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ABSTRACT

Designing synthetically accessible molecules and recommending analogs to unsyn-
thesizable molecules are important problems for accelerating molecular discovery.
We reconceptualize both problems using ideas from program synthesis. Drawing
inspiration from syntax-guided synthesis approaches, we decouple the syntactic
skeleton from the semantics of a synthetic tree to create a bi-level framework for
reasoning about the combinatorial space of synthesis pathways. Given a molecule
we aim to generate analogs for, we iteratively refine its skeletal characteristics
via Markov Chain Monte Carlo simulations over the space of syntactic skeletons.
Given a black-box oracle to optimize, we formulate a joint design space over syn-
tactic templates and molecular descriptors and introduce evolutionary algorithms
that optimize both syntactic and semantic dimensions synergistically. Our key
insight is that once the syntactic skeleton is set, we can amortize over the search
complexity of deriving the program’s semantics by training policies to fully utilize
the fixed horizon Markov decision process imposed by the syntactic template. We
demonstrate performance advantages of our bi-level framework for synthesizable
analog generation and synthesizable molecule design. Notably, our approach offers
the user explicit control over the resources required to perform synthesis and biases
the design space towards simpler solutions, making it particularly promising for
autonomous synthesis platforms.

1 INTRODUCTION

The discovery of new molecular entities is central to advancements in fields such as pharmaceuticals
(Zhavoronkov et al., 2019; Lyu et al., 2019), materials science (Hachmann et al., 2011; Janet et al.,
2020), and environmental engineering (Zimmerman et al., 2020; Yao et al., 2021). Traditional
make-design-test workflows for molecular design typically rely on labor-intensive methods that
involve a high degree of trial and error (Sanchez-Lengeling & Aspuru-Guzik, 2018). Systematic and
data-efficient approaches that minimize costly experimental trials are the key to accelerating these
processes (Coley et al., 2020a;b; Gao et al., 2022). In recent years, a large number of molecular
generative models has been proposed (De Cao & Kipf, 2018; Ma et al., 2018; Simonovsky &
Komodakis, 2018; You et al., 2018; Li et al., 2018; Samanta et al., 2020; Liu et al., 2018; Jin et al.,
2018; 2020; Guo et al., 2022; Sun et al., 2024). However, few of their outputs are feasible to make
and proceed to experimental testing due to their lack of consideration for synthesizability (Gao &
Coley, 2020). This has motivated recent methods that integrate design and synthesis into a single
workflow, aiming to optimize both processes simultaneously (Button et al., 2019; Bradshaw et al.,
2019; 2020; Gao et al., 2021; Swanson et al., 2024) which significantly closes the gap between the
design and make steps, reducing cycle time significantly (Koscher et al., 2023; Volkamer et al., 2023;
McCorkindale, 2023). This development is spurred by the curation of a small but robust collection of
expert reaction templates that are inspired by real-world reactions and defined in close collaboration
with chemists Hartenfeller et al. (2011). This workflow facilitates de novo applications by imposing
synthetic accessibility by design, recasting molecular design as navigating the space of possible
synthetic procedures over a set of building blocks and forward reaction steps, as defined in Vinkers
et al. (2003). However, these methods still face computational challenges, particularly in navigating
the combinatorial explosion of potential synthetic procedures (Smith, 1997).

Inspired by techniques in program synthesis, particularly syntax-guided synthesis (Alur et al., 2013),
our method decouples the syntactical template of a synthetic procedure (the skeleton) from their
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chemical semantics (the substance). This bifurcation allows for a more granular optimization process,
wherein the syntactical and semantic aspects of reaction pathways can be optimized independently
yet synergistically. Our methodology employs a bi-level optimization strategy. The upper level
optimizes the syntactic template of the synthetic pathway, and the lower level fine-tunes the molecular
descriptors within that given structural framework. This dual-layered approach is facilitated by a
surrogate policy, implemented by a graph neural network, that propagates embeddings top-down
following the topological order of the syntactical skeleton. This ensures that each step in the synthetic
pathway is optimized in context, respecting the overarching structural strategy while refining the
molecular details. We address the combinatorial explosion in the number of programs using tailored
strategies for fixed horizon Markov decision process (MDP) environments. This algorithm amortizes
the complexity of the search space through predictive modeling and simulation of Markov Chain
Monte Carlo (MCMC) processes (Metropolis et al., 1953; Hastings, 1970; Gilks et al., 1995), focusing
on the generation and evaluation of syntactical skeletons. By leveraging the inductive biases from
retrosynthetic analysis without resorting to retrosynthesis search, our approach combines accuracy
and efficiency in “synthesizing" synthetic pathways.

