety, the pro-
posed technology raises privacy concerns. To mitigate these
risks, we adhere to relevant legal and ethical standards gov-
erning surveillance-based public traffic management sys-
tems. Our system is designed to relay only relevant infor-
mation about detected traffic violations to authorities. Thus,
we minimize the risks associated with sharing complete
footage indiscriminately. Also, we employ anonymization
techniques to obscure identifiable information (e.g. faces).
Even for license plates, only the instances corresponding
to traffic violations are shown. The data is stored securely,
with access restricted to authorized personnel.
Acknowledgements: This work is supported by IHub-
Data, IIIT Hyderabad.
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