In summary, the contributions of this work are:

1. We reconceptualize molecule design and synthesis as a conditional program synthesis problem,
establishing common terminology for bridging the two fields.

2. We propose a bi-level framework that decouples the syntactical skeleton of a synthetic tree from
the program semantics. Then, we introduce amortized algorithms within our framework for the
tasks of synthesizable analog recommendation and synthesizable molecule design.

3. We demonstrate improvements across multiple dimensions of performance for both tasks, and
include in-depth visualizations and analyses for understanding the source of our method’s
efficacy as well as its limitations.

2 RELATED WORKS

2.1 SYNTHESIZABLE ANALOG GENERATION

The problem of synthesizable analog generation aims to find molecules close to the target molecule
that are synthesizable. Closely related but distinct from this problem is computer-assisted ret-
rosynthetic analysis, which has developed through the decades (Corey et al., 1985) in tandem with
computers, and is now known as retrosynthetic planning due to its resemblance to more classical tests
of AI based around planning. As retrosynthetic planning is done by working backwards (top-down),
partial success is not straightforward to define. In other domains, procedural modeling is a bottom-up
generation process that generates analogs by design (Merrell & Manocha, 2010; Merrell et al., 2011;
Müller et al., 2006; Merrell, 2023). Thus, synthesizable analog generation warrants more specialized
methods. Prior works such as Dolfus et al. (2022); Levin et al. (2023) address this by performing
alterations of existing retrosynthesis routes, but this constrained approach severely limits the diversity
of analogs. Instead, we neither start from a search route nor constrain the search route, but instead,
extract analogs via the iterative refinement of the program’s syntactical skeleton with inner loop
decoding of the program semantics in a bi-level setup. We implement the iterative refinement phase
using an MCMC sampler with a stationary distribution governed by similarity to the target being
conditioned on. This is a common technique used to search over procedural models of buildings,
shapes, and furniture arrangements (Merrell et al., 2011; Talton et al., 2011; Yu et al., 2011), and we
showcase its efficacy for the new application domain of molecules.

2.2 SYNTHESIZABLE MOLECULE DESIGN

The problem of synthesizable molecule design is to design the synthetic pathway, or program, whose
output molecule optimizes some property oracle function. Note that unlike generic molecular opti-
mization approaches, the design space is reformulated to guarantee synthesizability by construction.
The early works to follow this formulation (Vinkers et al., 2003; Hartenfeller et al., 2011; Button
et al., 2019) use machine learning to assemble molecules by iteratively selecting building blocks
and virtual reaction templates to enumerate a library, with recent works such as Swanson et al.
(2024) obtaining experimental validation. The key computational challenge these methods must
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address is how to best navigate the combinatorial search space of synthetic pathways. Prior efforts
using bottom-up generation (Bradshaw et al., 2019; 2020) probabilistically model synthetic trees
as sequences of actions. These adopt an encoder-decoder approach to map between a continuous
latent space and a complex combinatorial space. This results in low reconstruction accuracy and
hinders the method on the task of conditional generation. Instead, SynNet (Gao et al., 2021) admits a
unified framework for solving analog generation and molecule design by formulating the problem as
an infinite-horizon MDP and doing amortized tree generation conditioned on Morgan fingerprints.
We show improvements to both tasks through our novel formulation.

2.3 PROGRAM SYNTHESIS

Program synthesis is the problem of synthesizing a function f from a set of primitives and operators
to meet some correctness specification. A program synthesis problem entails: (1) a background
theory T that is the vocabulary for constructing formulas, (2) a correctness specification, i.e., a logical
formula involving the output of f and T, and (3) a set of expressions L that f can take on, described
by a context-free grammar GL. In molecular synthesis, we can formulate T as containing operators
for chemical reactions, constants for reagents, molecular graph isomorphism checking, and so forth.
The correctness specification for finding a synthesis route for a molecule M is simply f(B) = M ,
where B is a set of building blocks, and we seek to find an implementation f from L to meet the
specification. A coarser specification is to match the molecule’s fingerprint, FP(f(B)) = FP(M),
and as shown by Gao et al. (2021), this relaxed formulation enables both analog generation and
fingerprint-based molecule optimization. Our key innovation takes inspiration from the line of work
surrounding syntax-guided synthesis (Alur et al., 2013; Schkufza et al., 2013). Syntax guidance
explicitly constrains GL, which reduces the set of implementations f can take on (Alur et al., 2013)
and facilitates more accurate amortized inference. Further discussion on the connections between
program synthesis and molecular synthesis and the similarities to the literature of retrosynthesis are
given in Appendix D.

R3

R3 R2 R1

R4R2R1

R3 R4

B1 B2 B3

R3

R3 R2

SMIRKS: [Cl,Br,I][c;$(c1:[c,... 

...

Figure 1: Program synthesis terminology for modeling synthesis pathways.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

For clarity, we recapitulate the problems of interest discussed in Section 2:

Synthesizable analog generation is the inverse task of inferring the program and inputs that best
reconstructs a target molecule. Denoting the set of reactions asR and the set of building blocks as
B, we obtain a compact yet expressive design space P: all non-trivial, attributed binary trees where
each internal node corresponds to a reaction. Drawing parallels to the program synthesis literature,
we call P the program space. The problem can now be formalized: given a space of moleculesM,
learn a mapping F :M→ P × B∗,M 7→ (P,B) such that B can be assigned to the leaf nodes of
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P and running the reaction(s) in P in a bottom-up manner (by recursively feeding the product of a
node’s reaction to its parent) produces a molecule M∗ with minimal “distance" to M . Using program
execution notation, the objective is stated as: argmin(P,B)∈P×B∗ dist(P (B),M).

Synthesizable molecule design is the forward task of finding the program and inputs whose output
optimizes a property oracle function. The oracle can represent property predictors, simulation, exper-
imental validation, etc. but are black-box in nature. The objective is argmin(P,B) Oracle(P (B)).

Moving forwards, we identify (P,B) with its output M∗ when it simplifies notation. Stripping the
semantics from a program leaves behind a syntactic skeleton, which lies in the space T of non-trivial
binary trees. Figure 1 illustrates the discussed terminologies1.

3.2 SOLUTION OVERVIEW

Herein, we use expert-defined reaction templates, a popular abstraction codifying deterministic graph
transformation patterns in the SMIRKS formal language. SMIRKS assumes the reactants are ordered
for defining how atoms and bonds are transformed from reactants to products. Since templates are
designed to encompass the most common and robust chemical transformations, ours are restricted to
uni-molecular (e.g., isomerization, ring closure, or fragmentation reactions) or bi-molecular (e.g.,
additions, substitutions, or coupling reactions) reactions. In practice, we featurize molecules using
Morgan fingerprints with radius 2 and d = 2048 bits, which is a common molecular representation in
both predictive and design tasks. This means that F is now technically a map over fingerprint space
X ⊆ {0, 1}d. It is then natural to use the Tanimoto distance between fingerprints as our notion of
molecular distance.

...

...

Figure 2: (a) Our Metropolis-Hastings algorithm in Section 3.3 iteratively refines the syntax tree
skeleton towards the stationary distribution which is proportional to the inverse distance to our target
molecule M . (b) Our genetic algorithm over the joint design space X × T in Section 3.4 combines
the strategies of semantic crossover (→) and syntactical mutation (→) to encourage both global
improvement and local exploration.

3.3 BILEVEL SYNTAX-SEMANTIC SYNTHESIZABLE ANALOG GENERATION

Given a molecule M ∈ M, we aim to find a program and inputs (P,B) whose output M∗ is most
similar to M . Suppose first that the syntax T of P was given. Then, we would use two learned
policies πR and πB that iteratively attribute reactions and building blocks to the nodes of T in
topological order (Section 3.3.2). Recalling Section 2.3, this can be seen as parameterizing the
derivation process of a context-free grammar GP . We give further details in Appendix E and discuss
how these derivations are constrained through syntax.

The application of our policies essentially specifies a syntax-conditioned program synthesis map
F :M×T → P × B∗. However, T is not known during inference, so to remove this dependence,
we consider two further strategies. One is to learn a classifier τ :M→ T to predict the most likely
syntax tree of the program that produces M . We implement τ with a multi-layer perceptron (MLP)
trained under a standard classification task.2 However, a single prediction may be inadequate, since
there can be multiple skeletons corresponding to the same molecule. Instead, our second strategy uses
a bi-level setup, where the outer loop explores syntax space T through invocations of the inner loop

1Please refer to Figure 3 of Gao et al. (2021) for example chemical illustrations of the two tasks.
2In practice, we restrict to a finite subset of T by imposing a maximum number of reaction nodes.
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F , which explores the program’s semantics. This approach is further made efficient by amortizing
the training of the inner loop.

3.3.1 OUTER LOOP: SYNTAX TREE STRUCTURE OPTIMIZATION

We simulate a Markov process on T for discovering skeletons whose decoding will maximize the
similarity between M and the program’s output (Figure 2). The details for how we bootstrap and
apply T is in Appendix A. We adopt the Metropolis-Hastings algorithm with proposal distribution
q(T |T0) ∝ exp(−λ dT (T, T0)) and scoring function f(T ) ∝ exp(−β dM(M,F (M,T ))), where
λ and β are parameters that trade-off exploration with exploitation, dT is the tree edit distance, and
dM is the Tanimoto distance. In other words, we use the inner loop to score candidates in T .

3.3.2 INNER LOOP: INFERENCE OF TREE SEMANTICS

We now formulate syntax-conditioned derivations under GP as a finite-horizon MDP.

State space: To bridge T and P × B∗, we introduce an intermediate state space of partial programs
∂P consisting of all possible partial programs arising from the following modifications to any syntax
tree T ∈ T : (1) prepend a new root node of T , and attribute it with a fingerprint from X , or (2)
attribute some internal (resp. leaf) nodes of T with elements ofR (resp. B). We further require that if
a node in T is filled, then so is its parent. Intuitively, ∂P comprises all partially filled-in trees in T
obeying topological order (with an added root node attached to a molecular fingerprint).

Action space: At a state S ∈ ∂P , the actions are to attribute any frontier node, i.e., unfilled nodes
whose parents are filled, with an item fromR (resp. B) if the node is internal (resp. a leaf).

Policy network: We parameterize the policies πR : ∂P → R∗ and πB : ∂P → B∗ with separate
graph neural networks. Given a partial program S as input, the former predicts the reactions that
should be attributed to internal frontier nodes as an |R|-label classification problem, while the latter
does so for building blocks and leaf nodes. However, |B| ≫ |R| is very large, so πB instead predicts
a 256-dimensional embedding at each nodes which implicitly specifies the building block whose
256-bit Morgan fingerprint is closest.

Training: We train both policies using supervised policy learning. Key to this approach is the dataset
used for training constructed using Algorithm 1. See Appendix F for further details.

Algorithm 1 Construction of training dataset.

Require: A synthetic dataset D0 ⊆ P × B∗ of programs (Section 4.1.1).
1: D ← ∅
2: for each (P,B) ∈ D0 do
3: Turn (P,B) into a fully-filled program T ∈ ∂P whose root is attributed with FP(P,B).
4: for each Λ ∈ 2T containing the root and closed under parent(·) do
5: Frontier(Λ)← {i ∈ T | i /∈ Λ and parent(i) ∈ Λ}
6: Populate node features H and labels Y based on P and B (Appendix F)
7: for i ∈ T − Λ do
8: Mask the feature in H corresponding to node i

9: for i ∈ T − Frontier(Λ) do
10: Mask the label in Y corresponding to node i

11: D ← D ∪ {(T,H,Y )}
return D

3.4 BI-LEVEL SYNTAX-SEMANTIC SYNTHESIZABLE MOLECULAR DESIGN

The task of synthesizable molecule design is to find a program P and building blocks B whose M∗
maximizes a property of interest. Given the learned policies from synthetic planning, we apply the
inner loop procedure F : X × T → P × B∗ as a surrogate, casting the optimization problem as one
over the joint design space X × T . We approach this problem with a genetic algorithm (GA) over
fingerprint space X that leverages this extra dimension of syntax T (Figure 2). The seed population
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Figure 3: Illustration of our decoding scheme F : (Left) The input is a Morgan fingerprint x and
syntax skeleton T ; (Middle) Decode once for every topological ordering of the tree, tracking all
partial programs with a stack; (Right) Execute all decoded programs, then returning the closest analog
which minimizes distance to x.

is obtained by sampling random bit vectors. To generate a child x from two parents x1 and x2,
we combine semantic crossover with syntactical mutation, reminiscent of our bi-level approach for
analog generation:

Semantic crossover: We first generate x∗ by combining bits from both x1 and x2 and possibly
mutating a small number of bits of the result.

Syntactic mutation: We set T = τ(x∗) and apply random edit(s) to obtain a perturbed tree T ′.
Together, (x∗, T ) and (x∗, T

′) form a sibling pool. Applying the surrogate F to each child gives
two sibling SMILES that are turned into two sibling fingerprints. We fit a Gaussian process on past
individuals and select the sibling with the highest expected improvement as the favoured child x.

Intuitively, semantic crossover optimizes for chemical semantics by combining existing ones from
the mating pool, while syntactic mutation explores syntactic analogs of individuals of interest. Each
child is then given a fitness score under the property oracle, and the top scoring unique individuals
are retained into the next generation (i.e., elitist selection). Further details and hyperparameters are
given in Appendix G.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

4.1.1 DATA GENERATION

We use 91 reaction templates from Hartenfeller et al. (2011); Button et al. (2019) representative of
common synthetic reactions. They consist primarily of ring formation and fusing reactions but also
peripheral modifications. Starting from 147,505 purchaseable compounds from Enamine Building
Blocks, we follow the same steps as Gao et al. (2021) to generate 600,000 synthetic trees. Filtering
by QED > 0.5 of the product molecules leaves 227,808 synthetic trees (136,684 for training, 45,563
for validation, and 45,561 for testing), which are then preprocessed into programs to construct our
final datasets. We bootstrap our set of syntactic templates based on those observed in the training
set, resulting in 1117 syntactic skeleton classes. Additional statistics on these syntactic templates
and insights on their coverage are given in Appendix A. Further analyses of the structure-property
relationship and a detailed case study are given in Appendix C.

4.1.2 BASELINES

We evaluate against all 25 molecular optimization methods benchmarked in the large-scale study by
Gao et al. (2022). Most of these are divided into three categories based on the molecular representation
used: string, graph, or synthesis trees. Synthesis methods restrict the design space to only products of
robust template-based reactions, so for fair comparison, we also consider intra-category rankings. We
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report the synthetic accessibility (SA) score (Ertl & Schuffenhauer, 2009) of the optimized molecules
to cross-verify the synthesizability of synthesis-based methods as well a investigate the performance
trade-off imposed by constraining for template-compatible synthesizability.

4.1.3 COMPUTATIONAL EFFICIENCY

Constructing D. Alg. 1 suggests |D| = O(2maxT |T ||D0|) because we compute all the (closed
under parent(·)) masks per P ∈ D0. However, we don’t need to explicitly store D. We only need
to precompute the (closed under parent(·)) masks for each T ∈ T̂k (k fixed and small), so the
running time is O(

∑
T∈T̂k

2|T |), independent of D0. Besides, the actual number of masks is far
smaller than 2|T |, and high |T | is less represented in D0, since large programs are less likely to be
sampled, so in practice |D| is much smaller than 2maxT |T ||D0|. Detailed statistics are given in App A.

Training with D. During training, we flat-index into D0 and their precomputed masks to
perform a pass over D. Despite the larger dataset, we find the total training steps to actually be
comparable with Gao et al. (2021). To scale to larger k, we propose a stratified sampling strategy that
does only a O(D0) pass per epoch, has positive support over D, and represents each (P,B) ∈ D0

equally. The idea is to sample a constant number of masks C per P,B ∈ D0, and re-sample each
epoch. We show this has complexity linear to the size of D0 per epoch but empirically converges in
much fewer training steps than SynNet for C = 1. Details are in App F.7. We further include an
ablation study on the downstream task performance of this simplified training strategy in App F.5.

4.1.4 EVALUATION METRICS

Synthesizable analog generation. We evaluate the ability to generate a diverse set of structural
analogs to a given input molecule using the Recovery Rate (RR, whether the most similar analog is
exactly the target), Average Similarity (as measured by Tanimoto distance to the input), SA score,
and Internal Diversity (average pairwise Tanimoto distance).

Synthesizable molecule design. We evaluate our method’s ability to optimize 15 oracle functions
(Huang et al., 2022) relevant to real-world drug discovery:

1. Bioactivity predictors (GSK3β, JNK3, DRD2) that estimate responses against targets related
to the pathogenesis of various diseases such as Alzheimer’s disease (Koch et al., 2015) based on
experimental data (Sun et al., 2017), and whose inhibitors are the basis for many antipsychotics
and have shown promise for treating diseases like Parkinson’s schizophrenia and bipolar disorder
(Madras, 2013).

2. Structural profiles (Median1, Median2, Rediscovery) that primarily focus on maximizing
structural similarity to multiple molecules, which is useful for designing molecules fitting a
more multifaceted structural profile (Brown et al., 2004). The rediscovery oracle focuses on hit
expansion around a specific drug.

3. Multi-property objectives (Osimertinib, 6 others) that use real drugs as a basis for optimizing
additional pharmacological properties, mimicking real-world drug discovery.

4. Docking Simulations (Mpro, DRD3) against Mpro, the main protease of SARS-Cov-2, and
DRD3, which has its own leaderboard with a particular focus on sample efficiency.

In addition to the average score of the top k molecules, we particularly focus on sample efficiency,
i.e., the top-k AUC as described in Gao et al. (2022).

4.2 RESULTS

4.2.1 SYNTHESIZABLE ANALOG GENERATION

In Table 1, we see our method outperforming SynNet across both dimensions of similarity (how
“analog” compounds are) and diversity (how different the compounds are). Additionally, our method
achieves lower SA Score, which is a proxy for synthetic accessibility that rewards simpler molecules.
Guided by a set of simple yet expressive syntactic templates, our model simultaneously produces
more diverse and structurally simple molecules without sacrificing one for the other. Additionally, our

7
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Table 1: We generate 5 unique analog molecules conditioned on an input molecule M and sort them
by decreasing similarity to M . For SynNet, we follow their beam search strategy and produce analogs
using the top 5 beams. For Ours (τ ), we sample the top 5 syntactic templates from τ . Ours (τ , rev) is
the same except we use a bottom-up decoding process, and it is included as an ablation for Section
4.3.1. Then, we evaluate how similar, diverse, and structurally simple the first k molecules are. The
best method is bolded. For three-way comparisons, the second best method is underlined.

Avg. Sim. ↑ SA ↓ Diversity ↑
Dataset Method RR ↑ Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Top-3 Top-5

Train Set Ours (τ , rev) 79.3 % 0.923 0.632 0.569 3.072 2.795 2.716 0.615 0.657
Ours (τ ) 88.1% 0.958 0.704 0.626 3.099 2.928 2.852 0.532 0.615

Test Set
SynNet 46.3% 0.766 0.622 0.566 3.108 3.057 3.035 0.525 0.584
Ours (τ , rev) 40.8 % 0.749 0.548 0.487 2.970 2.743 2.659 0.640 0.685
Ours (τ ) 52.3% 0.799 0.588 0.548 3.075 2.895 2.856 0.609 0.653

ChEMBL
SynNet 4.9% 0.499, 0.436, 0.394 2.669, 2.685, 2.697 0.644, 0.693
Ours (τ ) 7.6% 0.531, 0.443, 0.396 2.544, 2.510, 2.460 0.675, 0.727
Ours (MCMC) 9.2% 0.532, 0.486, 0.432 2.364, 2.310, 2.263 0.765, 0.759

policy network is well-suited to navigate these simple yet horizon structures, enabling a 6% higher
reconstruction accuracy after training on the same dataset. Combining these three dimensions, we
can conclude our method is the superior one for the task of synthesizable analog generation. To better
understand which design choices are responsible for the performance, we provided a comprehensive
analysis of the policy network in Appendix F. We begin in Appendix F.3 by elaborating on the main
distinction of our method vs existing works, highlight the novelty of our formulation, and motivate an
auxiliary training task that takes inspiration from cutting-edge ideas in inductive program synthesis.
We then perform several key ablations in Appendix F.4, using concrete examples to highlight success
and failure cases. Lastly, we perform a step-by-step walkthrough of our decoding algorithm in
Appendix F.8, visualizing the evolution of attention weights to showcase the full-horizon awareness
of our surrogate and the dynamic incorporation of new information. These analyses shed insights
into why our surrogate works, and points to future extensions to make it even better.

Table 2: Our model’s average performance across 13 TDC oracles compared to baselines compiled in
Gao et al. (2022). We limit to 1000 oracle calls each run and normalize oracle outputs to [0, 1]. We
report to mean score, AUC, and SA scores (Ertl & Schuffenhauer, 2009) of the top 10 molecules.
Methods are categorized by Gao et al. (2022) and, for brevity, we display only the top three algorithms
within each category with respect their AUC. The best method per column is bolded and the best
synthesis-based method is underlined. See Appendix H for the full results and experiment details.

Score ↑ AUC ↑ SA ↓
Category Method Value Rank Value Rank Value Rank

Screening Screening 0.426 20 0.377 20 3.097 8
MolPAL 0.472 16 0.444 15 3.018 4

String

REINVENT 0.697 2 0.607 2 3.415 9
REINVENT-SELFIES 0.682 3 0.578 4 3.791 15
STONED 0.609 8 0.555 6 5.550 24
7 rows omitted · · ·

Graph

Graph-GA 0.701 1 0.601 3 3.982 17
GPBO 0.642 6 0.570 5 3.954 16
DST 0.555 10 0.479 11 4.146 20
7 rows omitted · · ·

Synthesis

SynNet 0.578 9 0.545 7 3.075 6
DoG-Gen 0.634 7 0.511 9 2.793 2
DoG-AE 0.460 18 0.450 14 2.857 3

Ours 0.670 4 0.608 1 2.739 1

4.2.2 SYNTHESIZABLE MOLECULE DESIGN

In Table 2, we see our method outperforming all synthesis-based methods on average across the
13 TDC oracles for all considered metrics – average score, AUC, and SA score. Surprisingly, our
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Table 3: AutoDock Vina scores against DRD3 and Mpro, limited to 5000 oracle calls. For ZINC
(Screening), we use numbers from TDC’s DRD3 Leaderboard, and for SynNet, we report both their
paper’s numbers (*) and our reproduced results. We also report the top 3 binders for Mpro for the
real-world case study in Appendix I.

Score ↑ AUC ↑ SA ↓
Target Method #Calls 1st 2nd 3rd Top-10 Top-100 Top-10 Top-10

DRD3

ZINC − 12.8 − − 12.59 12.08 − −
SynNet* 5000 12.3 − − 12.02 11.13 − −
SynNet 5000 10.8 10.4 10.3 10.30 9.20 9.55 2.59
Ours 5000 13.7 13.1 13.1 13.01 12.13 11.91 2.13

Mpro
SynNet 5000 8.3 8.3 8.2 8.09 7.46 7.60 2.27
Ours 5000 9.9 9.7 9.7 9.54 9.02 9.01 2.59

SynNet* − 10.5 9.3 9.3 − − − −
Ours 10000 10.8 10.7 10.6 − − − −

Table 4: (Left) Ablation of sibling pool generation strategies on JNK3: (edits) mutates the syntax, (τ )
uses the top skeletons predicted from τ , and (flips) doesn’t consider skeleton and instead flips random
bits in the fingerprint. (Right) Ablation of SynNet with our Bayesian optimization (BO) acquisition
over a sibling pool generated by beam search. Seeds and All are the average scores of the initial and
final populations.

1st 2nd 3rd Top-10 Top-100 Diversity

Ours (edits) 0.88 0.88 0.87 0.86 0.8 0.61
Ours (τ ) 0.88 0.88 0.87 0.83 0.74 0.55
Ours (flips) 0.87 0.87 0.86 0.84 0.77 0.49

Oracle Method Top-1 Top-10 Top-100 Seeds All

GSK3β
SynNet 0.94 0.907 0.815 0.050± 0.051 0.803± 0.041
SynNet + BO 0.85 0.684 0.471 0.013± 0.024 0.447± 0.090
Ours 0.98 0.967 0.944 0.074± 0.055 0.941 ± 0.012

JNK3
SynNet 0.80 0.758 0.719 0.032± 0.025 0.715± 0.017
SynNet + BO 0.31 0.241 0.143 0.006± 0.012 0.134± 0.039
Ours 0.88 0.862 0.800 0.059± 0.053 0.792 ± 0.030

DRD2
SynNet 1.000 1.000 0.998 0.007± 0.018 0.996± 0.003
SynNet + BO 0.982 0.963 0.722 0.005± 0.018 0.672± 0.147
Ours 1.000 1.000 1.000 0.024± 0.056 1.000 ± 0.000

method stays competitive with the state-of-the-art string and graph methods in terms of average score
(ranking 4th) but being considerably more sample-efficient at finding the top molecules (ranking
1st for top-1/10 AUC). We see evidence that a synthesizability-constrained design space does not
sacrifice end performance when reaping benefits of enhanced synthetic accessibility and sample
efficiency.

The AutoDock Vina scores reflect our method’s strength in real-world ligand design tasks. Our best
binders against Mpro in Table 3 are significantly better than nearly all known inhibitors from virtual
screening or literature (Ghahremanpour et al., 2020; Zhang et al., 2021). For example, Zhang et al.
(2021) report a best score of −8.5. Our best binders against DRD3 also rank us 3rd on the TDC
Leaderboard (as of Aug. 2024). We present additional analysis of the best binders for our two docking
targets in Appendix I.

4.3 ABLATION STUDIES

In Tables 1 and 4, we analyze findings from four carefully designed ablation studies (1 in 4.3.1, 2
& 3 in 4.3.2, 4 in 4.3.3) to justify the key design decisions that differentiate our method from the
predecessor SynNet as well as other synthesis-based methods that have similar modules.

4.3.1 TOP-DOWN VS BOTTOM-UP TOPOLOGICAL ORDER DECODING

Our syntax tree is decoded top-down once the syntactic skeleton is fixed, but it can be argued a
bottom-up decoding aligns better with reality and enables pruning, as done by all baselines that
serialize the construction of synthesis trees (Bradshaw et al., 2019; 2020; Gao et al., 2021). We
empirically show this is infeasible for early steps, when the model has to predict the first building
block to use given only knowledge of the target molecule. Our method resolves this by reformulating
the (Markov) state as partial syntax trees, where holes are reactions and building blocks left to predict.
This state captures the horizon structure, so we can learn tailored policies for the fixed horizon. We
reintroduce the inductive bias of retrosynthetic analysis to procedural synthesis. Conditioned on
the syntax (skeleton), we argue a top-down filling order outperforms bottom-up, with two intuitive
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reasons: (1) there are orders of magnitude less reactions than building blocks (91 vs. 147,505) and
(2) it is easier to reason backwards from the specification (target molecule) which reactions lead to
the product. To demonstrate these factors compensate for any gains from bottom-up pruning on the
fly, we perform an additional ablation in Table 1. Instead of the MDP enforcing we fill in a skeleton
top-down, we fill the skeleton from the bottom-up. We retrain the model by pretraining on inverted
masks, and decode by following every possible topological order of the skeleton with edges reversed.
The results show this cannot reconstruct the training data as well and struggles on generalization.

4.3.2 HOW ANALOG GENERATION CAPABILITIES TRANSLATE TO DESIGN CAPABILITIES

Our analog generation capability is demonstrated in Section 4.2.1, but it’s unclear how or why it
translates to better performance when used as an offspring generator within molecule optimization.
An ideal surrogate takes as input a fingerprint and outputs multiple synthesizable analogs, creating
diverse offspring(s) that balance local neighborhood exploration with global exploitation. SynNet
does the former by mutating the fingerprint directly, whereas the key insight of our syntax-guided
method is to mutate the syntactic skeleton instead, doing so via editing mutations. Table 4 (Left)
shows edit-based mutations are superior to the top recognition strategy used for analog generation
((Skeleton) in Table 1) and the trivial strategy of ignoring the skeleton and flipping individual bits
to obtain siblings. This suggests edits to the skeleton better preserves the locality bias within the
GA. Higher population diversity and average scores for k ∈ {10, 100} suggest the same symbiotic
relationship between diversity and similarity in analog generation is also the key enabler to better GA
optimization. Our GA benefits from an inner loop sibling acquisition within the crossover operation,
acquiring the highest expected improvement sibling to expend an oracle call on. It can be argued
this extra mechanism is why our method gets better results and makes for an unfair comparison with
SynNet, or that this is a method-agnostic hack to improve GA performance. In Table 4 (Right), we
show SynNet endowed with a similar mechanism in its crossover operation (generate an offspring
pool using the top beams then apply a BO acquisition step on top) didn’t improve, but actually
downgraded the performance. We hypothesize that SynNet’s optimization trajectory is derailed by
the additional variation to its sibling pool, reducing local movements within the output space that
a syntactic editing approach naturally preserves. Thus, we believe the performance gains of this
mechanism is unlocked by our syntax-driven approach.

4.3.3 EXTRAPOLATION TO UNSEEN TEMPLATES

Since syntactic templates are the key ingredients of our bi-level framework, we investigate the
framework’s dependency on them, and whether it can scale to more diverse templates. Our ablation
study in App. B evaluate whether the model can extrapolate to new template classes. We investigate:
1) how well SynthesisNet extrapolates to programs whose structural template was unseen during
training, 2) how well the framework can incorporate new templates at test time, and 3) how robust
overall task performance is to them. To answer these questions, we hold out ≈ 25% of T̂ to be
the test set, remove all programs belonging to those templates, retrain, and analyze changes in task
performances, both holistic results and results specific to the held-out templates. Our results reveal
minor performance drop, and in some instances, improved results along some metrics. Our analysis
reveals the surrogate model is robust and unsensitive to missing templates, and the framework can
also incorporate unseen templates in the online phases of the downstream tasks. We encourage future
works to study the exact scaling laws between templates and performance, and we hope our initial
findings unlock new directions for scaling up our solutions to achieve greater coverage and impact.

5 DISCUSSION & CONCLUSION

We reconceptualize synthesis pathway design using a program synthesis approach, introducing a bi-
level framework that separates the syntactical skeleton of a synthetic tree from its chemical semantics.
Our learning algorithms leverage the tree horizon structure, improving performance on key metrics of
analog generation and de novo design. By decoupling syntax and semantics, we effectively navigate a
rich design space, integrating design and synthesis into a single workflow that reduces discovery cycle
time. Our framework offers control over synthesis resources and biases towards simpler solutions,
with the exciting prospect of integration with autonomous synthesis platforms (Coley et al., 2019).
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